diff --git a/Docs/remeshing_formulas/calcul_lambda2star.mw b/Docs/remeshing_formulas/calcul_lambda2star.mw deleted file mode 100644 index c0e867b78d44924a1d8773eb523f23518503733f..0000000000000000000000000000000000000000 --- a/Docs/remeshing_formulas/calcul_lambda2star.mw +++ /dev/null @@ -1,351 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<Worksheet> -<Version major="17" minor="1"/> -<Label-Scheme value="2" prefix=""/> -<View-Properties presentation="false" autoexpanding_sections="true"><Zoom percentage="150"/> -</View-Properties> -<MapleNet-Properties elisiondigitsbefore="100" labelling="true" indentamount="4" elisiontermsthreshold="10000" ansi="false" errorbreak="1" useclientjvm="true" echo="1" imaginaryunit="I" labelwidth="20" contextmenusize="automatic" plotdriver="opengl" elisiondigitsafter="100" plotoutput="terminal" helpbrowser="standard" rtablesize="10" elisiontermsbefore="100" elisiondigitsthreshold="10000" typesetting="standard" plotdevice="inline" verboseproc="1" showassumed="1" errorcursor="false" longdelim="true" plotoptions="" quiet="false" elisiontermsafter="100" screenwidth="79" preplot="" prettyprint="3" displayprecision="-1" screenpixelheight="1050" warnlevel="3" screenheight="25" latexwidth="8.0" postplot="" prompt="> " ShowLabels="true"/> -<Styles> -<Font name="Ordered List 1" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 2" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 3" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 5" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Author" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Warning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Caption Reference" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input Placeholder" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[200,0,200]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="true"/> -<Font name="Maple Plot" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Code" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Line Printed Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Diagnostic" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[40,120,40]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Inert Output" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[144,144,144]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Normal" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,128,128]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Maple Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Dash Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Math" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Input" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkError" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Header and Footer" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="10" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Error" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 1" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Bullet Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Equation Label" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 3" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="14" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 2" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="16" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkWarning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Dictionary Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[147,0,15]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Atomic Variable" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[175,0,175]" italic="true" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Caption Text" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="List Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Layout name="Ordered List 1" alignment="left" bullet="numeric" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 2" alignment="left" bullet="alphabetic" firstindent="0" leftmargin="36" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 3" alignment="left" bullet="roman" firstindent="0" leftmargin="72" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 4" alignment="left" bullet="ALPHABETIC" firstindent="0" leftmargin="108" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 5" alignment="left" bullet="ROMAN" firstindent="0" leftmargin="144" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Author" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="8" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Warning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Annotation Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Plot" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Line Printed Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Text Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="newline" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Diagnostic" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Normal" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Output" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.3" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Dash Item" alignment="left" bullet="dash" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkError" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Error" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 1" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="4" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Bullet Item" alignment="left" bullet="dot" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 4" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 3" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 2" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="2" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkWarning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="List Item" alignment="left" bullet="indent" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Pencil-style name="Pencil 5" pen-color="[255,0,0]" pen-height="5.0" pen-width="5.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 4" pen-color="[0,0,255]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 3" pen-color="[0,0,0]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 2" pen-color="[0,0,255]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 1" pen-color="[0,0,0]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Highlighter-style name="Highlighter 2" pen-color="[255,204,0]" pen-height="14.0" pen-width="14.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 1" pen-color="[255,153,255]" pen-height="12.0" pen-width="8.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 4" pen-color="[0,255,255]" pen-height="32.0" pen-width="32.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 3" pen-color="[51,255,0]" pen-height="24.0" pen-width="24.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 5" pen-color="[255,255,0]" pen-height="48.0" pen-width="48.0" pen-opacity="0.8"/> -</Styles> -<Task-table> - <Task-category name="<default>"/> -</Task-table> -<Task/> -<Group labelreference="L478" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYkLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjlGOS1GNjYtUSI6RidGOUY7L0Y/Rj1GQEZCRkRGRkZIL0ZLRk9GTS1GLDYlUSdob3JuZXJGJ0YvRjItRjY2LVEqJmNvbG9uZXE7RidGOUY7RmhuRkBGQkZERkZGSEZpbkZNLUYsNiVRKGNvZGVnZW5GJ0YvRjItRlQ2Ji1GIzYlRmpuLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGZW5GZ29GOQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYjLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjktRjY2LVEiOkYnRjlGOy9GP0Y9RkBGQkZERkZGSC9GS0ZPRk0tRiw2JVEnaG9ybmVyRidGL0YyLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0ZobkZARkJGREZGRkhGaW5GTS1GLDYlUShjb2RlZ2VuRidGL0YyLUZUNiYtRiM2I0ZqbkY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmVu</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L475" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Calcul de la fomule Lambda_2^*:</Text-field> -<Text-field style="Text" layout="Normal"> - 4 points</Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8"> - degr\303\251 3</Font></Text-field> -<Text-field style="Text" layout="Normal"> - C1</Text-field> -<Text-field style="Text" layout="Normal"> - Moments d'ordre 2</Text-field> -</Input> -</Group> -<Group labelreference="L483" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="xrange := -2 .. 2; 1; d := 3" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlMtSSNtbkdGJDYkUSIyRidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZSL0ZOUSYwLjBlbUYnRlUtRjY2LVEiO0YnRjlGOy9GP0YxRkBGQkZERkZGSC9GS0ZnbkZNLUYsNiVRImRGJ0YvRjJGNS1GVjYkUSIzRidGOS8lK2V4ZWN1dGFibGVHRj1GOQ==">QyU+SSd4cmFuZ2VHNiI7ISIjIiIjIiIiPkkiZEdGJSIiJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYoLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlctSSNtbkdGJDYkUSIyRidGOUY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRlYvRk5RJjAuMGVtRidGWS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RlxvRl9vRjk=">OyEiIyIiIw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiZEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSSNtbkdGJDYkUSIzRidGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5">IiIk</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L476" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="p[0] := proc (x) options operator, arrow; sum(c[0, i]*x^i, i = 0 .. d) end proc;" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYyLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYkLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJ0Y+LyUvc3Vic2NyaXB0c2hpZnRHRj0tSSNtb0dGJDYtUSomY29sb25lcTtGJ0Y+LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZILyUpc3RyZXRjaHlHRkgvJSpzeW1tZXRyaWNHRkgvJShsYXJnZW9wR0ZILyUubW92YWJsZWxpbWl0c0dGSC8lJ2FjY2VudEdGSC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRlctRi82JVEieEYnRjJGNS1GQzYtUSgmc3JhcnI7RidGPkZGRklGS0ZNRk9GUUZTL0ZWUSYwLjBlbUYnL0ZZRltvLUYvNiVRJHN1bUYnRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYtLUYsNiUtRi82JVEiY0YnRjJGNS1GIzYmRjotRkM2LVEiLEYnRj5GRi9GSkY0RktGTUZPRlFGU0Zqbi9GWVEsMC4zMzMzMzMzZW1GJy1GLzYlUSJpRidGMkY1Rj5GQC1GQzYtUScmc2RvdDtGJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG8tSSVtc3VwR0YkNiVGWi1GIzYlLUZDNi1RIn5GJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG9GYnBGPi8lMXN1cGVyc2NyaXB0c2hpZnRHRj1GXHBGXXFGYnAtRkM2LVEiPUYnRj5GRkZJRktGTUZPRlFGU0ZVRlhGOi1GQzYtUSMuLkYnRj5GRkZJRktGTUZPRlFGUy9GVlEsMC4yMjIyMjIyZW1GJ0Zcby1GLzYlUSJkRidGMkY1Rj5GPi1GQzYtUSI7RidGPkZGRl9wRktGTUZPRlFGU0ZqbkZYLUYsNiVGLi1GIzYkLUY7NiRRIjFGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGZHJGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLyUrZXhlY3V0YWJsZUdGSEY+">QyY+JkkicEc2IjYjIiIhZio2I0kieEdGJkYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLUkkc3VtR0YmNiQqJiZJImNHRiY2JEYoSSJpR0YmIiIiKTkkRjZGNy9GNjtGKEkiZEdGJkYmRiZGJkY3PiZGJTYjRjdmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRjdGNkY3RjhGN0Y6RiZGJkYmRjc=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R0Y9LUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZm4tRiM2KC1GLzYlUSJ4RidGMkY1LUZJNi1RKCYjODU5NDtGJ0Y+RkxGTkZQRlJGVEZWRlgvRmVuUSYwLjBlbUYnL0ZobkZiby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZJNi1RJiZTdW07RidGPkZMRk4vRlFGNEZSL0ZVRjQvRldGNEZYRmFvL0ZoblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRkk2LVEiPUYnRj5GTEZORlBGUkZURlZGWEZaRmduRjpGQEZDRj4tRi82JVEiZEYnRjJGNUZYLyUsYWNjZW50dW5kZXJHRkUtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdRJDUuMEYnLyUmZGVwdGhHRmNxLyUqbGluZWJyZWFrR1ElYXV0b0YnLUYjNiYtRiw2JS1GLzYlUSJjRidGMkY1LUYjNihGOi1GSTYtUSIsRidGPkZML0ZPRjRGUEZSRlRGVkZYRmFvL0ZoblEsMC4zMzMzMzMzZW1GJ0ZjcEZARkNGPkZGLUZJNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y+RkxGTkZQRlJGVEZWRlhGYW9GY28tSSVtc3VwR0YkNiVGW29GY3AvJTFzdXBlcnNjcmlwdHNoaWZ0R0Y9Rj5GQEZDRj5GQEZDRj5GQEZDRj4=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIUkiaUdGJSIiIik5JEYxRjIvRjE7RjBJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIkkiaUdGJUYwKTkkRjFGMC9GMTsiIiFJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L486" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="P := proc (x) options operator, arrow; piecewise(x < -2, 0, x < -1, p[0](x), x < 0, p[1](x), x < 1, p[1](-x), x < 2, p[0](-x), 2 <= x, 0) end proc" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KS1GLDYlUSJQRicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnRjcvJSZmZW5jZUdGNi8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0Y2LyUqc3ltbWV0cmljR0Y2LyUobGFyZ2VvcEdGNi8lLm1vdmFibGVsaW1pdHNHRjYvJSdhY2NlbnRHRjYvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZOLUYsNiVRInhGJ0Y0RjctRjs2LVEoJnNyYXJyO0YnRjdGPkZARkJGREZGRkhGSi9GTVEmMC4wZW1GJy9GUEZYLUYsNiVRKnBpZWNld2lzZUYnL0Y1USV0cnVlRicvRjhRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNmVuRistSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWC8lJmRlcHRoR0Zlby8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GOzYtUSJ+RidGN0Y+RkBGQkZERkZGSEZKRldGWUZRLUY7Ni1RIjxGJ0Y3Rj5GQEZCRkRGRkZIRkpGTEZPLUY7Ni1RKiZ1bWludXMwO0YnRjdGPkZARkJGREZGRkhGSi9GTVEsMC4yMjIyMjIyZW1GJy9GUEZncC1JI21uR0YkNiRRIjJGJ0Y3LUY7Ni1RIixGJ0Y3Rj4vRkFGaG5GQkZERkZGSEZKRlcvRlBRLDAuMzMzMzMzM2VtRictRmpwNiRRIjBGJ0Y3Rl1xRl1wRmBvRl1wRlFGYHBGY3AtRmpwNiRRIjFGJ0Y3Rl1xLUklbXN1YkdGJDYlLUYsNiVRInBGJ0Y0RjctRiM2JEZjcUY3LyUvc3Vic2NyaXB0c2hpZnRHRmVxLUZcbzYkLUYjNiQtRiw2JUZTRmduRmluRjdGN0ZdcUZgb0ZdcEZnckZgcEZjcUZdcS1GanE2JS1GLDYlRl5yRmduRmluLUYjNiRGZnFGN0ZhckZjckZdcUZgb0ZdcEZnckZgcEZmcUZdcUZpci1GXG82JC1GIzYlRmNwRmdyRjdGN0ZdcUZgb0ZdcEZnckZgcEZpcEZdcS1GanE2JUZbc0ZfckZhckZfc0ZdcUZgb0ZdcEZnci1GOzYtUS8mR3JlYXRlckVxdWFsO0YnRjdGPkZARkJGREZGRkhGSkZMRk9GaXBGXXFGXXBGY3FGN0Y3RjdGKy8lK2V4ZWN1dGFibGVHRjZGNw==">PkkiUEc2ImYqNiNJInhHRiRGJDYkSSlvcGVyYXRvckdGJEkmYXJyb3dHRiRGJC1JKnBpZWNld2lzZUclKnByb3RlY3RlZEc2LjI5JCEiIyIiITJGMCEiIi0mSSJwR0YkNiNGMjYjRjAyRjBGMi0mRjc2IyIiIkY5MkYwRj4tRjw2IywkRjBGNDJGMCIiIy1GNkZBMUZERjBGMkYkRiRGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiUEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2KC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCYjODU5NDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWC1GIzYoLUYsNiVRKnBpZWNld2lzZUYnRi9GMi1GNjY+UTAmQXBwbHlGdW5jdGlvbjtGJy8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbkYnLyUlc2l6ZUdRIzEyRicvJSVib2xkR0Y9L0YwRj0vJSp1bmRlcmxpbmVHRj0vJSpzdWJzY3JpcHRHRj0vJSxzdXBlcnNjcmlwdEdGPS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XUYnLyUnb3BhcXVlR0Y9LyUrZXhlY3V0YWJsZUdGPS8lKXJlYWRvbmx5R0Y9LyUpY29tcG9zZWRHRj0vJSpjb252ZXJ0ZWRHRj0vJStpbXNlbGVjdGVkR0Y9LyUscGxhY2Vob2xkZXJHRj0vJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHRj1GOUY7Rj5GQEZCRkRGRkZIRldGWS1JKG1mZW5jZWRHRiQ2JC1GIzY8LUYjNihGUS1GNjYtUSI8RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GIzYlLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZhci1JI21uR0YkNiRRIjJGJ0Y5RjlGW3BGZXBGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRlcvRk5RLDAuMzMzMzMzM2VtRictRmRyNiRRIjBGJ0Y5RmdyLUYjNihGUUZocS1GIzYlRl1yLUZkcjYkUSIxRidGOUY5RltwRmVwRjlGZ3ItRiM2KC1JJW1zdWJHRiQ2JS1GLDYlUSJwRidGL0YyLUYjNiZGXXNGW3BGZXBGOS8lL3N1YnNjcmlwdHNoaWZ0R0Zfc0Zpbi1GYnE2JC1GIzYmRlFGW3BGZXBGOUY5RltwRmVwRjlGZ3ItRiM2KEZRRmhxRl1zRltwRmVwRjlGZ3ItRiM2KC1GanM2JUZcdC1GIzYmRmRzRltwRmVwRjlGYXRGaW5GY3RGW3BGZXBGOUZnci1GIzYoRlFGaHFGZHNGW3BGZXBGOUZnci1GIzYoRlt1RmluLUZicTYkLUYjNiYtRiM2J0ZdckZRRltwRmVwRjlGW3BGZXBGOUY5RltwRmVwRjlGZ3ItRiM2KEZRRmhxRmNyRltwRmVwRjlGZ3ItRiM2KEZpc0ZpbkZjdUZbcEZlcEY5RmdyLUYjNihGY3ItRjY2LVElJmxlO0YnRjlGO0Y+RkBGQkZERkZGSEZKRk1GUUZbcEZlcEY5RmdyRl1zRltwRmVwRjlGOUZbcEZlcEY5RltwRmVwRjlGW3BGZXBGOQ==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzYuMjkkISIjIiIhMkYuISIiLSZJInBHRiU2I0YwNiNGLjJGLkYwLSZGNTYjIiIiRjcyRi5GPC1GOjYjLCRGLkYyMkYuIiIjLUY0Rj8xRkJGLkYwRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L474" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="E := [eval(P(x), x = 0) = 1, eval(P(x), x = -1) = 0, eval(P(x), x = -2) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiRUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNjItRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNiktRiw2JVEiUEYnRi9GMi1GUDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5RjlGOUZnby1GW3A2JFEiMUYnRjlGX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ28tRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmlwRl5wRjlGOUZnb0Zqb0Zfb0ZULUZQNiQtRiM2KkZlbkZobkZfb0Zcb0Znb0ZlcC1GW3A2JFEiMkYnRjlGOUY5RmdvRmpvLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GYnFGOQ==">QyQ+SSJFRzYiNyUvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJS9GLyIiISIiIi8tRik2JEYsL0YvISIiRjEvLUYpNiRGLC9GLyEiI0YxRjc=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L489" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C0 := [seq(eval(p[j](x), x = j-2+1) = eval(p[j+1](x), x = j-2+1), j = 0 .. 0)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRl5wLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmRvLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYHEtSSNtbkdGJDYkUSIyRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl9xRmFxLUZjcTYkUSIxRidGOUY5RjlGaXBGZW4tRlA2JC1GIzYtLUZdbzYlRl9vLUYjNiZGZG9GZnFGaXFGOUZnb0Zqb0ZhcEZecEZpcEZkb0ZccUZicUZmcUZpcUY5RjlGYXBGZG9GaXAtRmNxNiRGaW9GOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZfcS9GTkZmcEZkckY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZqckY5">QyQ+SSNDMEc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS9GNS1JIitHRik2JCwmRjMiIiIhIiNGO0Y7LUYtNiQtJkYxNiMsJkYzRjtGO0Y7RjRGNi9GMzsiIiFGRSEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L490" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C1 := [seq(eval(diff(p[j](x), x), x = j-2+1) = eval(diff(p[j+1](x), x), x = j-2+1), j = 0 .. 0)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwRjlGOUZocEZlcC1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbcC1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmdxLUkjbW5HRiQ2JFEiMkYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocS1GanE2JFEiMUYnRjlGOUY5RmBxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JkZbcEZdckZgckY5Rl5wRmFwRmhwRmVwRjlGOUZocEZlcEZgcUZbcEZjcUZpcUZdckZgckY5RjlGaHBGW3BGYHEtRmpxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZmcS9GTkZdcUZfc0Y5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSRDMTBGJ0YvRjJGNS1GUDYmLUYjNilGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2Jy1GZG82JUZmby1GIzYkRmByRjlGXnBGYXBGaHBGZXBGOUY5RmhwRmVwRmBxRl9zRjlGOUZgcUZlbi1GUDYkLUYjNilGXG8tRlA2JC1GIzYnRl91LUZQNiQtRiM2JS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGZnFGaHFGZXBGOUY5RmhwRmVwRjlGOUZocEZlcEZgcUZfc0Y5RjlGZXNGOUY5RmdzRmpzRl10RmVzRjk=">QyY+SSNDMUc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJUY4L0Y4LUkiK0dGKTYkLCZGNiIiIiEiI0Y+Rj4tRi02JC1GMDYkLSZGNDYjLCZGNkY+Rj5GPkY3RjhGOS9GNjsiIiFGSiEiIj5JJEMxMEdGJTcjLy1GLTYkLUYwNiQtJkY0NiNGPkY3RjgvRjhGSi1GLTYkLUYwNiQtRlU2IywkRjhGS0Y4RldGSw==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L473" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="CEND := [eval(diff(p[0](x), x), x = -2) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElQ0VOREYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GUy1JKG1mZW5jZWRHRiQ2Ji1GIzYoLUYsNiVRJWV2YWxGJ0YvRjItRlY2JC1GIzYqLUYsNiVRJWRpZmZGJ0YvRjItRlY2JC1GIzYnLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JC1JI21uR0YkNiRRIjBGJ0Y5RjkvJS9zdWJzY3JpcHRzaGlmdEdGXXAtRlY2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGSi9GTlEsMC4zMzMzMzMzZW1GJ0ZkcEY5RjlGZ3BGZHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmRxLUZbcDYkUSIyRidGOUY5RjlGXXFGam8vJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRlJGVEZpcUY5">QyQ+SSVDRU5ERzYiNyMvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JJWRpZmZHRio2JC0mSSJwR0YlNiMiIiE2I0kieEdGJUY1L0Y1ISIjRjMhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L484" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM0 := `assuming`([PolynomialTools[CoefficientList](collect(sum(eval(P(x), x = s-l), l = xrange)-s^0, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0wRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRlM2JC1GIzYoLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlM2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GUzYkLUYjNiktRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0ZccS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXItRiw2JVEibEYnRi9GMkY5RjlGX3FGY3JGZ3EtRiw2JVEneHJhbmdlRidGL0YyRjlGOUZdci1JJW1zdXBHRiQ2JS1GUzYkLUYjNiRGanFGOUY5LUYjNiQtSSNtbkdGJDYkUSIwRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdGZXNGX3FGanFGOUY5Rl9xRmpxRlpGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGY3EvRk5GZHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGY3FGW3RGaHNGanEtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GYnNGaHMtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZodEY7Rj5GQEZCRkRGRkZIRmNxRlt0RmhzRmpxLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZjczYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZaRjk=">QyQ+SSRETTBHNiItSSlhc3N1bWluZ0dGJTYkNyMtJkkwUG9seW5vbWlhbFRvb2xzR0YlNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGJTYkLCYtSSRzdW1HNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2JC1JJWV2YWxHRjc2JC1JIlBHRiU2I0kieEdGJS9GQCwmSSJzR0YlIiIiSSJsR0YlISIiL0ZFSSd4cmFuZ2VHRiVGRC1JIl5HRjc2JEZDIiIhRkZGQ0ZDNyMtSSRhbmRHRjc2JC1JIj5HRjdGSzJGQ0ZERkY=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L492" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM0 := [seq(DM0[j] = 0, j = 1 .. numelems(DM0))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNMEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiYtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Ly1GLDYlUSRETTBGJ0YvRjItRlA2Ji1GIzYlLUYsNiVRImpGJ0YvRjIvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXG9GZ28tRltwNiRRIjFGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmNwLUYsNiVRKW51bWVsZW1zRidGL0YyLUZQNiQtRiM2JUZlbkZfb0Y5RjlGX29GOUY5Rl9vRjlGOUZhb0Zkby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZfb0Y5">QyQ+SSVsRE0wRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0wR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L480" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM1 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l*(eval(P(x), x = s-l)), l = xrange)-s, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistRiw2JVEibEYnRi9GMi1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaHAtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZncC9GTlEsMC4zMzMzMzMzZW1GJ0ZocS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GW3NGYXBGOUY5RltyRmFwRmFyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGZ3ItSSVtc3VwR0YkNiUtRlg2JC1GIzYkRmRyRjlGOS1GIzYkLUkjbW5HRiQ2JFEiMUYnRjlGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGW3JGZHJGOUY5RltyRmRyRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqczYkRl90RjlGYHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZhdUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmlzLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmB0LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTFHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIiLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiVGPEY7ISIiRjwvRjtJJ3hyYW5nZUdGJUY8RkZGR0ZGRkY3Iy1JJGFuZEdGLzYkLUkiPkdGLzYkRkYiIiEyRkZGPEZH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L495" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM1 := [seq(DM1[j] = 0, j = 1 .. numelems(DM1))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTFGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0xRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0xR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L498" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM2 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^2*(eval(P(x), x = s-l)), l = xrange)-s^2, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0yRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistSSVtc3VwR0YkNiUtRiw2JVEibEYnRi9GMi1GIzYlLUkjbW5HRiQ2JFEiMkYnRjlGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GZHEtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZjcS9GTlEsMC4zMzMzMzMzZW1GJ0Zkci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GZ3NGZHBGOUY5RmdyRmRwRl1zLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGY3MtRmJwNiUtRlg2JC1GIzYkRmBzRjlGOS1GIzYkRmlwRjlGXXFGZ3JGYHNGOUY5RmdyRmBzRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkRl9xRjlGZHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZldUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZkdC8lK2V4ZWN1dGFibGVHRj1GOQ==">QyQ+SSRETTJHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIjLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L497" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM2 := [seq(DM2[j] = 0, j = 1 .. numelems(DM2))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTJGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0yRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0yR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L479" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="inconnues := [seq(seq(c[i, j], j = 0 .. d), i = 0 .. 1)]; 1; numelems(inconnues)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2Ji1GLDYlUSRzZXFGJ0YvRjItRlA2JC1GIzYrRlQtRlA2JC1GIzYqLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2Ji1GLDYlUSJpRidGL0YyLUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRictRiw2JVEiakYnRi9GMkY5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGZG9GXHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSNtbkdGJDYkRmFwRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GaW8tRiw2JVEiZEYnRi9GMkY5RjlGZG9GYW9GYnBGZXBGaHAtRmZwNiRRIjFGJ0Y5RjlGOS8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjtGJ0Y5RjtGZ29GQEZCRkRGRkZIRmhvRk0tRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRitGOUY5RmRxRjk=">QyU+SSppbmNvbm51ZXNHNiI3Iy1JJHNlcUclKnByb3RlY3RlZEc2JC1GKDYkJkkiY0dGJTYkSSJpR0YlSSJqR0YlL0YxOyIiIUkiZEdGJS9GMDtGNCIiIkY4LUkpbnVtZWxlbXNHRik2I0Yk</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzY0LUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2KC1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGZm4vJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOS8lL3N1YnNjcmlwdHNoaWZ0R0ZpbkZqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiMUYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiMkYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiM0YnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZmbkZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRl1wRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GZHBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZbcUZib0Zlb0Y5RmdvRmJvRmVvRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zib0Zlb0Y5">NyomSSJjRzYiNiQiIiFGJyZGJDYkRiciIiImRiQ2JEYnIiIjJkYkNiRGJyIiJCZGJDYkRipGJyZGJDYkRipGKiZGJDYkRipGLSZGJDYkRipGMA==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiIp</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L477" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="conditions := [E[], C0[], C1[], C10[], CEND[], lDM0[], lDM1[], lDM2[]]; -1; numelems(conditions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVErY29uZGl0aW9uc0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GU0Y1LUkobWZlbmNlZEdGJDYmLUYjNjstRiw2JVEiRUYnRi9GMi1GVjYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRiw2JVEjQzBGJ0YvRjItRlY2Ji1GIzYkRltvRjlGOUZgb0Zjb0Zmby1GLDYlUSNDMUYnRi9GMkZfcEZmby1GLDYlUSRDMTBGJ0YvRjJGX3BGZm8tRiw2JVElQ0VOREYnRi9GMkZfcEZmby1GLDYlUSVsRE0wRidGL0YyRl9wRmZvLUYsNiVRJWxETTFGJ0YvRjJGX3BGZm8tRiw2JVElbERNMkYnRi9GMkZfcEZeb0Y5RjlGYG9GY28tRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlY2JC1GIzYkRitGOUY5Rl5vRjk=">QyU+SStjb25kaXRpb25zRzYiNyomSSJFR0YlRiUmSSNDMEdGJUYlJkkjQzFHRiVGJSZJJEMxMEdGJUYlJkklQ0VOREdGJUYlJkklbERNMEdGJUYlJkklbERNMUdGJUYlJkklbERNMkdGJUYlISIiLUkpbnVtZWxlbXNHJSpwcm90ZWN0ZWRHNiNGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiM9</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L499" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="A, b := LinearAlgebra[GenerateMatrix](conditions, inconnues);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkobWZlbmNlZEdGJDYkLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y4USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZCLyUqc3ltbWV0cmljR0ZCLyUobGFyZ2VvcEdGQi8lLm1vdmFibGVsaW1pdHNHRkIvJSdhY2NlbnRHRkIvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYtUSJ+RidGPkZAL0ZERkJGRUZHRklGS0ZNRk8vRlNGUS1GMTYlUSJiRidGNEY3LyUrZXhlY3V0YWJsZUdGQkY+Rj4tRjs2LVEqJmNvbG9uZXE7RidGPkZARlhGRUZHRklGS0ZNL0ZQUSwwLjI3Nzc3NzhlbUYnL0ZTRl1vLUYxNiVRLkxpbmVhckFsZ2VicmFGJ0Y0RjctRiw2Ji1GIzYlLUYxNiVRL0dlbmVyYXRlTWF0cml4RidGNEY3RmduRj5GPi8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GLDYkLUYjNigtRjE2JVErY29uZGl0aW9uc0YnRjRGN0Y6RlUtRjE2JVEqaW5jb25udWVzRidGNEY3RmduRj5GPi1GOzYtUSI7RidGPkZARkNGRUZHRklGS0ZNRk9GXm9GZ25GPg==">QyQ+NiRJIkFHNiJJImJHRiYtJkkuTGluZWFyQWxnZWJyYUdGJjYjSS9HZW5lcmF0ZU1hdHJpeEdGJjYkSStjb25kaXRpb25zR0YmSSppbmNvbm51ZXNHRiYiIiI=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y1USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMy8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GLjYlUSJiRidGMUY0LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y/RjstRjg2LVEjOj1GJ0Y7Rj0vRkFGP0ZCRkRGRkZIRkovRk1RLDAuMjc3Nzc3OGVtRicvRlBGaW4tRiM2KC1JKG1hY3Rpb25HRiQ2JS1JKG1mZW5jZWRHRiQ2Ji1JJ210YWJsZUdGJDY4LUkkbXRyR0YkNiYtSSRtdGRHRiQ2KC1GIzYmLUYuNiVRKX4xOH54fjh+RidGMUY0LUYuNiVRJ01hdHJpeEYnRjFGNEZVRjsvJSlyb3dhbGlnbkdRIUYnLyUsY29sdW1uYWxpZ25HRmZwLyUrZ3JvdXBhbGlnbkdGZnAvJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGXXFGZHBGZ3BGaXAtRmdvNiYtRmpvNigtRiM2Ji1GLjYlUSxEYXRhflR5cGU6fkYnRjFGNC1GLjYlUSlhbnl0aGluZ0YnRjFGNEZVRjtGZHBGZ3BGaXBGW3FGXnFGZHBGZ3BGaXAtRmdvNiYtRmpvNigtRiM2Ji1GLjYlUSpTdG9yYWdlOn5GJ0YxRjQtRi42JVEscmVjdGFuZ3VsYXJGJ0YxRjRGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwLUZnbzYmLUZqbzYoLUYjNiYtRi42JVEoT3JkZXI6fkYnRjFGNC1GLjYlUS5Gb3J0cmFuX29yZGVyRidGMUY0RlVGO0ZkcEZncEZpcEZbcUZecUZkcEZncEZpcC8lJmFsaWduR1ElYXhpc0YnL0ZlcFEpYmFzZWxpbmVGJy9GaHBRJ2NlbnRlckYnL0ZqcFEnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRjMvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZhdC8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJjAuOGVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0ZcdS8lJmZyYW1lR0ZcdS8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRj8vJS1lcXVhbGNvbHVtbnNHRj8vJS1kaXNwbGF5c3R5bGVHRj8vJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dGaXRGOy8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy8lK2FjdGlvbnR5cGVHUS1icm93c2VydGFibGVGJy8lKXJ0YWJsZWlkR1E1MTg0NDY3NDQwNzgyNjQzMzA0NzBGJ0Y3LUZebzYlLUZhbzYmLUZkbzY4LUZnbzYmLUZqbzYoLUYjNiYtRi42JVEqfjF+Li5+MTh+RidGMUY0LUklbXN1YkdGJDYlLUYuNiVRJ1ZlY3RvckYnRjFGNC1GIzYlLUYuNiVRJ2NvbHVtbkYnRjFGNEZVRjsvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJ0ZVRjtGZHBGZ3BGaXBGW3FGXnFGZHBGZ3BGaXBGYHFGXHJGaHJGZHNGZ3NGaXNGW3RGXXRGX3RGYnRGZHRGZ3RGanRGXXVGX3VGYXVGZHVGZnVGaHVGanVGXXZGO0ZfdkZidkZldi9GaXZRNTE4NDQ2NzQ0MDc4MjY0MzMwMzUwRidGVUZYRjtGVUZYRjs=">NiQtSSdNYXRyaXhHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2Iy9JJCVpZEdGKCI1cS9MayN5U3VZJT0tJkknVmVjdG9yR0YlNiNJJ2NvbHVtbkdGKDYjL0YrIjVdLkxrI3lTdVklPQ==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L500" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[Rank](A)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJVJhbmtGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYkLUYjNiUtRiw2JVEiQUYnRi9GMkY9RkBGQC1GLDYjUSFGJ0Y9RkA=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0klUmFua0dGKDYjSSJBR0Yo</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiIp</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L485" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="solutions := solve(conditions, {inconnues[]})" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yNzc3Nzc4ZW1GJy9GTkZTLUYsNiVRJnNvbHZlRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNictRiw2JVErY29uZGl0aW9uc0YnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRlk2Ji1GIzYmLUYsNiVRKmluY29ubnVlc0YnRi9GMi1GWTYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZecEY5RjkvRmFwUSJ8ZnJGJy9GZHBRInxockYnRl5wRjlGOUZecEY5">Pkkqc29sdXRpb25zRzYiLUkmc29sdmVHRiQ2JEkrY29uZGl0aW9uc0dGJDwjJkkqaW5jb25udWVzR0YkRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzY0LUYjNigtSSVtc3ViR0YkNiUtRiw2JVEiY0YnRi9GMi1GIzYoLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zobi8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LyUvc3Vic2NyaXB0c2hpZnRHRltvLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZpbjYkUSIyRidGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjFGJ0Y5RmRvRmdvRjlGaW9GW3AtRmluNiRRIjRGJ0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcb0ZecEZkb0Znb0Y5RmlvRltwLUkmbWZyYWNHRiQ2KC1GaW42JFEiNUYnRjlGXnAvJS5saW5ldGhpY2tuZXNzR0ZpcC8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zdci8lKWJldmVsbGVkR0Y9RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiM0YnRjlGZG9GZ29GOUZpb0ZbcC1GZHE2KEZncEZecEZpcUZbckZeckZgckZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GaG5GZG9GZ29GOUZpb0ZbcEZncEZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GZ3BGZG9GZ29GOUZpb0ZbcEZobkZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GXnBGZG9GZ29GOUZpb0ZbcC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZldEZjcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZncEZcb0ZockZkb0Znb0Y5RmlvRltwLUYjNidGYXQtRmRxNihGaHJGXnBGaXFGW3JGXnJGYHJGZG9GZ29GOUZkb0Znb0Y5RmRvRmdvRjlGOS8lJW9wZW5HUSJ8ZnJGJy8lJmNsb3NlR1EifGhyRidGZG9GZ29GOQ==">PCovJkkiY0c2IjYkIiIhRigiIiMvJkYlNiRGKCIiIiIiJS8mRiU2JEYoRikjIiImRikvJkYlNiRGKCIiJCNGLUYpLyZGJTYkRi1GKEYtLyZGJTYkRi1GLUYoLyZGJTYkRi1GKSMhIiZGKS8mRiU2JEYtRjcjISIkRik=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L503" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[LinearSolve](A, b, method = 'none', free = 'a')" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYkLUYsNiVRLExpbmVhclNvbHZlRidGL0YyL0YzUSdub3JtYWxGJ0Y9LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2NiQtRiM2NC1GLDYlUSJBRidGL0YyLUkjbW9HRiQ2LVEiLEYnRj0vJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGUi8lKnN5bW1ldHJpY0dGUi8lKGxhcmdlb3BHRlIvJS5tb3ZhYmxlbGltaXRzR0ZSLyUnYWNjZW50R0ZSLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEiYkYnRi9GMkZMLUYsNiVRJ21ldGhvZEYnRi9GMi1GTTYtUSI9RidGPUZQL0ZURlJGVUZXRllGZW5GZ24vRmpuUSwwLjI3Nzc3NzhlbUYnL0Zdb0Zqby1GTTYtUSInRidGPUZQRmhvRlVGV0ZZRmVuRmduL0ZqblEsMC4xMTExMTExZW1GJy9GXW9GW28tRiw2JVElbm9uZUYnRi9GMkZccEZMLUZNNi1RIn5GJ0Y9RlBGaG9GVUZXRllGZW5GZ25GaW5GYXAtRiw2JVElZnJlZUYnRi9GMkZlb0ZccC1GLDYlUSJhRidGL0YyRlxwLyUrZXhlY3V0YWJsZUdGUkY9Rj1GXnFGPQ==">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0ksTGluZWFyU29sdmVHRig2JkkiQUdGKEkiYkdGKC9JJ21ldGhvZEdGKC5JJW5vbmVHRigvSSVmcmVlR0YoLkkiYUdGKA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUkobWFjdGlvbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkobWZlbmNlZEdGJDYoLUklbXJvd0dGJDYmLUknbXRhYmxlR0YkNjwtSSRtdHJHRiQ2Ji1JJG10ZEdGJDYoLUkjbW5HRiQ2JFEiMkYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGQy8lK2dyb3VwYWxpZ25HRkMvJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGSkZBRkRGRi1GNTYmLUY4NigtRjs2JFEiNEYnRj5GQUZERkZGSEZLRkFGREZGLUY1NiYtRjg2KC1JJm1mcmFjR0YkNigtRjs2JFEiNUYnRj5GOi8lLmxpbmV0aGlja25lc3NHRkovJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGXG8vJSliZXZlbGxlZEdRJmZhbHNlRidGQUZERkZGSEZLRkFGREZGLUY1NiYtRjg2KC1GWTYoLUY7NiRGSkY+RjpGaG5Gam5GXW9GX29GQUZERkZGSEZLRkFGREZGLUY1NiYtRjg2KEZob0ZBRkRGRkZIRktGQUZERkYtRjU2Ji1GODYoLUY7NiRRIjBGJ0Y+RkFGREZGRkhGS0ZBRkRGRi1GNTYmLUY4NigtRi82Jy1JI21vR0YkNi1RKiZ1bWludXMwO0YnRj4vJSZmZW5jZUdGYW8vJSpzZXBhcmF0b3JHRmFvLyUpc3RyZXRjaHlHRmFvLyUqc3ltbWV0cmljR0Zhby8lKGxhcmdlb3BHRmFvLyUubW92YWJsZWxpbWl0c0dGYW8vJSdhY2NlbnRHRmFvLyUnbHNwYWNlR1EsMC4yMjIyMjIyZW1GJy8lJ3JzcGFjZUdGX3JGWC8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGYW9GPkZBRkRGRkZIRktGQUZERkYtRjU2Ji1GODYoLUYvNidGW3EtRlk2KC1GOzYkUSIzRidGPkY6RmhuRmpuRl1vRl9vRmJyRmVyRj5GQUZERkZGSEZLRkFGREZGLyUmYWxpZ25HUSVheGlzRicvRkJRKWJhc2VsaW5lRicvRkVGXG8vRkdRJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR1EldHJ1ZUYnLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGX3QvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGanQvJSZmcmFtZUdGanQvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Zhby8lLWVxdWFsY29sdW1uc0dGYW8vJS1kaXNwbGF5c3R5bGVHRmFvLyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRmd0RmJyRmVyRj5GPi9JK21zZW1hbnRpY3NHRiRRKkNvbFZlY3RvckYnLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRl12LyUrYWN0aW9udHlwZUdRLnJ0YWJsZWFkZHJlc3NGJy8lKXJ0YWJsZWlkR1E1MTg0NDY3NDQwNzgyNjQzMjAyMzhGJw==">LSZJJ1ZlY3Rvckc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkc2IjYjSSdjb2x1bW5HRig2Iy9JJCVpZEdGKCI1US1LayN5U3VZJT0=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L482" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[2, 1] := eval(P(x), solutions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KC1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictRiM2Ji1JI21uR0YkNiRRIjJGJ0Y6LUkjbW9HRiQ2LVEiLEYnRjovJSZmZW5jZUdGOS8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y5LyUqc3ltbWV0cmljR0Y5LyUobGFyZ2VvcEdGOS8lLm1vdmFibGVsaW1pdHNHRjkvJSdhY2NlbnRHRjkvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GQDYkUSIxRidGOkY6LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRkQ2LVEifkYnRjpGRy9GSkY5RkxGTkZQRlJGVEZWL0ZaRlgtRkQ2LVEqJmNvbG9uZXE7RidGOkZHRl9vRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZlby1GLDYlUSVldmFsRicvRjhGSy9GO1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Jy1GLDYlUSJQRidGam9GW3AtRl5wNiQtRiM2JC1GLDYlUSJ4RidGam9GW3BGOkY6RkMtRiw2JVEqc29sdXRpb25zRidGam9GW3BGOkY6RjpGKy8lK2V4ZWN1dGFibGVHRjlGOg==">PiZJJ0xhbWJkYUc2IjYkIiIjIiIiLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJUkqc29sdXRpb25zR0Yl</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEnJiM5MjM7RicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1GIzYoLUkjbW5HRiQ2JFEiMkYnRjUtSSNtb0dGJDYtUSIsRidGNS8lJmZlbmNlR0Y0LyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjQvJSpzeW1tZXRyaWNHRjQvJShsYXJnZW9wR0Y0LyUubW92YWJsZWxpbWl0c0dGNC8lJ2FjY2VudEdGNC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUY7NiRRIjFGJ0Y1LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y0RjUvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GPzYtUSM6PUYnRjVGQi9GRUY0RkdGSUZLRk1GTy9GUlEsMC4yNzc3Nzc4ZW1GJy9GVUZhby1GIzYnLUY/Ni1RInxmckYnRjUvRkNGRkZfby9GSEZGRklGS0ZNRk8vRlJRLDAuMTY2NjY2N2VtRicvRlVGW3AtSSdtdGFibGVHRiQ2Oi1JJG10ckdGJDYnLUkkbXRkR0YkNigtRjs2JEZbb0Y1LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZqcC8lK2dyb3VwYWxpZ25HRmpwLyUocm93c3BhbkdGWS8lK2NvbHVtbnNwYW5HRlktRmRwNigtRiM2KC1GLzYlUSJ4RicvRjNGRi9GNlEnaXRhbGljRictRj82LVEiPEYnRjVGQkZfb0ZHRklGS0ZNRk9GYG9GYm8tRiM2JS1GPzYtUSomdW1pbnVzMDtGJ0Y1RkJGX29GR0ZJRktGTUZPL0ZSUSwwLjIyMjIyMjJlbUYnL0ZVRmZyRjpGNUZaRmduRjVGaHBGW3FGXXFGX3FGYXFGaHBGW3FGXXEtRmFwNictRmRwNigtRiM2Ki1GIzYoLUkmbWZyYWNHRiQ2KEZXRjovJS5saW5ldGhpY2tuZXNzR0ZZLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmdzLyUpYmV2ZWxsZWRHRjQtRj82LVExJkludmlzaWJsZVRpbWVzO0YnRjVGQkZfb0ZHRklGS0ZNRk9GUS9GVUZTLUYjNiQtSSVtc3VwR0YkNiVGZ3EtRjs2JFEiM0YnRjUvJTFzdXBlcnNjcmlwdHNoaWZ0R0Zbb0Y1RlpGZ25GNS1GPzYtUSIrRidGNUZCRl9vRkdGSUZLRk1GT0ZlckZnci1GIzYoLUZhczYoLUY7NiRRIjVGJ0Y1RjpGY3NGZXNGaHNGanNGXHQtRiM2JC1GY3Q2JUZncUY6Rmh0RjVGWkZnbkY1Rmp0LUYjNiYtRjs2JFEiNEYnRjVGXHRGZ3FGNUZqdEY6RjVGaHBGW3FGXXFGX3FGYXEtRmRwNigtRiM2KEZncUZdci1GIzYlRmJyRldGNUZaRmduRjVGaHBGW3FGXXFGX3FGYXFGaHBGW3FGXXEtRmFwNictRmRwNigtRiM2KUZici1GIzYoLUZhczYoRmV0RjpGY3NGZXNGaHNGanNGXHRGYHRGWkZnbkY1LUY/Ni1RKCZtaW51cztGJ0Y1RkJGX29GR0ZJRktGTUZPRmVyRmdyRl11Rmp0RldGNUZocEZbcUZdcUZfcUZhcS1GZHA2KC1GIzYoRmdxRl1yRmZwRlpGZ25GNUZocEZbcUZdcUZfcUZhcUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzYoRml2Rl13Rl11Rmp0RldGNUZocEZbcUZdcUZfcUZhcS1GZHA2KC1GIzYoRmdxRl1yRldGWkZnbkY1RmhwRltxRl1xRl9xRmFxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNitGYnJGXnNGanRGXXVGXXdGaHVGanRGOkY1RmhwRltxRl1xRl9xRmFxLUZkcDYoLUYjNihGZ3FGXXJGOkZaRmduRjVGaHBGW3FGXXFGX3FGYXFGaHBGW3FGXXEtRmFwNidGY3AtRmRwNigtRiM2KEY6LUY/Ni1RJSZsZTtGJ0Y1RkJGX29GR0ZJRktGTUZPRmBvRmJvRmdxRlpGZ25GNUZocEZbcUZdcUZfcUZhcUZocEZbcUZdcS8lJmFsaWduR1ElYXhpc0YnL0ZpcFEpYmFzZWxpbmVGJy9GXHFGZ3MvRl5xUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGRi8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRl16LyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EkMmVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0Zoei8lJmZyYW1lR0Zoei8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRjQvJS1lcXVhbGNvbHVtbnNHRjQvJS1kaXNwbGF5c3R5bGVHRjQvJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dRJjAuOGVtRidGWkZnbkY1RlpGZ25GNQ==">LUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzYuMkkieEc2IiEiIyIiITJGJyEiIiwqKiRGJyIiJCMiIiIiIiMqJEYnRjIjIiImRjJGJyIiJUYyRjEyRidGKiwoRi4jISIkRjJGMyMhIiZGMkYxRjEyRidGMSwoRi4jRi9GMkYzRjtGMUYxMkYnRjIsKkYuI0YsRjJGM0Y0RichIiVGMkYxMUYyRidGKg==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L481" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="seq(evalb(simplify(conditions[i], solutions)), i = 1 .. numelems(conditions));" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEkc2VxRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNi0tRiw2JVEmZXZhbGJGJ0YvRjItRjY2JC1GIzYmLUYsNiVRKXNpbXBsaWZ5RidGL0YyLUY2NiQtRiM2KS1GLDYlUStjb25kaXRpb25zRidGL0YyLUY2NiYtRiM2JS1GLDYlUSJpRidGL0YyLyUrZXhlY3V0YWJsZUdRJmZhbHNlRicvRjNRJ25vcm1hbEYnRlUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictSSNtb0dGJDYtUSIsRidGVS8lJmZlbmNlR0ZULyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRlQvJSpzeW1tZXRyaWNHRlQvJShsYXJnZW9wR0ZULyUubW92YWJsZWxpbWl0c0dGVC8lJ2FjY2VudEdGVC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUZobjYtUSJ+RidGVUZbby9GXm9GVEZfb0Zhb0Zjb0Zlb0Znb0Zpby9GXXBGW3AtRiw2JVEqc29sdXRpb25zRidGL0YyRlJGVUZVRlJGVUZVRmduRk8tRmhuNi1RIj1GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yNzc3Nzc4ZW1GJy9GXXBGW3EtSSNtbkdGJDYkUSIxRidGVS1GaG42LVEjLi5GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yMjIyMjIyZW1GJ0ZjcC1GLDYlUSludW1lbGVtc0YnRi9GMi1GNjYkLUYjNiRGSEZVRlVGUkZVRlUtRmhuNi1RIjtGJ0ZVRltvRl1vRl9vRmFvRmNvRmVvRmdvRmlvRlxxRlJGVQ==">QyQtSSRzZXFHJSpwcm90ZWN0ZWRHNiQtSSZldmFsYkdGJTYjLUkpc2ltcGxpZnlHNiI2JCZJK2NvbmRpdGlvbnNHRiw2I0kiaUdGLEkqc29sdXRpb25zR0YsL0YxOyIiIi1JKW51bWVsZW1zR0YlNiNGL0Y1</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NjRJJXRydWVHJSpwcm90ZWN0ZWRHRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGIw==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L488" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="evalb(int(Lambda[2, 1], x = xrange) = 1); 1; seq(evalb(int(x^i*Lambda[2, 1], x = xrange) = 0), i = 1 .. 2)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEmZXZhbGJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2KC1GLDYlUSRpbnRGJ0YvRjItRjY2JC1GIzYqLUYsNiNRIUYnLUYjNiZGQS1GIzYkLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBRJmZhbHNlRicvRjNRJ25vcm1hbEYnLUYjNiYtSSNtbkdGJDYkUSIyRidGUC1JI21vR0YkNi1RIixGJ0ZQLyUmZmVuY2VHRk8vJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGTy8lKnN5bW1ldHJpY0dGTy8lKGxhcmdlb3BHRk8vJS5tb3ZhYmxlbGltaXRzR0ZPLyUnYWNjZW50R0ZPLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRlU2JFEiMUYnRlBGUC8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnRlBGQUZQRkFGWC1GLDYlUSJ4RidGL0YyLUZZNi1RIj1GJ0ZQRmZuL0ZpbkZPRmpuRlxvRl5vRmBvRmJvL0Zlb1EsMC4yNzc3Nzc4ZW1GJy9GaG9GaHAtRiw2JVEneHJhbmdlRidGL0YyRlBGUEZjcEZqby8lK2V4ZWN1dGFibGVHRk9GUEZQLUZZNi1RIjtGJ0ZQRmZuRmhuRmpuRlxvRl5vRmBvRmJvRmRvRmlwLUYsNiVRJHNlcUYnRi9GMi1GNjYkLUYjNixGKy1GNjYkLUYjNihGOi1GNjYkLUYjNiotSSVtc3VwR0YkNiVGYHAtRiM2JS1GLDYlUSJpRidGL0YyRi9GMi8lMXN1cGVyc2NyaXB0c2hpZnRHRl9wLUZZNi1RJyZzZG90O0YnRlBGZm5GZnBGam5GXG9GXm9GYG9GYm9GZG8vRmhvRmZvLUZJNiUtRiw2JVEnJiM5MjM7RidGTkZQRlJGXXBGWEZgcEZjcEZqcEZQRlBGY3AtRlU2JEZfcEZQRl1xRlBGUEZYRmZyRmNwRmpvLUZZNi1RIy4uRidGUEZmbkZmcEZqbkZcb0Zeb0Zgb0Ziby9GZW9RLDAuMjIyMjIyMmVtRidGXnNGVEZdcUZQRlBGXXFGUA==">QyUtSSZldmFsYkclKnByb3RlY3RlZEc2Iy8tSSRpbnRHNiRGJUkoX3N5c2xpYkc2IjYkJkknTGFtYmRhR0YsNiQiIiMiIiIvSSJ4R0YsSSd4cmFuZ2VHRixGMkYyLUkkc2VxR0YlNiQtRiQ2Iy8tRik2JComKUY0SSJpR0YsRjJGLkYyRjMiIiEvRkA7RjJGMQ==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">SSV0cnVlRyUqcHJvdGVjdGVkRw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NiRJJXRydWVHJSpwcm90ZWN0ZWRHRiM=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L487" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="fac := 2:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZlcC1JI21pR0YkNiVRJGZhY0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkjbW5HRiQ2JFEiMkYnRjktRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRjY2LVEifkYnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZaLUYsNiVRI3cwRidGL0YyRjUtSShtZmVuY2VkR0YkNiQtRiM2Ji1JJm1mcmFjR0YkNigtRlA2JFEiMUYnRjktRiM2JUYrRi9GMi8lLmxpbmV0aGlja25lc3NHRmNvLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmpvLyUpYmV2ZWxsZWRHRj0tRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkhGWUZlbi1GLDYlUSdob3JuZXJGJ0YvRjItRmpuNiQtRiM2KUYrRmRwLUYsNiVRJ2V4cGFuZEYnRi9GMi1Gam42JC1GIzYlLUYsNiVRJWV2YWxGJ0YvRjItRmpuNiQtRiM2LUZlcS1Gam42JC1GIzYnLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBGPUY5LUYjNiZGTy1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRlkvRk5RLDAuMzMzMzMzM2VtRidGYW9GOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnRl9wRmlyLUYsNiVRKnNvbHV0aW9uc0YnRi9GMkY5RjlGaXItRiw2JVEieEYnRi9GMi1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3RGYW8tRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZedEZgdEZWLUYsNiVRInlGJ0YvRjJGOUY5RjlGOUZpckZkdEY5RjlGVi1GNjYtUSlhc3N1bWluZ0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuRlZGZHQtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRlA2JEZhc0Y5RlYtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZldUY7Rj5GQEZCRkRGRkZIRllGZW5GVkZkdC1GNjYtUSI8RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZhby1GNjYtUSI7RidGOUY7RlxzRkBGQkZERkZGSEZZRk0tSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWi8lJmRlcHRoR0Zjdi8lKmxpbmVicmVha0dRKG5ld2xpbmVGJ0ZWLUYsNiVRI3cxRidGL0YyRjUtRmpuNiQtRiM2JS1GX282KEZhby1GIzYkRitGOUZmb0Zob0ZbcEZdcEZicEY5RjlGZHBGZ3AtRmpuNiQtRiM2KkYrRmRwRl5xLUZqbjYkLUYjNiVGZXEtRmpuNiQtRiM2K0ZlcUZcckZpckZlc0Zoc0ZbdEZWRmR0RjlGOUY5RjlGaXJGZHRGYnBGOUY5RlZGZ3RGVkZkdEZqdEZddUZWRl91RlZGZHRGaHVGYW9GW3ZGXnZGVi1GLDYlUSN3MkYnRi9GMkY1Rl53RmRwRmdwLUZqbjYkLUYjNilGK0ZkcEZecS1Gam42JC1GIzYlRmVxLUZqbjYkLUYjNi1GZXEtRmpuNiQtRiM2JkZgckZpckZic0Y5RjlGaXJGZXNGaHNGVkZhb0ZbdEZWRmR0RjlGOUY5RjlGaXJGZHRGOUY5RlZGZ3RGVkZkdEZqdEZddUZWRl91RlZGZHRGaHVGYW9GW3ZGXnZGVi1GLDYlUSN3M0YnRi9GMkY1Rl53RmRwRmdwLUZqbjYkLUYjNilGK0ZkcEZecS1Gam42JC1GIzYlRmVxLUZqbjYkLUYjNixGZXFGYXlGaXJGZXNGaHNGT0ZbdEZWRmR0RjlGOUY5RjlGaXJGZHRGOUY5RlZGZ3RGVkZkdEZqdEZddUZWRl91RlZGZHRGaHVGYW9GW3ZGYnBGOQ==">Qyw+SSRmYWNHNiIiIiMhIiI+SSN3MEdGJS1JKWFzc3VtaW5nR0koX3N5c2xpYkdGJTYkNyMqJkYkRictSSdob3JuZXJHRiU2JComRiQiIiItSSdleHBhbmRHJSpwcm90ZWN0ZWRHNiMtSSVldmFsR0Y3NiQtRjo2JCZJJ0xhbWJkYUdGJTYkRiZGNEkqc29sdXRpb25zR0YlL0kieEdGJSwmRidGNEkieUdGJUYnRjRGRUY0NyMtSSRhbmRHRjc2JC1JIj5HRjc2JEZFIiIhMkZFRjRGND5JI3cxR0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZDLCRGRUYnRjRGRUY0RkZGND5JI3cyR0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZDLCZGNEY0RkVGJ0Y0RkVGNEZGRjQ+SSN3M0dGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GQywmRiZGNEZFRidGNEZFRjRGRkY0</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEiMkYnRjkvJS5saW5ldGhpY2tuZXNzR0ZXLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmluLyUpYmV2ZWxsZWRHRj0tRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZiby1GIzYmLUkobWZlbmNlZEdGJDYkLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORl9wRlQtRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZecEZgcC1GIzYmLUZnbzYkLUYjNiZGWC1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYsNiVRInlGJ0YvRjJGOUY5Rl5vRl1xRjlGOUY5Rl5vRl1xRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZgcUZjcUY5">LCQqJiwmISIiIiIiKiYsJiIiI0YmSSJ5RzYiRiVGJkYqRiZGJkYmRipGJiNGJkYp</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtSSNtbkdGJDYkUSIxRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlktRiM2KC1JJm1mcmFjR0YkNihGUS1GUjYkUSIyRidGOS8lLmxpbmV0aGlja25lc3NHRlQvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGYW8vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmpvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGWEZaLUZSNiRRIjVGJ0Y5RlUtRiM2Ji1GUjYkUSIzRidGOUZmby1GLDYlUSJ5RidGL0YyRjlGOUY5RmZvLUklbXN1cEdGJDYlRl5xRmpuLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJ0Y5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGOUZncUZqcUY5">LCYiIiJGIyomLCYhIiZGI0kieUc2IiIiJEYjRiciIiMjRiNGKg==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEiMkYnRjkvJS5saW5ldGhpY2tuZXNzR0ZXLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmluLyUpYmV2ZWxsZWRHRj0tRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZiby1GIzYmLUkobWZlbmNlZEdGJDYkLUYjNiZGVC1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORl9wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSI0RidGOS1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRlU2JFEiM0YnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0ZicUY5RjlGOUZeb0ZicUY5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGZXFGaHFGOQ==">LCQqJiwmIiIiRiUqJiwmIiIlRiVJInlHNiIhIiRGJUYpRiVGJUYlRilGJSNGJSIiIw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEiMkYnRjkvJS5saW5ldGhpY2tuZXNzR0ZXLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmluLyUpYmV2ZWxsZWRHRj0tRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZiby1GIzYmLUkobWZlbmNlZEdGJDYkLUYjNiYtRiw2JVEieUYnRi9GMi1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmJwRlRGOUY5Rl5vLUklbXN1cEdGJDYlRltwRlgvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZqcEZdcUY5">LCQqJiwmSSJ5RzYiIiIiISIiRidGJ0YlIiIjI0YnRik=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L470" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C([w0, w1, w2, w3], declare = [y::float], resultname = 'w', coercetypes = false)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEiQ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzY1LUY2NiYtRiM2Ky1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyLyUrZXhlY3V0YWJsZUdGSUZFRkUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGQS1GQjYtUSJ+RidGRUZHL0ZLRklGTEZORlBGUkZURlYvRlpGWC1GLDYlUShkZWNsYXJlRidGL0YyLUZCNi1RIj1GJ0ZFRkdGam9GTEZORlBGUkZUL0ZXUSwwLjI3Nzc3NzhlbUYnL0ZaRmNwLUY2NiYtRiM2Jy1GLDYlUSJ5RidGL0YyLUZCNi1RLSZQcm9wb3J0aW9uO0YnRkVGR0Zqb0ZMRk5GUEZSRlRGYnBGZHAtRiw2JVEmZmxvYXRGJ0YvRjJGX29GRUZFRmFvRmRvRkEtRiw2JVErcmVzdWx0bmFtZUYnRi9GMkZfcC1GQjYtUSInRidGRUZHRmpvRkxGTkZQRlJGVC9GV1EsMC4xMTExMTExZW1GJ0ZbcC1GLDYlUSJ3RidGL0YyRmVxRkFGZ28tRiw2JVEsY29lcmNldHlwZXNGJ0YvRjJGX3AtRiw2JUZJRi9GMkZfb0ZFRkVGX29GRQ==">LUkiQ0c2IjYmNyZJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkL0koZGVjbGFyZUdGJDcjJ0kieUdGJEkmZmxvYXRHJSpwcm90ZWN0ZWRHL0krcmVzdWx0bmFtZUdGJC5JIndHRiQvSSxjb2VyY2V0eXBlc0dGJEkmZmFsc2VHRjE=</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[0] = (-1 + (2 - y) * y) * y / 2;</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[1] = 1 + (-5 + 3 * y) * y * y / 2; -w[2] = (1 + (4 - 3 * y) * y) * y / 2; -w[3] = (y - 1) * y * y / 2;</Text-field> -</Output> -</Group> -<Group labelreference="L471" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Fortran([w0, w1, w2, w3], declare = [y::float], resultname = 'w')" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEoRm9ydHJhbkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYvLUY2NiYtRiM2Ki1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkVGRS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZBLUZCNi1RIn5GJ0ZFRkcvRktGSUZMRk5GUEZSRlRGVi9GWkZYLUYsNiVRKGRlY2xhcmVGJ0YvRjItRkI2LVEiPUYnRkVGR0Zob0ZMRk5GUEZSRlQvRldRLDAuMjc3Nzc3OGVtRicvRlpGYXAtRjY2Ji1GIzYmLUYsNiVRInlGJ0YvRjItRkI2LVEtJlByb3BvcnRpb247RidGRUZHRmhvRkxGTkZQRlJGVEZgcEZicC1GLDYlUSZmbG9hdEYnRi9GMkZFRkVGX29GYm9GQS1GLDYlUStyZXN1bHRuYW1lRidGL0YyRl1wLUZCNi1RIidGJ0ZFRkdGaG9GTEZORlBGUkZUL0ZXUSwwLjExMTExMTFlbUYnRmlvLUYsNiVRIndGJ0YvRjJGY3FGRUZFLyUrZXhlY3V0YWJsZUdGSUZF">LUkoRm9ydHJhbkc2IjYlNyZJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkL0koZGVjbGFyZUdGJDcjJ0kieUdGJEkmZmxvYXRHJSpwcm90ZWN0ZWRHL0krcmVzdWx0bmFtZUdGJC5JIndHRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output"> w(1) = (-0.1D1 + (0.2D1 - y) * y) * y / 0.2D1</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output"> w(2) = 0.1D1 + (-0.5D1 + 0.3D1 * y) * y ** 2 / 0.2D1 - w(3) = (0.1D1 + (0.4D1 - 0.3D1 * y) * y) * y / 0.2D1 - w(4) = (y - 0.1D1) * y ** 2 / 0.2D1</Text-field> -</Output> -</Group> -<Group labelreference="L469" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="alpha := proc (k, l) options operator, arrow; eval(Lambda[2, 1], x = k+l) end proc" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYrLUkjbWlHRiQ2JVEmYWxwaGFGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLUkobWZlbmNlZEdGJDYkLUYjNictRiw2JVEia0YnL0YwUSV0cnVlRicvRjNRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnRjIvJSZmZW5jZUdGMS8lKnNlcGFyYXRvckdGPi8lKXN0cmV0Y2h5R0YxLyUqc3ltbWV0cmljR0YxLyUobGFyZ2VvcEdGMS8lLm1vdmFibGVsaW1pdHNHRjEvJSdhY2NlbnRHRjEvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GLDYlUSJsRidGPUY/LyUrZXhlY3V0YWJsZUdGMUYyRjItRkI2LVEifkYnRjJGRS9GSEYxRklGS0ZNRk9GUUZTL0ZXRlUtRkI2LVEqJmNvbG9uZXE7RidGMkZFRltvRklGS0ZNRk9GUS9GVFEsMC4yNzc3Nzc4ZW1GJy9GV0Zhb0Zobi1GLDYlUSVldmFsRidGPUY/LUY2NiQtRiM2LC1JJW1zdWJHRiQ2JS1GLDYlUScmIzkyMztGJ0YvRjItRiM2Ji1JI21uR0YkNiRRIjJGJ0YyRkEtRmNwNiRRIjFGJ0YyRjIvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJ0ZBRmhuLUYsNiVRInhGJ0Y9Rj8tRkI2LVEiPUYnRjJGRUZbb0ZJRktGTUZPRlFGYG9GYm9GOi1GQjYtUSIrRidGMkZFRltvRklGS0ZNRk9GUS9GVFEsMC4yMjIyMjIyZW1GJy9GV0ZmcUZZRmZuRjJGMkZmbkYy">PkkmYWxwaGFHNiJmKjYkSSJrR0YkSSJsR0YkRiQ2JEkpb3BlcmF0b3JHRiRJJmFycm93R0YkRiQtSSVldmFsRyUqcHJvdGVjdGVkRzYkJkknTGFtYmRhR0YkNiQiIiMiIiIvSSJ4R0YkLCY5JEY0OSVGNEYkRiRGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEnJiM5NDU7RicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RIzo9RidGMi8lJmZlbmNlR0YxLyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRjEvJSpzeW1tZXRyaWNHRjEvJShsYXJnZW9wR0YxLyUubW92YWJsZWxpbWl0c0dGMS8lJ2FjY2VudEdGMS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkktRiM2KC1JKG1mZW5jZWRHRiQ2JC1GIzYoLUYsNiVRImtGJy9GMFEldHJ1ZUYnL0YzUSdpdGFsaWNGJy1GNjYtUSIsRidGMkY5L0Y8RldGPUY/RkFGQ0ZFL0ZIUSYwLjBlbUYnL0ZLUSwwLjMzMzMzMzNlbUYnLUYsNiVRImxGJ0ZWRlgvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRjFGMkYyLUY2Ni1RKCYjODU5NDtGJ0YyRjlGO0Y9Rj9GQUZDRkVGaG4vRktGaW4tRiM2Ki1JJm1mcmFjR0YkNigtSSVtc3ViR0YkNiUtRiw2JVEnJiM5MjM7RidGL0YyLUYjNigtSSNtbkdGJDYkUSIyRidGMkZaLUZmcDYkUSIxRidGMkZfb0Zib0YyLyUvc3Vic2NyaXB0c2hpZnRHUSIwRictSSltcGhhbnRvbUdGJDYkLUYjNiYtRiM2KC1GLDYlUSJ4RidGVkZYLUY2Ni1RIj1GJ0YyRjlGO0Y9Rj9GQUZDRkVGR0ZKLUYjNiZGUy1GNjYtUSIrRidGMkY5RjtGPUY/RkFGQ0ZFL0ZIUSwwLjIyMjIyMjJlbUYnL0ZLRmJyRlxvRjJGX29GYm9GMkZfb0Zib0YyLyUsY29uc3RyYWludHNHUSxoZWlnaHQtb25seUYnLyUubGluZXRoaWNrbmVzc0dGXnEvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGW3MvJSliZXZlbGxlZEdGMS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EmMC4zZW1GJy8lJmRlcHRoR0Zlcy8lKmxpbmVicmVha0dRJWF1dG9GJy1GNjYtUSkmdmVyYmFyO0YnRjJGOUY7L0Y+RldGP0ZBRkNGRS9GSFEsMC4xMTExMTExZW1GJy9GS0ZjdC1GYXM2JkZjcy9GZ3NRJjAuMWVtRidGaXNGW3QtRltwNigtRmBxNiRGXXBGZHJGYnFGZ3JGaXJGXHNGXnNGX29GYm9GMkZfb0Zib0YyRl9vRmJvRjI=">Zio2JEkia0c2IkkibEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUklZXZhbEclKnByb3RlY3RlZEc2JCZJJ0xhbWJkYUdGJTYkIiIjIiIiL0kieEdGJSwmOSRGMjklRjJGJUYlRiU=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L504" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="a0 := `assuming`([alpha(0, l)], [`and`(l > 0, l < 1)]); 1; a1 := `assuming`([alpha(1, l)], [`and`(l > 0, l < 1)])" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZFLUkjbWlHRiQ2JVEjYTBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GLDYlUSZhbHBoYUYnL0YwRj1GOS1JKG1mZW5jZWRHRiQ2JC1GIzYnLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJy1GLDYlUSJsRidGL0YyLyUrZXhlY3V0YWJsZUdGPUY5RjktRjY2LVEifkYnRjlGO0Y+RkBGQkZERkZGSEZqbi9GTkZbby1GNjYtUSlhc3N1bWluZ0YnRjlGO0Y+RkBGQkZERkZGSEZqbkZmb0Zjb0Zeby1GNjYtUSI+RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZYRmNvLUY2Ni9RJGFuZEYnLyUlYm9sZEdGMS9GM1ElYm9sZEYnLyUrZm9udHdlaWdodEdGY3BGO0Y+RkBGQkZERkZGSEZqbkZmb0Zjb0Zeby1GNjYtUSI8RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GWTYkUSIxRidGOS1GNjYtUSI7RidGOUY7RmluRkBGQkZERkZGSEZqbkZNLUYsNiVRI2ExRidGL0YyRjVGTy1GVDYkLUYjNiZGaXBGZm5GXm9GOUY5RmNvRmdvRmNvRl5vRmpvRlhGY29GXXBGY29GXm9GZnBGaXBGYW9GOQ==">QyU+SSNhMEc2Ii1JKWFzc3VtaW5nR0koX3N5c2xpYkdGJTYkNyMtSSZhbHBoYUdGJTYkIiIhSSJsR0YlNyMtSSRhbmRHJSpwcm90ZWN0ZWRHNiQtSSI+R0YzNiRGL0YuMkYvIiIiRjk+SSNhMUdGJS1GJzYkNyMtRiw2JEY5Ri9GMA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjYTBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtRiM2KC1JJm1mcmFjR0YkNigtSSNtbkdGJDYkUSIzRidGOS1GVzYkUSIyRidGOS8lLmxpbmV0aGlja25lc3NHUSIxRicvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGXG8vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmVvLUYjNiQtSSVtc3VwR0YkNiUtRiw2JVEibEYnRi9GMkZWLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJ0Y5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZbcS1GIzYoLUZUNigtRlc2JFEiNUYnRjlGWkZnbkZqbkZdb0Zfb0Zhby1GIzYkLUZqbzYlRlxwRlpGX3BGOUZicEZlcEY5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGanBGXHEtRlc2JEZpbkY5RjlGYnBGZXBGOQ==">LCgqJEkibEc2IiIiJCNGJiIiIyokRiRGKCMhIiZGKCIiIkYs</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjYTFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNistRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlUtRiM2KC1JJm1mcmFjR0YkNigtSSNtbkdGJDYkUSIxRidGOS1GZ242JFEiMkYnRjkvJS5saW5ldGhpY2tuZXNzR0Zpbi8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zhby8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5Gam8tRiM2JC1JJW1zdXBHRiQ2JS1JKG1mZW5jZWRHRiQ2JC1GIzYmRmZuLUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGVEZWLUYsNiVRImxGJ0YvRjJGOUY5LUZnbjYkUSIzRidGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RmZwLUYjNigtRlo2KC1GZ242JFEiNUYnRjlGam5GXW9GX29GYm9GZG9GZm8tRiM2JC1GX3A2JUZhcEZqbkZfcUY5RmJxRmVxRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZURlZGam5GYnItRiM2Ji1GZ242JFEiNEYnRjlGZm9GaXBGOUY5RmJxRmVxRjk=">LCoqJCwmIiIiRiVJImxHNiJGJSIiJCMhIiIiIiMqJEYkRisjIiImRishIiNGJUYmISIl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L505" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="am1 := `assuming`([alpha(-1, l)], [`and`(l > 0, l < 1)]); 1; am2 := `assuming`([alpha(-2, l)], [`and`(l > 0, l < 1)])" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZFLUkjbWlHRiQ2JVEkYW0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEmYWxwaGFGJy9GMEY9RjktSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GZm4tSSNtbkdGJDYkUSIxRidGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnLUYsNiVRImxGJ0YvRjJGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGYG8vRk5GYW8tRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGYG9Gam9GZ29GZG8tRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmluNiRRIjBGJ0Y5RmdvLUY2Ni9RJGFuZEYnLyUlYm9sZEdGMS9GM1ElYm9sZEYnLyUrZm9udHdlaWdodEdGanBGO0Y+RkBGQkZERkZGSEZgb0Zqb0Znb0Zkby1GNjYtUSI8RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZobi1GNjYtUSI7RidGOUY7Rl9vRkBGQkZERkZGSEZgb0ZNLUYsNiVRJGFtMkYnRi9GMkY1Rk8tRlQ2JC1GIzYnRlgtRmluNiRRIjJGJ0Y5RlxvRmRvRjlGOUZnb0ZbcEZnb0Zkb0ZecEZhcEZnb0ZkcEZnb0Zkb0ZdcUZobi8lK2V4ZWN1dGFibGVHRj1GOQ==">QyU+SSRhbTFHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLUkmYWxwaGFHRiU2JCEiIkkibEdGJTcjLUkkYW5kRyUqcHJvdGVjdGVkRzYkLUkiPkdGMzYkRi8iIiEyRi8iIiJGOj5JJGFtMkdGJS1GJzYkNyMtRiw2JCEiI0YvRjA=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEkYW0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYpLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZVLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiM0YnRjktRmduNiRRIjJGJ0Y5LyUubGluZXRoaWNrbmVzc0dRIjFGJy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Ziby8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GW3AtRiM2JC1JJW1zdXBHRiQ2JS1JKG1mZW5jZWRHRiQ2JC1GIzYmLUYsNiVRImxGJ0YvRjItRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZURlYtRmduNiRGX29GOUY5RjlGZm4vJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZqcC1GIzYoLUZaNigtRmduNiRRIjVGJ0Y5RmpuRl1vRmBvRmNvRmVvRmdvLUYjNiQtRmBwNiVGYnBGam5GX3FGOUZicUZlcUY5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGVEZWRl1xRjlGYnFGZXFGOQ==">LCgqJCwmSSJsRzYiIiIiISIiRiciIiQjISIkIiIjKiRGJEYsIyEiJkYsRidGJw==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L507" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="maximize((a0*am2+a1*am1)/(am2*a1), l = 0.1e-3 .. .999)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEpbWF4aW1pemVGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Ky1JJm1mcmFjR0YkNigtRjY2JC1GIzYqLUYsNiVRJGFtMkYnRi9GMi1JI21vR0YkNi1RJyZzZG90O0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGTC8lKXN0cmV0Y2h5R0ZMLyUqc3ltbWV0cmljR0ZMLyUobGFyZ2VvcEdGTC8lLm1vdmFibGVsaW1pdHNHRkwvJSdhY2NlbnRHRkwvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0Zlbi1GLDYlUSNhMEYnRi9GMi1GRTYtUSIrRidGSEZKRk1GT0ZRRlNGVUZXL0ZaUSwwLjIyMjIyMjJlbUYnL0ZnbkZfby1GLDYlUSRhbTFGJ0YvRjJGRC1GLDYlUSNhMUYnRi9GMkZIRkgtRiM2JkZBRkRGZG9GSC8lLmxpbmV0aGlja25lc3NHUSIxRicvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGXnAvJSliZXZlbGxlZEdGTC1GRTYtUSIsRidGSEZKL0ZORjFGT0ZRRlNGVUZXRlkvRmduUSwwLjMzMzMzMzNlbUYnLUYsNiVRImxGJ0YvRjItRkU2LVEiPUYnRkhGSkZNRk9GUUZTRlVGVy9GWlEsMC4yNzc3Nzc4ZW1GJy9GZ25GYHEtSSNtbkdGJDYkUScwLjAwMDFGJ0ZILUZFNi1RIy4uRidGSEZKRk1GT0ZRRlNGVUZXRl5vRmZuLUZjcTYkUSYwLjk5OUYnRkgvJStleGVjdXRhYmxlR0ZMRkhGSEZcckZI">LUkpbWF4aW1pemVHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2JCooLCYqJkkjYTBHRiciIiJJJGFtMkdGJ0YtRi0qJkkjYTFHRidGLUkkYW0xR0YnRi1GLUYtRi4hIiJGMEYyL0kibEdGJzskRi0hIiUkIiQqKiohIiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">JCEjPSIiIQ==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L508" drawlabel="true"> -<Output> -<Text-field style="Maple Plot" layout="Maple Plot"></Text-field> -</Output> -</Group> -<Group labelreference="L513" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L530" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group><RTable handle="8446744078264330470">TTdSMApJQVJUQUJMRV9TQVZFLzE4NDQ2NzQ0MDc4MjY0MzMwNDcwWCwlKWFueXRoaW5nRzYiRiVbZ2whIiUhISEjW3QiMyIpIiIhRiYiIiJGJ0YmRiZGJiIiI0YmRiZGJ0YmRiZGJiIiJkYmRiZGJkYmRiYhIiMhIiJGJ0YmRichIiRGJkYmRiwiIiRGJkYmISIqRi1GJkYmRiZGJiIiJUYnRipGJiEiJUYpRipGKCIiKCEjNUYnRiYiIzwhIzlGKUYmRiZGJiEiKUYrRi1GJiIjN0YuIiIqRi4hIzoiI0ZGLkYtISNMIiNYISNGRi1GJ0YnRiZGK0YmRiZGJkYoRiZGJkYnRiZGJkYmRidGJkYmRiZGJkYrRiZGJ0YrRihGJkYrRiZGJkYrRidGJkYmRitGJ0YmRiZGJkYnRiZGK0YoRiZGJkYnRipGKEYnRipGJ0YmRidGKkYnRiZGJkYrRiZGJ0YsRiZGJkYrRi1GLEYrRi1GLEYnRitGLUYsRidGJQ==</RTable><RTable handle="8446744078264330350">TTdSMApJQVJUQUJMRV9TQVZFLzE4NDQ2NzQ0MDc4MjY0MzMwMzUwWColKWFueXRoaW5nRzYiRiVbZ2whIyUhISEiMyIzIiIiIiIhRidGJ0YnRidGJ0YmRidGJ0YnRiZGJ0YnRidGJ0YmRidGJQ==</RTable><RTable handle="8446744078264320238">TTdSMApJQVJUQUJMRV9TQVZFLzE4NDQ2NzQ0MDc4MjY0MzIwMjM4WColKWFueXRoaW5nRzYiRiVbZ2whIyUhISEiKSIpIiIjIiIlIyIiJkYmIyIiIkYmRisiIiEjISImRiYjISIkRiZGJQ==</RTable> -</Worksheet> \ No newline at end of file diff --git a/Docs/remeshing_formulas/calcul_lambda2star_C2.mw b/Docs/remeshing_formulas/calcul_lambda2star_C2.mw deleted file mode 100644 index 103ab1c39b3eda300f49dd47002ff26ac52f3a91..0000000000000000000000000000000000000000 --- a/Docs/remeshing_formulas/calcul_lambda2star_C2.mw +++ /dev/null @@ -1,334 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<Worksheet> -<Version major="16" minor="0"/> -<Label-Scheme value="2" prefix=""/> -<View-Properties presentation="false"><Zoom percentage="150"/></View-Properties> -<MapleNet-Properties elisiondigitsbefore="100" labelling="true" indentamount="4" elisiontermsthreshold="10000" ansi="false" errorbreak="1" useclientjvm="true" echo="1" imaginaryunit="I" labelwidth="20" contextmenusize="automatic" plotdriver="opengl" elisiondigitsafter="100" plotoutput="terminal" helpbrowser="standard" rtablesize="10" elisiontermsbefore="100" elisiondigitsthreshold="10000" typesetting="standard" plotdevice="inline" verboseproc="1" showassumed="1" errorcursor="false" longdelim="true" plotoptions="" quiet="false" elisiontermsafter="100" screenwidth="79" preplot="" prettyprint="3" displayprecision="-1" screenpixelheight="1050" warnlevel="3" screenheight="25" latexwidth="6.0" postplot="" prompt="> " ShowLabels="true"/> -<Styles><Font name="Ordered List 1" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 2" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 3" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 5" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Author" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Warning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Caption Reference" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input Placeholder" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[200,0,200]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="true"/> -<Font name="Maple Plot" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Code" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Line Printed Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Diagnostic" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[40,120,40]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Inert Output" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[144,144,144]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Normal" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,128,128]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Maple Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Dash Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Math" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Input" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkError" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Header and Footer" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="10" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Error" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 1" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Bullet Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Equation Label" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 3" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="14" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 2" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="16" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkWarning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Dictionary Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[147,0,15]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Caption Text" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="List Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Layout name="Ordered List 1" alignment="left" bullet="numeric" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 2" alignment="left" bullet="alphabetic" firstindent="0" leftmargin="36" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 3" alignment="left" bullet="roman" firstindent="0" leftmargin="72" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 4" alignment="left" bullet="ALPHABETIC" firstindent="0" leftmargin="108" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 5" alignment="left" bullet="ROMAN" firstindent="0" leftmargin="144" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Author" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="8" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Warning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Annotation Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Plot" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Line Printed Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Text Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="newline" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Diagnostic" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Normal" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Output" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.3" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Dash Item" alignment="left" bullet="dash" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkError" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Error" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 1" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="4" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Bullet Item" alignment="left" bullet="dot" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 4" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 3" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 2" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="2" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkWarning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="List Item" alignment="left" bullet="indent" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Pencil-style name="Pencil 5" pen-color="[255,0,0]" pen-height="5.0" pen-width="5.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 4" pen-color="[0,0,255]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 3" pen-color="[0,0,0]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 2" pen-color="[0,0,255]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 1" pen-color="[0,0,0]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Highlighter-style name="Highlighter 2" pen-color="[255,204,0]" pen-height="14.0" pen-width="14.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 1" pen-color="[255,153,255]" pen-height="12.0" pen-width="8.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 4" pen-color="[0,255,255]" pen-height="32.0" pen-width="32.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 3" pen-color="[51,255,0]" pen-height="24.0" pen-width="24.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 5" pen-color="[255,255,0]" pen-height="48.0" pen-width="48.0" pen-opacity="0.8"/> -</Styles> -<Task-table> - <Task-category name="<default>"> - </Task-category> -</Task-table> -<Task> -</Task> -<Group labelreference="L507" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYkLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjlGOS1GNjYtUSI6RidGOUY7L0Y/Rj1GQEZCRkRGRkZIL0ZLRk9GTS1GLDYlUSdob3JuZXJGJ0YvRjItRjY2LVEqJmNvbG9uZXE7RidGOUY7RmhuRkBGQkZERkZGSEZpbkZNLUYsNiVRKGNvZGVnZW5GJ0YvRjItRlQ2Ji1GIzYkRmpuRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zlbi8lK2V4ZWN1dGFibGVHRj1GOQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYkLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjlGOS1GNjYtUSI6RidGOUY7L0Y/Rj1GQEZCRkRGRkZIL0ZLRk9GTS1GLDYlUSdob3JuZXJGJ0YvRjItRjY2LVEqJmNvbG9uZXE7RidGOUY7RmhuRkBGQkZERkZGSEZpbkZNLUYsNiVRKGNvZGVnZW5GJ0YvRjItRlQ2Ji1GIzYkRmpuRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zlbi8lK2V4ZWN1dGFibGVHRj1GOQ==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEnaG9ybmVyRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GLDYlUTBjb2RlZ2VuOi1ob3JuZXJGJ0YvRjIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOQ==">SSdob3JuZXJHNiQlKnByb3RlY3RlZEcvSSttb2R1bGVuYW1lRzYiSShjb2RlZ2VuRzYkRiRJKF9zeXNsaWJHRic=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L519" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Calcul de la fomule Lambda_2^*:</Text-field> -<Text-field style="Text" layout="Normal"> - 4 points</Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8"> - degr\303\251 5</Font></Text-field> -<Text-field style="Text" layout="Normal"> - C2</Text-field> -<Text-field style="Text" layout="Normal"> - Moments d'ordre 2</Text-field> -</Input> -</Group> -<Group labelreference="L526" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlMtSSNtbkdGJDYkUSIyRidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZSL0ZOUSYwLjBlbUYnRlUtRjY2LVEiO0YnRjlGOy9GP0YxRkBGQkZERkZGSC9GS0ZnbkZNLUYsNiVRImRGJ0YvRjJGNS1GVjYkUSI1RidGOS8lK2V4ZWN1dGFibGVHRj1GOQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlMtSSNtbkdGJDYkUSIyRidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZSL0ZOUSYwLjBlbUYnRlUtRjY2LVEiO0YnRjlGOy9GP0YxRkBGQkZERkZGSC9GS0ZnbkZNLUYsNiVRImRGJ0YvRjJGNS1GVjYkUSI1RidGOQ==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYoLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlctSSNtbkdGJDYkUSIyRidGOUY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRlYvRk5RJjAuMGVtRidGWS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RlxvRl9vRjk=">OyEiIyIiIw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiZEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSSNtbkdGJDYkUSI1RidGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5">IiIm</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L520" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYyLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYkLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJ0Y+LyUvc3Vic2NyaXB0c2hpZnRHRj0tSSNtb0dGJDYtUSomY29sb25lcTtGJ0Y+LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZILyUpc3RyZXRjaHlHRkgvJSpzeW1tZXRyaWNHRkgvJShsYXJnZW9wR0ZILyUubW92YWJsZWxpbWl0c0dGSC8lJ2FjY2VudEdGSC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRlctRi82JVEieEYnRjJGNS1GQzYtUSgmc3JhcnI7RidGPkZGRklGS0ZNRk9GUUZTL0ZWUSYwLjBlbUYnL0ZZRltvLUYvNiVRJHN1bUYnRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYtLUYsNiUtRi82JVEiY0YnRjJGNS1GIzYmRjotRkM2LVEiLEYnRj5GRi9GSkY0RktGTUZPRlFGU0Zqbi9GWVEsMC4zMzMzMzMzZW1GJy1GLzYlUSJpRidGMkY1Rj5GQC1GQzYtUScmc2RvdDtGJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG8tSSVtc3VwR0YkNiVGWi1GIzYlLUZDNi1RIn5GJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG9GYnBGPi8lMXN1cGVyc2NyaXB0c2hpZnRHRj1GXHBGXXFGYnAtRkM2LVEiPUYnRj5GRkZJRktGTUZPRlFGU0ZVRlhGOi1GQzYtUSMuLkYnRj5GRkZJRktGTUZPRlFGUy9GVlEsMC4yMjIyMjIyZW1GJ0Zcby1GLzYlUSJkRidGMkY1Rj5GPi1GQzYtUSI7RidGPkZGRl9wRktGTUZPRlFGU0ZqbkZYLUYsNiVGLi1GIzYkLUY7NiRRIjFGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGZHJGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLyUrZXhlY3V0YWJsZUdGSEY+">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYwLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYjLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJy8lL3N1YnNjcmlwdHNoaWZ0R0Y9LUkjbW9HRiQ2LVEqJmNvbG9uZXE7RidGPi8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGSC8lKXN0cmV0Y2h5R0ZILyUqc3ltbWV0cmljR0ZILyUobGFyZ2VvcEdGSC8lLm1vdmFibGVsaW1pdHNHRkgvJSdhY2NlbnRHRkgvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZXLUYvNiVRInhGJ0YyRjUtRkM2LVEoJnNyYXJyO0YnRj5GRkZJRktGTUZPRlFGUy9GVlEmMC4wZW1GJy9GWUZbby1GLzYlUSRzdW1GJ0YyRjUtSShtZmVuY2VkR0YkNiQtRiM2LC1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2JUY6LUZDNi1RIixGJ0Y+RkYvRkpGNEZLRk1GT0ZRRlNGam4vRllRLDAuMzMzMzMzM2VtRictRi82JVEiaUYnRjJGNUZALUZDNi1RJyZzZG90O0YnRj5GRkZJRktGTUZPRlFGU0ZqbkZcby1JJW1zdXBHRiQ2JUZaLUYjNiQtRkM2LVEifkYnRj5GRkZJRktGTUZPRlFGU0ZqbkZcb0ZicC8lMXN1cGVyc2NyaXB0c2hpZnRHRj1GXHBGXXFGYnAtRkM2LVEiPUYnRj5GRkZJRktGTUZPRlFGU0ZVRlhGOi1GQzYtUSMuLkYnRj5GRkZJRktGTUZPRlFGUy9GVlEsMC4yMjIyMjIyZW1GJ0Zcby1GLzYlUSJkRidGMkY1Rj4tRkM2LVEiO0YnRj5GRkZfcEZLRk1GT0ZRRlNGam5GWC1GLDYlRi4tRiM2Iy1GOzYkUSIxRidGPkZARkJGWkZnbkZdby1GYW82JC1GIzYsLUYsNiVGZ28tRiM2JUZkckZccEZicEZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkZdcg==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R0Y9LUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZm4tRiM2KC1GLzYlUSJ4RidGMkY1LUZJNi1RKCYjODU5NDtGJ0Y+RkxGTkZQRlJGVEZWRlgvRmVuUSYwLjBlbUYnL0ZobkZiby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZJNi1RJiZTdW07RidGPkZMRk4vRlFGNEZSL0ZVRjQvRldGNEZYRmFvL0ZoblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRkk2LVEiPUYnRj5GTEZORlBGUkZURlZGWEZaRmduRjpGQEZDRj4tRi82JVEiZEYnRjJGNUZYLyUsYWNjZW50dW5kZXJHRkUtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdRJDUuMEYnLyUmZGVwdGhHRmNxLyUqbGluZWJyZWFrR1ElYXV0b0YnLUYjNiYtRiw2JS1GLzYlUSJjRidGMkY1LUYjNihGOi1GSTYtUSIsRidGPkZML0ZPRjRGUEZSRlRGVkZYRmFvL0ZoblEsMC4zMzMzMzMzZW1GJ0ZjcEZARkNGPkZGLUZJNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y+RkxGTkZQRlJGVEZWRlhGYW9GY28tSSVtc3VwR0YkNiVGW29GY3AvJTFzdXBlcnNjcmlwdHNoaWZ0R0Y9Rj5GQEZDRj5GQEZDRj5GQEZDRj4=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIUkiaUdGJSIiIilGJEYxRjIvRjE7RjBJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIkkiaUdGJUYwKUYkRjFGMC9GMTsiIiFJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L529" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KS1GLDYlUSJQRicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnRjcvJSZmZW5jZUdGNi8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0Y2LyUqc3ltbWV0cmljR0Y2LyUobGFyZ2VvcEdGNi8lLm1vdmFibGVsaW1pdHNHRjYvJSdhY2NlbnRHRjYvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZOLUYsNiVRInhGJ0Y0RjctRjs2LVEoJnNyYXJyO0YnRjdGPkZARkJGREZGRkhGSi9GTVEmMC4wZW1GJy9GUEZYLUYsNiVRKnBpZWNld2lzZUYnL0Y1USV0cnVlRicvRjhRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNmVuRistSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWC8lJmRlcHRoR0Zlby8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GOzYtUSJ+RidGN0Y+RkBGQkZERkZGSEZKRldGWUZRLUY7Ni1RIjxGJ0Y3Rj5GQEZCRkRGRkZIRkpGTEZPLUY7Ni1RKiZ1bWludXMwO0YnRjdGPkZARkJGREZGRkhGSi9GTVEsMC4yMjIyMjIyZW1GJy9GUEZncC1JI21uR0YkNiRRIjJGJ0Y3LUY7Ni1RIixGJ0Y3Rj4vRkFGaG5GQkZERkZGSEZKRlcvRlBRLDAuMzMzMzMzM2VtRictRmpwNiRRIjBGJ0Y3Rl1xRl1wRmBvRl1wRlFGYHBGY3AtRmpwNiRRIjFGJ0Y3Rl1xLUklbXN1YkdGJDYlLUYsNiVRInBGJ0Y0RjctRiM2JEZjcUY3LyUvc3Vic2NyaXB0c2hpZnRHRmVxLUZcbzYkLUYjNiQtRiw2JUZTRmduRmluRjdGN0ZdcUZgb0ZdcEZnckZgcEZjcUZdcS1GanE2JS1GLDYlRl5yRmduRmluLUYjNiRGZnFGN0ZhckZjckZdcUZgb0ZdcEZnckZgcEZmcUZdcUZpci1GXG82JC1GIzYlRmNwRmdyRjdGN0ZdcUZgb0ZdcEZnckZgcEZpcEZdcS1GanE2JUZbc0ZfckZhckZfc0ZdcUZgb0ZdcEZnci1GOzYtUS8mR3JlYXRlckVxdWFsO0YnRjdGPkZARkJGREZGRkhGSkZMRk9GaXBGXXFGXXBGY3FGN0Y3RjdGKy8lK2V4ZWN1dGFibGVHRjZGNw==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRictRiM2KC1GLDYlUSJQRicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnRjcvJSZmZW5jZUdGNi8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0Y2LyUqc3ltbWV0cmljR0Y2LyUobGFyZ2VvcEdGNi8lLm1vdmFibGVsaW1pdHNHRjYvJSdhY2NlbnRHRjYvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZOLUYsNiVRInhGJ0Y0RjctRjs2LVEoJnNyYXJyO0YnRjdGPkZARkJGREZGRkhGSi9GTVEmMC4wZW1GJy9GUEZYLUYsNiVRKnBpZWNld2lzZUYnL0Y1USV0cnVlRicvRjhRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNlpGKy1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0ZYLyUmZGVwdGhHRmVvLyUqbGluZWJyZWFrR1EobmV3bGluZUYnLUY7Ni1RIn5GJ0Y3Rj5GQEZCRkRGRkZIRkpGV0ZZRlEtRjs2LVEiPEYnRjdGPkZARkJGREZGRkhGSkZMRk8tRjs2LVEqJnVtaW51czA7RidGN0Y+RkBGQkZERkZGSEZKL0ZNUSwwLjIyMjIyMjJlbUYnL0ZQRmdwLUkjbW5HRiQ2JFEiMkYnRjctRjs2LVEiLEYnRjdGPi9GQUZobkZCRkRGRkZIRkpGVy9GUFEsMC4zMzMzMzMzZW1GJy1GanA2JFEiMEYnRjdGXXFGXXBGYG9GXXBGUUZgcEZjcC1GanA2JFEiMUYnRjdGXXEtSSVtc3ViR0YkNiUtRiw2JVEicEYnRjRGNy1GIzYjRmNxLyUvc3Vic2NyaXB0c2hpZnRHRmVxLUZcbzYkLUYjNiMtRiw2JUZTRmduRmluRjdGXXFGYG9GXXBGZ3JGYHBGY3FGXXEtRmpxNiUtRiw2JUZeckZnbkZpbi1GIzYjRmZxRmFyRmNyRl1xRmBvRl1wRmdyRmBwRmZxRl1xRmlyLUZcbzYkLUYjNiRGY3BGZ3JGN0ZdcUZgb0ZdcEZnckZgcEZpcEZdcS1GanE2JUZbc0ZfckZhckZfc0ZdcUZgb0ZdcEZnci1GOzYtUS8mR3JlYXRlckVxdWFsO0YnRjdGPkZARkJGREZGRkhGSkZMRk9GaXBGXXFGXXBGY3FGN0Yr</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiUEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2KC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCYjODU5NDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWC1GIzYoLUYsNiVRKnBpZWNld2lzZUYnRi9GMi1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGV0ZZLUkobWZlbmNlZEdGJDYkLUYjNjwtRiM2KEZRLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlxwLUkjbW5HRiQ2JFEiMkYnRjlGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGVy9GTlEsMC4zMzMzMzMzZW1GJy1GX3A2JFEiMEYnRjlGZ3AtRiM2KEZRRmNvLUYjNiVGaG8tRl9wNiRRIjFGJ0Y5RjlGYnBGZXBGOUZncC1GIzYoLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JkZdcUZicEZlcEY5LyUvc3Vic2NyaXB0c2hpZnRHRl9xRmluLUZdbzYkLUYjNiZGUUZicEZlcEY5RjlGYnBGZXBGOUZncC1GIzYoRlFGY29GXXFGYnBGZXBGOUZncC1GIzYoLUZqcTYlRlxyLUYjNiZGZHFGYnBGZXBGOUZhckZpbkZjckZicEZlcEY5RmdwLUYjNihGUUZjb0ZkcUZicEZlcEY5RmdwLUYjNihGW3NGaW4tRl1vNiQtRiM2Ji1GIzYnRmhvRlFGYnBGZXBGOUZicEZlcEY5RjlGYnBGZXBGOUZncC1GIzYoRlFGY29GXnBGYnBGZXBGOUZncC1GIzYoRmlxRmluRmNzRmJwRmVwRjlGZ3AtRiM2KEZecC1GNjYtUSUmbGU7RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZRRmJwRmVwRjlGZ3BGXXFGYnBGZXBGOUY5RmJwRmVwRjlGYnBGZXBGOUZicEZlcEY5">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzYuMkYkISIjIiIhMkYkISIiLSZJInBHRiU2I0YvRiMyRiRGLy0mRjQ2IyIiIkYjMkYkRjotRjg2IywkRiRGMTJGJCIiIy1GM0Y9MUZARiRGL0YlRiVGJQ==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L517" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiRUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNjItRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNiktRiw2JVEiUEYnRi9GMi1GUDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5RjlGOUZnby1GW3A2JFEiMUYnRjlGX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ28tRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmlwRl5wRjlGOUZnb0Zqb0Zfb0ZULUZQNiQtRiM2KkZlbkZobkZfb0Zcb0Znb0ZlcC1GW3A2JFEiMkYnRjlGOUY5RmdvRmpvLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GYnFGOQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEiRUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNjAtRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNigtRiw2JVEiUEYnRi9GMi1GUDYkLUYjNiMtRiw2JVEieEYnRi9GMkY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXG8tRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSNtbkdGJDYkUSIwRidGOUY5RmdvLUZbcDYkUSIxRidGOUZfb0ZULUZQNiQtRiM2KUZlbkZobkZfb0Zcb0Znby1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GaXBGXnBGOUZnb0Zqb0Zfb0ZULUZQNiQtRiM2KUZlbkZobkZfb0Zcb0Znb0ZlcC1GW3A2JFEiMkYnRjlGOUZnb0Zqb0Y5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZN</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L523" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRl5wLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmRvLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYHEtSSNtbkdGJDYkUSIyRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl9xRmFxLUZjcTYkUSIxRidGOUY5RjlGaXBGZW4tRlA2JC1GIzYtLUZdbzYlRl9vLUYjNiZGZG9GZnFGaXFGOUZnb0Zqb0ZhcEZecEZpcEZkb0ZccUZicUZmcUZpcUY5RjlGYXBGZG9GaXAtRmNxNiRGaW9GOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZfcS9GTkZmcEZkckY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZqckY5">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEjQzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYkLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNiwtSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYjLUYsNiVRImpGJ0YvRjIvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GUDYkLUYjNiMtRiw2JVEieEYnRi9GMkY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXnAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GZG8tRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZgcS1JI21uR0YkNiRRIjJGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGX3FGYXEtRmNxNiRRIjFGJ0Y5RjlGaXBGZW4tRlA2JC1GIzYsLUZdbzYlRl9vLUYjNiVGZG9GZnFGaXFGZ29Gam9GYXBGXnBGaXBGZG9GXHFGYnFGZnFGaXFGOUZhcEZkb0ZpcC1GY3E2JEZpb0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRl9xL0ZORmZwRmRyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTQ==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L521" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwRjlGOUZocEZlcC1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbcC1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmdxLUkjbW5HRiQ2JFEiMkYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocS1GanE2JFEiMUYnRjlGOUY5RmBxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JkZbcEZdckZgckY5Rl5wRmFwRmhwRmVwRjlGOUZocEZlcEZgcUZbcEZjcUZpcUZdckZgckY5RjlGaHBGW3BGYHEtRmpxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZmcS9GTkZdcUZfc0Y5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSRDMTBGJ0YvRjJGNS1GUDYmLUYjNilGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2Jy1GZG82JUZmby1GIzYkRmByRjlGXnBGYXBGaHBGZXBGOUY5RmhwRmVwRmBxRl9zRjlGOUZgcUZlbi1GUDYkLUYjNilGXG8tRlA2JC1GIzYnRl91LUZQNiQtRiM2JS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGZnFGaHFGZXBGOUY5RmhwRmVwRjlGOUZocEZlcEZgcUZfc0Y5RjlGZXNGOUY5RmdzRmpzRl10RmVzRjk=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEjQzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYkLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNiwtRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiYtSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYjLUYsNiVRImpGJ0YvRjIvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GUDYkLUYjNiMtRiw2JVEieEYnRi9GMkY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGZXBGOUZocEZlcC1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbcC1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmdxLUkjbW5HRiQ2JFEiMkYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocS1GanE2JFEiMUYnRjlGOUZgcUZlbi1GUDYkLUYjNixGXG8tRlA2JC1GIzYmLUZkbzYlRmZvLUYjNiVGW3BGXXJGYHJGXnBGYXBGaHBGZXBGOUZocEZlcEZgcUZbcEZjcUZpcUZdckZgckY5RmhwRltwRmBxLUZqcTYkRmBwRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkhGZnEvRk5GXXFGX3NGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiVRJEMxMEYnRi9GMkY1LUZQNiYtRiM2J0Zlbi1GUDYkLUYjNihGXG8tRlA2JC1GIzYmLUZkbzYlRmZvLUYjNiNGYHJGXnBGYXBGaHBGZXBGOUZocEZlcEZgcUZfc0Y5RmBxRmVuLUZQNiQtRiM2KEZcby1GUDYkLUYjNiZGXXUtRlA2JC1GIzYkLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocUZlcEY5RmhwRmVwRjlGaHBGZXBGYHFGX3NGOUY5RmVzRmhzRlt0</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L533" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIyRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfckZkcS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5yRmByLUZlcTYkUSIxRidGOUY5RjlGaHFGZW4tRlA2JC1GIzYtRlxvLUZQNiQtRiM2KS1GZG82JUZmby1GIzYmRltwRmFyRmRyRjlGXnBGYXBGaHBGZXBGYHFGZHFGOUY5RmhwRmVwRmhxRltwRltyRmRxRmFyRmRyRjlGOUZocEZbcEZocS1GZXE2JEZgcEY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRl5yRmNxRmNzRjlGOUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0vJStleGVjdXRhYmxlR0Y9Rjk=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEjQzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYkLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNiwtRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNigtSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYjLUYsNiVRImpGJ0YvRjIvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GUDYkLUYjNiMtRiw2JVEieEYnRi9GMkY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGZXAtRjY2LVEiJEYnRjlGO0Y+RkBGQkZERkZGSEZccS9GTkZdcS1JI21uR0YkNiRRIjJGJ0Y5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfckZkcS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5yRmByLUZlcTYkUSIxRidGOUY5RmhxRmVuLUZQNiQtRiM2LEZcby1GUDYkLUYjNigtRmRvNiVGZm8tRiM2JUZbcEZhckZkckZecEZhcEZocEZlcEZgcUZkcUY5RmhwRmVwRmhxRltwRltyRmRxRmFyRmRyRjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcUZjc0Y5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L515" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElQ0VOREYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GUy1JKG1mZW5jZWRHRiQ2Ji1GIzYtLUYsNiVRJWV2YWxGJ0YvRjItRlY2JC1GIzYqLUYsNiVRJWRpZmZGJ0YvRjItRlY2JC1GIzYnLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JC1JI21uR0YkNiRRIjBGJ0Y5RjkvJS9zdWJzY3JpcHRzaGlmdEdGXXAtRlY2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGSi9GTlEsMC4zMzMzMzMzZW1GJ0ZkcEY5RjlGZ3BGZHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmRxLUZbcDYkUSIyRidGOUY5RjlGXXFGam9GZ3BGWi1GVjYkLUYjNipGW28tRlY2JC1GIzYpRmJvRmBwRmdwRmRwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmZxRjlGOUZncEZkcEZdcUZgcUZmcUY5RjlGXXFGam8vJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRlJGVEZkckY5">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVElQ0VOREYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GUy1JKG1mZW5jZWRHRiQ2Ji1GIzYrLUYsNiVRJWV2YWxGJ0YvRjItRlY2JC1GIzYpLUYsNiVRJWRpZmZGJ0YvRjItRlY2JC1GIzYmLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2Iy1JI21uR0YkNiRRIjBGJ0Y5LyUvc3Vic2NyaXB0c2hpZnRHRl1wLUZWNiQtRiM2Iy1GLDYlUSJ4RidGL0YyRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZKL0ZOUSwwLjMzMzMzMzNlbUYnRmRwRjlGZ3BGZHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmRxLUZbcDYkUSIyRidGOUY5Rl1xRmpvRmdwRlotRlY2JC1GIzYpRltvLUZWNiQtRiM2KEZib0ZgcEZncEZkcC1GNjYtUSIkRidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZmcUY5RmdwRmRwRl1xRmBxRmZxRjlGXXFGam9GOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRlJGVA==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L531" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0wRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRlM2JC1GIzYoLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlM2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GUzYkLUYjNiktRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0ZccS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXItRiw2JVEibEYnRi9GMkY5RjlGX3FGY3JGZ3EtRiw2JVEneHJhbmdlRidGL0YyRjlGOUZdci1JJW1zdXBHRiQ2JS1GUzYkLUYjNiRGanFGOUY5LUYjNiQtSSNtbkdGJDYkUSIwRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdGZXNGX3FGanFGOUY5Rl9xRmpxRlpGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGY3EvRk5GZHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGY3FGW3RGaHNGanEtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GYnNGaHMtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZodEY7Rj5GQEZCRkRGRkZIRmNxRlt0RmhzRmpxLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZjczYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZaRjk=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY0LUkjbWlHRiQ2JVEkRE0wRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiMtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRlM2JC1GIzYmLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlM2JC1GIzYoLUYsNiVRJHN1bUYnRi9GMi1GUzYkLUYjNigtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNiotRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiMtRiw2JVEieEYnRi9GMkY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGanAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRiw2JVEic0YnRi9GMi1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORl9yLUYsNiVRImxGJ0YvRjJGOUZdcUZhckZlcS1GLDYlUSd4cmFuZ2VGJ0YvRjJGOUZbci1JJW1zdXBHRiQ2JS1GUzYkLUYjNiNGaHFGOS1GIzYjLUkjbW5HRiQ2JFEiMEYnRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R0Zjc0ZdcUZocUY5Rl1xRmhxRjktRjY2LVEifkYnRjlGO0Y+RkBGQkZERkZGSEZhcS9GTkZicS1GNjYtUSlhc3N1bWluZ0YnRjlGO0Y+RkBGQkZERkZGSEZhcUZpc0Zmc0ZocS1GNjYtUSI+RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZgc0Zmcy1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRmZ0RjtGPkZARkJGREZGRkhGYXFGaXNGZnNGaHEtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmFzNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZN</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L511" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNMEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiYtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Ly1GLDYlUSRETTBGJ0YvRjItRlA2Ji1GIzYlLUYsNiVRImpGJ0YvRjIvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXG9GZ28tRltwNiRRIjFGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmNwLUYsNiVRKW51bWVsZW1zRidGL0YyLUZQNiQtRiM2JUZlbkZfb0Y5RjlGX29GOUY5Rl9vRjlGOUZhb0Zkby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZfb0Y5">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVElbERNMEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2LS1GLDYlUSRETTBGJ0YvRjItRlA2Ji1GIzYjLUYsNiVRImpGJ0YvRjJGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXG9GZW8tRmlvNiRRIjFGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmFwLUYsNiVRKW51bWVsZW1zRidGL0YyLUZQNiQtRiM2I0ZlbkY5RjlGOUZfb0Ziby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTQ==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L527" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistRiw2JVEibEYnRi9GMi1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaHAtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZncC9GTlEsMC4zMzMzMzMzZW1GJ0ZocS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GW3NGYXBGOUY5RltyRmFwRmFyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGZ3ItSSVtc3VwR0YkNiUtRlg2JC1GIzYkRmRyRjlGOS1GIzYkLUkjbW5HRiQ2JFEiMUYnRjlGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGW3JGZHJGOUY5RltyRmRyRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqczYkRl90RjlGYHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZhdUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmlzLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmB0LyUrZXhlY3V0YWJsZUdGPUY5">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY0LUkjbWlHRiQ2JVEkRE0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2JS1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2Iy1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GWDYkLUYjNiYtRiw2JVEoY29sbGVjdEYnRi9GMi1GWDYkLUYjNigtRiw2JVEkc3VtRidGL0YyLUZYNiQtRiM2Ki1GLDYlUSJsRidGL0YyLUY2Ni1RJyZzZG90O0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZocC1GLDYlUSVldmFsRidGL0YyLUZYNiQtRiM2Ki1GLDYlUSJQRidGL0YyLUZYNiQtRiM2Iy1GLDYlUSJ4RidGL0YyRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZncC9GTlEsMC4zMzMzMzMzZW1GJ0ZocS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GW3NGYXBGOUZbckZhcEZhci1GLDYlUSd4cmFuZ2VGJ0YvRjJGOUZnci1JJW1zdXBHRiQ2JS1GWDYkLUYjNiNGZHJGOS1GIzYjLUkjbW5HRiQ2JFEiMUYnRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRltyRmRyRjlGW3JGZHJGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqczYkRl90RjlGYHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZhdUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmlzLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmB0</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L506" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTFGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVElbERNMUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2LS1GLDYlUSRETTFGJ0YvRjItRlA2Ji1GIzYjLUYsNiVRImpGJ0YvRjJGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXG9GZW8tRmlvNiRRIjFGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmFwLUYsNiVRKW51bWVsZW1zRidGL0YyLUZQNiQtRiM2I0ZlbkY5RjlGOUZfb0Ziby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYjUSFGJw==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L508" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0yRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistSSVtc3VwR0YkNiUtRiw2JVEibEYnRi9GMi1GIzYlLUkjbW5HRiQ2JFEiMkYnRjlGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GZHEtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZjcS9GTlEsMC4zMzMzMzMzZW1GJ0Zkci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GZ3NGZHBGOUY5RmdyRmRwRl1zLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGY3MtRmJwNiUtRlg2JC1GIzYkRmBzRjlGOS1GIzYkRmlwRjlGXXFGZ3JGYHNGOUY5RmdyRmBzRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkRl9xRjlGZHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZldUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZkdC8lK2V4ZWN1dGFibGVHRj1GOQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY0LUkjbWlHRiQ2JVEkRE0yRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2JS1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2Iy1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GWDYkLUYjNiYtRiw2JVEoY29sbGVjdEYnRi9GMi1GWDYkLUYjNigtRiw2JVEkc3VtRidGL0YyLUZYNiQtRiM2Ki1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiMtSSNtbkdGJDYkUSIyRidGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRictRjY2LVEnJnNkb3Q7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmRxLUYsNiVRJWV2YWxGJ0YvRjItRlg2JC1GIzYqLUYsNiVRIlBGJ0YvRjItRlg2JC1GIzYjLUYsNiVRInhGJ0YvRjJGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRmNxL0ZOUSwwLjMzMzMzMzNlbUYnRmRyLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiVRInNGJ0YvRjItRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZnc0ZkcEY5RmdyRmRwRl1zLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RmNzLUZicDYlLUZYNiQtRiM2I0Zgc0Y5RmdwRl1xRmdyRmBzRjlGZ3JGYHNGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmJ0RmBzLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkRl9xRjlGYnQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZjdUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmJ0RmBzLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZidA==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L510" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTJGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVElbERNMkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2LS1GLDYlUSRETTJGJ0YvRjItRlA2Ji1GIzYjLUYsNiVRImpGJ0YvRjJGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXG9GZW8tRmlvNiRRIjFGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmFwLUYsNiVRKW51bWVsZW1zRidGL0YyLUZQNiQtRiM2I0ZlbkY5RjlGOUZfb0Ziby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYjUSFGJw==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L509" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2Ji1GLDYlUSRzZXFGJ0YvRjItRlA2JC1GIzYrRlQtRlA2JC1GIzYqLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2Ji1GLDYlUSJpRidGL0YyLUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRictRiw2JVEiakYnRi9GMkY5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGZG9GXHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSNtbkdGJDYkRmFwRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GaW8tRiw2JVEiZEYnRi9GMkY5RjlGZG9GYW9GYnBGZXBGaHAtRmZwNiRRIjFGJ0Y5RjlGOS8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjtGJ0Y5RjtGZ29GQEZCRkRGRkZIRmhvRk0tRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRitGOUY5RmRxRjk=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUSRzZXFGJ0YvRjItRlA2JC1GIzYqRlQtRlA2JC1GIzYpLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2JS1GLDYlUSJpRidGL0YyLUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRictRiw2JVEiakYnRi9GMi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnRmRvRlxwLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JEZhcEY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmlvLUYsNiVRImRGJ0YvRjJGOUZkb0Zhb0ZicEZlcEZocC1GZnA2JFEiMUYnRjlGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjtGJ0Y5RjtGZ29GQEZCRkRGRkZIRmhvRk0tRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYjRitGOQ==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzY8LUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2KC1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGZm4vJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOS8lL3N1YnNjcmlwdHNoaWZ0R0ZpbkZqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiMUYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiMkYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiM0YnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiNEYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiNUYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZmbkZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRl1wRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GZHBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZbcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmJxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GaXFGYm9GZW9GOUZnb0Zib0Zlb0Y5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGYm9GZW9GOQ==">Ny4mSSJjRzYiNiQiIiFGJyZGJDYkRiciIiImRiQ2JEYnIiIjJkYkNiRGJyIiJCZGJDYkRiciIiUmRiQ2JEYnIiImJkYkNiRGKkYnJkYkNiRGKkYqJkYkNiRGKkYtJkYkNiRGKkYwJkYkNiRGKkYzJkYkNiRGKkY2</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiM3</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L505" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVErY29uZGl0aW9uc0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GU0Y1LUkobWZlbmNlZEdGJDYmLUYjNj4tRiw2JVEiRUYnRi9GMi1GVjYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRiw2JVEjQzBGJ0YvRjItRlY2Ji1GIzYkRltvRjlGOUZgb0Zjb0Zmby1GLDYlUSNDMUYnRi9GMkZfcEZmby1GLDYlUSRDMTBGJ0YvRjJGX3BGZm8tRiw2JVEjQzJGJ0YvRjJGZ25GZm8tRiw2JVElQ0VOREYnRi9GMkZfcEZmby1GLDYlUSVsRE0wRidGL0YyRl9wRmZvLUYsNiVRJWxETTFGJ0YvRjJGX3BGZm8tRiw2JVElbERNMkYnRi9GMkZfcEZeb0Y5RjlGYG9GY28tRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlY2JC1GIzYkRitGOUY5Rl5vRjk=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVErY29uZGl0aW9uc0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GU0Y1LUkobWZlbmNlZEdGJDYmLUYjNjwtRiw2JVEiRUYnRi9GMi1GVjYmLUYjNiMtRiw2I1EhRidGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRiw2JVEjQzBGJ0YvRjJGZ25GZG8tRiw2JVEjQzFGJ0YvRjJGZ25GZG8tRiw2JVEkQzEwRidGL0YyRmduRmRvLUYsNiVRI0MyRidGL0YyRmduRmRvLUYsNiVRJUNFTkRGJ0YvRjJGZ25GZG8tRiw2JVElbERNMEYnRi9GMkZnbkZkby1GLDYlUSVsRE0xRidGL0YyRmduRmRvLUYsNiVRJWxETTJGJ0YvRjJGZ25GOUZeb0Zhby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRlJGVC1GLDYlUSludW1lbGVtc0YnRi9GMi1GVjYkLUYjNiNGK0Y5</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNF</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L518" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkobWZlbmNlZEdGJDYkLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y4USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZCLyUqc3ltbWV0cmljR0ZCLyUobGFyZ2VvcEdGQi8lLm1vdmFibGVsaW1pdHNHRkIvJSdhY2NlbnRHRkIvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYtUSJ+RidGPkZAL0ZERkJGRUZHRklGS0ZNRk8vRlNGUS1GMTYlUSJiRidGNEY3LyUrZXhlY3V0YWJsZUdGQkY+Rj4tRjs2LVEqJmNvbG9uZXE7RidGPkZARlhGRUZHRklGS0ZNL0ZQUSwwLjI3Nzc3NzhlbUYnL0ZTRl1vLUYxNiVRLkxpbmVhckFsZ2VicmFGJ0Y0RjctRiw2Ji1GIzYlLUYxNiVRL0dlbmVyYXRlTWF0cml4RidGNEY3RmduRj5GPi8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GLDYkLUYjNigtRjE2JVErY29uZGl0aW9uc0YnRjRGN0Y6RlUtRjE2JVEqaW5jb25udWVzRidGNEY3RmduRj5GPi1GOzYtUSI7RidGPkZARkNGRUZHRklGS0ZNRk9GXm9GZ25GPg==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkobWZlbmNlZEdGJDYkLUYjNiYtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y4USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZCLyUqc3ltbWV0cmljR0ZCLyUobGFyZ2VvcEdGQi8lLm1vdmFibGVsaW1pdHNHRkIvJSdhY2NlbnRHRkIvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYtUSJ+RidGPkZAL0ZERkJGRUZHRklGS0ZNRk8vRlNGUS1GMTYlUSJiRidGNEY3Rj4tRjs2LVEqJmNvbG9uZXE7RidGPkZARlhGRUZHRklGS0ZNL0ZQUSwwLjI3Nzc3NzhlbUYnL0ZTRltvLUYxNiVRLkxpbmVhckFsZ2VicmFGJ0Y0RjctRiw2Ji1GIzYjLUYxNiVRL0dlbmVyYXRlTWF0cml4RidGNEY3Rj4vJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRiw2JC1GIzYmLUYxNiVRK2NvbmRpdGlvbnNGJ0Y0RjdGOkZVLUYxNiVRKmluY29ubnVlc0YnRjRGN0Y+LUY7Ni1RIjtGJ0Y+RkBGQ0ZFRkdGSUZLRk1GT0Zcbw==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y1USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMy8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GLjYlUSJiRidGMUY0LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y/RjstRjg2LVEjOj1GJ0Y7Rj0vRkFGP0ZCRkRGRkZIRkovRk1RLDAuMjc3Nzc3OGVtRicvRlBGaW4tRiM2KC1JKG1hY3Rpb25HRiQ2JS1JKG1mZW5jZWRHRiQ2Ji1JJ210YWJsZUdGJDY4LUkkbXRyR0YkNiYtSSRtdGRHRiQ2KC1GIzYmLUYuNiVRKn4yNn54fjEyfkYnRjFGNC1GLjYlUSdNYXRyaXhGJ0YxRjRGVUY7LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZmcC8lK2dyb3VwYWxpZ25HRmZwLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRl1xRmRwRmdwRmlwLUZnbzYmLUZqbzYoLUYjNiYtRi42JVEsRGF0YX5UeXBlOn5GJ0YxRjQtRi42JVEpYW55dGhpbmdGJ0YxRjRGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwLUZnbzYmLUZqbzYoLUYjNiYtRi42JVEqU3RvcmFnZTp+RidGMUY0LUYuNiVRLHJlY3Rhbmd1bGFyRidGMUY0RlVGO0ZkcEZncEZpcEZbcUZecUZkcEZncEZpcC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKE9yZGVyOn5GJ0YxRjQtRi42JVEuRm9ydHJhbl9vcmRlckYnRjFGNEZVRjtGZHBGZ3BGaXBGW3FGXnFGZHBGZ3BGaXAvJSZhbGlnbkdRJWF4aXNGJy9GZXBRKWJhc2VsaW5lRicvRmhwUSdjZW50ZXJGJy9GanBRJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0YzLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGYXQvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGXHUvJSZmcmFtZUdGXHUvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y/LyUtZXF1YWxjb2x1bW5zR0Y/LyUtZGlzcGxheXN0eWxlR0Y/LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRml0RjsvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRicvJSthY3Rpb250eXBlR1EtYnJvd3NlcnRhYmxlRicvJSlydGFibGVpZEdRNTE4NDQ2NzQ0MDc4MTgzNzI3OTQyRidGNy1GXm82JS1GYW82Ji1GZG82OC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKn4xfi4ufjI2fkYnRjFGNC1JJW1zdWJHRiQ2JS1GLjYlUSdWZWN0b3JGJ0YxRjQtRiM2JS1GLjYlUSdjb2x1bW5GJ0YxRjRGVUY7LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwRmBxRlxyRmhyRmRzRmdzRmlzRlt0Rl10Rl90RmJ0RmR0Rmd0Rmp0Rl11Rl91RmF1RmR1RmZ1Rmh1Rmp1Rl12RjtGX3ZGYnZGZXYvRml2UTUxODQ0Njc0NDA3ODE4MzcyNzgyMkYnRlVGWEY7RlVGWEY7">NiQtSSdNYXRyaXhHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2Iy9JJCVpZEdGKCI1VXpzJD15U3VZJT0tJkknVmVjdG9yR0YlNiNJJ2NvbHVtbkdGKDYjL0YrIjVBeXMkPXlTdVklPQ==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L513" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJVJhbmtGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYkLUYjNiUtRiw2JVEiQUYnRi9GMkY9RkBGQC1GLDYjUSFGJ0Y9RkA=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYjLUYsNiVRJVJhbmtGJ0YvRjIvRjNRJ25vcm1hbEYnLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2NiQtRiM2Iy1GLDYlUSJBRidGL0YyRj0tRiw2I1EhRic=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiM3</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L532" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yNzc3Nzc4ZW1GJy9GTkZTLUYsNiVRJnNvbHZlRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNictRiw2JVErY29uZGl0aW9uc0YnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRlk2Ji1GIzYmLUYsNiVRKmluY29ubnVlc0YnRi9GMi1GWTYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZecEY5RjkvRmFwUSJ8ZnJGJy9GZHBRInxockYnRl5wRjlGOUZecEY5">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yNzc3Nzc4ZW1GJy9GTkZTLUYsNiVRJnNvbHZlRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNiUtRiw2JVErY29uZGl0aW9uc0YnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRlk2Ji1GIzYkLUYsNiVRKmluY29ubnVlc0YnRi9GMi1GWTYmLUYjNiMtRiw2I1EhRidGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Y5L0ZfcFEifGZyRicvRmJwUSJ8aHJGJ0Y5</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzY8LUYjNigtSSVtc3ViR0YkNiUtRiw2JVEiY0YnRi9GMi1GIzYoLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zobi8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LyUvc3Vic2NyaXB0c2hpZnRHRltvLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmRwLUZpbjYkUSI0RidGOUY5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiMUYnRjlGZG9GZ29GOUZpb0ZbcC1GIzYlRmBwLUZpbjYkUSMxOEYnRjlGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjJGJ0Y5RmRvRmdvRjlGaW9GW3AtRiM2JUZgcC1GaW42JFEjMjlGJ0Y5RjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIzRidGOUZkb0Znb0Y5RmlvRltwLUYjNidGYHAtSSZtZnJhY0dGJDYoLUZpbjYkUSM0M0YnRjlGXXIvJS5saW5ldGhpY2tuZXNzR0ZhcS8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zqcy8lKWJldmVsbGVkR0Y9RmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvRmZwRmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GYXM2KC1GaW42JFEjMTVGJ0Y5Rl1yRmZzRmhzRlt0Rl10RmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSI1RidGOUZkb0Znb0Y5RmlvRltwLUYjNiVGYHBGX3FGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGX3FGXG9GaG5GZG9GZ29GOUZpb0ZbcEZfcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGX3FGXG9GX3FGZG9GZ29GOUZpb0ZbcEZobkZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGX3FGXG9GXXJGZG9GZ29GOUZpb0ZbcEZldUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGX3FGXG9GW3NGZG9GZ29GOUZpb0ZbcC1GYXM2KC1GaW42JFEiOUYnRjlGXXJGZnNGaHNGW3RGXXRGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl9xRlxvRmZwRmRvRmdvRjlGaW9GW3BGZ3RGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl9xRlxvRmJ1RmRvRmdvRjlGaW9GW3BGW3NGZG9GZ29GOUZkb0Znb0Y5RjkvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnRmRvRmdvRjk=">PC4vJkkiY0c2IjYkIiIhRighIiUvJkYlNiRGKCIiIiEjPS8mRiU2JEYoIiIjISNILyZGJTYkRigiIiQjISNWRjIvJkYlNiRGKCIiJSMhIzpGMi8mRiU2JEYoIiImISIiLyZGJTYkRi1GKEYtLyZGJTYkRi1GLUYoLyZGJTYkRi1GMkZELyZGJTYkRi1GNyMiIipGMi8mRiU2JEYtRj0jIiM6RjIvJkYlNiRGLUZDRjc=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L516" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYkLUYsNiVRLExpbmVhclNvbHZlRidGL0YyL0YzUSdub3JtYWxGJ0Y9LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2NiQtRiM2NC1GLDYlUSJBRidGL0YyLUkjbW9HRiQ2LVEiLEYnRj0vJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGUi8lKnN5bW1ldHJpY0dGUi8lKGxhcmdlb3BHRlIvJS5tb3ZhYmxlbGltaXRzR0ZSLyUnYWNjZW50R0ZSLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEiYkYnRi9GMkZMLUYsNiVRJ21ldGhvZEYnRi9GMi1GTTYtUSI9RidGPUZQL0ZURlJGVUZXRllGZW5GZ24vRmpuUSwwLjI3Nzc3NzhlbUYnL0Zdb0Zqby1GTTYtUSInRidGPUZQRmhvRlVGV0ZZRmVuRmduL0ZqblEsMC4xMTExMTExZW1GJy9GXW9GW28tRiw2JVElbm9uZUYnRi9GMkZccEZMLUZNNi1RIn5GJ0Y9RlBGaG9GVUZXRllGZW5GZ25GaW5GYXAtRiw2JVElZnJlZUYnRi9GMkZlb0ZccC1GLDYlUSJhRidGL0YyRlxwLyUrZXhlY3V0YWJsZUdGUkY9Rj1GXnFGPQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYjLUYsNiVRLExpbmVhclNvbHZlRidGL0YyL0YzUSdub3JtYWxGJy8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYkLUYjNjItRiw2JVEiQUYnRi9GMi1JI21vR0YkNi1RIixGJ0Y9LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRlIvJSpzeW1tZXRyaWNHRlIvJShsYXJnZW9wR0ZSLyUubW92YWJsZWxpbWl0c0dGUi8lJ2FjY2VudEdGUi8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUYsNiVRImJGJ0YvRjJGTC1GLDYlUSdtZXRob2RGJ0YvRjItRk02LVEiPUYnRj1GUC9GVEZSRlVGV0ZZRmVuRmduL0ZqblEsMC4yNzc3Nzc4ZW1GJy9GXW9Gam8tRk02LVEiJ0YnRj1GUEZob0ZVRldGWUZlbkZnbi9Gam5RLDAuMTExMTExMWVtRicvRl1vRltvLUYsNiVRJW5vbmVGJ0YvRjJGXHBGTC1GTTYtUSJ+RidGPUZQRmhvRlVGV0ZZRmVuRmduRmluRmFwLUYsNiVRJWZyZWVGJ0YvRjJGZW9GXHAtRiw2JVEiYUYnRi9GMkZccEY9</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUkobWFjdGlvbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkobWZlbmNlZEdGJDYmLUknbXRhYmxlR0YkNjgtSSRtdHJHRiQ2Ji1JJG10ZEdGJDYoLUklbXJvd0dGJDYmLUkjbWlHRiQ2JVEqfjF+Li5+MTJ+RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUklbXN1YkdGJDYlLUY7NiVRJ1ZlY3RvckYnRj5GQS1GODYlLUY7NiVRJ2NvbHVtbkYnRj5GQS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvRkJRJ25vcm1hbEYnLyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGT0ZSLyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZZLyUrZ3JvdXBhbGlnbkdGWS8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZqbkZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEsRGF0YX5UeXBlOn5GJ0Y+RkEtRjs2JVEpYW55dGhpbmdGJ0Y+RkFGT0ZSRldGWkZmbkZobkZbb0ZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEqU3RvcmFnZTp+RidGPkZBLUY7NiVRLHJlY3Rhbmd1bGFyRidGPkZBRk9GUkZXRlpGZm5GaG5GW29GV0ZaRmZuLUYyNiYtRjU2KC1GODYmLUY7NiVRKE9yZGVyOn5GJ0Y+RkEtRjs2JVEuRm9ydHJhbl9vcmRlckYnRj5GQUZPRlJGV0ZaRmZuRmhuRltvRldGWkZmbi8lJmFsaWduR1ElYXhpc0YnL0ZYUSliYXNlbGluZUYnL0ZlblEnY2VudGVyRicvRmduUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGQC8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRl5yLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmlyLyUmZnJhbWVHRmlyLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dRJmZhbHNlRicvJS1lcXVhbGNvbHVtbnNHRmNzLyUtZGlzcGxheXN0eWxlR0Zjcy8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0ZmckZSLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLyUrYWN0aW9udHlwZUdRLWJyb3dzZXJ0YWJsZUYnLyUpcnRhYmxlaWRHUTUxODQ0Njc0NDA3ODE4MzcxOTYzMEYn">LSZJJ1ZlY3Rvckc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkc2IjYjSSdjb2x1bW5HRig2Iy9JJCVpZEdGKCI1SSc+UD15U3VZJT0=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L525" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KC1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictRiM2Ji1JI21uR0YkNiRRIjJGJ0Y6LUkjbW9HRiQ2LVEiLEYnRjovJSZmZW5jZUdGOS8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y5LyUqc3ltbWV0cmljR0Y5LyUobGFyZ2VvcEdGOS8lLm1vdmFibGVsaW1pdHNHRjkvJSdhY2NlbnRHRjkvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJ0Y/RjovJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GRDYtUSJ+RidGOkZHL0ZKRjlGTEZORlBGUkZURlYvRlpGWC1GRDYtUSomY29sb25lcTtGJ0Y6RkdGXG9GTEZORlBGUkZUL0ZXUSwwLjI3Nzc3NzhlbUYnL0ZaRmJvLUYsNiVRJWV2YWxGJy9GOEZLL0Y7USdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYnLUYsNiVRIlBGJ0Znb0Zoby1GW3A2JC1GIzYkLUYsNiVRInhGJ0Znb0Zob0Y6RjpGQy1GLDYlUSpzb2x1dGlvbnNGJ0Znb0Zob0Y6RjpGOkYrLyUrZXhlY3V0YWJsZUdGOUY6">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRictRiM2Jy1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictRiM2JS1JI21uR0YkNiRRIjJGJ0Y6LUkjbW9HRiQ2LVEiLEYnRjovJSZmZW5jZUdGOS8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y5LyUqc3ltbWV0cmljR0Y5LyUobGFyZ2VvcEdGOS8lLm1vdmFibGVsaW1pdHNHRjkvJSdhY2NlbnRHRjkvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJ0Y/LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRkQ2LVEifkYnRjpGRy9GSkY5RkxGTkZQRlJGVEZWL0ZaRlgtRkQ2LVEqJmNvbG9uZXE7RidGOkZHRlxvRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZiby1GLDYlUSVldmFsRicvRjhGSy9GO1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Ji1GLDYlUSJQRidGZ29GaG8tRltwNiQtRiM2Iy1GLDYlUSJ4RidGZ29GaG9GOkZDLUYsNiVRKnNvbHV0aW9uc0YnRmdvRmhvRjpGKw==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEnJiM5MjM7RicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1GIzYoLUkjbW5HRiQ2JFEiMkYnRjUtSSNtb0dGJDYtUSIsRidGNS8lJmZlbmNlR0Y0LyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjQvJSpzeW1tZXRyaWNHRjQvJShsYXJnZW9wR0Y0LyUubW92YWJsZWxpbWl0c0dGNC8lJ2FjY2VudEdGNC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnRjovJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRjRGNS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUY/Ni1RIzo9RidGNUZCL0ZFRjRGR0ZJRktGTUZPL0ZSUSwwLjI3Nzc3NzhlbUYnL0ZVRl5vLUYjNictRj82LVEifGZyRidGNS9GQ0ZGRlxvL0ZIRkZGSUZLRk1GTy9GUlEsMC4xNjY2NjY3ZW1GJy9GVUZoby1JJ210YWJsZUdGJDY6LUkkbXRyR0YkNictSSRtdGRHRiQ2KC1GOzYkRmhuRjUvJSlyb3dhbGlnbkdRIUYnLyUsY29sdW1uYWxpZ25HRmdwLyUrZ3JvdXBhbGlnbkdGZ3AvJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGXnEtRmFwNigtRiM2KC1GLzYlUSJ4RicvRjNGRi9GNlEnaXRhbGljRictRj82LVEiPEYnRjVGQkZcb0ZHRklGS0ZNRk9GXW9GX28tRiM2JS1GPzYtUSomdW1pbnVzMDtGJ0Y1RkJGXG9GR0ZJRktGTUZPL0ZSUSwwLjIyMjIyMjJlbUYnL0ZVRmRyRjpGNUZXRlpGNUZlcEZocEZqcEZccUZfcUZlcEZocEZqcC1GXnA2Jy1GYXA2KC1GIzYvRmByLUY7NiRRIjRGJ0Y1LUY/Ni1RKCZtaW51cztGJ0Y1RkJGXG9GR0ZJRktGTUZPRmNyRmVyLUYjNiYtRjs2JFEjMThGJ0Y1LUY/Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y1RkJGXG9GR0ZJRktGTUZPRlEvRlVGU0ZlcUY1Rl9zLUYjNiYtRjs2JFEjMjlGJ0Y1RmdzLUklbXN1cEdGJDYlRmVxRjovJTFzdXBlcnNjcmlwdHNoaWZ0R0ZobkY1Rl9zLUYjNigtSSZtZnJhY0dGJDYoLUY7NiRRIzQzRidGNUY6LyUubGluZXRoaWNrbmVzc0dGXnEvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGYXUvJSliZXZlbGxlZEdGNEZncy1GYXQ2JUZlcS1GOzYkUSIzRidGNUZjdEZXRlpGNUZfcy1GIzYoLUZodDYoLUY7NiRRIzE1RidGNUY6Rl11Rl91RmJ1RmR1RmdzLUZhdDYlRmVxRlxzRmN0RldGWkY1Rl9zLUZhdDYlRmVxLUY7NiRRIjVGJ0Y1RmN0RjVGZXBGaHBGanBGXHFGX3EtRmFwNigtRiM2KEZlcUZbci1GIzYlRmByLUY7NiRGXnFGNUY1RldGWkY1RmVwRmhwRmpwRlxxRl9xRmVwRmhwRmpwLUZecDYnLUZhcDYoLUYjNixGX3dGX3NGYHQtRj82LVEiK0YnRjVGQkZcb0ZHRklGS0ZNRk9GY3JGZXItRiM2KC1GaHQ2KC1GOzYkUSI5RidGNUY6Rl11Rl91RmJ1RmR1RmdzRmZ1RldGWkY1Rmd3Rlt2Rmd3LUYjNiZGaHVGZ3NGZHZGNUY1RmVwRmhwRmpwRlxxRl9xLUZhcDYoLUYjNihGZXFGW3JGY3BGV0ZaRjVGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRl5wNictRmFwNigtRiM2LEZfd0Zfc0ZgdEZfc0Zqd0Znd0ZbdkZfc0ZheEY1RmVwRmhwRmpwRlxxRl9xLUZhcDYoLUYjNihGZXFGW3JGX3dGV0ZaRjVGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRl5wNictRmFwNigtRiM2L0ZgckZcc0Znd0Zic0Zfc0ZbdEZnd0ZldEZfc0ZbdkZnd0ZkdkY1RmVwRmhwRmpwRlxxRl9xLUZhcDYoLUYjNihGZXFGW3JGOkZXRlpGNUZlcEZocEZqcEZccUZfcUZlcEZocEZqcC1GXnA2J0ZgcC1GYXA2KC1GIzYoRjotRj82LVElJmxlO0YnRjVGQkZcb0ZHRklGS0ZNRk9GXW9GX29GZXFGV0ZaRjVGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAvJSZhbGlnbkdRJWF4aXNGJy9GZnBRKWJhc2VsaW5lRicvRmlwRmF1L0ZbcVEnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRkYvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZgW2wvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSQyZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRltcbC8lJmZyYW1lR0ZbXGwvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y0LyUtZXF1YWxjb2x1bW5zR0Y0LyUtZGlzcGxheXN0eWxlR0Y0LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHUSYwLjhlbUYnRldGWkY1RldGWkY1">LUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzYuMkkieEc2IiEiIyIiITJGJyEiIiwuIiIlRiwqJiIjPSIiIkYnRjFGLComIiNIRjEpRiciIiNGMUYsKiYjIiNWRjVGMSlGJyIiJEYxRiwqJiMiIzpGNUYxKUYnRi5GMUYsKiQpRiciIiZGMUYsMkYnRiosLEYxRjEqJEY0RjFGLComIyIiKkY1RjFGOUYxRjFGO0YxKiZGOkYxRkBGMUYxMkYnRjEsLEYxRjFGREYsRkVGLEY7RjFGSEYsMkYnRjUsLkYuRixGL0YxRjJGLEY2RjFGO0YsRj9GMTFGNUYnRio=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L528" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEkc2VxRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNi0tRiw2JVEmZXZhbGJGJ0YvRjItRjY2JC1GIzYmLUYsNiVRKXNpbXBsaWZ5RidGL0YyLUY2NiQtRiM2KS1GLDYlUStjb25kaXRpb25zRidGL0YyLUY2NiYtRiM2JS1GLDYlUSJpRidGL0YyLyUrZXhlY3V0YWJsZUdRJmZhbHNlRicvRjNRJ25vcm1hbEYnRlUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictSSNtb0dGJDYtUSIsRidGVS8lJmZlbmNlR0ZULyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRlQvJSpzeW1tZXRyaWNHRlQvJShsYXJnZW9wR0ZULyUubW92YWJsZWxpbWl0c0dGVC8lJ2FjY2VudEdGVC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUZobjYtUSJ+RidGVUZbby9GXm9GVEZfb0Zhb0Zjb0Zlb0Znb0Zpby9GXXBGW3AtRiw2JVEqc29sdXRpb25zRidGL0YyRlJGVUZVRlJGVUZVRmduRk8tRmhuNi1RIj1GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yNzc3Nzc4ZW1GJy9GXXBGW3EtSSNtbkdGJDYkUSIxRidGVS1GaG42LVEjLi5GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yMjIyMjIyZW1GJ0ZjcC1GLDYlUSludW1lbGVtc0YnRi9GMi1GNjYkLUYjNiRGSEZVRlVGUkZVRlUtRmhuNi1RIjtGJ0ZVRltvRl1vRl9vRmFvRmNvRmVvRmdvRmlvRlxxRlJGVQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEkc2VxRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNistRiw2JVEmZXZhbGJGJ0YvRjItRjY2JC1GIzYkLUYsNiVRKXNpbXBsaWZ5RidGL0YyLUY2NiQtRiM2Jy1GLDYlUStjb25kaXRpb25zRidGL0YyLUY2NiYtRiM2Iy1GLDYlUSJpRidGL0YyL0YzUSdub3JtYWxGJy8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1JI21vR0YkNi1RIixGJ0ZSLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRmpuLyUqc3ltbWV0cmljR0Zqbi8lKGxhcmdlb3BHRmpuLyUubW92YWJsZWxpbWl0c0dGam4vJSdhY2NlbnRHRmpuLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRmVuNi1RIn5GJ0ZSRmhuL0Zcb0ZqbkZdb0Zfb0Zhb0Zjb0Zlb0Znby9GW3BGaW8tRiw2JVEqc29sdXRpb25zRidGL0YyRlJGUkZaRk8tRmVuNi1RIj1GJ0ZSRmhuRmBwRl1vRl9vRmFvRmNvRmVvL0Zob1EsMC4yNzc3Nzc4ZW1GJy9GW3BGaXAtSSNtbkdGJDYkUSIxRidGUi1GZW42LVEjLi5GJ0ZSRmhuRmBwRl1vRl9vRmFvRmNvRmVvL0Zob1EsMC4yMjIyMjIyZW1GJ0ZhcC1GLDYlUSludW1lbGVtc0YnRi9GMi1GNjYkLUYjNiNGSEZSRlItRmVuNi1RIjtGJ0ZSRmhuRltvRl1vRl9vRmFvRmNvRmVvRmdvRmpw</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NjxJJXRydWVHJSpwcm90ZWN0ZWRHRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiM=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L522" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEmZXZhbGJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2KC1GLDYlUSRpbnRGJ0YvRjItRjY2JC1GIzYqLUYsNiNRIUYnLUYjNiZGQS1GIzYkLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBRJmZhbHNlRicvRjNRJ25vcm1hbEYnLUYjNiYtSSNtbkdGJDYkUSIyRidGUC1JI21vR0YkNi1RIixGJ0ZQLyUmZmVuY2VHRk8vJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGTy8lKnN5bW1ldHJpY0dGTy8lKGxhcmdlb3BHRk8vJS5tb3ZhYmxlbGltaXRzR0ZPLyUnYWNjZW50R0ZPLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRidGVEZQLyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGUEZBRlBGQUZYLUYsNiVRInhGJ0YvRjItRlk2LVEiPUYnRlBGZm4vRmluRk9Gam5GXG9GXm9GYG9GYm8vRmVvUSwwLjI3Nzc3NzhlbUYnL0Zob0ZlcC1GLDYlUSd4cmFuZ2VGJ0YvRjJGUEZQRmBwLUZVNiRRIjFGJ0ZQLyUrZXhlY3V0YWJsZUdGT0ZQRlAtRlk2LVEiO0YnRlBGZm5GaG5Gam5GXG9GXm9GYG9GYm9GZG9GZnAtRiw2JVEkc2VxRidGL0YyLUY2NiQtRiM2LEYrLUY2NiQtRiM2KEY6LUY2NiQtRiM2Ky1JJW1zdXBHRiQ2JUZdcC1GIzYlLUYsNiVRImlGJ0YvRjJGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdGXHAtRlk2LVEnJnNkb3Q7RidGUEZmbkZjcEZqbkZcb0Zeb0Zgb0Zib0Zkby9GaG9GZm8tRkk2JS1GLDYlUScmIzkyMztGJ0ZORlBGUkZqb0ZYLUZZNi1RIn5GJ0ZQRmZuRmNwRmpuRlxvRl5vRmBvRmJvRmRvRl5zRl1wRmBwRmdwRlBGUEZgcC1GVTYkRlxwRlBGXXFGUEZQRlhGZnJGYHBGanAtRlk2LVEjLi5GJ0ZQRmZuRmNwRmpuRlxvRl5vRmBvRmJvL0Zlb1EsMC4yMjIyMjIyZW1GJ0Zec0ZURl1xRlBGUEZdcUZQ">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEmZXZhbGJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Ji1GLDYlUSRpbnRGJ0YvRjItRjY2JC1GIzYpLUYsNiNRIUYnLUYjNiVGQS1GIzYjLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBRJmZhbHNlRicvRjNRJ25vcm1hbEYnLUYjNiUtSSNtbkdGJDYkUSIyRidGUC1JI21vR0YkNi1RIixGJ0ZQLyUmZmVuY2VHRk8vJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGTy8lKnN5bW1ldHJpY0dGTy8lKGxhcmdlb3BHRk8vJS5tb3ZhYmxlbGltaXRzR0ZPLyUnYWNjZW50R0ZPLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRidGVC8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnRkFGQUZYLUYsNiVRInhGJ0YvRjItRlk2LVEiPUYnRlBGZm4vRmluRk9Gam5GXG9GXm9GYG9GYm8vRmVvUSwwLjI3Nzc3NzhlbUYnL0Zob0ZlcC1GLDYlUSd4cmFuZ2VGJ0YvRjJGUEZgcC1GVTYkUSIxRidGUEZQLUZZNi1RIjtGJ0ZQRmZuRmhuRmpuRlxvRl5vRmBvRmJvRmRvRmZwLUYsNiVRJHNlcUYnRi9GMi1GNjYkLUYjNipGKy1GNjYkLUYjNiZGOi1GNjYkLUYjNiotSSVtc3VwR0YkNiVGXXAtRiM2Iy1GLDYlUSJpRidGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdGXHAtRlk2LVEnJnNkb3Q7RidGUEZmbkZjcEZqbkZcb0Zeb0Zgb0Zib0Zkby9GaG9GZm8tRkk2JS1GLDYlUSkmTGFtYmRhO0YnRk5GUEZSRmpvRlgtRlk2LVEifkYnRlBGZm5GY3BGam5GXG9GXm9GYG9GYm9GZG9GXHNGXXBGYHBGZ3BGUEZgcC1GVTYkRlxwRlBGUEZYRmRyRmBwRmpwLUZZNi1RIy4uRidGUEZmbkZjcEZqbkZcb0Zeb0Zgb0Ziby9GZW9RLDAuMjIyMjIyMmVtRidGXHNGVEZQ</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">SSV0cnVlRyUqcHJvdGVjdGVkRw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NiRJJXRydWVHJSpwcm90ZWN0ZWRHRiM=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L530" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZhcC1JI21pR0YkNiVRJGZhY0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkjbW5HRiQ2JFEiMkYnRjktRjY2LVEiO0YnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJ0ZNLUYsNiVRI3cwRidGL0YyRjUtSShtZmVuY2VkR0YkNiQtRiM2JS1JJm1mcmFjR0YkNigtRlA2JFEiMUYnRjktRiM2JEYrRjkvJS5saW5ldGhpY2tuZXNzR0Zgby8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Znby8lKWJldmVsbGVkR0Y9LyUrZXhlY3V0YWJsZUdGPUY5RjktRjY2LVEnJnNkb3Q7RidGOUY7Rj5GQEZCRkRGRkZIRlcvRk5GWC1GLDYlUSdob3JuZXJGJ0YvRjItRmduNiQtRiM2KUYrRl5wLUYsNiVRJ2V4cGFuZEYnRi9GMi1GZ242JC1GIzYlLUYsNiVRJWV2YWxGJ0YvRjItRmduNiQtRiM2LUZgcS1GZ242JC1GIzYnLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBGPUY5LUYjNiZGTy1GNjYtUSIsRidGOUY7RlZGQEZCRkRGRkZIRlcvRk5RLDAuMzMzMzMzM2VtRidGT0Y5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRiw2I1EhRidGZHItRiw2JVEqc29sdXRpb25zRidGL0YyRjlGOUZkci1GLDYlUSJ4RidGL0YyLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZcdEZeby1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRlt0Rl10LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGV0ZhcC1GLDYlUSJ5RidGL0YyRjlGOUY5RjlGZHJGZHRGOUY5RmF0LUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRldGYXBGYXRGZHQtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRlA2JEZbc0Y5RmF0LUY2Ni9RJGFuZEYnLyUlYm9sZEdGMS9GM1ElYm9sZEYnLyUrZm9udHdlaWdodEdGZXVGO0Y+RkBGQkZERkZGSEZXRmFwRmF0RmR0LUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl5vRlMtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWC8lJmRlcHRoR0Zgdi8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GLDYlUSN3MUYnRi9GMkY1LUZnbjYkLUYjNiRGW29GOUY5Rl5wRmJwLUZnbjYkLUYjNilGK0ZecEZpcC1GZ242JC1GIzYlRmBxLUZnbjYkLUYjNitGYHFGZ3FGZHJGYnNGZXNGaHNGYXRGZHRGOUY5RjlGOUZkckZkdEY5RjlGYXRGZ3RGYXRGZHRGanRGXXVGYXRGX3VGYXRGZHRGaHVGXm9GU0Zbdi1GLDYlUSN3MkYnRi9GMkY1Rlt3Rl5wRmJwLUZnbjYkLUYjNilGK0ZecEZpcC1GZ242JC1GIzYlRmBxLUZnbjYkLUYjNi1GYHEtRmduNiQtRiM2JkZbckZkckZfc0Y5RjlGZHJGYnNGZXNGYXRGXm9GaHNGYXRGZHRGOUY5RjlGOUZkckZkdEY5RjlGYXRGZ3RGYXRGZHRGanRGXXVGYXRGX3VGYXRGZHRGaHVGXm9GU0Zbdi1GLDYlUSN3M0YnRi9GMkY1Rlt3Rl5wRmJwLUZnbjYkLUYjNilGK0ZecEZpcC1GZ242JC1GIzYlRmBxLUZnbjYkLUYjNixGYHFGZ3FGZHJGYnNGZXNGT0Zoc0ZhdEZkdEY5RjlGOUY5RmRyRmR0RjlGOUZhdEZndEZhdEZkdEZqdEZddUZhdEZfdUZhdEZkdEZodUZeb0ZTRlxwRjk=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZfcC1JI21pR0YkNiVRJGZhY0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkjbW5HRiQ2JFEiMkYnRjktRjY2LVEiO0YnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJ0ZNLUYsNiVRI3cwRidGL0YyRjUtSShtZmVuY2VkR0YkNiQtRiM2Iy1JJm1mcmFjR0YkNigtRlA2JFEiMUYnRjktRiM2I0YrLyUubGluZXRoaWNrbmVzc0dGYG8vJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGZ28vJSliZXZlbGxlZEdGPUY5LUY2Ni1RJyZzZG90O0YnRjlGO0Y+RkBGQkZERkZGSEZXL0ZORlgtRiw2JVEnaG9ybmVyRidGL0YyLUZnbjYkLUYjNihGK0ZccC1GLDYlUSdleHBhbmRGJ0YvRjItRmduNiQtRiM2JC1GLDYlUSVldmFsRidGL0YyLUZnbjYkLUYjNixGXnEtRmduNiQtRiM2Ji1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnL0YwRj1GOS1GIzYlRk8tRjY2LVEiLEYnRjlGO0ZWRkBGQkZERkZGSEZXL0ZOUSwwLjMzMzMzMzNlbUYnRk8vJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GLDYjUSFGJ0Zici1GLDYlUSpzb2x1dGlvbnNGJ0YvRjJGOUZici1GLDYlUSJ4RidGL0YyLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZqc0Zeby1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRmlzRlt0LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGV0ZfcC1GLDYlUSJ5RidGL0YyRjlGOUZickZidEY5Rl90LUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRldGX3BGX3RGYnQtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRlA2JEZpckY5Rl90LUY2Ni9RJGFuZEYnLyUlYm9sZEdGMS9GM1ElYm9sZEYnLyUrZm9udHdlaWdodEdGY3VGO0Y+RkBGQkZERkZGSEZXRl9wRl90RmJ0LUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl5vRlMtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWC8lJmRlcHRoR0Zedi8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GLDYlUSN3MUYnRi9GMkY1RmZuRlxwRmBwLUZnbjYkLUYjNihGK0ZccEZncC1GZ242JC1GIzYkRl5xLUZnbjYkLUYjNipGXnFGZXFGYnJGYHNGY3NGZnNGX3RGYnRGOUY5RmJyRmJ0RjlGX3RGZXRGX3RGYnRGaHRGW3VGX3RGXXVGX3RGYnRGZnVGXm9GU0ZpdS1GLDYlUSN3MkYnRi9GMkY1RmZuRlxwRmBwLUZnbjYkLUYjNihGK0ZccEZncC1GZ242JC1GIzYkRl5xLUZnbjYkLUYjNixGXnEtRmduNiQtRiM2JUZpcUZickZdc0Y5RmJyRmBzRmNzRl90Rl5vRmZzRl90RmJ0RjlGOUZickZidEY5Rl90RmV0Rl90RmJ0Rmh0Rlt1Rl90Rl11Rl90RmJ0RmZ1Rl5vRlNGaXUtRiw2JVEjdzNGJ0YvRjJGNUZmbkZccEZgcC1GZ242JC1GIzYoRitGXHBGZ3AtRmduNiQtRiM2JEZecS1GZ242JC1GIzYrRl5xRmVxRmJyRmBzRmNzRk9GZnNGX3RGYnRGOUY5RmJyRmJ0RjlGX3RGZXRGX3RGYnRGaHRGW3VGX3RGXXVGX3RGYnRGZnVGXm9GUw==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEkZmFjRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JI21uR0YkNiRRIjJGJ0Y5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9Rjk=">IiIj</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEiMkYnRjkvJS5saW5ldGhpY2tuZXNzR0ZXLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmluLyUpYmV2ZWxsZWRHRj0tRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZiby1GIzYmLUkobWZlbmNlZEdGJDYkLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORl9wRlQtRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZecEZgcC1GIzYmLUZnbzYkLUYjNiZGVEZhcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEiM0YnRjlGYXAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRIjVGJ0Y5RmFwLUYjNiZGWEZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRl5yRjlGOUY5Rl5vRl5yRjlGOUY5Rl5vRl5yRjlGOUY5Rl5vRl5yRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZhckZkckY5">LCQqKCMiIiIiIiNGJSwmRiUhIiIqJiwmRiVGJSomLCYiIiRGJSomLCYiIiZGKComRiZGJUkieUc2IkYlRiVGJUYyRiVGJUYlRjJGJUYlRiVGMkYlRiVGJUYyRiVGJQ==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtSSNtbkdGJDYkUSIxRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlktRiM2KC1JJm1mcmFjR0YkNihGUS1GUjYkUSIyRidGOS8lLmxpbmV0aGlja25lc3NHRlQvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGYW8vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmpvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGWEZaRmpuRlUtRiM2Ji1GX3A2JC1GIzYnRmNwLUZSNiRRIjlGJ0Y5RlUtRiM2Ji1GX3A2JC1GIzYmLUZSNiRRIzE1RidGOS1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRlhGWi1GIzYmLUZSNiRRIjZGJ0Y5RmZvLUYsNiVRInlGJ0YvRjJGOUY5RjlGZm9GYHJGOUY5RjlGZm9GYHJGOUY5RjlGZm8tSSVtc3VwR0YkNiVGYHJGam4vJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUY5RmlyRlxzRjk=">LCYiIiJGIyooI0YjIiIjRiMsJkYmISIiKiYsJiIiKkYoKiYsJiIjOkYjKiYiIidGI0kieUc2IkYjRihGI0YxRiNGI0YjRjFGI0YjRiMpRjFGJkYjRiM=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEiMkYnRjkvJS5saW5ldGhpY2tuZXNzR0ZXLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmluLyUpYmV2ZWxsZWRHRj0tRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZiby1GIzYmLUkobWZlbmNlZEdGJDYkLUYjNiZGVC1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORl9wLUYjNiYtRmdvNiQtRiM2JkZURltwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSI5RidGOUZbcC1GIzYmLUZnbzYkLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUZVNiRRIzE1RidGOUZbcC1GIzYmLUZVNiRRIjZGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GYXJGOUY5RjlGXm9GYXJGOUY5RjlGXm9GYXJGOUY5RjlGXm9GYXJGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RmRyRmdyRjk=">LCQqKCMiIiIiIiNGJSwmRiVGJSomLCZGJUYlKiYsJiIiKkYlKiYsJiIjOiEiIiomIiInRiVJInlHNiJGJUYlRiVGM0YlRiVGJUYzRiVGJUYlRjNGJUYlRiVGM0YlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEiMkYnRjkvJS5saW5ldGhpY2tuZXNzR0ZXLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmluLyUpYmV2ZWxsZWRHRj0tRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZiby1GIzYmLUkobWZlbmNlZEdGJDYkLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORl9wLUZVNiRRIjNGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGXnBGYHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIjVGJ0Y5LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGXnBGYHAtRiM2JkZYRl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GZXFGOUY5RjlGXm8tSSVtc3VwR0YkNiVGZXFGYXAvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZeckZhckY5">LCQqKCMiIiIiIiNGJSwmIiIkISIiKiYsJiIiJkYlKiZGJkYlSSJ5RzYiRiVGKUYlRi5GJUYlRiUpRi5GKEYlRiU=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L534" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEiQ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzY1LUY2NiYtRiM2Ky1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyLyUrZXhlY3V0YWJsZUdGSUZFRkUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGQS1GQjYtUSJ+RidGRUZHL0ZLRklGTEZORlBGUkZURlYvRlpGWC1GLDYlUShkZWNsYXJlRidGL0YyLUZCNi1RIj1GJ0ZFRkdGam9GTEZORlBGUkZUL0ZXUSwwLjI3Nzc3NzhlbUYnL0ZaRmNwLUY2NiYtRiM2Jy1GLDYlUSJ5RidGL0YyLUZCNi1RLSZQcm9wb3J0aW9uO0YnRkVGR0Zqb0ZMRk5GUEZSRlRGYnBGZHAtRiw2JVEmZmxvYXRGJ0YvRjJGX29GRUZFRmFvRmRvRkEtRiw2JVErcmVzdWx0bmFtZUYnRi9GMkZfcC1GQjYtUSInRidGRUZHRmpvRkxGTkZQRlJGVC9GV1EsMC4xMTExMTExZW1GJ0ZbcC1GLDYlUSJ3RidGL0YyRmVxRkFGZ28tRiw2JVEsY29lcmNldHlwZXNGJ0YvRjJGX3AtRiw2JUZJRi9GMkZfb0ZFRkVGX29GRQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYkLUkjbWlHRiQ2JVEiQ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYzLUY2NiYtRiM2KS1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGQS1GQjYtUSJ+RidGRUZHL0ZLRklGTEZORlBGUkZURlYvRlpGWC1GLDYlUShkZWNsYXJlRidGL0YyLUZCNi1RIj1GJ0ZFRkdGaG9GTEZORlBGUkZUL0ZXUSwwLjI3Nzc3NzhlbUYnL0ZaRmFwLUY2NiYtRiM2JS1GLDYlUSJ5RidGL0YyLUZCNi1RLSZQcm9wb3J0aW9uO0YnRkVGR0Zob0ZMRk5GUEZSRlRGYHBGYnAtRiw2JVEmZmxvYXRGJ0YvRjJGRUZfb0Zib0ZBLUYsNiVRK3Jlc3VsdG5hbWVGJ0YvRjJGXXAtRkI2LVEiJ0YnRkVGR0Zob0ZMRk5GUEZSRlQvRldRLDAuMTExMTExMWVtRidGaW8tRiw2JVEid0YnRi9GMkZjcUZBRmVvLUYsNiVRLGNvZXJjZXR5cGVzRidGL0YyRl1wLUYsNiVGSUYvRjJGRQ==</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[0] = (-1 + (1 + (3 + (-5 + 2 * y) * y) * y) * y) * y / 2;</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[1] = 1 + (-2 + (-9 + (15 - 6 * y) * y) * y) * y * y / 2; -w[2] = (1 + (1 + (9 + (-15 + 6 * y) * y) * y) * y) * y / 2; -w[3] = (-3 + (5 - 2 * y) * y) * pow(y, 3) / 2;</Text-field> -</Output> -</Group> -<Group labelreference="L535" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEoRm9ydHJhbkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYvLUY2NiYtRiM2Ki1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkVGRS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZBLUZCNi1RIn5GJ0ZFRkcvRktGSUZMRk5GUEZSRlRGVi9GWkZYLUYsNiVRKGRlY2xhcmVGJ0YvRjItRkI2LVEiPUYnRkVGR0Zob0ZMRk5GUEZSRlQvRldRLDAuMjc3Nzc3OGVtRicvRlpGYXAtRjY2Ji1GIzYmLUYsNiVRInlGJ0YvRjItRkI2LVEtJlByb3BvcnRpb247RidGRUZHRmhvRkxGTkZQRlJGVEZgcEZicC1GLDYlUSZmbG9hdEYnRi9GMkZFRkVGX29GYm9GQS1GLDYlUStyZXN1bHRuYW1lRidGL0YyRl1wLUZCNi1RIidGJ0ZFRkdGaG9GTEZORlBGUkZUL0ZXUSwwLjExMTExMTFlbUYnRmlvLUYsNiVRIndGJ0YvRjJGY3FGRUZFLyUrZXhlY3V0YWJsZUdGSUZF">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYkLUkjbWlHRiQ2JVEoRm9ydHJhbkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYuLUY2NiYtRiM2KS1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGQS1GQjYtUSJ+RidGRUZHL0ZLRklGTEZORlBGUkZURlYvRlpGWC1GLDYlUShkZWNsYXJlRidGL0YyLUZCNi1RIj1GJ0ZFRkdGaG9GTEZORlBGUkZUL0ZXUSwwLjI3Nzc3NzhlbUYnL0ZaRmFwLUY2NiYtRiM2JS1GLDYlUSJ5RidGL0YyLUZCNi1RLSZQcm9wb3J0aW9uO0YnRkVGR0Zob0ZMRk5GUEZSRlRGYHBGYnAtRiw2JVEmZmxvYXRGJ0YvRjJGRUZfb0Zib0ZBLUYsNiVRK3Jlc3VsdG5hbWVGJ0YvRjJGXXAtRkI2LVEiJ0YnRkVGR0Zob0ZMRk5GUEZSRlQvRldRLDAuMTExMTExMWVtRidGaW8tRiw2JVEid0YnRi9GMkZjcUZF</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output"> w(1) = (-0.1D1 + (0.1D1 + (0.3D1 + (-0.5D1 + 0.2D1 * y) * y) * y) </Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output"> #* y) * y / 0.2D1 - w(2) = 0.1D1 + (-0.2D1 + (-0.9D1 + (0.15D2 - 0.6D1 * y) * y) * y) - #* y ** 2 / 0.2D1 - w(3) = (0.1D1 + (0.1D1 + (0.9D1 + (-0.15D2 + 0.6D1 * y) * y) * y) - #* y) * y / 0.2D1 - w(4) = (-0.3D1 + (0.5D1 - 0.2D1 * y) * y) * y ** 3 / 0.2D1</Text-field> -</Output> -</Group> -<Group labelreference="L512" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L514" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L524" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L1" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -</Worksheet> \ No newline at end of file diff --git a/Docs/remeshing_formulas/calcul_lambda4star.mw b/Docs/remeshing_formulas/calcul_lambda4star.mw deleted file mode 100644 index c2d760982f2b99d3ef51c79ae8a895ccb9658ef2..0000000000000000000000000000000000000000 --- a/Docs/remeshing_formulas/calcul_lambda4star.mw +++ /dev/null @@ -1,348 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<Worksheet> -<Version major="16" minor="0"/> -<Label-Scheme value="2" prefix=""/> -<View-Properties presentation="false"><Zoom percentage="150"/></View-Properties> -<MapleNet-Properties elisiondigitsbefore="100" labelling="true" indentamount="4" elisiontermsthreshold="10000" ansi="false" errorbreak="1" useclientjvm="true" echo="1" imaginaryunit="I" labelwidth="20" contextmenusize="automatic" plotdriver="opengl" elisiondigitsafter="100" plotoutput="terminal" helpbrowser="standard" rtablesize="10" elisiontermsbefore="100" elisiondigitsthreshold="10000" typesetting="standard" plotdevice="inline" verboseproc="1" showassumed="1" errorcursor="false" longdelim="true" plotoptions="" quiet="false" elisiontermsafter="100" screenwidth="79" preplot="" prettyprint="3" displayprecision="-1" screenpixelheight="1050" warnlevel="3" screenheight="25" latexwidth="6.0" postplot="" prompt="> " ShowLabels="true"/> -<Styles><Font name="Ordered List 1" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 2" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 3" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 5" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Author" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Warning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Caption Reference" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input Placeholder" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[200,0,200]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="true"/> -<Font name="Maple Plot" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Code" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Line Printed Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Diagnostic" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[40,120,40]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Inert Output" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[144,144,144]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Normal" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,128,128]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Maple Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Dash Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Math" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Input" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkError" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Header and Footer" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="10" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Error" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 1" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Bullet Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Equation Label" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 3" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="14" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 2" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="16" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkWarning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Dictionary Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[147,0,15]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Caption Text" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="List Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Layout name="Ordered List 1" alignment="left" bullet="numeric" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 2" alignment="left" bullet="alphabetic" firstindent="0" leftmargin="36" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 3" alignment="left" bullet="roman" firstindent="0" leftmargin="72" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 4" alignment="left" bullet="ALPHABETIC" firstindent="0" leftmargin="108" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 5" alignment="left" bullet="ROMAN" firstindent="0" leftmargin="144" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Author" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="8" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Warning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Annotation Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Plot" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Line Printed Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Text Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="newline" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Diagnostic" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Normal" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Output" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.3" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Dash Item" alignment="left" bullet="dash" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkError" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Error" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 1" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="4" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Bullet Item" alignment="left" bullet="dot" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 4" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 3" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 2" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="2" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkWarning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="List Item" alignment="left" bullet="indent" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Pencil-style name="Pencil 5" pen-color="[255,0,0]" pen-height="5.0" pen-width="5.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 4" pen-color="[0,0,255]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 3" pen-color="[0,0,0]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 2" pen-color="[0,0,255]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 1" pen-color="[0,0,0]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Highlighter-style name="Highlighter 2" pen-color="[255,204,0]" pen-height="14.0" pen-width="14.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 1" pen-color="[255,153,255]" pen-height="12.0" pen-width="8.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 4" pen-color="[0,255,255]" pen-height="32.0" pen-width="32.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 3" pen-color="[51,255,0]" pen-height="24.0" pen-width="24.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 5" pen-color="[255,255,0]" pen-height="48.0" pen-width="48.0" pen-opacity="0.8"/> -</Styles> -<Task-table> - <Task-category name="<default>"> - </Task-category> -</Task-table> -<Task> -</Task> -<Group labelreference="L507" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYkLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjlGOS1GNjYtUSI6RidGOUY7L0Y/Rj1GQEZCRkRGRkZIL0ZLRk9GTS1GLDYlUSdob3JuZXJGJ0YvRjItRjY2LVEqJmNvbG9uZXE7RidGOUY7RmhuRkBGQkZERkZGSEZpbkZNLUYsNiVRKGNvZGVnZW5GJ0YvRjItRlQ2Ji1GIzYkRmpuRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zlbi8lK2V4ZWN1dGFibGVHRj1GOQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYjLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjktRjY2LVEiOkYnRjlGOy9GP0Y9RkBGQkZERkZGSC9GS0ZPRk0tRiw2JVEnaG9ybmVyRidGL0YyLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0ZobkZARkJGREZGRkhGaW5GTS1GLDYlUShjb2RlZ2VuRidGL0YyLUZUNiYtRiM2I0ZqbkY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmVu</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L519" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Calcul de la fomule Lambda_4^*:</Text-field> -<Text-field style="Text" layout="Normal"> - 6 points</Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8"> - degr\303\251 5</Font></Text-field> -<Text-field style="Text" layout="Normal"> - C2</Text-field> -<Text-field style="Text" layout="Normal"> - Moments d'ordre 4</Text-field> -</Input> -</Group> -<Group labelreference="L526" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="xrange := -3 .. 3; 1; d := 5" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlMtSSNtbkdGJDYkUSIzRidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZSL0ZOUSYwLjBlbUYnRlUtRjY2LVEiO0YnRjlGOy9GP0YxRkBGQkZERkZGSC9GS0ZnbkZNLUYsNiVRImRGJ0YvRjJGNS1GVjYkUSI1RidGOS8lK2V4ZWN1dGFibGVHRj1GOQ==">QyU+SSd4cmFuZ2VHNiI7ISIkIiIkIiIiPkkiZEdGJSIiJg==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYoLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlctSSNtbkdGJDYkUSIzRidGOUY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRlYvRk5RJjAuMGVtRidGWS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RlxvRl9vRjk=">OyEiJCIiJA==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiZEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSSNtbkdGJDYkUSI1RidGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5">IiIm</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L520" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="p[0] := proc (x) options operator, arrow; sum(c[0, i]*x^i, i = 0 .. d) end proc;" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY5LUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYkLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJ0Y+LyUvc3Vic2NyaXB0c2hpZnRHRj0tSSNtb0dGJDYtUSomY29sb25lcTtGJ0Y+LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZILyUpc3RyZXRjaHlHRkgvJSpzeW1tZXRyaWNHRkgvJShsYXJnZW9wR0ZILyUubW92YWJsZWxpbWl0c0dGSC8lJ2FjY2VudEdGSC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRlctRi82JVEieEYnRjJGNS1GQzYtUSgmc3JhcnI7RidGPkZGRklGS0ZNRk9GUUZTL0ZWUSYwLjBlbUYnL0ZZRltvLUYvNiVRJHN1bUYnRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYtLUYsNiUtRi82JVEiY0YnRjJGNS1GIzYmRjotRkM2LVEiLEYnRj5GRi9GSkY0RktGTUZPRlFGU0Zqbi9GWVEsMC4zMzMzMzMzZW1GJy1GLzYlUSJpRidGMkY1Rj5GQC1GQzYtUScmc2RvdDtGJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG8tSSVtc3VwR0YkNiVGWi1GIzYlLUZDNi1RIn5GJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG9GYnBGPi8lMXN1cGVyc2NyaXB0c2hpZnRHRj1GXHBGXXFGYnAtRkM2LVEiPUYnRj5GRkZJRktGTUZPRlFGU0ZVRlhGOi1GQzYtUSMuLkYnRj5GRkZJRktGTUZPRlFGUy9GVlEsMC4yMjIyMjIyZW1GJ0Zcby1GLzYlUSJkRidGMkY1Rj5GPi1GQzYtUSI7RidGPkZGRl9wRktGTUZPRlFGU0ZqbkZYLUYsNiVGLi1GIzYkLUY7NiRRIjFGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGZHJGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLUYsNiVGLi1GIzYkLUY7NiRRIjJGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGY3NGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLyUrZXhlY3V0YWJsZUdGSEY+">Qyg+JkkicEc2IjYjIiIhZio2I0kieEdGJkYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLUkkc3VtR0YmNiQqJiZJImNHRiY2JEYoSSJpR0YmIiIiKTkkRjZGNy9GNjtGKEkiZEdGJkYmRiZGJkY3PiZGJTYjRjdmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRjdGNkY3RjhGN0Y6RiZGJkYmRjc+JkYlNiMiIiNmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRklGNkY3RjhGN0Y6RiZGJkYmRjc=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R0Y9LUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZm4tRiM2KC1GLzYlUSJ4RidGMkY1LUZJNi1RKCYjODU5NDtGJ0Y+RkxGTkZQRlJGVEZWRlgvRmVuUSYwLjBlbUYnL0ZobkZiby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZJNi1RJiZTdW07RidGPkZMRk4vRlFGNEZSL0ZVRjQvRldGNEZYRmFvL0ZoblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRkk2LVEiPUYnRj5GTEZORlBGUkZURlZGWEZaRmduRjpGQEZDRj4tRi82JVEiZEYnRjJGNUZYLyUsYWNjZW50dW5kZXJHRkUtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdRJDUuMEYnLyUmZGVwdGhHRmNxLyUqbGluZWJyZWFrR1ElYXV0b0YnLUYjNiYtRiw2JS1GLzYlUSJjRidGMkY1LUYjNihGOi1GSTYtUSIsRidGPkZML0ZPRjRGUEZSRlRGVkZYRmFvL0ZoblEsMC4zMzMzMzMzZW1GJ0ZjcEZARkNGPkZGLUZJNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y+RkxGTkZQRlJGVEZWRlhGYW9GY28tSSVtc3VwR0YkNiVGW29GY3AvJTFzdXBlcnNjcmlwdHNoaWZ0R0Y9Rj5GQEZDRj5GQEZDRj5GQEZDRj4=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIUkiaUdGJSIiIik5JEYxRjIvRjE7RjBJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIkkiaUdGJUYwKTkkRjFGMC9GMTsiIiFJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMkYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiI0kiaUdGJSIiIik5JEYxRjIvRjE7IiIhSSJkR0YlRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L529" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="P := proc (x) options operator, arrow; piecewise(x < -3, 0, x < -2, p[0](x), x < -1, p[1](x), x < 0, p[2](x), x < 1, p[2](-x), x < 2, p[1](-x), x < 3, p[0](-x), 3 <= x, 0) end proc" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KS1GLDYlUSJQRicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnRjcvJSZmZW5jZUdGNi8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0Y2LyUqc3ltbWV0cmljR0Y2LyUobGFyZ2VvcEdGNi8lLm1vdmFibGVsaW1pdHNHRjYvJSdhY2NlbnRHRjYvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZOLUYsNiVRInhGJ0Y0RjctRjs2LVEoJnNyYXJyO0YnRjdGPkZARkJGREZGRkhGSi9GTVEmMC4wZW1GJy9GUEZYLUYsNiVRKnBpZWNld2lzZUYnL0Y1USV0cnVlRicvRjhRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNmhvRistSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWC8lJmRlcHRoR0Zlby8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GOzYtUSJ+RidGN0Y+RkBGQkZERkZGSEZKRldGWUZRLUY7Ni1RIjxGJ0Y3Rj5GQEZCRkRGRkZIRkpGTEZPLUY7Ni1RKiZ1bWludXMwO0YnRjdGPkZARkJGREZGRkhGSi9GTVEsMC4yMjIyMjIyZW1GJy9GUEZncC1JI21uR0YkNiRRIjNGJ0Y3LUY7Ni1RIixGJ0Y3Rj4vRkFGaG5GQkZERkZGSEZKRlcvRlBRLDAuMzMzMzMzM2VtRictRmpwNiRRIjBGJ0Y3Rl1xRl1wRmBvRl1wLUYsNiVGU0ZnbkZpbkZgcEZjcC1GanA2JFEiMkYnRjdGXXEtSSVtc3ViR0YkNiUtRiw2JVEicEYnRmduRmluLUYjNiVGY3FGZ25GaW4vJS9zdWJzY3JpcHRzaGlmdEdGZXEtRlxvNiQtRiM2JEZmcUY3RjdGXXFGYG9GXXBGUUZgcEZjcC1GanA2JFEiMUYnRjdGXXEtRlxyNiUtRiw2JUZgckY0RjctRiM2JEZpckY3RmNyRmVyRl1xRmBvRl1wRmZxRmBwRmNxRl1xLUZccjYlRl5yLUYjNiRGaHFGN0ZjckZlckZdcUZgb0ZdcEZmcUZgcEZpckZdcUZicy1GXG82JC1GIzYlRmNwRmZxRjdGN0ZdcUZgb0ZdcEZmcUZgcEZocUZdcS1GXHI2JUZeckZgc0ZjckZmc0ZdcUZgb0ZdcEZmcUZgcEZpcEZdcUZbckZmc0ZdcUZgb0ZdcEZmcS1GOzYtUS8mR3JlYXRlckVxdWFsO0YnRjdGPkZARkJGREZGRkhGSkZMRk9GaXBGXXFGXXBGY3FGN0Y3RjdGKy8lK2V4ZWN1dGFibGVHRjZGNw==">PkkiUEc2ImYqNiNJInhHRiRGJDYkSSlvcGVyYXRvckdGJEkmYXJyb3dHRiRGJC1JKnBpZWNld2lzZUclKnByb3RlY3RlZEc2MjI5JCEiJCIiITJGMCEiIy0mSSJwR0YkNiNGMjYjRjAyRjAhIiItJkY3NiMiIiJGOTJGMEYyLSZGNzYjIiIjRjkyRjBGPy1GQjYjLCRGMEY7MkYwRkQtRj1GRzJGMCIiJC1GNkZHMUZMRjBGMkYkRiRGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiUEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2KC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCYjODU5NDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWC1GIzYoLUYsNiVRKnBpZWNld2lzZUYnRi9GMi1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGV0ZZLUkobWZlbmNlZEdGJDYkLUYjNkQtRiM2KEZRLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlxwLUkjbW5HRiQ2JFEiM0YnRjlGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGVy9GTlEsMC4zMzMzMzMzZW1GJy1GX3A2JFEiMEYnRjlGZ3AtRiM2KEZRRmNvLUYjNiVGaG8tRl9wNiRRIjJGJ0Y5RjlGYnBGZXBGOUZncC1GIzYoLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JkZdcUZicEZlcEY5LyUvc3Vic2NyaXB0c2hpZnRHRl9xRmluLUZdbzYkLUYjNiZGUUZicEZlcEY5RjlGYnBGZXBGOUZncC1GIzYoRlFGY28tRiM2JUZoby1GX3A2JFEiMUYnRjlGOUZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2JkZbc0ZicEZlcEY5RmFyRmluRmNyRmJwRmVwRjlGZ3AtRiM2KEZRRmNvRl1xRmJwRmVwRjlGZ3AtRiM2KC1GanE2JUZcci1GIzYmRmRxRmJwRmVwRjlGYXJGaW5GY3JGYnBGZXBGOUZncC1GIzYoRlFGY29GW3NGYnBGZXBGOUZncC1GIzYoRmhzRmluLUZdbzYkLUYjNiYtRiM2J0Zob0ZRRmJwRmVwRjlGYnBGZXBGOUY5RmJwRmVwRjlGZ3AtRiM2KEZRRmNvRmRxRmJwRmVwRjlGZ3AtRiM2KEZgc0ZpbkZgdEZicEZlcEY5RmdwLUYjNihGUUZjb0ZecEZicEZlcEY5RmdwLUYjNihGaXFGaW5GYHRGYnBGZXBGOUZncC1GIzYoRl5wLUY2Ni1RJSZsZTtGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRlFGYnBGZXBGOUZncEZdcUZicEZlcEY5RjlGYnBGZXBGOUZicEZlcEY5RmJwRmVwRjk=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzYyMjkkISIkIiIhMkYuISIjLSZJInBHRiU2I0YwNiNGLjJGLiEiIi0mRjU2IyIiIkY3MkYuRjAtJkY1NiMiIiNGNzJGLkY9LUZANiMsJEYuRjkyRi5GQi1GO0ZFMkYuIiIkLUY0RkUxRkpGLkYwRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L539" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="E := [eval(P(x), x = 0) = 1, eval(P(x), x = -1) = 0, eval(P(x), x = -2) = 0, eval(P(x), x = -3) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiRUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNjctRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNiktRiw2JVEiUEYnRi9GMi1GUDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5RjlGOUZnby1GW3A2JFEiMUYnRjlGX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ28tRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmlwRl5wRjlGOUZnb0Zqb0Zfb0ZULUZQNiQtRiM2KkZlbkZobkZfb0Zcb0Znb0ZlcC1GW3A2JFEiMkYnRjlGOUY5RmdvRmpvRl9vRlQtRlA2JC1GIzYqRmVuRmhuRl9vRlxvRmdvRmVwLUZbcDYkUSIzRidGOUY5RjlGZ29Gam8vJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZpcUY5">QyQ+SSJFRzYiNyYvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJS9GLyIiISIiIi8tRik2JEYsL0YvISIiRjEvLUYpNiRGLC9GLyEiI0YxLy1GKTYkRiwvRi8hIiRGMUY3</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L541" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C0 := [seq(eval(p[j](x), x = j-3+1) = eval(p[j+1](x), x = j-3+1), j = 0 .. 1)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRl5wLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmRvLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYHEtSSNtbkdGJDYkUSIzRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl9xRmFxLUZjcTYkUSIxRidGOUY5RjlGaXBGZW4tRlA2JC1GIzYtLUZdbzYlRl9vLUYjNiZGZG9GZnFGaXFGOUZnb0Zqb0ZhcEZecEZpcEZkb0ZccUZicUZmcUZpcUY5RjlGYXBGZG9GaXAtRmNxNiRGaW9GOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZfcS9GTkZmcEZpcUY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZqckY5">QyQ+SSNDMEc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS9GNS1JIitHRik2JCwmRjMiIiIhIiRGO0Y7LUYtNiQtJkYxNiMsJkYzRjtGO0Y7RjRGNi9GMzsiIiFGOyEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L538" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C1 := [seq(eval(diff(p[j](x), x), x = j-3+1) = eval(diff(p[j+1](x), x), x = j-3+1), j = 0 .. 1)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwRjlGOUZocEZlcC1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbcC1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmdxLUkjbW5HRiQ2JFEiM0YnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocS1GanE2JFEiMUYnRjlGOUY5RmBxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JkZbcEZdckZgckY5Rl5wRmFwRmhwRmVwRjlGOUZocEZlcEZgcUZbcEZjcUZpcUZdckZgckY5RjlGaHBGW3BGYHEtRmpxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZmcS9GTkZdcUZgckY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSRDMTBGJ0YvRjJGNS1GUDYmLUYjNilGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2Jy1GZG82JUZmby1GIzYkLUZqcTYkUSIyRidGOUY5Rl5wRmFwRmhwRmVwRjlGOUZocEZlcEZgcUZfc0Y5RjlGYHFGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2J0ZfdS1GUDYkLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmZxRmhxRmVwRjlGOUZocEZlcEY5RjlGaHBGZXBGYHFGX3NGOUY5RmVzRjlGOUZnc0Zqc0ZddEZlc0Y5">QyY+SSNDMUc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJUY4L0Y4LUkiK0dGKTYkLCZGNiIiIiEiJEY+Rj4tRi02JC1GMDYkLSZGNDYjLCZGNkY+Rj5GPkY3RjhGOS9GNjsiIiFGPiEiIj5JJEMxMEdGJTcjLy1GLTYkLUYwNiQtJkY0NiMiIiNGN0Y4L0Y4RkotRi02JC1GMDYkLUZVNiMsJEY4RktGOEZYRks=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L542" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C2 := [seq(eval(diff(p[j](x), `$`(x, 2)), x = j-3+1) = eval(diff(p[j+1](x), `$`(x, 2)), x = j-3+1), j = 0 .. 1)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIyRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiM0YnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcUZnckY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbdEY5">QyQ+SSNDMkc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIjL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJEZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiFGQiEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L540" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="CEND := [eval(diff(p[0](x), x), x = -3) = 0, eval(diff(p[0](x), `$`(x, 2)), x = -3) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElQ0VOREYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GUy1JKG1mZW5jZWRHRiQ2Ji1GIzYtLUYsNiVRJWV2YWxGJ0YvRjItRlY2JC1GIzYqLUYsNiVRJWRpZmZGJ0YvRjItRlY2JC1GIzYnLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JC1JI21uR0YkNiRRIjBGJ0Y5RjkvJS9zdWJzY3JpcHRzaGlmdEdGXXAtRlY2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGSi9GTlEsMC4zMzMzMzMzZW1GJ0ZkcEY5RjlGZ3BGZHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmRxLUZbcDYkUSIzRidGOUY5RjlGXXFGam9GZ3BGWi1GVjYkLUYjNipGW28tRlY2JC1GIzYpRmJvRmBwRmdwRmRwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZbcDYkUSIyRidGOUY5RjlGZ3BGZHBGXXFGYHFGZnFGOUY5Rl1xRmpvLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZSRlRGZ3JGOQ==">QyQ+SSVDRU5ERzYiNyQvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JJWRpZmZHRio2JC0mSSJwR0YlNiMiIiE2I0kieEdGJUY1L0Y1ISIkRjMvLUYpNiQtRi02JEYvLUkiJEdGKjYkRjUiIiNGNkYzISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L531" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM0 := `assuming`([PolynomialTools[CoefficientList](collect(sum(eval(P(x), x = s-l), l = xrange)-s^0, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0wRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRlM2JC1GIzYoLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlM2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GUzYkLUYjNiktRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0ZccS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXItRiw2JVEibEYnRi9GMkY5RjlGX3FGY3JGZ3EtRiw2JVEneHJhbmdlRidGL0YyRjlGOUZdci1JJW1zdXBHRiQ2JS1GUzYkLUYjNiRGanFGOUY5LUYjNiQtSSNtbkdGJDYkUSIwRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdGZXNGX3FGanFGOUY5Rl9xRmpxRlpGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGY3EvRk5GZHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGY3FGW3RGaHNGanEtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GYnNGaHMtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZodEY7Rj5GQEZCRkRGRkZIRmNxRlt0RmhzRmpxLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZjczYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZaRjk=">QyQ+SSRETTBHNiItSSlhc3N1bWluZ0dGJTYkNyMtJkkwUG9seW5vbWlhbFRvb2xzR0YlNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGJTYkLCYtSSRzdW1HNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2JC1JJWV2YWxHRjc2JC1JIlBHRiU2I0kieEdGJS9GQCwmSSJzR0YlIiIiSSJsR0YlISIiL0ZFSSd4cmFuZ2VHRiVGRC1JIl5HRjc2JEZDIiIhRkZGQ0ZDNyMtSSRhbmRHRjc2JC1JIj5HRjdGSzJGQ0ZERkY=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L511" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM0 := [seq(DM0[j] = 0, j = 1 .. numelems(DM0))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiYtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Ly1GLDYlUSRETTBGJ0YvRjItRlA2Ji1GIzYlLUYsNiVRImpGJ0YvRjIvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXG9GZ28tRltwNiRRIjFGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmNwLUYsNiVRKW51bWVsZW1zRidGL0YyLUZQNiQtRiM2JUZlbkZfb0Y5RjlGX29GOUY5Rl9vRjlGOUZhb0Zkby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYjUSFGJ0Zfb0Y5">QyQ+SSVsRE0wRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0wR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L527" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM1 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l*(eval(P(x), x = s-l)), l = xrange)-s, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistRiw2JVEibEYnRi9GMi1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaHAtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZncC9GTlEsMC4zMzMzMzMzZW1GJ0ZocS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GW3NGYXBGOUY5RltyRmFwRmFyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGZ3ItSSVtc3VwR0YkNiUtRlg2JC1GIzYkRmRyRjlGOS1GIzYkLUkjbW5HRiQ2JFEiMUYnRjlGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGW3JGZHJGOUY5RltyRmRyRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqczYkRl90RjlGYHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZhdUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmlzLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmB0LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTFHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIiLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiVGPEY7ISIiRjwvRjtJJ3hyYW5nZUdGJUY8RkZGR0ZGRkY3Iy1JJGFuZEdGLzYkLUkiPkdGLzYkRkYiIiEyRkZGPEZH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L506" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM1 := [seq(DM1[j] = 0, j = 1 .. numelems(DM1))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTFGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0xRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0xR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L508" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM2 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^2*(eval(P(x), x = s-l)), l = xrange)-s^2, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0yRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistSSVtc3VwR0YkNiUtRiw2JVEibEYnRi9GMi1GIzYlLUkjbW5HRiQ2JFEiMkYnRjlGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GZHEtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZjcS9GTlEsMC4zMzMzMzMzZW1GJ0Zkci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GZ3NGZHBGOUY5RmdyRmRwRl1zLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGY3MtRmJwNiUtRlg2JC1GIzYkRmBzRjlGOS1GIzYkRmlwRjlGXXFGZ3JGYHNGOUY5RmdyRmBzRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkRl9xRjlGZHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZldUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZkdC8lK2V4ZWN1dGFibGVHRj1GOQ==">QyQ+SSRETTJHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIjLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L510" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM2 := [seq(DM2[j] = 0, j = 1 .. numelems(DM2))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTJGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0yRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0yR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L534" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM3 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^3*(eval(P(x), x = s-l)), l = xrange)-s^3, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE0zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSIzRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTNHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIkLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L535" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM3 := [seq(DM3[j] = 0, j = 1 .. numelems(DM3))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNM0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTNGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0zRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0zR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L536" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM4 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^4*(eval(P(x), x = s-l)), l = xrange)-s^4, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE00RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI0RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTRHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIlLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L537" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM4 := [seq(DM4[j] = 0, j = 1 .. numelems(DM4))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTRGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE00RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE00R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L509" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="inconnues := [seq(seq(c[i, j], j = 0 .. d), i = 0 .. 2)]; 1; numelems(inconnues)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2Ji1GLDYlUSRzZXFGJ0YvRjItRlA2JC1GIzYrRlQtRlA2JC1GIzYqLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2Ji1GLDYlUSJpRidGL0YyLUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRictRiw2JVEiakYnRi9GMkY5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGZG9GXHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSNtbkdGJDYkRmFwRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GaW8tRiw2JVEiZEYnRi9GMkY5RjlGZG9GYW9GYnBGZXBGaHAtRmZwNiRRIjJGJ0Y5RjlGOS8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjtGJ0Y5RjtGZ29GQEZCRkRGRkZIRmhvRk0tRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRitGOUY5RmRxRjk=">QyU+SSppbmNvbm51ZXNHNiI3Iy1JJHNlcUclKnByb3RlY3RlZEc2JC1GKDYkJkkiY0dGJTYkSSJpR0YlSSJqR0YlL0YxOyIiIUkiZEdGJS9GMDtGNCIiIyIiIi1JKW51bWVsZW1zR0YpNiNGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZILUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2KC1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGZm4vJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOS8lL3N1YnNjcmlwdHNoaWZ0R0ZpbkZqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiMUYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiMkYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiM0YnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiNEYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiNUYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZmbkZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRl1wRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GZHBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZbcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmJxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GaXFGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZmbkZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRl1wRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GZHBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZbcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmJxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GaXFGYm9GZW9GOUZnb0Zib0Zlb0Y5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGYm9GZW9GOQ==">NzQmSSJjRzYiNiQiIiFGJyZGJDYkRiciIiImRiQ2JEYnIiIjJkYkNiRGJyIiJCZGJDYkRiciIiUmRiQ2JEYnIiImJkYkNiRGKkYnJkYkNiRGKkYqJkYkNiRGKkYtJkYkNiRGKkYwJkYkNiRGKkYzJkYkNiRGKkY2JkYkNiRGLUYnJkYkNiRGLUYqJkYkNiRGLUYtJkYkNiRGLUYwJkYkNiRGLUYzJkYkNiRGLUY2</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiM9</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L505" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="conditions := [E[], C0[], C1[], C10[], C2[], CEND[], lDM0[], lDM1[], lDM2[], lDM3[], lDM4[]]; -1; numelems(conditions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVErY29uZGl0aW9uc0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GU0Y1LUkobWZlbmNlZEdGJDYmLUYjNkQtRiw2JVEiRUYnRi9GMi1GVjYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRiw2JVEjQzBGJ0YvRjItRlY2Ji1GIzYkRltvRjlGOUZgb0Zjb0Zmby1GLDYlUSNDMUYnRi9GMkZfcEZmby1GLDYlUSRDMTBGJ0YvRjJGX3BGZm8tRiw2JVEjQzJGJ0YvRjJGZ25GZm8tRiw2JVElQ0VOREYnRi9GMkZfcEZmby1GLDYlUSVsRE0wRidGL0YyRl9wRmZvLUYsNiVRJWxETTFGJ0YvRjJGX3BGZm8tRiw2JVElbERNMkYnRi9GMkZfcEZmby1GLDYlUSVsRE0zRidGL0YyRmduRmZvLUYsNiVRJWxETTRGJ0YvRjJGZ25GXm9GOUY5RmBvRmNvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGUkZULUYsNiVRKW51bWVsZW1zRidGL0YyLUZWNiQtRiM2JEYrRjlGOUZeb0Y5">QyU+SStjb25kaXRpb25zRzYiNy0mSSJFR0YlRiUmSSNDMEdGJUYlJkkjQzFHRiVGJSZJJEMxMEdGJUYlJkkjQzJHRiVGJSZJJUNFTkRHRiVGJSZJJWxETTBHRiVGJSZJJWxETTFHRiVGJSZJJWxETTJHRiVGJSZJJWxETTNHRiVGJSZJJWxETTRHRiVGJSEiIi1JKW51bWVsZW1zRyUqcHJvdGVjdGVkRzYjRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNV</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L518" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="A, b := LinearAlgebra[GenerateMatrix](conditions, inconnues);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkobWZlbmNlZEdGJDYkLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y4USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZCLyUqc3ltbWV0cmljR0ZCLyUobGFyZ2VvcEdGQi8lLm1vdmFibGVsaW1pdHNHRkIvJSdhY2NlbnRHRkIvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYtUSJ+RidGPkZAL0ZERkJGRUZHRklGS0ZNRk8vRlNGUS1GMTYlUSJiRidGNEY3LyUrZXhlY3V0YWJsZUdGQkY+Rj4tRjs2LVEqJmNvbG9uZXE7RidGPkZARlhGRUZHRklGS0ZNL0ZQUSwwLjI3Nzc3NzhlbUYnL0ZTRl1vLUYxNiVRLkxpbmVhckFsZ2VicmFGJ0Y0RjctRiw2Ji1GIzYlLUYxNiVRL0dlbmVyYXRlTWF0cml4RidGNEY3RmduRj5GPi8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GLDYkLUYjNigtRjE2JVErY29uZGl0aW9uc0YnRjRGN0Y6RlUtRjE2JVEqaW5jb25udWVzRidGNEY3RmduRj5GPi1GOzYtUSI7RidGPkZARkNGRUZHRklGS0ZNRk9GXm9GZ25GPg==">QyQ+NiRJIkFHNiJJImJHRiYtJkkuTGluZWFyQWxnZWJyYUdGJjYjSS9HZW5lcmF0ZU1hdHJpeEdGJjYkSStjb25kaXRpb25zR0YmSSppbmNvbm51ZXNHRiYiIiI=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y1USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMy8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GLjYlUSJiRidGMUY0LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y/RjstRjg2LVEjOj1GJ0Y7Rj0vRkFGP0ZCRkRGRkZIRkovRk1RLDAuMjc3Nzc3OGVtRicvRlBGaW4tRiM2KC1JKG1hY3Rpb25HRiQ2JS1JKG1mZW5jZWRHRiQ2Ji1JJ210YWJsZUdGJDY4LUkkbXRyR0YkNiYtSSRtdGRHRiQ2KC1GIzYmLUYuNiVRKn40Mn54fjE4fkYnRjFGNC1GLjYlUSdNYXRyaXhGJ0YxRjRGVUY7LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZmcC8lK2dyb3VwYWxpZ25HRmZwLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRl1xRmRwRmdwRmlwLUZnbzYmLUZqbzYoLUYjNiYtRi42JVEsRGF0YX5UeXBlOn5GJ0YxRjQtRi42JVEpYW55dGhpbmdGJ0YxRjRGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwLUZnbzYmLUZqbzYoLUYjNiYtRi42JVEqU3RvcmFnZTp+RidGMUY0LUYuNiVRLHJlY3Rhbmd1bGFyRidGMUY0RlVGO0ZkcEZncEZpcEZbcUZecUZkcEZncEZpcC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKE9yZGVyOn5GJ0YxRjQtRi42JVEuRm9ydHJhbl9vcmRlckYnRjFGNEZVRjtGZHBGZ3BGaXBGW3FGXnFGZHBGZ3BGaXAvJSZhbGlnbkdRJWF4aXNGJy9GZXBRKWJhc2VsaW5lRicvRmhwUSdjZW50ZXJGJy9GanBRJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0YzLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGYXQvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGXHUvJSZmcmFtZUdGXHUvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y/LyUtZXF1YWxjb2x1bW5zR0Y/LyUtZGlzcGxheXN0eWxlR0Y/LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRml0RjsvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRicvJSthY3Rpb250eXBlR1EtYnJvd3NlcnRhYmxlRicvJSlydGFibGVpZEdRNTE4NDQ2NzQ0MDc4MTc1MDA3MDc4RidGNy1GXm82JS1GYW82Ji1GZG82OC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKn4xfi4ufjQyfkYnRjFGNC1JJW1zdWJHRiQ2JS1GLjYlUSdWZWN0b3JGJ0YxRjQtRiM2JS1GLjYlUSdjb2x1bW5GJ0YxRjRGVUY7LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwRmBxRlxyRmhyRmRzRmdzRmlzRlt0Rl10Rl90RmJ0RmR0Rmd0Rmp0Rl11Rl91RmF1RmR1RmZ1Rmh1Rmp1Rl12RjtGX3ZGYnZGZXYvRml2UTUxODQ0Njc0NDA3ODE3NTAwNjk1OEYnRlVGWEY7RlVGWEY7">NiQtSSdNYXRyaXhHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2Iy9JJCVpZEdGKCI1eXErdiJ5U3VZJT0tJkknVmVjdG9yR0YlNiNJJ2NvbHVtbkdGKDYjL0YrIjVlcCt2InlTdVklPQ==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L513" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[Rank](A)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJVJhbmtGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYkLUYjNiUtRiw2JVEiQUYnRi9GMkY9RkBGQC1GLDYjUSFGJ0Y9RkA=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0klUmFua0dGKDYjSSJBR0Yo</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiM9</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L532" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="solutions := solve(conditions, {inconnues[]})" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yNzc3Nzc4ZW1GJy9GTkZTLUYsNiVRJnNvbHZlRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNictRiw2JVErY29uZGl0aW9uc0YnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRlk2Ji1GIzYmLUYsNiVRKmluY29ubnVlc0YnRi9GMi1GWTYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZecEY5RjkvRmFwUSJ8ZnJGJy9GZHBRInxockYnRl5wRjlGOUZecEY5">Pkkqc29sdXRpb25zRzYiLUkmc29sdmVHRiQ2JEkrY29uZGl0aW9uc0dGJDwjJkkqaW5jb25udWVzR0YkRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZILUYjNigtSSVtc3ViR0YkNiUtRiw2JVEiY0YnRi9GMi1GIzYoLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zobi8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LyUvc3Vic2NyaXB0c2hpZnRHRltvLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZpbjYkUSMxOEYnRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIxRidGOUZkb0Znb0Y5RmlvRltwLUkmbWZyYWNHRiQ2KC1GaW42JFEkMTUzRidGOS1GaW42JFEiNEYnRjkvJS5saW5ldGhpY2tuZXNzR0ZpcC8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZncS8lKWJldmVsbGVkR0Y9RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiMkYnRjlGZG9GZ29GOUZpb0ZbcC1GW3E2KC1GaW42JFEkMjU1RidGOS1GaW42JFEiOEYnRjlGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIzRidGOUZkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSQzMTNGJ0Y5LUZpbjYkUSMyNEYnRjlGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvRmBxRmRvRmdvRjlGaW9GW3AtRltxNigtRmluNiRRIzIxRidGOUZqckZjcUZlcUZocUZqcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjVGJ0Y5RmRvRmdvRjlGaW9GW3AtRltxNihGX3VGW3RGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdwRlxvRmhuRmRvRmdvRjlGaW9GW3AtRiM2JS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYHZGYHFGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GZ3BGZG9GZ29GOUZpb0ZbcC1GIzYnRlx2LUZbcTYoLUZpbjYkUSM3NUYnRjlGYHFGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GYnJGZG9GZ29GOUZpb0ZbcC1GIzYnRlx2LUZbcTYoLUZpbjYkUSQyNDVGJ0Y5RmpyRmNxRmVxRmhxRmpxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdwRlxvRmNzRmRvRmdvRjlGaW9GW3AtRiM2J0Zcdi1GW3E2KC1GaW42JFEkNTQ1RidGOUZbdEZjcUZlcUZocUZqcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZncEZcb0ZgcUZkb0Znb0Y5RmlvRltwLUYjNidGXHYtRltxNigtRmluNiRRIzYzRidGOUZqckZjcUZlcUZocUZqcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZncEZcb0ZfdUZkb0Znb0Y5RmlvRltwLUYjNidGXHYtRltxNigtRmluNiRRIzI1RidGOUZbdEZjcUZlcUZocUZqcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0ZobkZkb0Znb0Y5RmlvRltwRmdwRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0ZncEZkb0Znb0Y5RmlvRltwRmhuRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0ZickZkb0Znb0Y5RmlvRltwLUYjNidGXHYtRltxNihGX3VGYHFGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYnJGXG9GY3NGZG9GZ29GOUZpb0ZbcC1GW3E2KC1GaW42JFEjMzVGJ0Y5LUZpbjYkUSMxMkYnRjlGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmJyRlxvRmBxRmRvRmdvRjlGaW9GW3AtRltxNihGZnRGYHFGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmJyRlxvRl91RmRvRmdvRjlGaW9GW3AtRltxNihGYHpGZFxsRmNxRmVxRmhxRmpxRmRvRmdvRjlGZG9GZ29GOUY5LyUlb3BlbkdRInxmckYnLyUmY2xvc2VHUSJ8aHJGJ0Zkb0Znb0Y5">PDQvJkkiY0c2IjYkIiIhRigiIz0vJkYlNiRGKCIiIiMiJGAiIiIlLyZGJTYkRigiIiMjIiRiIyIiKS8mRiU2JEYoIiIkIyIkOCQiI0MvJkYlNiRGKEYwIyIjQEY3LyZGJTYkRigiIiYjRkdGPi8mRiU2JEYtRighIiUvJkYlNiRGLUYtIyEjdkYwLyZGJTYkRi1GNCMhJFgjRjcvJkYlNiRGLUY7IyEkWCZGPi8mRiU2JEYtRjAjISNqRjcvJkYlNiRGLUZHIyEjREY+LyZGJTYkRjRGKEYtLyZGJTYkRjRGLUYoLyZGJTYkRjRGNCMhIiZGMC8mRiU2JEY0RjsjIiNOIiM3LyZGJTYkRjRGMCNGQ0YwLyZGJTYkRjRGRyMiI0RGYHA=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L516" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[LinearSolve](A, b)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYkLUYsNiVRLExpbmVhclNvbHZlRidGL0YyL0YzUSdub3JtYWxGJ0Y9LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2NiQtRiM2Jy1GLDYlUSJBRidGL0YyLUkjbW9HRiQ2LVEiLEYnRj0vJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGUi8lKnN5bW1ldHJpY0dGUi8lKGxhcmdlb3BHRlIvJS5tb3ZhYmxlbGltaXRzR0ZSLyUnYWNjZW50R0ZSLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEiYkYnRi9GMi8lK2V4ZWN1dGFibGVHRlJGPUY9RmJvRj0=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0ksTGluZWFyU29sdmVHRig2JEkiQUdGKEkiYkdGKA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUkobWFjdGlvbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkobWZlbmNlZEdGJDYmLUknbXRhYmxlR0YkNjgtSSRtdHJHRiQ2Ji1JJG10ZEdGJDYoLUklbXJvd0dGJDYmLUkjbWlHRiQ2JVEqfjF+Li5+MTh+RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUklbXN1YkdGJDYlLUY7NiVRJ1ZlY3RvckYnRj5GQS1GODYlLUY7NiVRJ2NvbHVtbkYnRj5GQS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvRkJRJ25vcm1hbEYnLyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGT0ZSLyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZZLyUrZ3JvdXBhbGlnbkdGWS8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZqbkZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEsRGF0YX5UeXBlOn5GJ0Y+RkEtRjs2JVEpYW55dGhpbmdGJ0Y+RkFGT0ZSRldGWkZmbkZobkZbb0ZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEqU3RvcmFnZTp+RidGPkZBLUY7NiVRLHJlY3Rhbmd1bGFyRidGPkZBRk9GUkZXRlpGZm5GaG5GW29GV0ZaRmZuLUYyNiYtRjU2KC1GODYmLUY7NiVRKE9yZGVyOn5GJ0Y+RkEtRjs2JVEuRm9ydHJhbl9vcmRlckYnRj5GQUZPRlJGV0ZaRmZuRmhuRltvRldGWkZmbi8lJmFsaWduR1ElYXhpc0YnL0ZYUSliYXNlbGluZUYnL0ZlblEnY2VudGVyRicvRmduUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGQC8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRl5yLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmlyLyUmZnJhbWVHRmlyLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dRJmZhbHNlRicvJS1lcXVhbGNvbHVtbnNHRmNzLyUtZGlzcGxheXN0eWxlR0Zjcy8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0ZmckZSLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLyUrYWN0aW9udHlwZUdRLWJyb3dzZXJ0YWJsZUYnLyUpcnRhYmxlaWRHUTUxODQ0Njc0NDA3ODIxMjI2ODI3MEYn">LSZJJ1ZlY3Rvckc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkc2IjYjSSdjb2x1bW5HRig2Iy9JJCVpZEdGKCI1cSNvQUB5U3VZJT0=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L525" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[4, 2] := eval(P(x), solutions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KC1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictRiM2Ji1JI21uR0YkNiRRIjRGJ0Y6LUkjbW9HRiQ2LVEiLEYnRjovJSZmZW5jZUdGOS8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y5LyUqc3ltbWV0cmljR0Y5LyUobGFyZ2VvcEdGOS8lLm1vdmFibGVsaW1pdHNHRjkvJSdhY2NlbnRHRjkvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GQDYkUSIyRidGOkY6LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRkQ2LVEifkYnRjpGRy9GSkY5RkxGTkZQRlJGVEZWL0ZaRlgtRkQ2LVEqJmNvbG9uZXE7RidGOkZHRl9vRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZlby1GLDYlUSVldmFsRicvRjhGSy9GO1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Jy1GLDYlUSJQRidGam9GW3AtRl5wNiQtRiM2JC1GLDYlUSJ4RidGam9GW3BGOkY6RkMtRiw2JVEqc29sdXRpb25zRidGam9GW3BGOkY6RjpGKy8lK2V4ZWN1dGFibGVHRjlGOg==">PiZJJ0xhbWJkYUc2IjYkIiIlIiIjLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJUkqc29sdXRpb25zR0Yl</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEnJiM5MjM7RicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1GIzYoLUkjbW5HRiQ2JFEiNEYnRjUtSSNtb0dGJDYtUSIsRidGNS8lJmZlbmNlR0Y0LyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjQvJSpzeW1tZXRyaWNHRjQvJShsYXJnZW9wR0Y0LyUubW92YWJsZWxpbWl0c0dGNC8lJ2FjY2VudEdGNC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUY7NiRRIjJGJ0Y1LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y0RjUvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GPzYtUSM6PUYnRjVGQi9GRUY0RkdGSUZLRk1GTy9GUlEsMC4yNzc3Nzc4ZW1GJy9GVUZhby1GIzYnLUY/Ni1RInxmckYnRjUvRkNGRkZfby9GSEZGRklGS0ZNRk8vRlJRLDAuMTY2NjY2N2VtRicvRlVGW3AtSSdtdGFibGVHRiQ2PC1JJG10ckdGJDYnLUkkbXRkR0YkNigtRjs2JEZbb0Y1LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZqcC8lK2dyb3VwYWxpZ25HRmpwLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRmFxLUZkcDYoLUYjNigtRi82JVEieEYnL0YzRkYvRjZRJ2l0YWxpY0YnLUY/Ni1RIjxGJ0Y1RkJGX29GR0ZJRktGTUZPRmBvRmJvLUYjNiUtRj82LVEqJnVtaW51czA7RidGNUZCRl9vRkdGSUZLRk1GTy9GUlEsMC4yMjIyMjIyZW1GJy9GVUZnci1GOzYkUSIzRidGNUY1RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzYuLUY7NiRRIzE4RidGNS1GPzYtUSIrRidGNUZCRl9vRkdGSUZLRk1GT0ZmckZoci1GIzYoLUkmbWZyYWNHRiQ2KC1GOzYkUSQxNTNGJ0Y1RjovJS5saW5ldGhpY2tuZXNzR0ZhcS8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZkdC8lKWJldmVsbGVkR0Y0LUY/Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y1RkJGX29GR0ZJRktGTUZPRlEvRlVGU0ZocUZaRmduRjVGZXMtRiM2KC1GW3Q2KC1GOzYkUSQyNTVGJ0Y1LUY7NiRRIjhGJ0Y1RmB0RmJ0RmV0Rmd0Rml0LUklbXN1cEdGJDYlRmhxRlcvJTFzdXBlcnNjcmlwdHNoaWZ0R0Zbb0ZaRmduRjVGZXMtRiM2KC1GW3Q2KC1GOzYkUSQzMTNGJ0Y1LUY7NiRRIzI0RidGNUZgdEZidEZldEZndEZpdC1GaHU2JUZocUZpckZqdUZaRmduRjVGZXMtRiM2KC1GW3Q2KC1GOzYkUSMyMUYnRjVGZHVGYHRGYnRGZXRGZ3RGaXQtRmh1NiVGaHFGOkZqdUZaRmduRjVGZXMtRiM2KC1GW3Q2KC1GOzYkUSI1RidGNUZjdkZgdEZidEZldEZndEZpdC1GaHU2JUZocUZld0ZqdUZaRmduRjVGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yLUYjNiVGY3JGV0Y1RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzYvRmNyRjotRj82LVEoJm1pbnVzO0YnRjVGQkZfb0ZHRklGS0ZNRk9GZnJGaHItRiM2KC1GW3Q2KC1GOzYkUSM3NUYnRjVGOkZgdEZidEZldEZndEZpdEZocUZaRmduRjVGZngtRiM2KC1GW3Q2KC1GOzYkUSQyNDVGJ0Y1RmR1RmB0RmJ0RmV0Rmd0Rml0Rmd1RlpGZ25GNUZmeC1GIzYoLUZbdDYoLUY7NiRRJDU0NUYnRjVGY3ZGYHRGYnRGZXRGZ3RGaXRGZnZGWkZnbkY1RmZ4LUYjNigtRlt0NigtRjs2JFEjNjNGJ0Y1RmR1RmB0RmJ0RmV0Rmd0Rml0Rl93RlpGZ25GNUZmeC1GIzYoLUZbdDYoLUY7NiRRIzI1RidGNUZjdkZgdEZidEZldEZndEZpdEZod0ZaRmduRjVGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yLUYjNiVGY3ItRjs2JEZhcUY1RjVGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNixGYltsRmZ4LUYjNigtRlt0NihGZXdGOkZgdEZidEZldEZndEZpdEZndUZaRmduRjVGZXMtRiM2KC1GW3Q2KC1GOzYkUSMzNUYnRjUtRjs2JFEjMTJGJ0Y1RmB0RmJ0RmV0Rmd0Rml0RmZ2RlpGZ25GNUZlcy1GIzYoLUZbdDYoRlx3RjpGYHRGYnRGZXRGZ3RGaXRGX3dGWkZnbkY1RmVzLUYjNigtRlt0NihGaXpGZVxsRmB0RmJ0RmV0Rmd0Rml0Rmh3RlpGZ25GNUY1RmhwRltxRl1xRl9xRmJxLUZkcDYoLUYjNihGaHFGXnJGZnBGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNixGYltsRmZ4RmpbbEZmeEZeXGxGZXNGaFxsRmZ4RlxdbEY1RmhwRltxRl1xRl9xRmJxLUZkcDYoLUYjNihGaHFGXnJGYltsRlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzYvRmNyRjpGZXNGaXhGZnhGYHlGZXNGZ3lGZnhGXnpGZXNGZXpGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRldGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNi5GYnNGZnhGaHNGZXNGXXVGZnhGXHZGZXNGaHZGZnhGYXdGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRmlyRlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2J0ZjcC1GZHA2KC1GIzYoRmlyLUY/Ni1RJSZsZTtGJ0Y1RkJGX29GR0ZJRktGTUZPRmBvRmJvRmhxRlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS8lJmFsaWduR1ElYXhpc0YnL0ZpcFEpYmFzZWxpbmVGJy9GXHFGZHQvRl5xUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGRi8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRmdgbC8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJDJlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGYmFsLyUmZnJhbWVHRmJhbC8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRjQvJS1lcXVhbGNvbHVtbnNHRjQvJS1kaXNwbGF5c3R5bGVHRjQvJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dRJjAuOGVtRidGWkZnbkY1RlpGZ25GNQ==">LUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzYyMkkieEc2IiEiJCIiITJGJyEiIywuIiM9IiIiRicjIiRgIiIiJSokRiciIiMjIiRiIyIiKSokRiciIiQjIiQ4JCIjQyokRidGMiMiI0BGNyokRiciIiYjRkFGPDJGJyEiIiwuISIlRi9GJyMhI3ZGMkYzIyEkWCNGN0Y4IyEkWCZGPEY9IyEjakY3RkAjISNERjwyRidGKiwsRi9GL0YzIyEiJkYyRjgjIiNOIiM3Rj0jRj9GMkZAIyIjREZXMkYnRi8sLEYvRi9GM0ZTRjgjISNORldGPUZYRkAjRlBGVzJGJ0Y0LC5GRkYvRicjIiN2RjJGM0ZJRjgjIiRYJkY8Rj1GTUZAI0ZaRjwyRidGOSwuRi5GL0YnIyEkYCJGMkYzRjVGOCMhJDgkRjxGPUY+RkAjRlRGPDFGOUYnRio=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L528" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="seq(evalb(simplify(conditions[i], solutions)), i = 1 .. numelems(conditions));" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEkc2VxRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNi0tRiw2JVEmZXZhbGJGJ0YvRjItRjY2JC1GIzYmLUYsNiVRKXNpbXBsaWZ5RidGL0YyLUY2NiQtRiM2KS1GLDYlUStjb25kaXRpb25zRidGL0YyLUY2NiYtRiM2JS1GLDYlUSJpRidGL0YyLyUrZXhlY3V0YWJsZUdRJmZhbHNlRicvRjNRJ25vcm1hbEYnRlUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictSSNtb0dGJDYtUSIsRidGVS8lJmZlbmNlR0ZULyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRlQvJSpzeW1tZXRyaWNHRlQvJShsYXJnZW9wR0ZULyUubW92YWJsZWxpbWl0c0dGVC8lJ2FjY2VudEdGVC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUZobjYtUSJ+RidGVUZbby9GXm9GVEZfb0Zhb0Zjb0Zlb0Znb0Zpby9GXXBGW3AtRiw2JVEqc29sdXRpb25zRidGL0YyRlJGVUZVRlJGVUZVRmduRk8tRmhuNi1RIj1GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yNzc3Nzc4ZW1GJy9GXXBGW3EtSSNtbkdGJDYkUSIxRidGVS1GaG42LVEjLi5GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yMjIyMjIyZW1GJ0ZjcC1GLDYlUSludW1lbGVtc0YnRi9GMi1GNjYkLUYjNiRGSEZVRlVGUkZVRlUtRmhuNi1RIjtGJ0ZVRltvRl1vRl9vRmFvRmNvRmVvRmdvRmlvRlxxRlJGVQ==">QyQtSSRzZXFHJSpwcm90ZWN0ZWRHNiQtSSZldmFsYkdGJTYjLUkpc2ltcGxpZnlHNiI2JCZJK2NvbmRpdGlvbnNHRiw2I0kiaUdGLEkqc29sdXRpb25zR0YsL0YxOyIiIi1JKW51bWVsZW1zR0YlNiNGL0Y1</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NkxJJXRydWVHJSpwcm90ZWN0ZWRHRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGIw==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L522" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="evalb(int(Lambda[4, 2], x = xrange) = 1); 1; seq(evalb(int(x^i*Lambda[4, 2], x = xrange) = 0), i = 1 .. 4)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEmZXZhbGJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2KC1GLDYlUSRpbnRGJ0YvRjItRjY2JC1GIzYqLUYsNiNRIUYnLUYjNiZGQS1GIzYkLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBRJmZhbHNlRicvRjNRJ25vcm1hbEYnLUYjNiYtSSNtbkdGJDYkUSI0RidGUC1JI21vR0YkNi1RIixGJ0ZQLyUmZmVuY2VHRk8vJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGTy8lKnN5bW1ldHJpY0dGTy8lKGxhcmdlb3BHRk8vJS5tb3ZhYmxlbGltaXRzR0ZPLyUnYWNjZW50R0ZPLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRlU2JFEiMkYnRlBGUC8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnRlBGQUZQRkFGWC1GLDYlUSJ4RidGL0YyLUZZNi1RIj1GJ0ZQRmZuL0ZpbkZPRmpuRlxvRl5vRmBvRmJvL0Zlb1EsMC4yNzc3Nzc4ZW1GJy9GaG9GaHAtRiw2JVEneHJhbmdlRidGL0YyRlBGUEZjcC1GVTYkUSIxRidGUC8lK2V4ZWN1dGFibGVHRk9GUEZQLUZZNi1RIjtGJ0ZQRmZuRmhuRmpuRlxvRl5vRmBvRmJvRmRvRmlwLUYsNiVRJHNlcUYnRi9GMi1GNjYkLUYjNixGKy1GNjYkLUYjNihGOi1GNjYkLUYjNiotSSVtc3VwR0YkNiVGYHAtRiM2JS1GLDYlUSJpRidGL0YyRi9GMi8lMXN1cGVyc2NyaXB0c2hpZnRHRl9wLUZZNi1RJyZzZG90O0YnRlBGZm5GZnBGam5GXG9GXm9GYG9GYm9GZG8vRmhvRmZvLUZJNiUtRiw2JVEnJiM5MjM7RidGTkZQRlJGXXBGWEZgcEZjcEZqcEZQRlBGY3AtRlU2JEZfcEZQRmBxRlBGUEZYRmlyRmNwRl1xLUZZNi1RIy4uRidGUEZmbkZmcEZqbkZcb0Zeb0Zgb0Ziby9GZW9RLDAuMjIyMjIyMmVtRidGYXNGVEZgcUZQRlBGYHFGUA==">QyUtSSZldmFsYkclKnByb3RlY3RlZEc2Iy8tSSRpbnRHNiRGJUkoX3N5c2xpYkc2IjYkJkknTGFtYmRhR0YsNiQiIiUiIiMvSSJ4R0YsSSd4cmFuZ2VHRiwiIiJGNi1JJHNlcUdGJTYkLUYkNiMvLUYpNiQqJilGNEkiaUdGLEY2Ri5GNkYzIiIhL0ZBO0Y2RjE=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">SSV0cnVlRyUqcHJvdGVjdGVkRw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NiZJJXRydWVHJSpwcm90ZWN0ZWRHRiNGI0Yj</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L530" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="fac := 24:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZlcy1JI21pR0YkNiVRJGZhY0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkjbW5HRiQ2JFEjMjRGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWi1GLDYlUSN3MEYnRi9GMkY1LUkobWZlbmNlZEdGJDYkLUYjNiUtSSZtZnJhY0dGJDYoLUZQNiRRIjFGJ0Y5LUYjNiVGK0YvRjIvJS5saW5ldGhpY2tuZXNzR0Zjby8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zqby8lKWJldmVsbGVkR0Y9LyUrZXhlY3V0YWJsZUdGPUY5RjktRjY2LVEnJnNkb3Q7RidGOUY7Rj5GQEZCRkRGRkZIRllGZW5GVi1GLDYlUSdob3JuZXJGJ0YvRjItRmpuNiQtRiM2KkYrRmFwLUYsNiVRJ2V4cGFuZEYnRi9GMi1Gam42JC1GIzYmLUYsNiVRJWV2YWxGJ0YvRjItRmpuNiQtRiM2LkZicS1Gam42JC1GIzYoLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBGPUY5LUYjNiYtRlA2JFEiNEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZZL0ZOUSwwLjMzMzMzMzNlbUYnLUZQNiRRIjJGJ0Y5RjkvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GLDYjUSFGJ0Zpci1GLDYlUSpzb2x1dGlvbnNGJ0YvRjJGX3BGOUY5RmlyLUYsNiVRInhGJ0YvRjItRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmV0Rl9zRmF0RlYtRiw2JVEieUYnRi9GMkZfcEY5RjlGX3BGOUY5RmlyRmd0Rl9wRjlGOS1GNjYtUSlhc3N1bWluZ0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuRlZGZ3QtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRlA2JEZkc0Y5RlYtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZodUY7Rj5GQEZCRkRGRkZIRllGZW5GVkZndC1GNjYtUSI8RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZhby1GNjYtUSI7RidGOUY7RlxzRkBGQkZERkZGSEZZRk0tSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWi8lJmRlcHRoR0Zmdi8lKmxpbmVicmVha0dRKG5ld2xpbmVGJ0ZWLUYsNiVRI3cxRidGL0YyRjUtRmpuNiQtRiM2JC1GX282KEZhby1GIzYkRitGOUZmb0Zob0ZbcEZdcEY5RjlGYXBGVkZkcC1Gam42JC1GIzYqRitGYXBGW3EtRmpuNiQtRiM2JUZicS1Gam42JC1GIzYtRmJxLUZqbjYkLUYjNidGXXJGZXNGaXJGaHNGOUY5RmlyRlt0Rl50RmF0RmFvLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGZHRGZnRGVkZndEY5RjlGOUY5RmlyRmd0Rl9wRjlGOUZqdEZWRmd0Rl11RmB1RlZGYnVGVkZndEZbdkZhb0ZedkZhdkZWLUYsNiVRI3cyRidGL0YyRjVGYXdGYXBGVkZkcC1Gam42JC1GIzYqRitGYXBGW3EtRmpuNiQtRiM2JUZicS1Gam42JC1GIzYrRmJxRmV4RmlyRlt0Rl50RmF0RlZGZ3RGOUY5RjlGOUZpckZndEZfcEY5RjlGVkZqdEZWRmd0Rl11RmB1RlZGYnVGVkZndEZbdkZhb0ZedkZhdkZWLUYsNiVRI3czRidGL0YyRjVGYXdGYXBGVkZkcC1Gam42JC1GIzYqRitGYXBGW3EtRmpuNiQtRiM2JUZicS1Gam42JC1GIzYtRmJxRmV4RmlyRlt0Rl50RlZGYW9GYXRGVkZndEY5RjlGOUY5RmlyRmd0Rl9wRjlGOUZWRmp0RlZGZ3RGXXVGYHVGVkZidUZWRmd0Rlt2RmFvRl52RmF2RlYtRiw2JVEjdzRGJ0YvRjJGNUZhd0ZhcEZWRmRwLUZqbjYkLUYjNipGK0ZhcEZbcS1Gam42JC1GIzYlRmJxLUZqbjYkLUYjNixGYnFGZXhGaXJGW3RGXnRGX3NGYXRGVkZndEY5RjlGOUY5RmlyRmd0Rl9wRjlGOUZWRmp0RlZGZ3RGXXVGYHVGVkZidUZWRmd0Rlt2RmFvRl52RmF2RlYtRiw2JVEjdzVGJ0YvRjJGNUZhd0ZhcEZWRmRwLUZqbjYkLUYjNipGK0ZhcEZbcS1Gam42JC1GIzYlRmJxLUZqbjYkLUYjNixGYnFGZXhGaXJGW3RGXnQtRlA2JFEiM0YnRjlGYXRGVkZndEY5RjlGOUY5RmlyRmd0Rl9wRjlGOUZqdEZWRmd0Rl11RmB1RlZGYnVGVkZndEZbdkZhb0ZedkZhdi1GYnY2JkZkdkZndkZpdi9GXHdRJWF1dG9GJ0ZWRl9wRjk=">QzA+SSRmYWNHNiIiI0MhIiI+SSN3MEdGJS1JKWFzc3VtaW5nR0koX3N5c2xpYkdGJTYkNyMqJkYkRictSSdob3JuZXJHRiU2JComRiQiIiItSSdleHBhbmRHJSpwcm90ZWN0ZWRHNiMtSSVldmFsR0Y3NiQtRjo2JCZJJ0xhbWJkYUdGJTYkIiIlIiIjSSpzb2x1dGlvbnNHRiUvSSJ4R0YlLCYhIiNGNEkieUdGJUYnRjRGSEY0NyMtSSRhbmRHRjc2JC1JIj5HRjc2JEZIIiIhMkZIRjRGND5JI3cxR0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZFLCZGJ0Y0RkhGJ0Y0RkhGNEZJRjQ+SSN3MkdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwkRkhGJ0Y0RkhGNEZJRjQ+SSN3M0dGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmRjRGNEZIRidGNEZIRjRGSUY0PkkjdzRHRiUtRis2JDcjKiZGJEYnLUYxNiQqJkYkRjQtRjY2Iy1GOjYkRjwvRkUsJkZCRjRGSEYnRjRGSEY0RklGND5JI3c1R0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZFLCYiIiRGNEZIRidGNEZIRjRGSUY0</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZVNiRRIjJGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcEZURl5wLUYjNiYtRmdvNiQtRiM2J0ZqcC1GVTYkUSI5RidGOUZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEjMTNGJ0Y5LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGYXBGY3AtRiM2Ji1GVTYkUSI1RidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRmdyRjlGOUY5Rl5vRmdyRjlGOUY5Rl5vRmdyRjlGOUY5Rl5vRmdyRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZqckZdc0Y5">LCQqJiwmIiIjIiIiKiYsJiEiIkYmKiYsJiEiKkYmKiYsJiIjOEYmSSJ5RzYiISImRiZGMEYmRiZGJkYwRiZGJkYmRjBGJkYmRiZGMEYmI0YmIiND</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfcC1GVTYkUSMxNkYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZecEZgcC1GIzYmLUZnbzYkLUYjNiZGYXBGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIzM5RidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEjNjRGJ0Y5RmRwLUYjNiYtRlU2JFEjMjVGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GZHJGOUY5RjlGXm9GZHJGOUY5RjlGXm9GZHJGOUY5RjlGXm9GZHJGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RmdyRmpyRjk=">LCQqJiwmISM7IiIiKiYsJiIjO0YmKiYsJiIjUkYmKiYsJiEja0YmSSJ5RzYiIiNERiZGMEYmRiZGJkYwRiZGJkYmRjBGJkYmRiZGMEYmI0YmIiND</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtSSNtbkdGJDYkUSIxRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlktRiM2KC1JJm1mcmFjR0YkNihGUS1GUjYkUSMyNEYnRjkvJS5saW5ldGhpY2tuZXNzR0ZULyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmFvLyUpYmV2ZWxsZWRHRj0tRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZqby1GIzYmLUkobWZlbmNlZEdGJDYkLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRlhGWi1GUjYkUSMzMEYnRjlGVS1GIzYmLUZfcDYkLUYjNidGY3AtRlI2JFEjNzBGJ0Y5RlUtRiM2Ji1GX3A2JC1GIzYmLUZSNiRRJDEyNkYnRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZYRlotRiM2Ji1GUjYkUSM1MEYnRjlGZm8tRiw2JVEieUYnRi9GMkY5RjlGOUZmb0ZjckY5RjlGOUZmb0ZjckY5RjlGOUZmby1JJW1zdXBHRiQ2JUZjci1GUjYkUSIyRidGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RjlGX3NGYnNGOQ==">LCYiIiJGIyomLCYhI0lGIyomLCYhI3FGIyomLCYiJEUiRiNJInlHNiIhI11GI0YtRiNGI0YjRi1GI0YjRiNGLSIiIyNGIyIjQw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZVNiRRIzE2RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmJwLUYjNiYtRmdvNiQtRiM2JkZbcEZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEjNjZGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGYXBGY3AtRlU2JFEkMTI0RidGOUZecC1GIzYmLUZVNiRRIzUwRidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRmRyRjlGOUY5Rl5vRmRyRjlGOUY5Rl5vRmRyRjlGOUY5Rl5vRmRyRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZnckZqckY5">LCQqJiwmIiM7IiIiKiYsJkYlRiYqJiwmIiNtRiYqJiwmISRDIkYmSSJ5RzYiIiNdRiZGL0YmRiZGJkYvRiZGJkYmRi9GJkYmRiZGL0YmI0YmIiND</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfcC1GVTYkUSIyRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2J0ZbcEZURmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSMzM0YnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIzYxRidGOS1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRlU2JFEjMjVGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GZ3JGOUY5RjlGXm9GZ3JGOUY5RjlGXm9GZ3JGOUY5RjlGXm9GZ3JGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RmpyRl1zRjk=">LCQqJiwmISIjIiIiKiYsJiEiIkYmKiYsJiEjTEYmKiYsJiIjaEYmSSJ5RzYiISNERiZGMEYmRiZGJkYwRiZGJkYmRjBGJkYmRiZGMEYmI0YmIiND</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzVGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZVNiRRIjdGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GVTYkUSMxMkYnRjlGXnAtRiM2Ji1GVTYkUSI1RidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRmVxRjlGOUY5Rl5vLUklbXN1cEdGJDYlRmVxLUZVNiRRIjNGJ0Y5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJ0Y5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGYXJGZHJGOQ==">LCQqJiwmIiIoIiIiKiYsJiEjN0YmSSJ5RzYiIiImRiZGKkYmRiZGJkYqIiIkI0YmIiND</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L776" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C([w0, w1, w2, w3, w4, w5], declare = [y::float], resultname = 'w', coercetypes = false)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEiQ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzY1LUY2NiYtRiM2Ly1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkEtRiw2JVEjdzRGJ0YvRjJGQS1GLDYlUSN3NUYnRi9GMi8lK2V4ZWN1dGFibGVHRklGRUZFLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRkEtRkI2LVEifkYnRkVGRy9GS0ZJRkxGTkZQRlJGVEZWL0ZaRlgtRiw2JVEoZGVjbGFyZUYnRi9GMi1GQjYtUSI9RidGRUZHRmBwRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZpcC1GNjYmLUYjNictRiw2JVEieUYnRi9GMi1GQjYtUS0mUHJvcG9ydGlvbjtGJ0ZFRkdGYHBGTEZORlBGUkZURmhwRmpwLUYsNiVRJmZsb2F0RidGL0YyRmVvRkVGRUZnb0Zqb0ZBLUYsNiVRK3Jlc3VsdG5hbWVGJ0YvRjJGZXAtRkI2LVEiJ0YnRkVGR0ZgcEZMRk5GUEZSRlQvRldRLDAuMTExMTExMWVtRidGYXAtRiw2JVEid0YnRi9GMkZbckZBRl1wLUYsNiVRLGNvZXJjZXR5cGVzRidGL0YyRmVwLUYsNiVGSUYvRjJGZW9GRUZFRmVvRkU=">LUkiQ0c2IjYmNyhJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiQvSShkZWNsYXJlR0YkNyMnSSJ5R0YkSSZmbG9hdEclKnByb3RlY3RlZEcvSStyZXN1bHRuYW1lR0YkLkkid0dGJC9JLGNvZXJjZXR5cGVzR0YkSSZmYWxzZUdGMw==</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[0] = (2 + (-1 + (-9 + (13 - 5 * y) * y) * y) * y) * y / 24;</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[1] = (-16 + (16 + (39 + (-64 + 25 * y) * y) * y) * y) * y / 24; -w[2] = 1 + (-30 + (-70 + (126 - 50 * y) * y) * y) * y * y / 24; -w[3] = (16 + (16 + (66 + (-124 + 50 * y) * y) * y) * y) * y / 24; -w[4] = (-2 + (-1 + (-33 + (61 - 25 * y) * y) * y) * y) * y / 24; -w[5] = (7 + (-12 + 5 * y) * y) * pow(y, 3) / 24;</Text-field> -</Output> -</Group> -<Group labelreference="L777" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Fortran([w0, w1, w2, w3, w4, w5], declare = [y::float], resultname = 'w')" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEoRm9ydHJhbkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYvLUY2NiYtRiM2Li1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkEtRiw2JVEjdzRGJ0YvRjJGQS1GLDYlUSN3NUYnRi9GMkZFRkUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGQS1GQjYtUSJ+RidGRUZHL0ZLRklGTEZORlBGUkZURlYvRlpGWC1GLDYlUShkZWNsYXJlRidGL0YyLUZCNi1RIj1GJ0ZFRkdGXnBGTEZORlBGUkZUL0ZXUSwwLjI3Nzc3NzhlbUYnL0ZaRmdwLUY2NiYtRiM2Ji1GLDYlUSJ5RidGL0YyLUZCNi1RLSZQcm9wb3J0aW9uO0YnRkVGR0ZecEZMRk5GUEZSRlRGZnBGaHAtRiw2JVEmZmxvYXRGJ0YvRjJGRUZFRmVvRmhvRkEtRiw2JVErcmVzdWx0bmFtZUYnRi9GMkZjcC1GQjYtUSInRidGRUZHRl5wRkxGTkZQRlJGVC9GV1EsMC4xMTExMTExZW1GJ0ZfcC1GLDYlUSJ3RidGL0YyRmlxRkVGRS8lK2V4ZWN1dGFibGVHRklGRQ==">LUkoRm9ydHJhbkc2IjYlNyhJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiQvSShkZWNsYXJlR0YkNyMnSSJ5R0YkSSZmbG9hdEclKnByb3RlY3RlZEcvSStyZXN1bHRuYW1lR0YkLkkid0dGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output"> w(1) = (0.2D1 + (-0.1D1 + (-0.9D1 + (0.13D2 - 0.5D1 * y) * y) * y) - # * y) * y / 0.24D2</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output"> w(2) = (-0.16D2 + (0.16D2 + (0.39D2 + (-0.64D2 + 0.25D2 * y) * y) - #* y) * y) * y / 0.24D2 - w(3) = 0.1D1 + (-0.30D2 + (-0.70D2 + (0.126D3 - 0.50D2 * y) * y) * - # y) * y ** 2 / 0.24D2 - w(4) = (0.16D2 + (0.16D2 + (0.66D2 + (-0.124D3 + 0.50D2 * y) * y) - #* y) * y) * y / 0.24D2 - w(5) = (-0.2D1 + (-0.1D1 + (-0.33D2 + (0.61D2 - 0.25D2 * y) * y) * - # y) * y) * y / 0.24D2 - w(6) = (0.7D1 + (-0.12D2 + 0.5D1 * y) * y) * y ** 3 / 0.24D2</Text-field> -</Output> -</Group> -<Group labelreference="L551" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -</Worksheet> \ No newline at end of file diff --git a/Docs/remeshing_formulas/calcul_lambda4star_C3.mw b/Docs/remeshing_formulas/calcul_lambda4star_C3.mw deleted file mode 100644 index a49e96c149412038b51cd77a80ba7bbcde2a269f..0000000000000000000000000000000000000000 --- a/Docs/remeshing_formulas/calcul_lambda4star_C3.mw +++ /dev/null @@ -1,374 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<Worksheet> -<Version major="16" minor="0"/> -<Label-Scheme value="2" prefix=""/> -<View-Properties presentation="false"><Zoom percentage="150"/></View-Properties> -<MapleNet-Properties elisiondigitsbefore="100" labelling="true" indentamount="4" elisiontermsthreshold="10000" ansi="false" errorbreak="1" useclientjvm="true" echo="1" imaginaryunit="I" labelwidth="20" contextmenusize="automatic" plotdriver="opengl" elisiondigitsafter="100" plotoutput="terminal" helpbrowser="standard" rtablesize="10" elisiontermsbefore="100" elisiondigitsthreshold="10000" typesetting="standard" plotdevice="inline" verboseproc="1" showassumed="1" errorcursor="false" longdelim="true" plotoptions="" quiet="false" elisiontermsafter="100" screenwidth="79" preplot="" prettyprint="3" displayprecision="-1" screenpixelheight="1050" warnlevel="3" screenheight="25" latexwidth="6.0" postplot="" prompt="> " ShowLabels="true"/> -<Styles><Font name="Ordered List 1" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 2" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 3" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 5" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Author" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Warning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Caption Reference" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input Placeholder" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[200,0,200]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="true"/> -<Font name="Maple Plot" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Code" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Line Printed Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Diagnostic" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[40,120,40]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Inert Output" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[144,144,144]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Normal" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,128,128]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Maple Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Dash Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Math" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Input" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkError" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Header and Footer" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="10" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Error" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 1" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Bullet Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Equation Label" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 3" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="14" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 2" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="16" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkWarning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Dictionary Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[147,0,15]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Caption Text" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="List Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Layout name="Ordered List 1" alignment="left" bullet="numeric" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 2" alignment="left" bullet="alphabetic" firstindent="0" leftmargin="36" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 3" alignment="left" bullet="roman" firstindent="0" leftmargin="72" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 4" alignment="left" bullet="ALPHABETIC" firstindent="0" leftmargin="108" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 5" alignment="left" bullet="ROMAN" firstindent="0" leftmargin="144" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Author" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="8" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Warning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Annotation Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Plot" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Line Printed Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Text Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="newline" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Diagnostic" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Normal" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Output" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.3" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Dash Item" alignment="left" bullet="dash" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkError" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Error" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 1" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="4" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Bullet Item" alignment="left" bullet="dot" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 4" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 3" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 2" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="2" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkWarning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="List Item" alignment="left" bullet="indent" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Pencil-style name="Pencil 5" pen-color="[255,0,0]" pen-height="5.0" pen-width="5.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 4" pen-color="[0,0,255]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 3" pen-color="[0,0,0]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 2" pen-color="[0,0,255]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 1" pen-color="[0,0,0]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Highlighter-style name="Highlighter 2" pen-color="[255,204,0]" pen-height="14.0" pen-width="14.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 1" pen-color="[255,153,255]" pen-height="12.0" pen-width="8.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 4" pen-color="[0,255,255]" pen-height="32.0" pen-width="32.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 3" pen-color="[51,255,0]" pen-height="24.0" pen-width="24.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 5" pen-color="[255,255,0]" pen-height="48.0" pen-width="48.0" pen-opacity="0.8"/> -</Styles> -<Task-table> - <Task-category name="<default>"> - </Task-category> -</Task-table> -<Task> -</Task> -<Group labelreference="L545" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYkLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjlGOS1GNjYtUSI6RidGOUY7L0Y/Rj1GQEZCRkRGRkZIL0ZLRk9GTS1GLDYlUSdob3JuZXJGJ0YvRjItRjY2LVEqJmNvbG9uZXE7RidGOUY7RmhuRkBGQkZERkZGSEZpbkZNLUYsNiVRKGNvZGVnZW5GJ0YvRjItRlQ2Ji1GIzYkRmpuRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zlbi8lK2V4ZWN1dGFibGVHRj1GOQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYjLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjktRjY2LVEiOkYnRjlGOy9GP0Y9RkBGQkZERkZGSC9GS0ZPRk0tRiw2JVEnaG9ybmVyRidGL0YyLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0ZobkZARkJGREZGRkhGaW5GTS1GLDYlUShjb2RlZ2VuRidGL0YyLUZUNiYtRiM2I0ZqbkY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmVu</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L560" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Calcul de la fomule Lambda_4^*:</Text-field> -<Text-field style="Text" layout="Normal"> - 6 points</Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8"> - degr\303\251 7</Font></Text-field> -<Text-field style="Text" layout="Normal"> - C3</Text-field> -<Text-field style="Text" layout="Normal"> - Moments d'ordre 4</Text-field> -</Input> -</Group> -<Group labelreference="L550" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="xrange := -3 .. 3; 1; d := 7" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlMtSSNtbkdGJDYkUSIzRidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZSL0ZOUSYwLjBlbUYnRlUtRjY2LVEiO0YnRjlGOy9GP0YxRkBGQkZERkZGSC9GS0ZnbkZNLUYsNiVRImRGJ0YvRjJGNS1GVjYkUSI3RidGOS8lK2V4ZWN1dGFibGVHRj1GOQ==">QyU+SSd4cmFuZ2VHNiI7ISIkIiIkIiIiPkkiZEdGJSIiKA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYoLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlctSSNtbkdGJDYkUSIzRidGOUY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRlYvRk5RJjAuMGVtRidGWS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RlxvRl9vRjk=">OyEiJCIiJA==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiZEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSSNtbkdGJDYkUSI3RidGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5">IiIo</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L548" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="p[0] := proc (x) options operator, arrow; sum(c[0, i]*x^i, i = 0 .. d) end proc;" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY5LUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYkLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJ0Y+LyUvc3Vic2NyaXB0c2hpZnRHRj0tSSNtb0dGJDYtUSomY29sb25lcTtGJ0Y+LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZILyUpc3RyZXRjaHlHRkgvJSpzeW1tZXRyaWNHRkgvJShsYXJnZW9wR0ZILyUubW92YWJsZWxpbWl0c0dGSC8lJ2FjY2VudEdGSC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRlctRi82JVEieEYnRjJGNS1GQzYtUSgmc3JhcnI7RidGPkZGRklGS0ZNRk9GUUZTL0ZWUSYwLjBlbUYnL0ZZRltvLUYvNiVRJHN1bUYnRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYtLUYsNiUtRi82JVEiY0YnRjJGNS1GIzYmRjotRkM2LVEiLEYnRj5GRi9GSkY0RktGTUZPRlFGU0Zqbi9GWVEsMC4zMzMzMzMzZW1GJy1GLzYlUSJpRidGMkY1Rj5GQC1GQzYtUScmc2RvdDtGJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG8tSSVtc3VwR0YkNiVGWi1GIzYlLUZDNi1RIn5GJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG9GYnBGPi8lMXN1cGVyc2NyaXB0c2hpZnRHRj1GXHBGXXFGYnAtRkM2LVEiPUYnRj5GRkZJRktGTUZPRlFGU0ZVRlhGOi1GQzYtUSMuLkYnRj5GRkZJRktGTUZPRlFGUy9GVlEsMC4yMjIyMjIyZW1GJ0Zcby1GLzYlUSJkRidGMkY1Rj5GPi1GQzYtUSI7RidGPkZGRl9wRktGTUZPRlFGU0ZqbkZYLUYsNiVGLi1GIzYkLUY7NiRRIjFGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGZHJGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLUYsNiVGLi1GIzYkLUY7NiRRIjJGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGY3NGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLyUrZXhlY3V0YWJsZUdGSEY+">Qyg+JkkicEc2IjYjIiIhZio2I0kieEdGJkYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLUkkc3VtR0YmNiQqJiZJImNHRiY2JEYoSSJpR0YmIiIiKTkkRjZGNy9GNjtGKEkiZEdGJkYmRiZGJkY3PiZGJTYjRjdmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRjdGNkY3RjhGN0Y6RiZGJkYmRjc+JkYlNiMiIiNmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRklGNkY3RjhGN0Y6RiZGJkYmRjc=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R0Y9LUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZm4tRiM2KC1GLzYlUSJ4RidGMkY1LUZJNi1RKCYjODU5NDtGJ0Y+RkxGTkZQRlJGVEZWRlgvRmVuUSYwLjBlbUYnL0ZobkZiby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZJNi1RJiZTdW07RidGPkZMRk4vRlFGNEZSL0ZVRjQvRldGNEZYRmFvL0ZoblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRkk2LVEiPUYnRj5GTEZORlBGUkZURlZGWEZaRmduRjpGQEZDRj4tRi82JVEiZEYnRjJGNUZYLyUsYWNjZW50dW5kZXJHRkUtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdRJDUuMEYnLyUmZGVwdGhHRmNxLyUqbGluZWJyZWFrR1ElYXV0b0YnLUYjNiYtRiw2JS1GLzYlUSJjRidGMkY1LUYjNihGOi1GSTYtUSIsRidGPkZML0ZPRjRGUEZSRlRGVkZYRmFvL0ZoblEsMC4zMzMzMzMzZW1GJ0ZjcEZARkNGPkZGLUZJNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y+RkxGTkZQRlJGVEZWRlhGYW9GY28tSSVtc3VwR0YkNiVGW29GY3AvJTFzdXBlcnNjcmlwdHNoaWZ0R0Y9Rj5GQEZDRj5GQEZDRj5GQEZDRj4=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIUkiaUdGJSIiIik5JEYxRjIvRjE7RjBJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIkkiaUdGJUYwKTkkRjFGMC9GMTsiIiFJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMkYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiI0kiaUdGJSIiIik5JEYxRjIvRjE7IiIhSSJkR0YlRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L547" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="P := proc (x) options operator, arrow; piecewise(x < -3, 0, x < -2, p[0](x), x < -1, p[1](x), x < 0, p[2](x), x < 1, p[2](-x), x < 2, p[1](-x), x < 3, p[0](-x), 3 <= x, 0) end proc" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KS1GLDYlUSJQRicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnRjcvJSZmZW5jZUdGNi8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0Y2LyUqc3ltbWV0cmljR0Y2LyUobGFyZ2VvcEdGNi8lLm1vdmFibGVsaW1pdHNHRjYvJSdhY2NlbnRHRjYvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZOLUYsNiVRInhGJ0Y0RjctRjs2LVEoJnNyYXJyO0YnRjdGPkZARkJGREZGRkhGSi9GTVEmMC4wZW1GJy9GUEZYLUYsNiVRKnBpZWNld2lzZUYnL0Y1USV0cnVlRicvRjhRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNmhvRistSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWC8lJmRlcHRoR0Zlby8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GOzYtUSJ+RidGN0Y+RkBGQkZERkZGSEZKRldGWUZRLUY7Ni1RIjxGJ0Y3Rj5GQEZCRkRGRkZIRkpGTEZPLUY7Ni1RKiZ1bWludXMwO0YnRjdGPkZARkJGREZGRkhGSi9GTVEsMC4yMjIyMjIyZW1GJy9GUEZncC1JI21uR0YkNiRRIjNGJ0Y3LUY7Ni1RIixGJ0Y3Rj4vRkFGaG5GQkZERkZGSEZKRlcvRlBRLDAuMzMzMzMzM2VtRictRmpwNiRRIjBGJ0Y3Rl1xRl1wRmBvRl1wLUYsNiVGU0ZnbkZpbkZgcEZjcC1GanA2JFEiMkYnRjdGXXEtSSVtc3ViR0YkNiUtRiw2JVEicEYnRmduRmluLUYjNiVGY3FGZ25GaW4vJS9zdWJzY3JpcHRzaGlmdEdGZXEtRlxvNiQtRiM2JEZmcUY3RjdGXXFGYG9GXXBGUUZgcEZjcC1GanA2JFEiMUYnRjdGXXEtRlxyNiUtRiw2JUZgckY0RjctRiM2JEZpckY3RmNyRmVyRl1xRmBvRl1wRmZxRmBwRmNxRl1xLUZccjYlRl5yLUYjNiRGaHFGN0ZjckZlckZdcUZgb0ZdcEZmcUZgcEZpckZdcUZicy1GXG82JC1GIzYlRmNwRmZxRjdGN0ZdcUZgb0ZdcEZmcUZgcEZocUZdcS1GXHI2JUZeckZgc0ZjckZmc0ZdcUZgb0ZdcEZmcUZgcEZpcEZdcUZbckZmc0ZdcUZgb0ZdcEZmcS1GOzYtUS8mR3JlYXRlckVxdWFsO0YnRjdGPkZARkJGREZGRkhGSkZMRk9GaXBGXXFGXXBGY3FGN0Y3RjdGKy8lK2V4ZWN1dGFibGVHRjZGNw==">PkkiUEc2ImYqNiNJInhHRiRGJDYkSSlvcGVyYXRvckdGJEkmYXJyb3dHRiRGJC1JKnBpZWNld2lzZUclKnByb3RlY3RlZEc2MjI5JCEiJCIiITJGMCEiIy0mSSJwR0YkNiNGMjYjRjAyRjAhIiItJkY3NiMiIiJGOTJGMEYyLSZGNzYjIiIjRjkyRjBGPy1GQjYjLCRGMEY7MkYwRkQtRj1GRzJGMCIiJC1GNkZHMUZMRjBGMkYkRiRGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiUEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2KC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCYjODU5NDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWC1GIzYoLUYsNiVRKnBpZWNld2lzZUYnRi9GMi1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGV0ZZLUkobWZlbmNlZEdGJDYkLUYjNkQtRiM2KEZRLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlxwLUkjbW5HRiQ2JFEiM0YnRjlGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGVy9GTlEsMC4zMzMzMzMzZW1GJy1GX3A2JFEiMEYnRjlGZ3AtRiM2KEZRRmNvLUYjNiVGaG8tRl9wNiRRIjJGJ0Y5RjlGYnBGZXBGOUZncC1GIzYoLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JkZdcUZicEZlcEY5LyUvc3Vic2NyaXB0c2hpZnRHRl9xRmluLUZdbzYkLUYjNiZGUUZicEZlcEY5RjlGYnBGZXBGOUZncC1GIzYoRlFGY28tRiM2JUZoby1GX3A2JFEiMUYnRjlGOUZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2JkZbc0ZicEZlcEY5RmFyRmluRmNyRmJwRmVwRjlGZ3AtRiM2KEZRRmNvRl1xRmJwRmVwRjlGZ3AtRiM2KC1GanE2JUZcci1GIzYmRmRxRmJwRmVwRjlGYXJGaW5GY3JGYnBGZXBGOUZncC1GIzYoRlFGY29GW3NGYnBGZXBGOUZncC1GIzYoRmhzRmluLUZdbzYkLUYjNiYtRiM2J0Zob0ZRRmJwRmVwRjlGYnBGZXBGOUY5RmJwRmVwRjlGZ3AtRiM2KEZRRmNvRmRxRmJwRmVwRjlGZ3AtRiM2KEZgc0ZpbkZgdEZicEZlcEY5RmdwLUYjNihGUUZjb0ZecEZicEZlcEY5RmdwLUYjNihGaXFGaW5GYHRGYnBGZXBGOUZncC1GIzYoRl5wLUY2Ni1RJSZsZTtGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRlFGYnBGZXBGOUZncEZdcUZicEZlcEY5RjlGYnBGZXBGOUZicEZlcEY5RmJwRmVwRjk=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzYyMjkkISIkIiIhMkYuISIjLSZJInBHRiU2I0YwNiNGLjJGLiEiIi0mRjU2IyIiIkY3MkYuRjAtJkY1NiMiIiNGNzJGLkY9LUZANiMsJEYuRjkyRi5GQi1GO0ZFMkYuIiIkLUY0RkUxRkpGLkYwRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L566" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="E := [eval(P(x), x = 0) = 1, eval(P(x), x = -1) = 0, eval(P(x), x = -2) = 0, eval(P(x), x = -3) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiRUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNjctRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNiktRiw2JVEiUEYnRi9GMi1GUDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5RjlGOUZnby1GW3A2JFEiMUYnRjlGX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ28tRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmlwRl5wRjlGOUZnb0Zqb0Zfb0ZULUZQNiQtRiM2KkZlbkZobkZfb0Zcb0Znb0ZlcC1GW3A2JFEiMkYnRjlGOUY5RmdvRmpvRl9vRlQtRlA2JC1GIzYqRmVuRmhuRl9vRlxvRmdvRmVwLUZbcDYkUSIzRidGOUY5RjlGZ29Gam8vJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZpcUY5">QyQ+SSJFRzYiNyYvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJS9GLyIiISIiIi8tRik2JEYsL0YvISIiRjEvLUYpNiRGLC9GLyEiI0YxLy1GKTYkRiwvRi8hIiRGMUY3</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L558" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C0 := [seq(eval(p[j](x), x = j-3+1) = eval(p[j+1](x), x = j-3+1), j = 0 .. 1)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRl5wLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmRvLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYHEtSSNtbkdGJDYkUSIzRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl9xRmFxLUZjcTYkUSIxRidGOUY5RjlGaXBGZW4tRlA2JC1GIzYtLUZdbzYlRl9vLUYjNiZGZG9GZnFGaXFGOUZnb0Zqb0ZhcEZecEZpcEZkb0ZccUZicUZmcUZpcUY5RjlGYXBGZG9GaXAtRmNxNiRGaW9GOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZfcS9GTkZmcEZpcUY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZqckY5">QyQ+SSNDMEc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS9GNS1JIitHRik2JCwmRjMiIiIhIiRGO0Y7LUYtNiQtJkYxNiMsJkYzRjtGO0Y7RjRGNi9GMzsiIiFGOyEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L567" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C1 := [seq(eval(diff(p[j](x), x), x = j-3+1) = eval(diff(p[j+1](x), x), x = j-3+1), j = 0 .. 1)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwRjlGOUZocEZlcC1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbcC1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmdxLUkjbW5HRiQ2JFEiM0YnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocS1GanE2JFEiMUYnRjlGOUY5RmBxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JkZbcEZdckZgckY5Rl5wRmFwRmhwRmVwRjlGOUZocEZlcEZgcUZbcEZjcUZpcUZdckZgckY5RjlGaHBGW3BGYHEtRmpxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZmcS9GTkZdcUZgckY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSRDMTBGJ0YvRjJGNS1GUDYmLUYjNilGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2Jy1GZG82JUZmby1GIzYkLUZqcTYkUSIyRidGOUY5Rl5wRmFwRmhwRmVwRjlGOUZocEZlcEZgcUZfc0Y5RjlGYHFGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2J0ZfdS1GUDYkLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmZxRmhxRmVwRjlGOUZocEZlcEY5RjlGaHBGZXBGYHFGX3NGOUY5RmVzRjlGOUZnc0Zqc0ZddEZlc0Y5">QyY+SSNDMUc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJUY4L0Y4LUkiK0dGKTYkLCZGNiIiIiEiJEY+Rj4tRi02JC1GMDYkLSZGNDYjLCZGNkY+Rj5GPkY3RjhGOS9GNjsiIiFGPiEiIj5JJEMxMEdGJTcjLy1GLTYkLUYwNiQtJkY0NiMiIiNGN0Y4L0Y4RkotRi02JC1GMDYkLUZVNiMsJEY4RktGOEZYRks=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L555" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C2 := [seq(eval(diff(p[j](x), `$`(x, 2)), x = j-3+1) = eval(diff(p[j+1](x), `$`(x, 2)), x = j-3+1), j = 0 .. 1)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIyRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiM0YnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcUZnckY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbdEY5">QyQ+SSNDMkc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIjL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJEZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiFGQiEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L578" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C3 := [seq(eval(diff(p[j](x), `$`(x, 3)), x = j-3+1) = eval(diff(p[j+1](x), `$`(x, 3)), x = j-3+1), j = 0 .. 1)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIzRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfckZkcS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5yRmByLUZlcTYkUSIxRidGOUY5RjlGaHFGZW4tRlA2JC1GIzYtRlxvLUZQNiQtRiM2KS1GZG82JUZmby1GIzYmRltwRmFyRmRyRjlGXnBGYXBGaHBGZXBGYHFGZHFGOUY5RmhwRmVwRmhxRltwRltyRmRxRmFyRmRyRjlGOUZocEZbcEZocS1GZXE2JEZgcEY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRl5yRmNxRmRyRjlGOUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRiw2JVEkQzMwRidGL0YyRjUtRlA2Ji1GIzYoRmVuLUZQNiQtRiM2KUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JC1GZXE2JFEiMkYnRjlGOUZecEZhcEZocEZlcEZgcUZkcUY5RjlGaHBGZXBGaHFGY3NGOUY5RmhxRmVuLUZQNiQtRiM2KUZcby1GUDYkLUYjNilGYHUtRlA2JC1GIzYlLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgckZlcEY5RjlGaHBGZXBGYHFGZHFGOUY5RmhwRmVwRmhxRmNzRjlGOUY5RjlGaHNGW3RGXnQvJStleGVjdXRhYmxlR0Y9Rjk=">QyY+SSNDM0c2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIkL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJEZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiFGQiEiIj5JJEMzMEdGJTcjLy1GLTYkLUYwNiQtJkY0NiMiIiNGN0Y5L0Y4Rk4tRi02JC1GMDYkLUZZNiMsJEY4Rk9GOUZmbkZP</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L553" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="CEND := [eval(diff(p[0](x), x), x = -3) = 0, eval(diff(p[0](x), `$`(x, 2)), x = -3) = 0, eval(diff(p[0](x), `$`(x, 3)), x = -3) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElQ0VOREYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GUy1JKG1mZW5jZWRHRiQ2Ji1GIzYyLUYsNiVRJWV2YWxGJ0YvRjItRlY2JC1GIzYqLUYsNiVRJWRpZmZGJ0YvRjItRlY2JC1GIzYnLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JC1JI21uR0YkNiRRIjBGJ0Y5RjkvJS9zdWJzY3JpcHRzaGlmdEdGXXAtRlY2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGSi9GTlEsMC4zMzMzMzMzZW1GJ0ZkcEY5RjlGZ3BGZHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmRxLUZbcDYkUSIzRidGOUY5RjlGXXFGam9GZ3BGWi1GVjYkLUYjNipGW28tRlY2JC1GIzYpRmJvRmBwRmdwRmRwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZbcDYkUSIyRidGOUY5RjlGZ3BGZHBGXXFGYHFGZnFGOUY5Rl1xRmpvRmdwRlotRlY2JC1GIzYqRltvLUZWNiQtRiM2KUZib0ZgcEZncEZkcEZhckZmcUY5RjlGZ3BGZHBGXXFGYHFGZnFGOUY5Rl1xRmpvLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZSRlRGX3NGOQ==">QyQ+SSVDRU5ERzYiNyUvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JJWRpZmZHRio2JC0mSSJwR0YlNiMiIiE2I0kieEdGJUY1L0Y1ISIkRjMvLUYpNiQtRi02JEYvLUkiJEdGKjYkRjUiIiNGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIiRGNkYzISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L573" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM0 := `assuming`([PolynomialTools[CoefficientList](collect(sum(eval(P(x), x = s-l), l = xrange)-s^0, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0wRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRlM2JC1GIzYoLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlM2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GUzYkLUYjNiktRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0ZccS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXItRiw2JVEibEYnRi9GMkY5RjlGX3FGY3JGZ3EtRiw2JVEneHJhbmdlRidGL0YyRjlGOUZdci1JJW1zdXBHRiQ2JS1GUzYkLUYjNiRGanFGOUY5LUYjNiQtSSNtbkdGJDYkUSIwRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdGZXNGX3FGanFGOUY5Rl9xRmpxRlpGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGY3EvRk5GZHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGY3FGW3RGaHNGanEtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GYnNGaHMtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZodEY7Rj5GQEZCRkRGRkZIRmNxRlt0RmhzRmpxLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZjczYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZaRjk=">QyQ+SSRETTBHNiItSSlhc3N1bWluZ0dGJTYkNyMtJkkwUG9seW5vbWlhbFRvb2xzR0YlNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGJTYkLCYtSSRzdW1HNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2JC1JJWV2YWxHRjc2JC1JIlBHRiU2I0kieEdGJS9GQCwmSSJzR0YlIiIiSSJsR0YlISIiL0ZFSSd4cmFuZ2VHRiVGRC1JIl5HRjc2JEZDIiIhRkZGQ0ZDNyMtSSRhbmRHRjc2JC1JIj5HRjdGSzJGQ0ZERkY=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L577" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM0 := [seq(DM0[j] = 0, j = 1 .. numelems(DM0))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiYtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Ly1GLDYlUSRETTBGJ0YvRjItRlA2Ji1GIzYlLUYsNiVRImpGJ0YvRjIvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXG9GZ28tRltwNiRRIjFGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmNwLUYsNiVRKW51bWVsZW1zRidGL0YyLUZQNiQtRiM2JUZlbkZfb0Y5RjlGX29GOUY5Rl9vRjlGOUZhb0Zkby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYjUSFGJ0Zfb0Y5">QyQ+SSVsRE0wRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0wR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L551" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM1 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l*(eval(P(x), x = s-l)), l = xrange)-s, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistRiw2JVEibEYnRi9GMi1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaHAtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZncC9GTlEsMC4zMzMzMzMzZW1GJ0ZocS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GW3NGYXBGOUY5RltyRmFwRmFyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGZ3ItSSVtc3VwR0YkNiUtRlg2JC1GIzYkRmRyRjlGOS1GIzYkLUkjbW5HRiQ2JFEiMUYnRjlGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGW3JGZHJGOUY5RltyRmRyRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqczYkRl90RjlGYHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZhdUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmlzLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmB0LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTFHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIiLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiVGPEY7ISIiRjwvRjtJJ3hyYW5nZUdGJUY8RkZGR0ZGRkY3Iy1JJGFuZEdGLzYkLUkiPkdGLzYkRkYiIiEyRkZGPEZH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L559" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM1 := [seq(DM1[j] = 0, j = 1 .. numelems(DM1))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTFGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0xRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0xR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L544" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM2 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^2*(eval(P(x), x = s-l)), l = xrange)-s^2, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0yRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistSSVtc3VwR0YkNiUtRiw2JVEibEYnRi9GMi1GIzYlLUkjbW5HRiQ2JFEiMkYnRjlGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GZHEtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZjcS9GTlEsMC4zMzMzMzMzZW1GJ0Zkci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GZ3NGZHBGOUY5RmdyRmRwRl1zLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGY3MtRmJwNiUtRlg2JC1GIzYkRmBzRjlGOS1GIzYkRmlwRjlGXXFGZ3JGYHNGOUY5RmdyRmBzRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkRl9xRjlGZHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZldUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZkdC8lK2V4ZWN1dGFibGVHRj1GOQ==">QyQ+SSRETTJHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIjLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L576" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM2 := [seq(DM2[j] = 0, j = 1 .. numelems(DM2))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTJGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0yRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0yR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L564" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM3 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^3*(eval(P(x), x = s-l)), l = xrange)-s^3, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE0zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSIzRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTNHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIkLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L563" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM3 := [seq(DM3[j] = 0, j = 1 .. numelems(DM3))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNM0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTNGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0zRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0zR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L569" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM4 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^4*(eval(P(x), x = s-l)), l = xrange)-s^4, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE00RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI0RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTRHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIlLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L568" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM4 := [seq(DM4[j] = 0, j = 1 .. numelems(DM4))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTRGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE00RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE00R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L546" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="inconnues := [seq(seq(c[i, j], j = 0 .. d), i = 0 .. 2)]; 1; numelems(inconnues)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2Ji1GLDYlUSRzZXFGJ0YvRjItRlA2JC1GIzYrRlQtRlA2JC1GIzYqLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2Ji1GLDYlUSJpRidGL0YyLUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRictRiw2JVEiakYnRi9GMkY5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGZG9GXHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSNtbkdGJDYkRmFwRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GaW8tRiw2JVEiZEYnRi9GMkY5RjlGZG9GYW9GYnBGZXBGaHAtRmZwNiRRIjJGJ0Y5RjlGOS8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjtGJ0Y5RjtGZ29GQEZCRkRGRkZIRmhvRk0tRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRitGOUY5RmRxRjk=">QyU+SSppbmNvbm51ZXNHNiI3Iy1JJHNlcUclKnByb3RlY3RlZEc2JC1GKDYkJkkiY0dGJTYkSSJpR0YlSSJqR0YlL0YxOyIiIUkiZEdGJS9GMDtGNCIiIyIiIi1JKW51bWVsZW1zR0YpNiNGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZULUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2KC1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGZm4vJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOS8lL3N1YnNjcmlwdHNoaWZ0R0ZpbkZqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiMUYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiMkYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiM0YnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiNEYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiNUYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiNkYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEiN0YnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZmbkZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRl1wRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GZHBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZbcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmJxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GaXFGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZgckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmdyRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GZm5GYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZdcEZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmRwRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GW3FGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZicUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmlxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GYHJGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZnckZib0Zlb0Y5RmdvRmJvRmVvRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zib0Zlb0Y5">NzomSSJjRzYiNiQiIiFGJyZGJDYkRiciIiImRiQ2JEYnIiIjJkYkNiRGJyIiJCZGJDYkRiciIiUmRiQ2JEYnIiImJkYkNiRGJyIiJyZGJDYkRiciIigmRiQ2JEYqRicmRiQ2JEYqRiomRiQ2JEYqRi0mRiQ2JEYqRjAmRiQ2JEYqRjMmRiQ2JEYqRjYmRiQ2JEYqRjkmRiQ2JEYqRjwmRiQ2JEYtRicmRiQ2JEYtRiomRiQ2JEYtRi0mRiQ2JEYtRjAmRiQ2JEYtRjMmRiQ2JEYtRjYmRiQ2JEYtRjkmRiQ2JEYtRjw=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiND</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L556" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="conditions := [E[], C0[], C1[], C10[], C2[], C3[], C30[], CEND[], lDM0[], lDM1[], lDM2[], lDM3[], lDM4[]]; -1; numelems(conditions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVErY29uZGl0aW9uc0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GU0Y1LUkobWZlbmNlZEdGJDYmLUYjNkotRiw2JVEiRUYnRi9GMi1GVjYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRiw2JVEjQzBGJ0YvRjItRlY2Ji1GIzYkRltvRjlGOUZgb0Zjb0Zmby1GLDYlUSNDMUYnRi9GMkZfcEZmby1GLDYlUSRDMTBGJ0YvRjJGX3BGZm8tRiw2JVEjQzJGJ0YvRjJGZ25GZm8tRiw2JVEjQzNGJ0YvRjJGZ25GZm8tRiw2JVEkQzMwRidGL0YyRmduRmZvLUYsNiVRJUNFTkRGJ0YvRjJGX3BGZm8tRiw2JVElbERNMEYnRi9GMkZfcEZmby1GLDYlUSVsRE0xRidGL0YyRl9wRmZvLUYsNiVRJWxETTJGJ0YvRjJGX3BGZm8tRiw2JVElbERNM0YnRi9GMkZnbkZmby1GLDYlUSVsRE00RidGL0YyRmduRl5vRjlGOUZgb0Zjby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRlJGVC1GLDYlUSludW1lbGVtc0YnRi9GMi1GVjYkLUYjNiRGK0Y5RjlGXm9GOQ==">QyU+SStjb25kaXRpb25zRzYiNy8mSSJFR0YlRiUmSSNDMEdGJUYlJkkjQzFHRiVGJSZJJEMxMEdGJUYlJkkjQzJHRiVGJSZJI0MzR0YlRiUmSSRDMzBHRiVGJSZJJUNFTkRHRiVGJSZJJWxETTBHRiVGJSZJJWxETTFHRiVGJSZJJWxETTJHRiVGJSZJJWxETTNHRiVGJSZJJWxETTRHRiVGJSEiIi1JKW51bWVsZW1zRyUqcHJvdGVjdGVkRzYjRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNj</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L561" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="A, b := LinearAlgebra[GenerateMatrix](conditions, inconnues);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkobWZlbmNlZEdGJDYkLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y4USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZCLyUqc3ltbWV0cmljR0ZCLyUobGFyZ2VvcEdGQi8lLm1vdmFibGVsaW1pdHNHRkIvJSdhY2NlbnRHRkIvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYtUSJ+RidGPkZAL0ZERkJGRUZHRklGS0ZNRk8vRlNGUS1GMTYlUSJiRidGNEY3LyUrZXhlY3V0YWJsZUdGQkY+Rj4tRjs2LVEqJmNvbG9uZXE7RidGPkZARlhGRUZHRklGS0ZNL0ZQUSwwLjI3Nzc3NzhlbUYnL0ZTRl1vLUYxNiVRLkxpbmVhckFsZ2VicmFGJ0Y0RjctRiw2Ji1GIzYlLUYxNiVRL0dlbmVyYXRlTWF0cml4RidGNEY3RmduRj5GPi8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GLDYkLUYjNigtRjE2JVErY29uZGl0aW9uc0YnRjRGN0Y6RlUtRjE2JVEqaW5jb25udWVzRidGNEY3RmduRj5GPi1GOzYtUSI7RidGPkZARkNGRUZHRklGS0ZNRk9GXm9GZ25GPg==">QyQ+NiRJIkFHNiJJImJHRiYtJkkuTGluZWFyQWxnZWJyYUdGJjYjSS9HZW5lcmF0ZU1hdHJpeEdGJjYkSStjb25kaXRpb25zR0YmSSppbmNvbm51ZXNHRiYiIiI=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y1USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMy8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GLjYlUSJiRidGMUY0LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y/RjstRjg2LVEjOj1GJ0Y7Rj0vRkFGP0ZCRkRGRkZIRkovRk1RLDAuMjc3Nzc3OGVtRicvRlBGaW4tRiM2KC1JKG1hY3Rpb25HRiQ2JS1JKG1mZW5jZWRHRiQ2Ji1JJ210YWJsZUdGJDY4LUkkbXRyR0YkNiYtSSRtdGRHRiQ2KC1GIzYmLUYuNiVRKn41Nn54fjI0fkYnRjFGNC1GLjYlUSdNYXRyaXhGJ0YxRjRGVUY7LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZmcC8lK2dyb3VwYWxpZ25HRmZwLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRl1xRmRwRmdwRmlwLUZnbzYmLUZqbzYoLUYjNiYtRi42JVEsRGF0YX5UeXBlOn5GJ0YxRjQtRi42JVEpYW55dGhpbmdGJ0YxRjRGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwLUZnbzYmLUZqbzYoLUYjNiYtRi42JVEqU3RvcmFnZTp+RidGMUY0LUYuNiVRLHJlY3Rhbmd1bGFyRidGMUY0RlVGO0ZkcEZncEZpcEZbcUZecUZkcEZncEZpcC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKE9yZGVyOn5GJ0YxRjQtRi42JVEuRm9ydHJhbl9vcmRlckYnRjFGNEZVRjtGZHBGZ3BGaXBGW3FGXnFGZHBGZ3BGaXAvJSZhbGlnbkdRJWF4aXNGJy9GZXBRKWJhc2VsaW5lRicvRmhwUSdjZW50ZXJGJy9GanBRJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0YzLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGYXQvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGXHUvJSZmcmFtZUdGXHUvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y/LyUtZXF1YWxjb2x1bW5zR0Y/LyUtZGlzcGxheXN0eWxlR0Y/LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRml0RjsvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRicvJSthY3Rpb250eXBlR1EtYnJvd3NlcnRhYmxlRicvJSlydGFibGVpZEdRNTE4NDQ2NzQ0MDc4MjAzMzEwNDM4RidGNy1GXm82JS1GYW82Ji1GZG82OC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKn4xfi4ufjU2fkYnRjFGNC1JJW1zdWJHRiQ2JS1GLjYlUSdWZWN0b3JGJ0YxRjQtRiM2JS1GLjYlUSdjb2x1bW5GJ0YxRjRGVUY7LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwRmBxRlxyRmhyRmRzRmdzRmlzRlt0Rl10Rl90RmJ0RmR0Rmd0Rmp0Rl11Rl91RmF1RmR1RmZ1Rmh1Rmp1Rl12RjtGX3ZGYnZGZXYvRml2UTUxODQ0Njc0NDA3ODIwMzMxMDMxOEYnRlVGWEY7RlVGWEY7">NiQtSSdNYXRyaXhHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2Iy9JJCVpZEdGKCI1US9KLiN5U3VZJT0tJkknVmVjdG9yR0YlNiNJJ2NvbHVtbkdGKDYjL0YrIjU9LkouI3lTdVklPQ==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L575" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[Rank](A)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJVJhbmtGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYkLUYjNiUtRiw2JVEiQUYnRi9GMkY9RkBGQC1GLDYjUSFGJ0Y9RkA=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0klUmFua0dGKDYjSSJBR0Yo</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiND</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L565" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="solutions := solve(conditions, {inconnues[]})" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yNzc3Nzc4ZW1GJy9GTkZTLUYsNiVRJnNvbHZlRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNictRiw2JVErY29uZGl0aW9uc0YnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRlk2Ji1GIzYmLUYsNiVRKmluY29ubnVlc0YnRi9GMi1GWTYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZecEY5RjkvRmFwUSJ8ZnJGJy9GZHBRInxockYnRl5wRjlGOUZecEY5">Pkkqc29sdXRpb25zRzYiLUkmc29sdmVHRiQ2JEkrY29uZGl0aW9uc0dGJDwjJkkqaW5jb25udWVzR0YkRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZULUYjNigtSSVtc3ViR0YkNiUtRiw2JVEiY0YnRi9GMi1GIzYoLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zobi8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LyUvc3Vic2NyaXB0c2hpZnRHRltvLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmRwLUZpbjYkUSQyOTdGJ0Y5RjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIxRidGOUZkb0Znb0Y5RmlvRltwLUYjNidGYHAtSSZtZnJhY0dGJDYoLUZpbjYkUSUzNTAxRidGOS1GaW42JFEiNEYnRjkvJS5saW5ldGhpY2tuZXNzR0ZhcS8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zhci8lKWJldmVsbGVkR0Y9RmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIyRidGOUZkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmVxNigtRmluNiRRJTg3NzVGJ0Y5LUZpbjYkUSI4RidGOUZdckZfckZickZkckZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiM0YnRjlGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZlcTYoLUZpbjYkUSUzMDI5RidGOUZqcUZdckZfckZickZkckZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcb0ZqcUZkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmVxNigtRmluNiRRJTM3MzFGJ0Y5LUZpbjYkUSMxMkYnRjlGXXJGX3JGYnJGZHJGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjVGJ0Y5RmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZXE2KC1GaW42JFEkOTExRidGOUZmdUZdckZfckZickZkckZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiNkYnRjlGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZlcTYoLUZpbjYkUSQyNDVGJ0Y5LUZpbjYkUSMyNEYnRjlGXXJGX3JGYnJGZHJGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjdGJ0Y5RmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZXE2KEZieEZmdUZdckZfckZickZkckZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZfcUZcb0ZobkZkb0Znb0Y5RmlvRltwLUZpbjYkUSMzMUYnRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl9xRlxvRl9xRmRvRmdvRjlGaW9GW3AtRmVxNigtRmluNiRRJTE5NDVGJ0Y5RmZ1Rl1yRl9yRmJyRmRyRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZfcUZcb0Zcc0Zkb0Znb0Y5RmlvRltwLUZlcTYoLUZpbjYkUSUyOTA1RidGOUZmc0ZdckZfckZickZkckZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGX3FGXG9GX3RGZG9GZ29GOUZpb0ZbcC1GZXE2KC1GaW42JFElNTM0NUYnRjlGZnVGXXJGX3JGYnJGZHJGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl9xRlxvRmpxRmRvRmdvRjlGaW9GW3AtRmVxNigtRmluNiRRJTEyODFGJ0Y5RmpxRl1yRl9yRmJyRmRyRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZfcUZcb0ZfdkZkb0Znb0Y5RmlvRltwLUZlcTYoLUZpbjYkUSUxNjE1RidGOUZmdUZdckZfckZickZkckZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGX3FGXG9GX3dGZG9GZ29GOUZpb0ZbcC1GZXE2KEZmd0Zmc0ZdckZfckZickZkckZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGX3FGXG9GYnhGZG9GZ29GOUZpb0ZbcC1GZXE2KC1GaW42JFEjMzVGJ0Y5RmZ1Rl1yRl9yRmJyRmRyRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZcc0Zcb0ZobkZkb0Znb0Y5RmlvRltwRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZcc0Zcb0ZfcUZkb0Znb0Y5RmlvRltwRmhuRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZcc0Zcb0Zcc0Zkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmVxNihGX3ZGanFGXXJGX3JGYnJGZHJGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGXHNGXG9GX3RGZG9GZ29GOUZpb0ZbcEZobkZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGXHNGXG9GanFGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZlcTYoLUZpbjYkUSMyOEYnRjlGX3RGXXJGX3JGYnJGZHJGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGXHNGXG9GX3ZGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZlcTYoLUZpbjYkUSQxNDVGJ0Y5Rl93Rl1yRl9yRmJyRmRyRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRlxzRlxvRl93RmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZXE2KEZmd0ZmdUZdckZfckZickZkckZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZcc0Zcb0ZieEZkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmVxNihGaV1sRl93Rl1yRl9yRmJyRmRyRmRvRmdvRjlGZG9GZ29GOUZkb0Znb0Y5RjkvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnRmRvRmdvRjk=">PDovJkkiY0c2IjYkIiIhRighJChILyZGJTYkRigiIiIjISUsTiIiJS8mRiU2JEYoIiIjIyEldigpIiIpLyZGJTYkRigiIiQjISVISUYwLyZGJTYkRihGMCMhJUpQIiM3LyZGJTYkRigiIiYjISQ2KkZDLyZGJTYkRigiIicjISRYIyIjQy8mRiU2JEYoIiIoIyEiKEZDLyZGJTYkRi1GKCIjSi8mRiU2JEYtRi0jIiVYPkZDLyZGJTYkRi1GNCMiJTBIRjcvJkYlNiRGLUY7IyIlWGBGQy8mRiU2JEYtRjAjIiUiRyJGMC8mRiU2JEYtRkcjIiU6O0ZDLyZGJTYkRi1GTSMiJFgjRjcvJkYlNiRGLUZUIyIjTkZDLyZGJTYkRjRGKEYtLyZGJTYkRjRGLUYoLyZGJTYkRjRGNCMhIiZGMC8mRiU2JEY0RjtGKC8mRiU2JEY0RjAjISNHRjsvJkYlNiRGNEZHIyEkWCJGTS8mRiU2JEY0Rk0jRk9GQy8mRiU2JEY0RlQjISNORk0=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L570" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[LinearSolve](A, b)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYkLUYsNiVRLExpbmVhclNvbHZlRidGL0YyL0YzUSdub3JtYWxGJ0Y9LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2NiQtRiM2Jy1GLDYlUSJBRidGL0YyLUkjbW9HRiQ2LVEiLEYnRj0vJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGUi8lKnN5bW1ldHJpY0dGUi8lKGxhcmdlb3BHRlIvJS5tb3ZhYmxlbGltaXRzR0ZSLyUnYWNjZW50R0ZSLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEiYkYnRi9GMi8lK2V4ZWN1dGFibGVHRlJGPUY9RmJvRj0=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0ksTGluZWFyU29sdmVHRig2JEkiQUdGKEkiYkdGKA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUkobWFjdGlvbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkobWZlbmNlZEdGJDYmLUknbXRhYmxlR0YkNjgtSSRtdHJHRiQ2Ji1JJG10ZEdGJDYoLUklbXJvd0dGJDYmLUkjbWlHRiQ2JVEqfjF+Li5+MjR+RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUklbXN1YkdGJDYlLUY7NiVRJ1ZlY3RvckYnRj5GQS1GODYlLUY7NiVRJ2NvbHVtbkYnRj5GQS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvRkJRJ25vcm1hbEYnLyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGT0ZSLyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZZLyUrZ3JvdXBhbGlnbkdGWS8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZqbkZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEsRGF0YX5UeXBlOn5GJ0Y+RkEtRjs2JVEpYW55dGhpbmdGJ0Y+RkFGT0ZSRldGWkZmbkZobkZbb0ZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEqU3RvcmFnZTp+RidGPkZBLUY7NiVRLHJlY3Rhbmd1bGFyRidGPkZBRk9GUkZXRlpGZm5GaG5GW29GV0ZaRmZuLUYyNiYtRjU2KC1GODYmLUY7NiVRKE9yZGVyOn5GJ0Y+RkEtRjs2JVEuRm9ydHJhbl9vcmRlckYnRj5GQUZPRlJGV0ZaRmZuRmhuRltvRldGWkZmbi8lJmFsaWduR1ElYXhpc0YnL0ZYUSliYXNlbGluZUYnL0ZlblEnY2VudGVyRicvRmduUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGQC8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRl5yLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmlyLyUmZnJhbWVHRmlyLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dRJmZhbHNlRicvJS1lcXVhbGNvbHVtbnNHRmNzLyUtZGlzcGxheXN0eWxlR0Zjcy8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0ZmckZSLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLyUrYWN0aW9udHlwZUdRLWJyb3dzZXJ0YWJsZUYnLyUpcnRhYmxlaWRHUTUxODQ0Njc0NDA3ODIyODA5ODkzNEYn">LSZJJ1ZlY3Rvckc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkc2IjYjSSdjb2x1bW5HRig2Iy9JJCVpZEdGKCI1TSopNEcjeVN1WSU9</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L549" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[4, 3] := eval(P(x), solutions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KC1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictRiM2Ji1JI21uR0YkNiRRIjRGJ0Y6LUkjbW9HRiQ2LVEiLEYnRjovJSZmZW5jZUdGOS8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y5LyUqc3ltbWV0cmljR0Y5LyUobGFyZ2VvcEdGOS8lLm1vdmFibGVsaW1pdHNHRjkvJSdhY2NlbnRHRjkvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GQDYkUSIzRidGOkY6LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRkQ2LVEifkYnRjpGRy9GSkY5RkxGTkZQRlJGVEZWL0ZaRlgtRkQ2LVEqJmNvbG9uZXE7RidGOkZHRl9vRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZlby1GLDYlUSVldmFsRicvRjhGSy9GO1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Jy1GLDYlUSJQRidGam9GW3AtRl5wNiQtRiM2JC1GLDYlUSJ4RidGam9GW3BGOkY6RkMtRiw2JVEqc29sdXRpb25zRidGam9GW3BGOkY6RjpGKy8lK2V4ZWN1dGFibGVHRjlGOg==">PiZJJ0xhbWJkYUc2IjYkIiIlIiIkLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJUkqc29sdXRpb25zR0Yl</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEnJiM5MjM7RicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1GIzYoLUkjbW5HRiQ2JFEiNEYnRjUtSSNtb0dGJDYtUSIsRidGNS8lJmZlbmNlR0Y0LyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjQvJSpzeW1tZXRyaWNHRjQvJShsYXJnZW9wR0Y0LyUubW92YWJsZWxpbWl0c0dGNC8lJ2FjY2VudEdGNC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUY7NiRRIjNGJ0Y1LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y0RjUvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GPzYtUSM6PUYnRjVGQi9GRUY0RkdGSUZLRk1GTy9GUlEsMC4yNzc3Nzc4ZW1GJy9GVUZhby1GIzYnLUY/Ni1RInxmckYnRjUvRkNGRkZfby9GSEZGRklGS0ZNRk8vRlJRLDAuMTY2NjY2N2VtRicvRlVGW3AtSSdtdGFibGVHRiQ2PC1JJG10ckdGJDYnLUkkbXRkR0YkNigtRjs2JEZbb0Y1LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZqcC8lK2dyb3VwYWxpZ25HRmpwLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRmFxLUZkcDYoLUYjNigtRi82JVEieEYnL0YzRkYvRjZRJ2l0YWxpY0YnLUY/Ni1RIjxGJ0Y1RkJGX29GR0ZJRktGTUZPRmBvRmJvLUYjNiUtRj82LVEqJnVtaW51czA7RidGNUZCRl9vRkdGSUZLRk1GTy9GUlEsMC4yMjIyMjIyZW1GJy9GVUZnckZXRjVGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjNGY3ItRjs2JFEkMjk3RidGNS1GPzYtUSgmbWludXM7RidGNUZCRl9vRkdGSUZLRk1GT0ZmckZoci1GIzYoLUkmbWZyYWNHRiQ2KC1GOzYkUSUzNTAxRidGNUY6LyUubGluZXRoaWNrbmVzc0dGYXEvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGYXQvJSliZXZlbGxlZEdGNC1GPzYtUTEmSW52aXNpYmxlVGltZXM7RidGNUZCRl9vRkdGSUZLRk1GT0ZRL0ZVRlNGaHFGWkZnbkY1RmJzLUYjNigtRmhzNigtRjs2JFElODc3NUYnRjUtRjs2JFEiOEYnRjVGXXRGX3RGYnRGZHRGZnQtSSVtc3VwR0YkNiVGaHEtRjs2JFEiMkYnRjUvJTFzdXBlcnNjcmlwdHNoaWZ0R0Zbb0ZaRmduRjVGYnMtRiM2KC1GaHM2KC1GOzYkUSUzMDI5RidGNUY6Rl10Rl90RmJ0RmR0RmZ0LUZldTYlRmhxRldGanVGWkZnbkY1RmJzLUYjNigtRmhzNigtRjs2JFElMzczMUYnRjUtRjs2JFEjMTJGJ0Y1Rl10Rl90RmJ0RmR0RmZ0LUZldTYlRmhxRjpGanVGWkZnbkY1RmJzLUYjNigtRmhzNigtRjs2JFEkOTExRidGNUZcd0ZddEZfdEZidEZkdEZmdC1GZXU2JUZocS1GOzYkUSI1RidGNUZqdUZaRmduRjVGYnMtRiM2KC1GaHM2KC1GOzYkUSQyNDVGJ0Y1LUY7NiRRIzI0RidGNUZddEZfdEZidEZkdEZmdC1GZXU2JUZocS1GOzYkUSI2RidGNUZqdUZaRmduRjVGYnMtRiM2KC1GaHM2KC1GOzYkUSI3RidGNUZcd0ZddEZfdEZidEZkdEZmdC1GZXU2JUZocUZgeUZqdUZaRmduRjVGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yLUYjNiVGY3JGZ3VGNUZaRmduRjVGaHBGW3FGXXFGX3FGYnFGaHBGW3FGXXEtRmFwNictRmRwNigtRiM2Mi1GOzYkUSMzMUYnRjUtRj82LVEiK0YnRjVGQkZfb0ZHRklGS0ZNRk9GZnJGaHItRiM2KC1GaHM2KC1GOzYkUSUxOTQ1RidGNUZcd0ZddEZfdEZidEZkdEZmdEZocUZaRmduRjVGZHotRiM2KC1GaHM2KC1GOzYkUSUyOTA1RidGNUZhdUZddEZfdEZidEZkdEZmdEZkdUZaRmduRjVGZHotRiM2KC1GaHM2KC1GOzYkUSU1MzQ1RidGNUZcd0ZddEZfdEZidEZkdEZmdEZjdkZaRmduRjVGZHotRiM2KC1GaHM2KC1GOzYkUSUxMjgxRidGNUY6Rl10Rl90RmJ0RmR0RmZ0Rl93RlpGZ25GNUZkei1GIzYoLUZoczYoLUY7NiRRJTE2MTVGJ0Y1Rlx3Rl10Rl90RmJ0RmR0RmZ0Rmh3RlpGZ25GNUZkei1GIzYoLUZoczYoRmF4RmF1Rl10Rl90RmJ0RmR0RmZ0Rmd4RlpGZ25GNUZkei1GIzYoLUZoczYoLUY7NiRRIzM1RidGNUZcd0ZddEZfdEZidEZkdEZmdEZjeUZaRmduRjVGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yLUYjNiVGY3ItRjs2JEZhcUY1RjVGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNi5GW15sRmJzLUYjNigtRmhzNihGandGOkZddEZfdEZidEZkdEZmdEZkdUZaRmduRjVGYnMtRiM2KC1GaHM2KC1GOzYkUSMyOEYnRjVGV0ZddEZfdEZidEZkdEZmdEZfd0ZaRmduRjVGYnMtRiM2KC1GaHM2KC1GOzYkUSQxNDVGJ0Y1Rml4Rl10Rl90RmJ0RmR0RmZ0Rmh3RlpGZ25GNUZicy1GIzYoLUZoczYoRmF4Rlx3Rl10Rl90RmJ0RmR0RmZ0Rmd4RlpGZ25GNUZicy1GIzYoLUZoczYoRmJdbEZpeEZddEZfdEZidEZkdEZmdEZjeUZaRmduRjVGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRmZwRlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzYuRltebEZic0ZjXmxGYnNGZ15sRmR6Rl5fbEZic0ZlX2xGZHpGaV9sRjVGaHBGW3FGXXFGX3FGYnEtRmRwNigtRiM2KEZocUZeckZbXmxGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjJGYXpGYnNGZ3pGZHpGXltsRmJzRmVbbEZkekZcXGxGYnNGY1xsRmR6RmpcbEZic0ZeXWxGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRmd1RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzYzRmNyRl9zRmR6RmVzRmJzRmp0RmR6Rlx2RmJzRmV2RmR6RmF3RmJzRl14RmR6Rlx5RjVGaHBGW3FGXXFGX3FGYnEtRmRwNigtRiM2KEZocUZeckZXRlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2J0ZjcC1GZHA2KC1GIzYoRlctRj82LVElJmxlO0YnRjVGQkZfb0ZHRklGS0ZNRk9GYG9GYm9GaHFGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLyUmYWxpZ25HUSVheGlzRicvRmlwUSliYXNlbGluZUYnL0ZccUZhdC9GXnFRJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0ZGLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGZGNsLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EkMmVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0ZfZGwvJSZmcmFtZUdGX2RsLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dGNC8lLWVxdWFsY29sdW1uc0dGNC8lLWRpc3BsYXlzdHlsZUdGNC8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR1EmMC44ZW1GJ0ZaRmduRjVGWkZnbkY1">LUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzYyMkkieEc2IiEiJCIiITJGJyEiIywyISQoSCIiIkYnIyElLE4iIiUqJEYnIiIjIyEldigpIiIpKiRGJyIiJCMhJUhJRjIqJEYnRjIjISVKUCIjNyokRiciIiYjISQ2KkY/KiRGJyIiJyMhJFgjIiNDKiRGJyIiKCMhIihGPzJGJyEiIiwyIiNKRi9GJyMiJVg+Rj9GMyMiJTBIRjdGOCMiJVhgRj9GPCMiJSJHIkYyRkAjIiU6O0Y/RkQjIiRYI0Y3RkkjIiNORj8yRidGKiwuRi9GL0YzIyEiJkYyRjwjISNHRjlGQCMhJFgiRkVGRCNGR0Y/RkkjISNORkUyRidGLywuRi9GL0YzRltvRjxGXW9GQCMiJFgiRkVGREZhb0ZJI0ZobkZFMkYnRjQsMkZQRi9GJyMhJVg+Rj9GM0ZTRjgjISVYYEY/RjxGV0ZAIyElOjtGP0ZERmVuRkkjRmNvRj8yRidGOSwyRi5GL0YnIyIlLE5GMkYzRjVGOCMiJUhJRjJGPEY9RkAjIiQ2KkY/RkRGRkZJI0ZKRj8xRjlGJ0Yq</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L552" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="seq(evalb(simplify(conditions[i], solutions)), i = 1 .. numelems(conditions));" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEkc2VxRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNi0tRiw2JVEmZXZhbGJGJ0YvRjItRjY2JC1GIzYmLUYsNiVRKXNpbXBsaWZ5RidGL0YyLUY2NiQtRiM2KS1GLDYlUStjb25kaXRpb25zRidGL0YyLUY2NiYtRiM2JS1GLDYlUSJpRidGL0YyLyUrZXhlY3V0YWJsZUdRJmZhbHNlRicvRjNRJ25vcm1hbEYnRlUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictSSNtb0dGJDYtUSIsRidGVS8lJmZlbmNlR0ZULyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRlQvJSpzeW1tZXRyaWNHRlQvJShsYXJnZW9wR0ZULyUubW92YWJsZWxpbWl0c0dGVC8lJ2FjY2VudEdGVC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUZobjYtUSJ+RidGVUZbby9GXm9GVEZfb0Zhb0Zjb0Zlb0Znb0Zpby9GXXBGW3AtRiw2JVEqc29sdXRpb25zRidGL0YyRlJGVUZVRlJGVUZVRmduRk8tRmhuNi1RIj1GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yNzc3Nzc4ZW1GJy9GXXBGW3EtSSNtbkdGJDYkUSIxRidGVS1GaG42LVEjLi5GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yMjIyMjIyZW1GJ0ZjcC1GLDYlUSludW1lbGVtc0YnRi9GMi1GNjYkLUYjNiRGSEZVRlVGUkZVRlUtRmhuNi1RIjtGJ0ZVRltvRl1vRl9vRmFvRmNvRmVvRmdvRmlvRlxxRlJGVQ==">QyQtSSRzZXFHJSpwcm90ZWN0ZWRHNiQtSSZldmFsYkdGJTYjLUkpc2ltcGxpZnlHNiI2JCZJK2NvbmRpdGlvbnNHRiw2I0kiaUdGLEkqc29sdXRpb25zR0YsL0YxOyIiIi1JKW51bWVsZW1zR0YlNiNGL0Y1</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NlpJJXRydWVHJSpwcm90ZWN0ZWRHRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiM=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L554" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="evalb(int(Lambda[4, 3], x = xrange) = 1); 1; seq(evalb(int(x^i*Lambda[4, 3], x = xrange) = 0), i = 1 .. 4)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEmZXZhbGJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2KC1GLDYlUSRpbnRGJ0YvRjItRjY2JC1GIzYqLUYsNiNRIUYnLUYjNiZGQS1GIzYkLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBRJmZhbHNlRicvRjNRJ25vcm1hbEYnLUYjNiYtSSNtbkdGJDYkUSI0RidGUC1JI21vR0YkNi1RIixGJ0ZQLyUmZmVuY2VHRk8vJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGTy8lKnN5bW1ldHJpY0dGTy8lKGxhcmdlb3BHRk8vJS5tb3ZhYmxlbGltaXRzR0ZPLyUnYWNjZW50R0ZPLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRlU2JFEiM0YnRlBGUC8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnRlBGQUZQRkFGWC1GLDYlUSJ4RidGL0YyLUZZNi1RIj1GJ0ZQRmZuL0ZpbkZPRmpuRlxvRl5vRmBvRmJvL0Zlb1EsMC4yNzc3Nzc4ZW1GJy9GaG9GaHAtRiw2JVEneHJhbmdlRidGL0YyRlBGUEZjcC1GVTYkUSIxRidGUC8lK2V4ZWN1dGFibGVHRk9GUEZQLUZZNi1RIjtGJ0ZQRmZuRmhuRmpuRlxvRl5vRmBvRmJvRmRvRmlwLUYsNiVRJHNlcUYnRi9GMi1GNjYkLUYjNixGKy1GNjYkLUYjNihGOi1GNjYkLUYjNiotSSVtc3VwR0YkNiVGYHAtRiM2JS1GLDYlUSJpRidGL0YyRi9GMi8lMXN1cGVyc2NyaXB0c2hpZnRHRl9wLUZZNi1RJyZzZG90O0YnRlBGZm5GZnBGam5GXG9GXm9GYG9GYm9GZG8vRmhvRmZvLUZJNiUtRiw2JVEnJiM5MjM7RidGTkZQRlJGXXBGWEZgcEZjcEZqcEZQRlBGY3AtRlU2JEZfcEZQRmBxRlBGUEZYRmlyRmNwRl1xLUZZNi1RIy4uRidGUEZmbkZmcEZqbkZcb0Zeb0Zgb0Ziby9GZW9RLDAuMjIyMjIyMmVtRidGYXNGVEZgcUZQRlBGYHFGUA==">QyUtSSZldmFsYkclKnByb3RlY3RlZEc2Iy8tSSRpbnRHNiRGJUkoX3N5c2xpYkc2IjYkJkknTGFtYmRhR0YsNiQiIiUiIiQvSSJ4R0YsSSd4cmFuZ2VHRiwiIiJGNi1JJHNlcUdGJTYkLUYkNiMvLUYpNiQqJilGNEkiaUdGLEY2Ri5GNkYzIiIhL0ZBO0Y2RjE=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">SSV0cnVlRyUqcHJvdGVjdGVkRw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NiZJJXRydWVHJSpwcm90ZWN0ZWRHRiNGI0Yj</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L574" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="fac := 24:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZccy1JI21pR0YkNiVRJGZhY0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkjbW5HRiQ2JFEjMjRGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWi1GLDYlUSN3MEYnRi9GMkY1LUkobWZlbmNlZEdGJDYkLUYjNiUtSSZtZnJhY0dGJDYoLUZQNiRRIjFGJ0Y5LUYjNiVGK0YvRjIvJS5saW5ldGhpY2tuZXNzR0Zjby8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zqby8lKWJldmVsbGVkR0Y9LyUrZXhlY3V0YWJsZUdGPUY5RjktRjY2LVEnJnNkb3Q7RidGOUY7Rj5GQEZCRkRGRkZIRllGZW5GVi1GLDYlUSdob3JuZXJGJ0YvRjItRmpuNiQtRiM2KkYrRmFwLUYsNiVRJ2V4cGFuZEYnRi9GMi1Gam42JC1GIzYlLUYsNiVRJWV2YWxGJ0YvRjItRmpuNiQtRiM2LUZicS1Gam42JC1GIzYnLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBGPUY5LUYjNiYtRlA2JFEiNEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZZL0ZOUSwwLjMzMzMzMzNlbUYnLUZQNiRRIjNGJ0Y5RjkvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GLDYjUSFGJ0Zpci1GLDYlUSpzb2x1dGlvbnNGJ0YvRjJGOUY5RmlyLUYsNiVRInhGJ0YvRjItRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmV0LUZQNiRRIjJGJ0Y5RmF0RlYtRiw2JVEieUYnRi9GMkY5RjlGOUY5RmlyRmp0Rl9wRjlGOS1GNjYtUSlhc3N1bWluZ0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuRlZGanQtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRlA2JEZkc0Y5RlYtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZbdkY7Rj5GQEZCRkRGRkZIRllGZW5GVkZqdC1GNjYtUSI8RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZhby1GNjYtUSI7RidGOUY7RlxzRkBGQkZERkZGSEZZRk0tSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWi8lJmRlcHRoR0Zpdi8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GLDYlUSN3MUYnRi9GMkY1RlYtRmpuNiQtRiM2JC1GX282KEZhby1GIzYkRitGOUZmb0Zob0ZbcEZdcEY5RjlGYXBGZHAtRmpuNiQtRiM2KkYrRmFwRltxLUZqbjYkLUYjNiVGYnEtRmpuNiQtRiM2LUZicUZpcUZpckZbdEZedEZhdEZhby1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRmR0RmZ0RlZGanRGOUY5RjlGOUZpckZqdEZfcEY5RjlGXXVGVkZqdEZgdUZjdUZWRmV1RlZGanRGXnZGYW9GYXZGZHYtRiw2JVEjdzJGJ0YvRjJGNUZWRmR3RmFwRmRwLUZqbjYkLUYjNilGK0ZhcEZbcS1Gam42JC1GIzYlRmJxLUZqbjYkLUYjNitGYnFGaXFGaXJGW3RGXnRGYXRGVkZqdEY5RjlGOUY5RmlyRmp0RjlGOUZddUZWRmp0RmB1RmN1RlZGZXVGVkZqdEZedkZhb0ZhdkZkdkZWLUYsNiVRI3czRidGL0YyRjVGZHdGYXBGZHAtRmpuNiQtRiM2KkYrRmFwRltxLUZqbjYkLUYjNiVGYnEtRmpuNiQtRiM2LUZicUZpcUZpckZbdEZedEZWRmFvRmF0RlZGanRGOUY5RjlGOUZpckZqdEZfcEY5RjlGVkZddUZWRmp0RmB1RmN1RlZGZXVGVkZqdEZedkZhb0ZhdkZkdkZWLUYsNiVRI3c0RidGL0YyRjVGZHdGYXBGZHAtRmpuNiQtRiM2KkYrRmFwRltxLUZqbjYkLUYjNiVGYnEtRmpuNiQtRiM2LEZicUZpcUZpckZbdEZedEZndEZhdEZWRmp0RjlGOUY5RjlGaXJGanRGX3BGOUY5RlZGXXVGVkZqdEZgdUZjdUZWRmV1RlZGanRGXnZGYW9GYXZGZHZGVi1GLDYlUSN3NUYnRi9GMkY1RmR3RmFwRmRwLUZqbjYkLUYjNipGK0ZhcEZbcS1Gam42JC1GIzYlRmJxLUZqbjYkLUYjNixGYnFGaXFGaXJGW3RGXnRGX3NGYXRGVkZqdEY5RjlGOUY5RmlyRmp0Rl9wRjlGOUZddUZWRmp0RmB1RmN1RlZGZXVGVkZqdEZedkZhb0ZhdkZfcEY5">QzA+SSRmYWNHNiIiI0MhIiI+SSN3MEdGJS1JKWFzc3VtaW5nR0koX3N5c2xpYkdGJTYkNyMqJkYkRictSSdob3JuZXJHRiU2JComRiQiIiItSSdleHBhbmRHJSpwcm90ZWN0ZWRHNiMtSSVldmFsR0Y3NiQtRjo2JCZJJ0xhbWJkYUdGJTYkIiIlIiIkSSpzb2x1dGlvbnNHRiUvSSJ4R0YlLCYhIiNGNEkieUdGJUYnRjRGSEY0NyMtSSRhbmRHRjc2JC1JIj5HRjc2JEZIIiIhMkZIRjRGND5JI3cxR0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZFLCZGJ0Y0RkhGJ0Y0RkhGNEZJRjQ+SSN3MkdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwkRkhGJ0Y0RkhGNEZJRjQ+SSN3M0dGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmRjRGNEZIRidGNEZIRjRGSUY0PkkjdzRHRiUtRis2JDcjKiZGJEYnLUYxNiQqJkYkRjQtRjY2Iy1GOjYkRjwvRkUsJiIiI0Y0RkhGJ0Y0RkhGNEZJRjQ+SSN3NUdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmRkJGNEZIRidGNEZIRjRGSUY0</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZVNiRRIjJGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcEZURl5wLUYjNiYtRmdvNiQtRiM2J0ZqcEZbcEZecC1GIzYmLUZnbzYkLUYjNidGanAtRlU2JFEjMjJGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSM1OEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmpwLUZVNiRRIzQ5RidGOUZecC1GIzYmLUZVNiRRIzE0RidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRmNzRjlGOUY5Rl5vRmNzRjlGOUY5Rl5vRmNzRjlGOUY5Rl5vRmNzRjlGOUY5Rl5vRmNzRjlGOUY5Rl5vRmNzRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZmc0Zpc0Y5">LCQqJiwmIiIjIiIiKiYsJiEiIkYmKiYsJiEiI0YmKiYsJiEjQUYmKiYsJiIjZUYmKiYsJiEjXEYmSSJ5RzYiIiM5RiZGNkYmRiZGJkY2RiZGJkYmRjZGJkYmRiZGNkYmRiZGJkY2RiZGJkYmRjZGJiNGJiIjQw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfcC1GVTYkUSMxNkYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZecEZgcC1GIzYmLUZnbzYkLUYjNiZGYXBGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIjRGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSQxMTFGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSQyOTBGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSQyNDVGJ0Y5LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGXnBGYHAtRiM2Ji1GVTYkUSM3MEYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGXHRGX3RGOQ==">LCQqJiwmISM7IiIiKiYsJiIjO0YmKiYsJiIiJUYmKiYsJiIkNiJGJiomLCYhJCFIRiYqJiwmIiRYI0YmSSJ5RzYiISNxRiZGNkYmRiZGJkY2RiZGJkYmRjZGJkYmRiZGNkYmRiZGJkY2RiZGJkYmRjZGJiNGJiIjQw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtSSNtbkdGJDYkUSIxRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlktRiM2KC1JJm1mcmFjR0YkNihGUS1GUjYkUSMyNEYnRjkvJS5saW5ldGhpY2tuZXNzR0ZULyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmFvLyUpYmV2ZWxsZWRHRj0tRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZqby1GIzYmLUkobWZlbmNlZEdGJDYkLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRlhGWi1GUjYkUSMzMEYnRjlGVS1GIzYmLUZfcDYkLUYjNidGY3AtRlI2JFEkMjI0RidGOUZVLUYjNiYtRl9wNiQtRiM2Ji1GUjYkUSQ1ODBGJ0Y5RlUtRiM2Ji1GX3A2JC1GIzYnRmNwLUZSNiRRJDQ5MEYnRjlGVS1GIzYmLUZSNiRRJDE0MEYnRjlGZm8tRiw2JVEieUYnRi9GMkY5RjlGOUZmb0ZpckY5RjlGOUZmb0ZpckY5RjlGOUZmby1JJW1zdXBHRiQ2JUZpci1GUjYkUSIyRidGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGOUY5RjlGZm9GXHNGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RjlGZXNGaHNGOQ==">LCYiIiJGIyomLCYhI0lGIyomLCYhJEMjRiMqJiwmIiQhZUYjKiYsJiEkIVxGI0kieUc2IiIkUyJGI0YwRiNGI0YjRjBGI0YjRiNGMCIiI0YjRiNGMEYzI0YjIiND</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZVNiRRIzE2RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmJwLUYjNiYtRmdvNiQtRiM2JkZbcEZecC1GIzYmLUZnbzYkLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmFwRmNwLUZVNiRRIjRGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSQyMjZGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZgcS1GVTYkUSQ1ODBGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSQ0OTBGJ0Y5LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGYXBGY3AtRiM2Ji1GVTYkUSQxNDBGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GaXNGOUY5RjlGXm9GaXNGOUY5RjlGXm9GaXNGOUY5RjlGXm9GaXNGOUY5RjlGXm9GaXNGOUY5RjlGXm9GaXNGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5Rlx0Rl90Rjk=">LCQqJiwmIiM7IiIiKiYsJkYlRiYqJiwmISIlRiYqJiwmIiRFI0YmKiYsJiEkIWVGJiomLCYiJCFcRiZJInlHNiIhJFMiRiZGNUYmRiZGJkY1RiZGJkYmRjVGJkYmRiZGNUYmRiZGJkY1RiZGJkYmRjVGJiNGJiIjQw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfcC1GVTYkUSIyRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2J0ZbcEZURmRwLUYjNiYtRmdvNiQtRiM2JkZhcEZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEkMTE0RidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEkMjkwRidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEkMjQ1RidGOUZkcC1GIzYmLUZVNiRRIzcwRidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRmNzRjlGOUY5Rl5vRmNzRjlGOUY5Rl5vRmNzRjlGOUY5Rl5vRmNzRjlGOUY5Rl5vRmNzRjlGOUY5Rl5vRmNzRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZmc0Zpc0Y5">LCQqJiwmISIjIiIiKiYsJiEiIkYmKiYsJiIiI0YmKiYsJiEkOSJGJiomLCYiJCFIRiYqJiwmISRYI0YmSSJ5RzYiIiNxRiZGNkYmRiZGJkY2RiZGJkYmRjZGJkYmRiZGNkYmRiZGJkY2RiZGJkYmRjZGJiNGJiIjQw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzVGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZVNiRRIzIzRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmJwLUYjNiYtRmdvNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGYXBGY3AtRlU2JFEjNThGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSM0OUYnRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GIzYmLUZVNiRRIzE0RidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRmFyRjlGOUY5Rl5vRmFyRjlGOUY5Rl5vLUklbXN1cEdGJDYlRmFyLUZVNiRRIjRGJ0Y5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJ0Y5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGXXNGYHNGOQ==">LCQqJiwmIiNCIiIiKiYsJiEjZUYmKiYsJiIjXEYmSSJ5RzYiISM5RiZGLUYmRiZGJkYtRiZGJkYmRi0iIiUjRiYiI0M=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L774" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C([w0, w1, w2, w3, w4, w5], declare = [y::float], resultname = 'w', coercetypes = false)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEiQ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzY1LUY2NiYtRiM2Ly1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkEtRiw2JVEjdzRGJ0YvRjJGQS1GLDYlUSN3NUYnRi9GMi8lK2V4ZWN1dGFibGVHRklGRUZFLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRkEtRkI2LVEifkYnRkVGRy9GS0ZJRkxGTkZQRlJGVEZWL0ZaRlgtRiw2JVEoZGVjbGFyZUYnRi9GMi1GQjYtUSI9RidGRUZHRmBwRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZpcC1GNjYmLUYjNictRiw2JVEieUYnRi9GMi1GQjYtUS0mUHJvcG9ydGlvbjtGJ0ZFRkdGYHBGTEZORlBGUkZURmhwRmpwLUYsNiVRJmZsb2F0RidGL0YyRmVvRkVGRUZnb0Zqb0ZBLUYsNiVRK3Jlc3VsdG5hbWVGJ0YvRjJGZXAtRkI2LVEiJ0YnRkVGR0ZgcEZMRk5GUEZSRlQvRldRLDAuMTExMTExMWVtRidGYXAtRiw2JVEid0YnRi9GMkZbckZBRl1wLUYsNiVRLGNvZXJjZXR5cGVzRidGL0YyRmVwLUYsNiVGSUYvRjJGZW9GRUZFRmVvRkU=">LUkiQ0c2IjYmNyhJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiQvSShkZWNsYXJlR0YkNyMnSSJ5R0YkSSZmbG9hdEclKnByb3RlY3RlZEcvSStyZXN1bHRuYW1lR0YkLkkid0dGJC9JLGNvZXJjZXR5cGVzR0YkSSZmYWxzZUdGMw==</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[0] = (2 + (-1 + (-2 + (-22 + (58 + (-49 + 14 * y) * y) * y) * y) * y) * y) * y / 24;</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[1] = (-16 + (16 + (4 + (111 + (-290 + (245 - 70 * y) * y) * y) * y) * y) * y) * y / 24; -w[2] = 1 + (-30 + (-224 + (580 + (-490 + 140 * y) * y) * y) * y * y) * y * y / 24; -w[3] = (16 + (16 + (-4 + (226 + (-580 + (490 - 140 * y) * y) * y) * y) * y) * y) * y / 24; -w[4] = (-2 + (-1 + (2 + (-114 + (290 + (-245 + 70 * y) * y) * y) * y) * y) * y) * y / 24; -w[5] = (23 + (-58 + (49 - 14 * y) * y) * y) * pow(y, 4) / 24;</Text-field> -</Output> -</Group> -<Group labelreference="L773" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Fortran([w0, w1, w2, w3, w4, w5], declare = [y::float], resultname = 'w')" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEoRm9ydHJhbkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYvLUY2NiYtRiM2Li1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkEtRiw2JVEjdzRGJ0YvRjJGQS1GLDYlUSN3NUYnRi9GMkZFRkUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGQS1GQjYtUSJ+RidGRUZHL0ZLRklGTEZORlBGUkZURlYvRlpGWC1GLDYlUShkZWNsYXJlRidGL0YyLUZCNi1RIj1GJ0ZFRkdGXnBGTEZORlBGUkZUL0ZXUSwwLjI3Nzc3NzhlbUYnL0ZaRmdwLUY2NiYtRiM2Ji1GLDYlUSJ5RidGL0YyLUZCNi1RLSZQcm9wb3J0aW9uO0YnRkVGR0ZecEZMRk5GUEZSRlRGZnBGaHAtRiw2JVEmZmxvYXRGJ0YvRjJGRUZFRmVvRmhvRkEtRiw2JVErcmVzdWx0bmFtZUYnRi9GMkZjcC1GQjYtUSInRidGRUZHRl5wRkxGTkZQRlJGVC9GV1EsMC4xMTExMTExZW1GJ0ZfcC1GLDYlUSJ3RidGL0YyRmlxRkVGRS8lK2V4ZWN1dGFibGVHRklGRQ==">LUkoRm9ydHJhbkc2IjYlNyhJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiQvSShkZWNsYXJlR0YkNyMnSSJ5R0YkSSZmbG9hdEclKnByb3RlY3RlZEcvSStyZXN1bHRuYW1lR0YkLkkid0dGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output"> w(1) = (0.2D1 + (-0.1D1 + (-0.2D1 + (-0.22D2 + (0.58D2 + (-0.49D2 </Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output"> #+ 0.14D2 * y) * y) * y) * y) * y) * y) * y / 0.24D2 - w(2) = (-0.16D2 + (0.16D2 + (0.4D1 + (0.111D3 + (-0.290D3 + (0.245 - #D3 - 0.70D2 * y) * y) * y) * y) * y) * y) * y / 0.24D2 - w(3) = 0.1D1 + (-0.30D2 + (-0.224D3 + (0.580D3 + (-0.490D3 + 0.140 - #D3 * y) * y) * y) * y ** 2) * y ** 2 / 0.24D2 - w(4) = (0.16D2 + (0.16D2 + (-0.4D1 + (0.226D3 + (-0.580D3 + (0.490 - #D3 - 0.140D3 * y) * y) * y) * y) * y) * y) * y / 0.24D2 - w(5) = (-0.2D1 + (-0.1D1 + (0.2D1 + (-0.114D3 + (0.290D3 + (-0.245 - #D3 + 0.70D2 * y) * y) * y) * y) * y) * y) * y / 0.24D2 - w(6) = (0.23D2 + (-0.58D2 + (0.49D2 - 0.14D2 * y) * y) * y) * y ** - # 4 / 0.24D2</Text-field> -</Output> -</Group> -<Group labelreference="L572" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L571" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L557" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L562" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L1" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -</Worksheet> \ No newline at end of file diff --git a/Docs/remeshing_formulas/calcul_lambda4star_C4.mw b/Docs/remeshing_formulas/calcul_lambda4star_C4.mw deleted file mode 100644 index 171aeb78a550fb8ed024873c3eca5b2421b818a2..0000000000000000000000000000000000000000 --- a/Docs/remeshing_formulas/calcul_lambda4star_C4.mw +++ /dev/null @@ -1,394 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<Worksheet> -<Version major="16" minor="0"/> -<Label-Scheme value="2" prefix=""/> -<View-Properties presentation="false"><Zoom percentage="150"/></View-Properties> -<MapleNet-Properties elisiondigitsbefore="100" labelling="true" indentamount="4" elisiontermsthreshold="10000" ansi="false" errorbreak="1" useclientjvm="true" echo="1" imaginaryunit="I" labelwidth="20" contextmenusize="automatic" plotdriver="opengl" elisiondigitsafter="100" plotoutput="terminal" helpbrowser="standard" rtablesize="10" elisiontermsbefore="100" elisiondigitsthreshold="10000" typesetting="standard" plotdevice="inline" verboseproc="1" showassumed="1" errorcursor="false" longdelim="true" plotoptions="" quiet="false" elisiontermsafter="100" screenwidth="79" preplot="" prettyprint="3" displayprecision="-1" screenpixelheight="1050" warnlevel="3" screenheight="25" latexwidth="6.0" postplot="" prompt="> " ShowLabels="true"/> -<Styles><Font name="Ordered List 1" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 2" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 3" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 5" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Author" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Warning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Caption Reference" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input Placeholder" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[200,0,200]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="true"/> -<Font name="Maple Plot" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Code" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Line Printed Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Diagnostic" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[40,120,40]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Inert Output" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[144,144,144]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Normal" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,128,128]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Maple Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Dash Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Math" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Input" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkError" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Header and Footer" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="10" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Error" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 1" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Bullet Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Equation Label" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 3" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="14" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 2" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="16" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkWarning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Dictionary Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[147,0,15]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Caption Text" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="List Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Layout name="Ordered List 1" alignment="left" bullet="numeric" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 2" alignment="left" bullet="alphabetic" firstindent="0" leftmargin="36" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 3" alignment="left" bullet="roman" firstindent="0" leftmargin="72" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 4" alignment="left" bullet="ALPHABETIC" firstindent="0" leftmargin="108" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 5" alignment="left" bullet="ROMAN" firstindent="0" leftmargin="144" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Author" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="8" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Warning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Annotation Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Plot" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Line Printed Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Text Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="newline" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Diagnostic" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Normal" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Output" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.3" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Dash Item" alignment="left" bullet="dash" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkError" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Error" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 1" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="4" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Bullet Item" alignment="left" bullet="dot" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 4" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 3" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 2" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="2" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkWarning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="List Item" alignment="left" bullet="indent" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Pencil-style name="Pencil 5" pen-color="[255,0,0]" pen-height="5.0" pen-width="5.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 4" pen-color="[0,0,255]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 3" pen-color="[0,0,0]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 2" pen-color="[0,0,255]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 1" pen-color="[0,0,0]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Highlighter-style name="Highlighter 2" pen-color="[255,204,0]" pen-height="14.0" pen-width="14.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 1" pen-color="[255,153,255]" pen-height="12.0" pen-width="8.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 4" pen-color="[0,255,255]" pen-height="32.0" pen-width="32.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 3" pen-color="[51,255,0]" pen-height="24.0" pen-width="24.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 5" pen-color="[255,255,0]" pen-height="48.0" pen-width="48.0" pen-opacity="0.8"/> -</Styles> -<Task-table> - <Task-category name="<default>"> - </Task-category> -</Task-table> -<Task> -</Task> -<Group labelreference="L629" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYkLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjlGOS1GNjYtUSI6RidGOUY7L0Y/Rj1GQEZCRkRGRkZIL0ZLRk9GTS1GLDYlUSdob3JuZXJGJ0YvRjItRjY2LVEqJmNvbG9uZXE7RidGOUY7RmhuRkBGQkZERkZGSEZpbkZNLUYsNiVRKGNvZGVnZW5GJ0YvRjItRlQ2Ji1GIzYkRmpuRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zlbi8lK2V4ZWN1dGFibGVHRj1GOQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYjLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjktRjY2LVEiOkYnRjlGOy9GP0Y9RkBGQkZERkZGSC9GS0ZPRk0tRiw2JVEnaG9ybmVyRidGL0YyLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0ZobkZARkJGREZGRkhGaW5GTS1GLDYlUShjb2RlZ2VuRidGL0YyLUZUNiYtRiM2I0ZqbkY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmVu</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L641" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Calcul de la fomule Lambda_4^*:</Text-field> -<Text-field style="Text" layout="Normal"> - 6 points</Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8"> - degr\303\251 9</Font></Text-field> -<Text-field style="Text" layout="Normal"> - C4</Text-field> -<Text-field style="Text" layout="Normal"> - Moments d'ordre 4</Text-field> -</Input> -</Group> -<Group labelreference="L652" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="xrange := -3 .. 3; 1; d := 9" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlMtSSNtbkdGJDYkUSIzRidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZSL0ZOUSYwLjBlbUYnRlUtRjY2LVEiO0YnRjlGOy9GP0YxRkBGQkZERkZGSC9GS0ZnbkZNLUYsNiVRImRGJ0YvRjJGNS1GVjYkUSI5RidGOS8lK2V4ZWN1dGFibGVHRj1GOQ==">QyU+SSd4cmFuZ2VHNiI7ISIkIiIkIiIiPkkiZEdGJSIiKg==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYoLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlctSSNtbkdGJDYkUSIzRidGOUY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRlYvRk5RJjAuMGVtRidGWS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RlxvRl9vRjk=">OyEiJCIiJA==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiZEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSSNtbkdGJDYkUSI5RidGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5">IiIq</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L631" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="p[0] := proc (x) options operator, arrow; sum(c[0, i]*x^i, i = 0 .. d) end proc;" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY5LUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYkLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJ0Y+LyUvc3Vic2NyaXB0c2hpZnRHRj0tSSNtb0dGJDYtUSomY29sb25lcTtGJ0Y+LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZILyUpc3RyZXRjaHlHRkgvJSpzeW1tZXRyaWNHRkgvJShsYXJnZW9wR0ZILyUubW92YWJsZWxpbWl0c0dGSC8lJ2FjY2VudEdGSC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRlctRi82JVEieEYnRjJGNS1GQzYtUSgmc3JhcnI7RidGPkZGRklGS0ZNRk9GUUZTL0ZWUSYwLjBlbUYnL0ZZRltvLUYvNiVRJHN1bUYnRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYtLUYsNiUtRi82JVEiY0YnRjJGNS1GIzYmRjotRkM2LVEiLEYnRj5GRi9GSkY0RktGTUZPRlFGU0Zqbi9GWVEsMC4zMzMzMzMzZW1GJy1GLzYlUSJpRidGMkY1Rj5GQC1GQzYtUScmc2RvdDtGJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG8tSSVtc3VwR0YkNiVGWi1GIzYlLUZDNi1RIn5GJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG9GYnBGPi8lMXN1cGVyc2NyaXB0c2hpZnRHRj1GXHBGXXFGYnAtRkM2LVEiPUYnRj5GRkZJRktGTUZPRlFGU0ZVRlhGOi1GQzYtUSMuLkYnRj5GRkZJRktGTUZPRlFGUy9GVlEsMC4yMjIyMjIyZW1GJ0Zcby1GLzYlUSJkRidGMkY1Rj5GPi1GQzYtUSI7RidGPkZGRl9wRktGTUZPRlFGU0ZqbkZYLUYsNiVGLi1GIzYkLUY7NiRRIjFGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGZHJGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLUYsNiVGLi1GIzYkLUY7NiRRIjJGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGY3NGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLyUrZXhlY3V0YWJsZUdGSEY+">Qyg+JkkicEc2IjYjIiIhZio2I0kieEdGJkYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLUkkc3VtR0YmNiQqJiZJImNHRiY2JEYoSSJpR0YmIiIiKTkkRjZGNy9GNjtGKEkiZEdGJkYmRiZGJkY3PiZGJTYjRjdmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRjdGNkY3RjhGN0Y6RiZGJkYmRjc+JkYlNiMiIiNmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRklGNkY3RjhGN0Y6RiZGJkYmRjc=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R0Y9LUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZm4tRiM2KC1GLzYlUSJ4RidGMkY1LUZJNi1RKCYjODU5NDtGJ0Y+RkxGTkZQRlJGVEZWRlgvRmVuUSYwLjBlbUYnL0ZobkZiby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZJNi1RJiZTdW07RidGPkZMRk4vRlFGNEZSL0ZVRjQvRldGNEZYRmFvL0ZoblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRkk2LVEiPUYnRj5GTEZORlBGUkZURlZGWEZaRmduRjpGQEZDRj4tRi82JVEiZEYnRjJGNUZYLyUsYWNjZW50dW5kZXJHRkUtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdRJDUuMEYnLyUmZGVwdGhHRmNxLyUqbGluZWJyZWFrR1ElYXV0b0YnLUYjNiYtRiw2JS1GLzYlUSJjRidGMkY1LUYjNihGOi1GSTYtUSIsRidGPkZML0ZPRjRGUEZSRlRGVkZYRmFvL0ZoblEsMC4zMzMzMzMzZW1GJ0ZjcEZARkNGPkZGLUZJNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y+RkxGTkZQRlJGVEZWRlhGYW9GY28tSSVtc3VwR0YkNiVGW29GY3AvJTFzdXBlcnNjcmlwdHNoaWZ0R0Y9Rj5GQEZDRj5GQEZDRj5GQEZDRj4=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIUkiaUdGJSIiIik5JEYxRjIvRjE7RjBJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIkkiaUdGJUYwKTkkRjFGMC9GMTsiIiFJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMkYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiI0kiaUdGJSIiIik5JEYxRjIvRjE7IiIhSSJkR0YlRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L633" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="P := proc (x) options operator, arrow; piecewise(x < -3, 0, x < -2, p[0](x), x < -1, p[1](x), x < 0, p[2](x), x < 1, p[2](-x), x < 2, p[1](-x), x < 3, p[0](-x), 3 <= x, 0) end proc" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KS1GLDYlUSJQRicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnRjcvJSZmZW5jZUdGNi8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0Y2LyUqc3ltbWV0cmljR0Y2LyUobGFyZ2VvcEdGNi8lLm1vdmFibGVsaW1pdHNHRjYvJSdhY2NlbnRHRjYvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZOLUYsNiVRInhGJ0Y0RjctRjs2LVEoJnNyYXJyO0YnRjdGPkZARkJGREZGRkhGSi9GTVEmMC4wZW1GJy9GUEZYLUYsNiVRKnBpZWNld2lzZUYnL0Y1USV0cnVlRicvRjhRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNmhvRistSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWC8lJmRlcHRoR0Zlby8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GOzYtUSJ+RidGN0Y+RkBGQkZERkZGSEZKRldGWUZRLUY7Ni1RIjxGJ0Y3Rj5GQEZCRkRGRkZIRkpGTEZPLUY7Ni1RKiZ1bWludXMwO0YnRjdGPkZARkJGREZGRkhGSi9GTVEsMC4yMjIyMjIyZW1GJy9GUEZncC1JI21uR0YkNiRRIjNGJ0Y3LUY7Ni1RIixGJ0Y3Rj4vRkFGaG5GQkZERkZGSEZKRlcvRlBRLDAuMzMzMzMzM2VtRictRmpwNiRRIjBGJ0Y3Rl1xRl1wRmBvRl1wLUYsNiVGU0ZnbkZpbkZgcEZjcC1GanA2JFEiMkYnRjdGXXEtSSVtc3ViR0YkNiUtRiw2JVEicEYnRmduRmluLUYjNiVGY3FGZ25GaW4vJS9zdWJzY3JpcHRzaGlmdEdGZXEtRlxvNiQtRiM2JEZmcUY3RjdGXXFGYG9GXXBGUUZgcEZjcC1GanA2JFEiMUYnRjdGXXEtRlxyNiUtRiw2JUZgckY0RjctRiM2JEZpckY3RmNyRmVyRl1xRmBvRl1wRmZxRmBwRmNxRl1xLUZccjYlRl5yLUYjNiRGaHFGN0ZjckZlckZdcUZgb0ZdcEZmcUZgcEZpckZdcUZicy1GXG82JC1GIzYlRmNwRmZxRjdGN0ZdcUZgb0ZdcEZmcUZgcEZocUZdcS1GXHI2JUZeckZgc0ZjckZmc0ZdcUZgb0ZdcEZmcUZgcEZpcEZdcUZbckZmc0ZdcUZgb0ZdcEZmcS1GOzYtUS8mR3JlYXRlckVxdWFsO0YnRjdGPkZARkJGREZGRkhGSkZMRk9GaXBGXXFGXXBGY3FGN0Y3RjdGKy8lK2V4ZWN1dGFibGVHRjZGNw==">PkkiUEc2ImYqNiNJInhHRiRGJDYkSSlvcGVyYXRvckdGJEkmYXJyb3dHRiRGJC1JKnBpZWNld2lzZUclKnByb3RlY3RlZEc2MjI5JCEiJCIiITJGMCEiIy0mSSJwR0YkNiNGMjYjRjAyRjAhIiItJkY3NiMiIiJGOTJGMEYyLSZGNzYjIiIjRjkyRjBGPy1GQjYjLCRGMEY7MkYwRkQtRj1GRzJGMCIiJC1GNkZHMUZMRjBGMkYkRiRGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiUEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2KC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCYjODU5NDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWC1GIzYoLUYsNiVRKnBpZWNld2lzZUYnRi9GMi1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGV0ZZLUkobWZlbmNlZEdGJDYkLUYjNkQtRiM2KEZRLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlxwLUkjbW5HRiQ2JFEiM0YnRjlGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGVy9GTlEsMC4zMzMzMzMzZW1GJy1GX3A2JFEiMEYnRjlGZ3AtRiM2KEZRRmNvLUYjNiVGaG8tRl9wNiRRIjJGJ0Y5RjlGYnBGZXBGOUZncC1GIzYoLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JkZdcUZicEZlcEY5LyUvc3Vic2NyaXB0c2hpZnRHRl9xRmluLUZdbzYkLUYjNiZGUUZicEZlcEY5RjlGYnBGZXBGOUZncC1GIzYoRlFGY28tRiM2JUZoby1GX3A2JFEiMUYnRjlGOUZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2JkZbc0ZicEZlcEY5RmFyRmluRmNyRmJwRmVwRjlGZ3AtRiM2KEZRRmNvRl1xRmJwRmVwRjlGZ3AtRiM2KC1GanE2JUZcci1GIzYmRmRxRmJwRmVwRjlGYXJGaW5GY3JGYnBGZXBGOUZncC1GIzYoRlFGY29GW3NGYnBGZXBGOUZncC1GIzYoRmhzRmluLUZdbzYkLUYjNiYtRiM2J0Zob0ZRRmJwRmVwRjlGYnBGZXBGOUY5RmJwRmVwRjlGZ3AtRiM2KEZRRmNvRmRxRmJwRmVwRjlGZ3AtRiM2KEZgc0ZpbkZgdEZicEZlcEY5RmdwLUYjNihGUUZjb0ZecEZicEZlcEY5RmdwLUYjNihGaXFGaW5GYHRGYnBGZXBGOUZncC1GIzYoRl5wLUY2Ni1RJSZsZTtGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRlFGYnBGZXBGOUZncEZdcUZicEZlcEY5RjlGYnBGZXBGOUZicEZlcEY5RmJwRmVwRjk=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzYyMjkkISIkIiIhMkYuISIjLSZJInBHRiU2I0YwNiNGLjJGLiEiIi0mRjU2IyIiIkY3MkYuRjAtJkY1NiMiIiNGNzJGLkY9LUZANiMsJEYuRjkyRi5GQi1GO0ZFMkYuIiIkLUY0RkUxRkpGLkYwRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L630" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="E := [eval(P(x), x = 0) = 1, eval(P(x), x = -1) = 0, eval(P(x), x = -2) = 0, eval(P(x), x = -3) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiRUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNjctRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNiktRiw2JVEiUEYnRi9GMi1GUDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5RjlGOUZnby1GW3A2JFEiMUYnRjlGX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ28tRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmlwRl5wRjlGOUZnb0Zqb0Zfb0ZULUZQNiQtRiM2KkZlbkZobkZfb0Zcb0Znb0ZlcC1GW3A2JFEiMkYnRjlGOUY5RmdvRmpvRl9vRlQtRlA2JC1GIzYqRmVuRmhuRl9vRlxvRmdvRmVwLUZbcDYkUSIzRidGOUY5RjlGZ29Gam8vJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZpcUY5">QyQ+SSJFRzYiNyYvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJS9GLyIiISIiIi8tRik2JEYsL0YvISIiRjEvLUYpNiRGLC9GLyEiI0YxLy1GKTYkRiwvRi8hIiRGMUY3</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L644" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C0 := [seq(eval(p[j](x), x = j-3+1) = eval(p[j+1](x), x = j-3+1), j = 0 .. 1)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRl5wLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmRvLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYHEtSSNtbkdGJDYkUSIzRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl9xRmFxLUZjcTYkUSIxRidGOUY5RjlGaXBGZW4tRlA2JC1GIzYtLUZdbzYlRl9vLUYjNiZGZG9GZnFGaXFGOUZnb0Zqb0ZhcEZecEZpcEZkb0ZccUZicUZmcUZpcUY5RjlGYXBGZG9GaXAtRmNxNiRGaW9GOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZfcS9GTkZmcEZpcUY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZqckY5">QyQ+SSNDMEc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS9GNS1JIitHRik2JCwmRjMiIiIhIiRGO0Y7LUYtNiQtJkYxNiMsJkYzRjtGO0Y7RjRGNi9GMzsiIiFGOyEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L636" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C1 := [seq(eval(diff(p[j](x), x), x = j-3+1) = eval(diff(p[j+1](x), x), x = j-3+1), j = 0 .. 1)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwRjlGOUZocEZlcC1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbcC1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmdxLUkjbW5HRiQ2JFEiM0YnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocS1GanE2JFEiMUYnRjlGOUY5RmBxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JkZbcEZdckZgckY5Rl5wRmFwRmhwRmVwRjlGOUZocEZlcEZgcUZbcEZjcUZpcUZdckZgckY5RjlGaHBGW3BGYHEtRmpxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZmcS9GTkZdcUZgckY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSRDMTBGJ0YvRjJGNS1GUDYmLUYjNilGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2Jy1GZG82JUZmby1GIzYkLUZqcTYkUSIyRidGOUY5Rl5wRmFwRmhwRmVwRjlGOUZocEZlcEZgcUZfc0Y5RjlGYHFGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2J0ZfdS1GUDYkLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmZxRmhxRmVwRjlGOUZocEZlcEY5RjlGaHBGZXBGYHFGX3NGOUY5RmVzRjlGOUZnc0Zqc0ZddEZlc0Y5">QyY+SSNDMUc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJUY4L0Y4LUkiK0dGKTYkLCZGNiIiIiEiJEY+Rj4tRi02JC1GMDYkLSZGNDYjLCZGNkY+Rj5GPkY3RjhGOS9GNjsiIiFGPiEiIj5JJEMxMEdGJTcjLy1GLTYkLUYwNiQtJkY0NiMiIiNGN0Y4L0Y4RkotRi02JC1GMDYkLUZVNiMsJEY4RktGOEZYRks=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L647" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C2 := [seq(eval(diff(p[j](x), `$`(x, 2)), x = j-3+1) = eval(diff(p[j+1](x), `$`(x, 2)), x = j-3+1), j = 0 .. 1)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIyRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiM0YnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcUZnckY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbdEY5">QyQ+SSNDMkc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIjL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJEZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiFGQiEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L625" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C3 := [seq(eval(diff(p[j](x), `$`(x, 3)), x = j-3+1) = eval(diff(p[j+1](x), `$`(x, 3)), x = j-3+1), j = 0 .. 1)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIzRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfckZkcS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5yRmByLUZlcTYkUSIxRidGOUY5RjlGaHFGZW4tRlA2JC1GIzYtRlxvLUZQNiQtRiM2KS1GZG82JUZmby1GIzYmRltwRmFyRmRyRjlGXnBGYXBGaHBGZXBGYHFGZHFGOUY5RmhwRmVwRmhxRltwRltyRmRxRmFyRmRyRjlGOUZocEZbcEZocS1GZXE2JEZgcEY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRl5yRmNxRmRyRjlGOUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRiw2JVEkQzMwRidGL0YyRjUtRlA2Ji1GIzYoRmVuLUZQNiQtRiM2KUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JC1GZXE2JFEiMkYnRjlGOUZecEZhcEZocEZlcEZgcUZkcUY5RjlGaHBGZXBGaHFGY3NGOUY5RmhxRmVuLUZQNiQtRiM2KUZcby1GUDYkLUYjNilGYHUtRlA2JC1GIzYlLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgckZlcEY5RjlGaHBGZXBGYHFGZHFGOUY5RmhwRmVwRmhxRmNzRjlGOUY5RjlGaHNGW3RGXnQvJStleGVjdXRhYmxlR0Y9Rjk=">QyY+SSNDM0c2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIkL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJEZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiFGQiEiIj5JJEMzMEdGJTcjLy1GLTYkLUYwNiQtJkY0NiMiIiNGN0Y5L0Y4Rk4tRi02JC1GMDYkLUZZNiMsJEY4Rk9GOUZmbkZP</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L653" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C4 := [seq(eval(diff(p[j](x), `$`(x, 4)), x = j-3+1) = eval(diff(p[j+1](x), `$`(x, 4)), x = j-3+1), j = 0 .. 1)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSI0RidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiM0YnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcUZnckY5RjlGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSNDNEc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIlL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJEZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiFGQiEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L649" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="CEND := [eval(diff(p[0](x), x), x = -3) = 0, eval(diff(p[0](x), `$`(x, 2)), x = -3) = 0, eval(diff(p[0](x), `$`(x, 3)), x = -3) = 0, eval(diff(p[0](x), `$`(x, 4)), x = -3) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElQ0VOREYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GUy1JKG1mZW5jZWRHRiQ2Ji1GIzY3LUYsNiVRJWV2YWxGJ0YvRjItRlY2JC1GIzYqLUYsNiVRJWRpZmZGJ0YvRjItRlY2JC1GIzYnLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JC1JI21uR0YkNiRRIjBGJ0Y5RjkvJS9zdWJzY3JpcHRzaGlmdEdGXXAtRlY2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGSi9GTlEsMC4zMzMzMzMzZW1GJ0ZkcEY5RjlGZ3BGZHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmRxLUZbcDYkUSIzRidGOUY5RjlGXXFGam9GZ3BGWi1GVjYkLUYjNipGW28tRlY2JC1GIzYpRmJvRmBwRmdwRmRwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZbcDYkUSIyRidGOUY5RjlGZ3BGZHBGXXFGYHFGZnFGOUY5Rl1xRmpvRmdwRlotRlY2JC1GIzYqRltvLUZWNiQtRiM2KUZib0ZgcEZncEZkcEZhckZmcUY5RjlGZ3BGZHBGXXFGYHFGZnFGOUY5Rl1xRmpvRmdwRlotRlY2JC1GIzYqRltvLUZWNiQtRiM2KUZib0ZgcEZncEZkcEZhci1GW3A2JFEiNEYnRjlGOUY5RmdwRmRwRl1xRmBxRmZxRjlGOUZdcUZqby8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGUkZURmpzRjk=">QyQ+SSVDRU5ERzYiNyYvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JJWRpZmZHRio2JC0mSSJwR0YlNiMiIiE2I0kieEdGJUY1L0Y1ISIkRjMvLUYpNiQtRi02JEYvLUkiJEdGKjYkRjUiIiNGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIiRGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIiVGNkYzISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L654" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L618" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM0 := `assuming`([PolynomialTools[CoefficientList](collect(sum(eval(P(x), x = s-l), l = xrange)-s^0, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0wRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRlM2JC1GIzYoLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlM2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GUzYkLUYjNiktRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0ZccS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXItRiw2JVEibEYnRi9GMkY5RjlGX3FGY3JGZ3EtRiw2JVEneHJhbmdlRidGL0YyRjlGOUZdci1JJW1zdXBHRiQ2JS1GUzYkLUYjNiRGanFGOUY5LUYjNiQtSSNtbkdGJDYkUSIwRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdGZXNGX3FGanFGOUY5Rl9xRmpxRlpGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGY3EvRk5GZHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGY3FGW3RGaHNGanEtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GYnNGaHMtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZodEY7Rj5GQEZCRkRGRkZIRmNxRlt0RmhzRmpxLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZjczYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZaRjk=">QyQ+SSRETTBHNiItSSlhc3N1bWluZ0dGJTYkNyMtJkkwUG9seW5vbWlhbFRvb2xzR0YlNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGJTYkLCYtSSRzdW1HNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2JC1JJWV2YWxHRjc2JC1JIlBHRiU2I0kieEdGJS9GQCwmSSJzR0YlIiIiSSJsR0YlISIiL0ZFSSd4cmFuZ2VHRiVGRC1JIl5HRjc2JEZDIiIhRkZGQ0ZDNyMtSSRhbmRHRjc2JC1JIj5HRjdGSzJGQ0ZERkY=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L624" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM0 := [seq(DM0[j] = 0, j = 1 .. numelems(DM0))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiYtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Ly1GLDYlUSRETTBGJ0YvRjItRlA2Ji1GIzYlLUYsNiVRImpGJ0YvRjIvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXG9GZ28tRltwNiRRIjFGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmNwLUYsNiVRKW51bWVsZW1zRidGL0YyLUZQNiQtRiM2JUZlbkZfb0Y5RjlGX29GOUY5Rl9vRjlGOUZhb0Zkby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYjUSFGJ0Zfb0Y5">QyQ+SSVsRE0wRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0wR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L651" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM1 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l*(eval(P(x), x = s-l)), l = xrange)-s, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistRiw2JVEibEYnRi9GMi1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaHAtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZncC9GTlEsMC4zMzMzMzMzZW1GJ0ZocS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GW3NGYXBGOUY5RltyRmFwRmFyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGZ3ItSSVtc3VwR0YkNiUtRlg2JC1GIzYkRmRyRjlGOS1GIzYkLUkjbW5HRiQ2JFEiMUYnRjlGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGW3JGZHJGOUY5RltyRmRyRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqczYkRl90RjlGYHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZhdUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmlzLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmB0LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTFHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIiLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiVGPEY7ISIiRjwvRjtJJ3hyYW5nZUdGJUY8RkZGR0ZGRkY3Iy1JJGFuZEdGLzYkLUkiPkdGLzYkRkYiIiEyRkZGPEZH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L643" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM1 := [seq(DM1[j] = 0, j = 1 .. numelems(DM1))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTFGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0xRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0xR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L626" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM2 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^2*(eval(P(x), x = s-l)), l = xrange)-s^2, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0yRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistSSVtc3VwR0YkNiUtRiw2JVEibEYnRi9GMi1GIzYlLUkjbW5HRiQ2JFEiMkYnRjlGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GZHEtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZjcS9GTlEsMC4zMzMzMzMzZW1GJ0Zkci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GZ3NGZHBGOUY5RmdyRmRwRl1zLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGY3MtRmJwNiUtRlg2JC1GIzYkRmBzRjlGOS1GIzYkRmlwRjlGXXFGZ3JGYHNGOUY5RmdyRmBzRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkRl9xRjlGZHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZldUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZkdC8lK2V4ZWN1dGFibGVHRj1GOQ==">QyQ+SSRETTJHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIjLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L623" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM2 := [seq(DM2[j] = 0, j = 1 .. numelems(DM2))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTJGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0yRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0yR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L639" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM3 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^3*(eval(P(x), x = s-l)), l = xrange)-s^3, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE0zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSIzRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTNHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIkLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L640" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM3 := [seq(DM3[j] = 0, j = 1 .. numelems(DM3))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNM0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTNGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0zRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0zR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L627" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM4 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^4*(eval(P(x), x = s-l)), l = xrange)-s^4, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE00RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI0RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTRHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIlLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L634" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM4 := [seq(DM4[j] = 0, j = 1 .. numelems(DM4))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTRGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE00RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE00R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L628" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="inconnues := [seq(seq(c[i, j], j = 0 .. d), i = 0 .. 2)]; 1; numelems(inconnues)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2Ji1GLDYlUSRzZXFGJ0YvRjItRlA2JC1GIzYrRlQtRlA2JC1GIzYqLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2Ji1GLDYlUSJpRidGL0YyLUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRictRiw2JVEiakYnRi9GMkY5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGZG9GXHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSNtbkdGJDYkRmFwRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GaW8tRiw2JVEiZEYnRi9GMkY5RjlGZG9GYW9GYnBGZXBGaHAtRmZwNiRRIjJGJ0Y5RjlGOS8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjtGJ0Y5RjtGZ29GQEZCRkRGRkZIRmhvRk0tRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRitGOUY5RmRxRjk=">QyU+SSppbmNvbm51ZXNHNiI3Iy1JJHNlcUclKnByb3RlY3RlZEc2JC1GKDYkJkkiY0dGJTYkSSJpR0YlSSJqR0YlL0YxOyIiIUkiZEdGJS9GMDtGNCIiIyIiIi1JKW51bWVsZW1zR0YpNiNGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZqbi1JJW1zdWJHRiQ2JS1GLDYlUSJjRidGL0YyLUYjNigtSSNtbkdGJDYkUSIwRidGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmZuLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjkvJS9zdWJzY3JpcHRzaGlmdEdGaW5Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjFGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjJGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjNGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjRGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjVGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjZGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjdGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjhGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjlGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GZm5GYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZdcEZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmRwRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GW3FGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZicUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmlxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GYHJGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZnckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRl5zRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GZXNGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZmbkZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRl1wRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GZHBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZbcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmJxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GaXFGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZgckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmdyRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GXnNGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZlc0Zib0Zlb0Y5RmdvRmJvRmVvRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zib0Zlb0Y5">N0AmSSJjRzYiNiQiIiFGJyZGJDYkRiciIiImRiQ2JEYnIiIjJkYkNiRGJyIiJCZGJDYkRiciIiUmRiQ2JEYnIiImJkYkNiRGJyIiJyZGJDYkRiciIigmRiQ2JEYnIiIpJkYkNiRGJyIiKiZGJDYkRipGJyZGJDYkRipGKiZGJDYkRipGLSZGJDYkRipGMCZGJDYkRipGMyZGJDYkRipGNiZGJDYkRipGOSZGJDYkRipGPCZGJDYkRipGPyZGJDYkRipGQiZGJDYkRi1GJyZGJDYkRi1GKiZGJDYkRi1GLSZGJDYkRi1GMCZGJDYkRi1GMyZGJDYkRi1GNiZGJDYkRi1GOSZGJDYkRi1GPCZGJDYkRi1GPyZGJDYkRi1GQg==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNJ</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L646" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="conditions := [E[], C0[], C1[], C10[], C2[], C3[], C30[], C4[], CEND[], lDM0[], lDM1[], lDM2[], lDM3[], lDM4[]]; -1; numelems(conditions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVErY29uZGl0aW9uc0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GU0Y1LUkobWZlbmNlZEdGJDYmLUYjNk0tRiw2JVEiRUYnRi9GMi1GVjYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRiw2JVEjQzBGJ0YvRjItRlY2Ji1GIzYkRltvRjlGOUZgb0Zjb0Zmby1GLDYlUSNDMUYnRi9GMkZfcEZmby1GLDYlUSRDMTBGJ0YvRjJGX3BGZm8tRiw2JVEjQzJGJ0YvRjJGZ25GZm8tRiw2JVEjQzNGJ0YvRjJGZ25GZm8tRiw2JVEkQzMwRidGL0YyRmduRmZvLUYsNiVRI0M0RidGL0YyRmduRmZvLUYsNiVRJUNFTkRGJ0YvRjJGX3BGZm8tRiw2JVElbERNMEYnRi9GMkZfcEZmby1GLDYlUSVsRE0xRidGL0YyRl9wRmZvLUYsNiVRJWxETTJGJ0YvRjJGX3BGZm8tRiw2JVElbERNM0YnRi9GMkZnbkZmby1GLDYlUSVsRE00RidGL0YyRmduRl5vRjlGOUZgb0Zjby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRlJGVC1GLDYlUSludW1lbGVtc0YnRi9GMi1GVjYkLUYjNiRGK0Y5RjlGXm9GOQ==">QyU+SStjb25kaXRpb25zRzYiNzAmSSJFR0YlRiUmSSNDMEdGJUYlJkkjQzFHRiVGJSZJJEMxMEdGJUYlJkkjQzJHRiVGJSZJI0MzR0YlRiUmSSRDMzBHRiVGJSZJI0M0R0YlRiUmSSVDRU5ER0YlRiUmSSVsRE0wR0YlRiUmSSVsRE0xR0YlRiUmSSVsRE0yR0YlRiUmSSVsRE0zR0YlRiUmSSVsRE00R0YlRiUhIiItSSludW1lbGVtc0clKnByb3RlY3RlZEc2I0Yk</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNw</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L638" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="A, b := LinearAlgebra[GenerateMatrix](conditions, inconnues);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkobWZlbmNlZEdGJDYkLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y4USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZCLyUqc3ltbWV0cmljR0ZCLyUobGFyZ2VvcEdGQi8lLm1vdmFibGVsaW1pdHNHRkIvJSdhY2NlbnRHRkIvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYtUSJ+RidGPkZAL0ZERkJGRUZHRklGS0ZNRk8vRlNGUS1GMTYlUSJiRidGNEY3LyUrZXhlY3V0YWJsZUdGQkY+Rj4tRjs2LVEqJmNvbG9uZXE7RidGPkZARlhGRUZHRklGS0ZNL0ZQUSwwLjI3Nzc3NzhlbUYnL0ZTRl1vLUYxNiVRLkxpbmVhckFsZ2VicmFGJ0Y0RjctRiw2Ji1GIzYlLUYxNiVRL0dlbmVyYXRlTWF0cml4RidGNEY3RmduRj5GPi8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GLDYkLUYjNigtRjE2JVErY29uZGl0aW9uc0YnRjRGN0Y6RlUtRjE2JVEqaW5jb25udWVzRidGNEY3RmduRj5GPi1GOzYtUSI7RidGPkZARkNGRUZHRklGS0ZNRk9GXm9GZ25GPg==">QyQ+NiRJIkFHNiJJImJHRiYtJkkuTGluZWFyQWxnZWJyYUdGJjYjSS9HZW5lcmF0ZU1hdHJpeEdGJjYkSStjb25kaXRpb25zR0YmSSppbmNvbm51ZXNHRiYiIiI=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y1USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMy8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GLjYlUSJiRidGMUY0LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y/RjstRjg2LVEjOj1GJ0Y7Rj0vRkFGP0ZCRkRGRkZIRkovRk1RLDAuMjc3Nzc3OGVtRicvRlBGaW4tRiM2KC1JKG1hY3Rpb25HRiQ2JS1JKG1mZW5jZWRHRiQ2Ji1JJ210YWJsZUdGJDY4LUkkbXRyR0YkNiYtSSRtdGRHRiQ2KC1GIzYmLUYuNiVRKn42OX54fjMwfkYnRjFGNC1GLjYlUSdNYXRyaXhGJ0YxRjRGVUY7LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZmcC8lK2dyb3VwYWxpZ25HRmZwLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRl1xRmRwRmdwRmlwLUZnbzYmLUZqbzYoLUYjNiYtRi42JVEsRGF0YX5UeXBlOn5GJ0YxRjQtRi42JVEpYW55dGhpbmdGJ0YxRjRGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwLUZnbzYmLUZqbzYoLUYjNiYtRi42JVEqU3RvcmFnZTp+RidGMUY0LUYuNiVRLHJlY3Rhbmd1bGFyRidGMUY0RlVGO0ZkcEZncEZpcEZbcUZecUZkcEZncEZpcC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKE9yZGVyOn5GJ0YxRjQtRi42JVEuRm9ydHJhbl9vcmRlckYnRjFGNEZVRjtGZHBGZ3BGaXBGW3FGXnFGZHBGZ3BGaXAvJSZhbGlnbkdRJWF4aXNGJy9GZXBRKWJhc2VsaW5lRicvRmhwUSdjZW50ZXJGJy9GanBRJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0YzLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGYXQvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGXHUvJSZmcmFtZUdGXHUvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y/LyUtZXF1YWxjb2x1bW5zR0Y/LyUtZGlzcGxheXN0eWxlR0Y/LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRml0RjsvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRicvJSthY3Rpb250eXBlR1EtYnJvd3NlcnRhYmxlRicvJSlydGFibGVpZEdRNTE4NDQ2NzQ0MDc4MTk3NzM3NTgyRidGNy1GXm82JS1GYW82Ji1GZG82OC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKn4xfi4ufjY5fkYnRjFGNC1JJW1zdWJHRiQ2JS1GLjYlUSdWZWN0b3JGJ0YxRjQtRiM2JS1GLjYlUSdjb2x1bW5GJ0YxRjRGVUY7LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwRmBxRlxyRmhyRmRzRmdzRmlzRlt0Rl10Rl90RmJ0RmR0Rmd0Rmp0Rl11Rl91RmF1RmR1RmZ1Rmh1Rmp1Rl12RjtGX3ZGYnZGZXYvRml2UTUxODQ0Njc0NDA3ODE5NzczNzQ2MkYnRlVGWEY7RlVGWEY7">NiQtSSdNYXRyaXhHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2Iy9JJCVpZEdGKCI1I2VQeD55U3VZJT0tJkknVmVjdG9yR0YlNiNJJ2NvbHVtbkdGKDYjL0YrIjVpdXQoPnlTdVklPQ==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L620" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[Rank](A)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJVJhbmtGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYkLUYjNiUtRiw2JVEiQUYnRi9GMkY9RkBGQC1GLDYjUSFGJ0Y9RkA=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0klUmFua0dGKDYjSSJBR0Yo</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNJ</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L632" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="solutions := solve(conditions, {inconnues[]})" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yNzc3Nzc4ZW1GJy9GTkZTLUYsNiVRJnNvbHZlRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNictRiw2JVErY29uZGl0aW9uc0YnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRlk2Ji1GIzYmLUYsNiVRKmluY29ubnVlc0YnRi9GMi1GWTYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZecEY5RjkvRmFwUSJ8ZnJGJy9GZHBRInxockYnRl5wRjlGOUZecEY5">Pkkqc29sdXRpb25zRzYiLUkmc29sdmVHRiQ2JEkrY29uZGl0aW9uc0dGJDwjJkkqaW5jb25udWVzR0YkRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZqbi1GIzYoLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2KC1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGaG4vJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOS8lL3N1YnNjcmlwdHNoaWZ0R0Zbby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GaW42JFElNTkxM0YnRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIxRidGOUZkb0Znb0Y5RmlvRltwLUkmbWZyYWNHRiQ2KC1GaW42JFEmODkyMzVGJ0Y5LUZpbjYkUSI0RidGOS8lLmxpbmV0aGlja25lc3NHRmlwLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmdxLyUpYmV2ZWxsZWRHRj1GZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIyRidGOUZkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUScyOTc1ODVGJ0Y5LUZpbjYkUSI4RidGOUZjcUZlcUZocUZqcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjNGJ0Y5RmRvRmdvRjlGaW9GW3AtRltxNigtRmluNiRRJzE0Mzg5NUYnRjlGYHFGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvRmBxRmRvRmdvRjlGaW9GW3AtRltxNigtRmluNiRRJzE3Nzg3MUYnRjlGanJGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSI1RidGOUZkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSY1NDY0MUYnRjktRmluNiRRIjZGJ0Y5RmNxRmVxRmhxRmpxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcb0ZkdUZkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSYxOTc3NUYnRjlGanJGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSI3RidGOUZkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSUxNzE1RidGOUZgcUZjcUZlcUZocUZqcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG9GanJGZG9GZ29GOUZpb0ZbcC1GW3E2KC1GaW42JFEkMzQ1RidGOUZqckZjcUZlcUZocUZqcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjlGJ0Y5RmRvRmdvRjlGaW9GW3AtRltxNigtRmluNiRRIzIzRidGOS1GaW42JFEjMTJGJ0Y5RmNxRmVxRmhxRmpxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZncEZcb0ZobkZkb0Znb0Y5RmlvRltwLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmh5LUZpbjYkUSQxOTlGJ0Y5RjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdwRlxvRmdwRmRvRmdvRjlGaW9GW3AtRiM2J0ZkeS1GW3E2KC1GaW42JFElNTQ4NUYnRjlGYHFGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GYnJGZG9GZ29GOUZpb0ZbcC1GIzYnRmR5LUZbcTYoLUZpbjYkUSYzMjk3NUYnRjlGanJGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GY3NGZG9GZ29GOUZpb0ZbcC1GIzYnRmR5LUZbcTYoLUZpbjYkUSYyODQyNUYnRjlGYHFGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GYHFGZG9GZ29GOUZpb0ZbcC1GIzYnRmR5LUZbcTYoLUZpbjYkUSY2MTk1M0YnRjlGanJGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GXHVGZG9GZ29GOUZpb0ZbcC1GIzYnRmR5LUZbcTYoLUZpbjYkUSYzMzE3NUYnRjlGZHVGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GZHVGZG9GZ29GOUZpb0ZbcC1GIzYnRmR5LUZbcTYoLUZpbjYkUSYyMDY4NUYnRjlGanJGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GaHZGZG9GZ29GOUZpb0ZbcC1GIzYnRmR5LUZbcTYoLUZpbjYkUSUzMDU1RidGOUZgcUZjcUZlcUZocUZqcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZncEZcb0ZqckZkb0Znb0Y5RmlvRltwLUYjNidGZHktRltxNigtRmluNiRRJTEwMzVGJ0Y5RmpyRmNxRmVxRmhxRmpxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdwRlxvRmF4RmRvRmdvRjlGaW9GW3AtRiM2J0ZkeS1GW3E2KC1GaW42JFEkMTE1RidGOUZpeEZjcUZlcUZocUZqcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0ZobkZkb0Znb0Y5RmlvRltwRmdwRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0ZncEZkb0Znb0Y5RmlvRltwRmhuRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0ZickZkb0Znb0Y5RmlvRltwLUYjNidGZHktRltxNihGXHVGYHFGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYnJGXG9GY3NGZG9GZ29GOUZpb0ZbcEZobkZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYnJGXG9GYHFGZG9GZ29GOUZpb0ZbcC1GW3E2KEZncEZgcUZjcUZlcUZocUZqcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYnJGXG9GXHVGZG9GZ29GOUZpb0ZbcC1GW3E2KC1GaW42JFEkMTAwRidGOUZjc0ZjcUZlcUZocUZqcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYnJGXG9GZHVGZG9GZ29GOUZpb0ZbcC1GW3E2KC1GaW42JFEkNDU1RidGOUZgcUZjcUZlcUZocUZqcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYnJGXG9GaHZGZG9GZ29GOUZpb0ZbcC1GW3E2KC1GaW42JFEkMjk1RidGOUZickZjcUZlcUZocUZqcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYnJGXG9GanJGZG9GZ29GOUZpb0ZbcC1GW3E2KEZod0ZgcUZjcUZlcUZocUZqcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYnJGXG9GYXhGZG9GZ29GOUZpb0ZbcC1GW3E2KEZfYWxGZHVGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RjkvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnRmRvRmdvRjk=">PEAvJkkiY0c2IjYkIiIhRigiJThmLyZGJTYkRigiIiIjIiZOIyopIiIlLyZGJTYkRigiIiMjIicmZShIIiIpLyZGJTYkRigiIiQjIicmKlE5RjAvJkYlNiRGKEYwIyIncnk8RjcvJkYlNiRGKCIiJiMiJlRZJiIiJy8mRiU2JEYoRkkjIiZ2KD5GNy8mRiU2JEYoIiIoIyIlOjxGMC8mRiU2JEYoRjcjIiRYJEY3LyZGJTYkRigiIiojIiNCIiM3LyZGJTYkRi1GKCEkKj4vJkYlNiRGLUYtIyElJlsmRjAvJkYlNiRGLUY0IyEmdkgkRjcvJkYlNiRGLUY7IyEmRCVHRjAvJkYlNiRGLUYwIyEmYD4nRjcvJkYlNiRGLUZGIyEmdkokRkkvJkYlNiRGLUZJIyEmJm8/RjcvJkYlNiRGLUZSIyElYklGMC8mRiU2JEYtRjcjISVONUY3LyZGJTYkRi1GZ24jISQ6IkZqbi8mRiU2JEY0RihGLS8mRiU2JEY0Ri1GKC8mRiU2JEY0RjQjISImRjAvJkYlNiRGNEY7RigvJkYlNiRGNEYwI0YtRjAvJkYlNiRGNEZGIyIkKyJGOy8mRiU2JEY0RkkjIiRiJUYwLyZGJTYkRjRGUiMiJCZIRjQvJkYlNiRGNEY3I0ZZRjAvJkYlNiRGNEZnbiMiJDoiRkk=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L621" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[LinearSolve](A, b)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYkLUYsNiVRLExpbmVhclNvbHZlRidGL0YyL0YzUSdub3JtYWxGJ0Y9LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2NiQtRiM2Jy1GLDYlUSJBRidGL0YyLUkjbW9HRiQ2LVEiLEYnRj0vJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGUi8lKnN5bW1ldHJpY0dGUi8lKGxhcmdlb3BHRlIvJS5tb3ZhYmxlbGltaXRzR0ZSLyUnYWNjZW50R0ZSLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEiYkYnRi9GMi8lK2V4ZWN1dGFibGVHRlJGPUY9RmJvRj0=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0ksTGluZWFyU29sdmVHRig2JEkiQUdGKEkiYkdGKA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUkobWFjdGlvbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkobWZlbmNlZEdGJDYmLUknbXRhYmxlR0YkNjgtSSRtdHJHRiQ2Ji1JJG10ZEdGJDYoLUklbXJvd0dGJDYmLUkjbWlHRiQ2JVEqfjF+Li5+MzB+RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUklbXN1YkdGJDYlLUY7NiVRJ1ZlY3RvckYnRj5GQS1GODYlLUY7NiVRJ2NvbHVtbkYnRj5GQS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvRkJRJ25vcm1hbEYnLyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGT0ZSLyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZZLyUrZ3JvdXBhbGlnbkdGWS8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZqbkZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEsRGF0YX5UeXBlOn5GJ0Y+RkEtRjs2JVEpYW55dGhpbmdGJ0Y+RkFGT0ZSRldGWkZmbkZobkZbb0ZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEqU3RvcmFnZTp+RidGPkZBLUY7NiVRLHJlY3Rhbmd1bGFyRidGPkZBRk9GUkZXRlpGZm5GaG5GW29GV0ZaRmZuLUYyNiYtRjU2KC1GODYmLUY7NiVRKE9yZGVyOn5GJ0Y+RkEtRjs2JVEuRm9ydHJhbl9vcmRlckYnRj5GQUZPRlJGV0ZaRmZuRmhuRltvRldGWkZmbi8lJmFsaWduR1ElYXhpc0YnL0ZYUSliYXNlbGluZUYnL0ZlblEnY2VudGVyRicvRmduUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGQC8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRl5yLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmlyLyUmZnJhbWVHRmlyLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dRJmZhbHNlRicvJS1lcXVhbGNvbHVtbnNHRmNzLyUtZGlzcGxheXN0eWxlR0Zjcy8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0ZmckZSLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLyUrYWN0aW9udHlwZUdRLWJyb3dzZXJ0YWJsZUYnLyUpcnRhYmxlaWRHUTUxODQ0Njc0NDA3ODI0NjI1MTU2NkYn">LSZJJ1ZlY3Rvckc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkc2IjYjSSdjb2x1bW5HRig2Iy9JJCVpZEdGKCI1bTpEWSN5U3VZJT0=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L635" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[4, 4] := eval(P(x), solutions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KC1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictRiM2Ji1JI21uR0YkNiRRIjRGJ0Y6LUkjbW9HRiQ2LVEiLEYnRjovJSZmZW5jZUdGOS8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y5LyUqc3ltbWV0cmljR0Y5LyUobGFyZ2VvcEdGOS8lLm1vdmFibGVsaW1pdHNHRjkvJSdhY2NlbnRHRjkvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJ0Y/RjovJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GRDYtUSJ+RidGOkZHL0ZKRjlGTEZORlBGUkZURlYvRlpGWC1GRDYtUSomY29sb25lcTtGJ0Y6RkdGXG9GTEZORlBGUkZUL0ZXUSwwLjI3Nzc3NzhlbUYnL0ZaRmJvLUYsNiVRJWV2YWxGJy9GOEZLL0Y7USdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYnLUYsNiVRIlBGJ0Znb0Zoby1GW3A2JC1GIzYkLUYsNiVRInhGJ0Znb0Zob0Y6RjpGQy1GLDYlUSpzb2x1dGlvbnNGJ0Znb0Zob0Y6RjpGOkYrLyUrZXhlY3V0YWJsZUdGOUY6">PiZJJ0xhbWJkYUc2IjYkIiIlRictSSVldmFsRyUqcHJvdGVjdGVkRzYkLUkiUEdGJTYjSSJ4R0YlSSpzb2x1dGlvbnNHRiU=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEnJiM5MjM7RicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1GIzYoLUkjbW5HRiQ2JFEiNEYnRjUtSSNtb0dGJDYtUSIsRidGNS8lJmZlbmNlR0Y0LyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjQvJSpzeW1tZXRyaWNHRjQvJShsYXJnZW9wR0Y0LyUubW92YWJsZWxpbWl0c0dGNC8lJ2FjY2VudEdGNC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnRjovJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRjRGNS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUY/Ni1RIzo9RidGNUZCL0ZFRjRGR0ZJRktGTUZPL0ZSUSwwLjI3Nzc3NzhlbUYnL0ZVRl5vLUYjNictRj82LVEifGZyRidGNS9GQ0ZGRlxvL0ZIRkZGSUZLRk1GTy9GUlEsMC4xNjY2NjY3ZW1GJy9GVUZoby1JJ210YWJsZUdGJDY8LUkkbXRyR0YkNictSSRtdGRHRiQ2KC1GOzYkRmhuRjUvJSlyb3dhbGlnbkdRIUYnLyUsY29sdW1uYWxpZ25HRmdwLyUrZ3JvdXBhbGlnbkdGZ3AvJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGXnEtRmFwNigtRiM2KC1GLzYlUSJ4RicvRjNGRi9GNlEnaXRhbGljRictRj82LVEiPEYnRjVGQkZcb0ZHRklGS0ZNRk9GXW9GX28tRiM2JS1GPzYtUSomdW1pbnVzMDtGJ0Y1RkJGXG9GR0ZJRktGTUZPL0ZSUSwwLjIyMjIyMjJlbUYnL0ZVRmRyLUY7NiRRIjNGJ0Y1RjVGV0ZaRjVGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRl5wNictRmFwNigtRiM2Ni1GOzYkUSU1OTEzRidGNS1GPzYtUSIrRidGNUZCRlxvRkdGSUZLRk1GT0ZjckZlci1GIzYoLUkmbWZyYWNHRiQ2KC1GOzYkUSY4OTIzNUYnRjVGOi8lLmxpbmV0aGlja25lc3NHRl5xLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmF0LyUpYmV2ZWxsZWRHRjQtRj82LVExJkludmlzaWJsZVRpbWVzO0YnRjVGQkZcb0ZHRklGS0ZNRk9GUS9GVUZTRmVxRldGWkY1RmJzLUYjNigtRmhzNigtRjs2JFEnMjk3NTg1RidGNS1GOzYkUSI4RidGNUZddEZfdEZidEZkdEZmdC1JJW1zdXBHRiQ2JUZlcS1GOzYkUSIyRidGNS8lMXN1cGVyc2NyaXB0c2hpZnRHRmhuRldGWkY1RmJzLUYjNigtRmhzNigtRjs2JFEnMTQzODk1RidGNUY6Rl10Rl90RmJ0RmR0RmZ0LUZldTYlRmVxRmZyRmp1RldGWkY1RmJzLUYjNigtRmhzNigtRjs2JFEnMTc3ODcxRidGNUZhdUZddEZfdEZidEZkdEZmdC1GZXU2JUZlcUY6Rmp1RldGWkY1RmJzLUYjNigtRmhzNigtRjs2JFEmNTQ2NDFGJ0Y1LUY7NiRRIjZGJ0Y1Rl10Rl90RmJ0RmR0RmZ0LUZldTYlRmVxLUY7NiRRIjVGJ0Y1Rmp1RldGWkY1RmJzLUYjNigtRmhzNigtRjs2JFEmMTk3NzVGJ0Y1RmF1Rl10Rl90RmJ0RmR0RmZ0LUZldTYlRmVxRmV3Rmp1RldGWkY1RmJzLUYjNigtRmhzNigtRjs2JFElMTcxNUYnRjVGOkZddEZfdEZidEZkdEZmdC1GZXU2JUZlcS1GOzYkUSI3RidGNUZqdUZXRlpGNUZicy1GIzYoLUZoczYoLUY7NiRRJDM0NUYnRjVGYXVGXXRGX3RGYnRGZHRGZnQtRmV1NiVGZXFGYXVGanVGV0ZaRjVGYnMtRiM2KC1GaHM2KC1GOzYkUSMyM0YnRjUtRjs2JFEjMTJGJ0Y1Rl10Rl90RmJ0RmR0RmZ0LUZldTYlRmVxLUY7NiRRIjlGJ0Y1Rmp1RldGWkY1RjVGZXBGaHBGanBGXHFGX3EtRmFwNigtRiM2KEZlcUZbci1GIzYlRmByRmd1RjVGV0ZaRjVGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRl5wNictRmFwNigtRiM2N0Zgci1GOzYkUSQxOTlGJ0Y1LUY/Ni1RKCZtaW51cztGJ0Y1RkJGXG9GR0ZJRktGTUZPRmNyRmVyLUYjNigtRmhzNigtRjs2JFElNTQ4NUYnRjVGOkZddEZfdEZidEZkdEZmdEZlcUZXRlpGNUZpW2wtRiM2KC1GaHM2KC1GOzYkUSYzMjk3NUYnRjVGYXVGXXRGX3RGYnRGZHRGZnRGZHVGV0ZaRjVGaVtsLUYjNigtRmhzNigtRjs2JFEmMjg0MjVGJ0Y1RjpGXXRGX3RGYnRGZHRGZnRGY3ZGV0ZaRjVGaVtsLUYjNigtRmhzNigtRjs2JFEmNjE5NTNGJ0Y1RmF1Rl10Rl90RmJ0RmR0RmZ0Rlx3RldGWkY1RmlbbC1GIzYoLUZoczYoLUY7NiRRJjMzMTc1RidGNUZld0ZddEZfdEZidEZkdEZmdEZod0ZXRlpGNUZpW2wtRiM2KC1GaHM2KC1GOzYkUSYyMDY4NUYnRjVGYXVGXXRGX3RGYnRGZHRGZnRGZHhGV0ZaRjVGaVtsLUYjNigtRmhzNigtRjs2JFElMzA1NUYnRjVGOkZddEZfdEZidEZkdEZmdEZdeUZXRlpGNUZpW2wtRiM2KC1GaHM2KC1GOzYkUSUxMDM1RidGNUZhdUZddEZfdEZidEZkdEZmdEZpeUZXRlpGNUZpW2wtRiM2KC1GaHM2KC1GOzYkUSQxMTVGJ0Y1RmJ6Rl10Rl90RmJ0RmR0RmZ0RmV6RldGWkY1RjVGZXBGaHBGanBGXHFGX3EtRmFwNigtRiM2KEZlcUZbci1GIzYlRmByLUY7NiRGXnFGNUY1RldGWkY1RmVwRmhwRmpwRlxxRl9xRmVwRmhwRmpwLUZecDYnLUZhcDYoLUYjNjJGYWBsRmlbbC1GIzYoLUZoczYoRmp3RjpGXXRGX3RGYnRGZHRGZnRGZHVGV0ZaRjVGYnMtRiM2KC1GaHM2KEZhYGxGOkZddEZfdEZidEZkdEZmdEZcd0ZXRlpGNUZicy1GIzYoLUZoczYoLUY7NiRRJDEwMEYnRjVGZnJGXXRGX3RGYnRGZHRGZnRGaHdGV0ZaRjVGYnMtRiM2KC1GaHM2KC1GOzYkUSQ0NTVGJ0Y1RjpGXXRGX3RGYnRGZHRGZnRGZHhGV0ZaRjVGYnMtRiM2KC1GaHM2KC1GOzYkUSQyOTVGJ0Y1Rmd1Rl10Rl90RmJ0RmR0RmZ0Rl15RldGWkY1RmJzLUYjNigtRmhzNihGZnlGOkZddEZfdEZidEZkdEZmdEZpeUZXRlpGNUZicy1GIzYoLUZoczYoRmhfbEZld0ZddEZfdEZidEZkdEZmdEZlekZXRlpGNUY1RmVwRmhwRmpwRlxxRl9xLUZhcDYoLUYjNihGZXFGW3JGY3BGV0ZaRjVGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRl5wNictRmFwNigtRiM2MkZhYGxGaVtsRmlgbEZic0ZdYWxGaVtsRmFhbEZic0ZoYWxGaVtsRl9ibEZic0ZmYmxGaVtsRmpibEY1RmVwRmhwRmpwRlxxRl9xLUZhcDYoLUYjNihGZXFGW3JGYWBsRldGWkY1RmVwRmhwRmpwRlxxRl9xRmVwRmhwRmpwLUZecDYnLUZhcDYoLUYjNjdGYHJGZltsRmJzRlxcbEZpW2xGY1xsRmJzRmpcbEZpW2xGYV1sRmJzRmhdbEZpW2xGX15sRmJzRmZebEZpW2xGXV9sRmJzRmRfbEY1RmVwRmhwRmpwRlxxRl9xLUZhcDYoLUYjNihGZXFGW3JGZ3VGV0ZaRjVGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRl5wNictRmFwNigtRiM2NkZfc0ZpW2xGZXNGYnNGanRGaVtsRlx2RmJzRmV2RmlbbEZed0Zic0ZdeEZpW2xGZnhGYnNGYnlGaVtsRlt6RjVGZXBGaHBGanBGXHFGX3EtRmFwNigtRiM2KEZlcUZbckZmckZXRlpGNUZlcEZocEZqcEZccUZfcUZlcEZocEZqcC1GXnA2J0ZgcC1GYXA2KC1GIzYoRmZyLUY/Ni1RJSZsZTtGJ0Y1RkJGXG9GR0ZJRktGTUZPRl1vRl9vRmVxRldGWkY1RmVwRmhwRmpwRlxxRl9xRmVwRmhwRmpwLyUmYWxpZ25HUSVheGlzRicvRmZwUSliYXNlbGluZUYnL0ZpcEZhdC9GW3FRJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0ZGLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGZWZsLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EkMmVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0ZgZ2wvJSZmcmFtZUdGYGdsLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dGNC8lLWVxdWFsY29sdW1uc0dGNC8lLWRpc3BsYXlzdHlsZUdGNC8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR1EmMC44ZW1GJ0ZXRlpGNUZXRlpGNQ==">LUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzYyMkkieEc2IiEiJCIiITJGJyEiIyw2IiU4ZiIiIkYnIyImTiMqKSIiJSokRiciIiMjIicmZShIIiIpKiRGJyIiJCMiJyYqUTlGMiokRidGMiMiJ3J5PEY3KiRGJyIiJiMiJlRZJiIiJyokRidGQyMiJnYoPkY3KiRGJyIiKCMiJTo8RjIqJEYnRjcjIiRYJEY3KiRGJyIiKiMiI0IiIzcyRichIiIsNiEkKj5GL0YnIyElJlsmRjJGMyMhJnZIJEY3RjgjISZEJUdGMkY8IyEmYD4nRjdGPyMhJnZKJEZDRkQjISYmbz9GN0ZHIyElYklGMkZLIyElTjVGN0ZOIyEkOiJGUjJGJ0YqLDJGL0YvRjMjISImRjJGPCNGL0YyRj8jIiQrIkY5RkQjIiRiJUYyRkcjIiQmSEY0RksjRk1GMkZOIyIkOiJGQzJGJ0YvLDJGL0YvRjNGZW9GPEZnb0Y/IyEkKyJGOUZERmpvRkcjISQmSEY0RktGXnBGTiNGYm9GQzJGJ0Y0LDZGVkYvRicjIiUmWyZGMkYzRllGOCMiJkQlR0YyRjxGZ25GPyMiJnZKJEZDRkRGW29GRyMiJWJJRjJGS0Zfb0ZOI0ZgcEZSMkYnRjksNkYuRi9GJyMhJk4jKilGMkYzRjVGOCMhJyYqUTlGMkY8Rj1GPyMhJlRZJkZDRkRGRUZHIyElOjxGMkZLRkxGTiMhI0JGUjFGOUYnRio=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L650" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="seq(evalb(simplify(conditions[i], solutions)), i = 1 .. numelems(conditions));" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEkc2VxRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNi0tRiw2JVEmZXZhbGJGJ0YvRjItRjY2JC1GIzYmLUYsNiVRKXNpbXBsaWZ5RidGL0YyLUY2NiQtRiM2KS1GLDYlUStjb25kaXRpb25zRidGL0YyLUY2NiYtRiM2JS1GLDYlUSJpRidGL0YyLyUrZXhlY3V0YWJsZUdRJmZhbHNlRicvRjNRJ25vcm1hbEYnRlUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictSSNtb0dGJDYtUSIsRidGVS8lJmZlbmNlR0ZULyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRlQvJSpzeW1tZXRyaWNHRlQvJShsYXJnZW9wR0ZULyUubW92YWJsZWxpbWl0c0dGVC8lJ2FjY2VudEdGVC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUZobjYtUSJ+RidGVUZbby9GXm9GVEZfb0Zhb0Zjb0Zlb0Znb0Zpby9GXXBGW3AtRiw2JVEqc29sdXRpb25zRidGL0YyRlJGVUZVRlJGVUZVRmduRk8tRmhuNi1RIj1GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yNzc3Nzc4ZW1GJy9GXXBGW3EtSSNtbkdGJDYkUSIxRidGVS1GaG42LVEjLi5GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yMjIyMjIyZW1GJ0ZjcC1GLDYlUSludW1lbGVtc0YnRi9GMi1GNjYkLUYjNiRGSEZVRlVGUkZVRlUtRmhuNi1RIjtGJ0ZVRltvRl1vRl9vRmFvRmNvRmVvRmdvRmlvRlxxRlJGVQ==">QyQtSSRzZXFHJSpwcm90ZWN0ZWRHNiQtSSZldmFsYkdGJTYjLUkpc2ltcGxpZnlHNiI2JCZJK2NvbmRpdGlvbnNHRiw2I0kiaUdGLEkqc29sdXRpb25zR0YsL0YxOyIiIi1JKW51bWVsZW1zR0YlNiNGL0Y1</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NmFvSSV0cnVlRyUqcHJvdGVjdGVkR0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiM=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L648" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="evalb(int(Lambda[4, 4], x = xrange) = 1); 1; seq(evalb(int(x^i*Lambda[4, 4], x = xrange) = 0), i = 1 .. 4)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEmZXZhbGJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2KC1GLDYlUSRpbnRGJ0YvRjItRjY2JC1GIzYqLUYsNiNRIUYnLUYjNiZGQS1GIzYkLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBRJmZhbHNlRicvRjNRJ25vcm1hbEYnLUYjNiYtSSNtbkdGJDYkUSI0RidGUC1JI21vR0YkNi1RIixGJ0ZQLyUmZmVuY2VHRk8vJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGTy8lKnN5bW1ldHJpY0dGTy8lKGxhcmdlb3BHRk8vJS5tb3ZhYmxlbGltaXRzR0ZPLyUnYWNjZW50R0ZPLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRidGVEZQLyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGUEZBRlBGQUZYLUYsNiVRInhGJ0YvRjItRlk2LVEiPUYnRlBGZm4vRmluRk9Gam5GXG9GXm9GYG9GYm8vRmVvUSwwLjI3Nzc3NzhlbUYnL0Zob0ZlcC1GLDYlUSd4cmFuZ2VGJ0YvRjJGUEZQRmBwLUZVNiRRIjFGJ0ZQLyUrZXhlY3V0YWJsZUdGT0ZQRlAtRlk2LVEiO0YnRlBGZm5GaG5Gam5GXG9GXm9GYG9GYm9GZG9GZnAtRiw2JVEkc2VxRidGL0YyLUY2NiQtRiM2LEYrLUY2NiQtRiM2KEY6LUY2NiQtRiM2Ki1JJW1zdXBHRiQ2JUZdcC1GIzYlLUYsNiVRImlGJ0YvRjJGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdGXHAtRlk2LVEnJnNkb3Q7RidGUEZmbkZjcEZqbkZcb0Zeb0Zgb0Zib0Zkby9GaG9GZm8tRkk2JS1GLDYlUScmIzkyMztGJ0ZORlBGUkZqb0ZYRl1wRmBwRmdwRlBGUEZgcC1GVTYkRlxwRlBGXXFGUEZQRlhGZnJGYHBGanAtRlk2LVEjLi5GJ0ZQRmZuRmNwRmpuRlxvRl5vRmBvRmJvL0Zlb1EsMC4yMjIyMjIyZW1GJ0Zec0ZURl1xRlBGUEZdcUZQ">QyUtSSZldmFsYkclKnByb3RlY3RlZEc2Iy8tSSRpbnRHNiRGJUkoX3N5c2xpYkc2IjYkJkknTGFtYmRhR0YsNiQiIiVGMS9JInhHRixJJ3hyYW5nZUdGLCIiIkY1LUkkc2VxR0YlNiQtRiQ2Iy8tRik2JComKUYzSSJpR0YsRjVGLkY1RjIiIiEvRkA7RjVGMQ==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">SSV0cnVlRyUqcHJvdGVjdGVkRw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NiZJJXRydWVHJSpwcm90ZWN0ZWRHRiNGI0Yj</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L619" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="fac := 24:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZpci1JI21pR0YkNiVRJGZhY0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkjbW5HRiQ2JFEjMjRGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWi1GLDYlUSN3MEYnRi9GMkY1LUkobWZlbmNlZEdGJDYkLUYjNiQtSSZtZnJhY0dGJDYoLUZQNiRRIjFGJ0Y5LUYjNiRGK0Y5LyUubGluZXRoaWNrbmVzc0dGY28vJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGam8vJSliZXZlbGxlZEdGPUY5RjktRjY2LVEnJnNkb3Q7RidGOUY7Rj5GQEZCRkRGRkZIRllGZW4tRiw2JVEnaG9ybmVyRidGL0YyLUZqbjYkLUYjNipGK0ZfcC1GLDYlUSdleHBhbmRGJ0YvRjItRmpuNiQtRiM2JS1GLDYlUSVldmFsRidGL0YyLUZqbjYkLUYjNi1GYHEtRmpuNiQtRiM2Jy1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnL0YwRj1GOS1GIzYmLUZQNiRRIjRGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGWS9GTlEsMC4zMzMzMzMzZW1GJ0ZkckY5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRiw2I1EhRidGZ3ItRiw2JVEqc29sdXRpb25zRidGL0YyRjlGOUZnci1GLDYlUSJ4RidGL0YyLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZgdC1GUDYkUSIyRidGOUZcdEZWLUYsNiVRInlGJ0YvRjJGOUY5RjlGOUZnckZldC8lK2V4ZWN1dGFibGVHRj1GOUY5LUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRllGZW5GVkZldC1GNjYtUSI+RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GUDYkRl9zRjlGVi1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRmh1RjtGPkZARkJGREZGRkhGWUZlbkZWRmV0LUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmFvLUY2Ni1RIjtGJ0Y5RjtGanJGQEZCRkRGRkZIRllGTS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0ZaLyUmZGVwdGhHRmZ2LyUqbGluZWJyZWFrR1EobmV3bGluZUYnLUYsNiVRI3cxRidGL0YyRjVGVkZpbkZfcEZicC1Gam42JC1GIzYqRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYtRmBxRmdxRmdyRmZzRmlzRlx0RmFvLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGX3RGYXRGVkZldEY5RjlGOUY5RmdyRmV0Rmh0RjlGOUZqdEZWRmV0Rl11RmB1RlZGYnVGVkZldEZbdkZhb0ZedkZhdi1GLDYlUSN3MkYnRi9GMkY1RlZGaW5GX3BGYnAtRmpuNiQtRiM2KkYrRl9wRmlwLUZqbjYkLUYjNiVGYHEtRmpuNiQtRiM2K0ZgcUZncUZnckZmc0Zpc0ZcdEZWRmV0RjlGOUY5RjlGZ3JGZXRGaHRGOUY5RlZGanRGVkZldEZddUZgdUZWRmJ1RlZGZXRGW3ZGYW9GXnZGYXYtRiw2JVEjdzNGJ0YvRjJGNS1Gam42JC1GIzYmRmBzRl5vRmh0RjlGOUZfcEZicC1Gam42JC1GIzYqRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYtRmBxLUZqbjYkLUYjNiZGW3JGZ3JGY3NGOUY5RmdyRmZzRmlzRlZGYW9GXHRGVkZldEY5RjlGOUY5RmdyRmV0Rmh0RjlGOUZWRmp0RlZGZXRGXXVGYHVGVkZidUZWRmV0Rlt2RmFvRl52RmF2LUYsNiVRI3c0RidGL0YyRjVGaW5GX3BGYnAtRmpuNiQtRiM2KkYrRl9wRmlwLUZqbjYkLUYjNiVGYHEtRmpuNiQtRiM2LEZgcUZncUZnckZmc0Zpc0ZidEZcdEZWRmV0RjlGOUY5RjlGZ3JGZXRGaHRGOUY5RlZGanRGVkZldEZddUZgdUZWRmJ1RlZGZXRGW3ZGYW9GXnZGYXYtRiw2JVEjdzVGJ0YvRjJGNUZieUZfcEZicC1Gam42JC1GIzYqRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYsRmBxRmdxRmdyRmZzRmlzLUZQNiRRIjNGJ0Y5Rlx0RlZGZXRGOUY5RjlGOUZnckZldEZodEY5RjlGanRGVkZldEZddUZgdUZWRmJ1RlZGZXRGW3ZGYW9GXnZGaHRGOQ==">QzA+SSRmYWNHNiIiI0MhIiI+SSN3MEdGJS1JKWFzc3VtaW5nR0koX3N5c2xpYkdGJTYkNyMqJkYkRictSSdob3JuZXJHRiU2JComRiQiIiItSSdleHBhbmRHJSpwcm90ZWN0ZWRHNiMtSSVldmFsR0Y3NiQtRjo2JCZJJ0xhbWJkYUdGJTYkIiIlRkFJKnNvbHV0aW9uc0dGJS9JInhHRiUsJiEiI0Y0SSJ5R0YlRidGNEZHRjQ3Iy1JJGFuZEdGNzYkLUkiPkdGNzYkRkciIiEyRkdGNEY0PkkjdzFHRiUtRis2JDcjKiZGJEYnLUYxNiQqJkYkRjQtRjY2Iy1GOjYkRjwvRkQsJkYnRjRGR0YnRjRGR0Y0RkhGND5JI3cyR0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZELCRGR0YnRjRGR0Y0RkhGND5JI3czR0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZELCZGNEY0RkdGJ0Y0RkdGNEZIRjQ+SSN3NEdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRCwmIiIjRjRGR0YnRjRGR0Y0RkhGND5JI3c1R0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZELCYiIiRGNEZHRidGNEZHRjRGSEY0</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZVNiRRIjJGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcEZURl5wLUYjNiYtRmdvNiQtRiM2J0ZqcEZbcEZecC1GIzYmLUZnbzYkLUYjNiZGVEZecC1GIzYmLUZnbzYkLUYjNidGanAtRlU2JFEjODBGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSQyNzNGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZqcC1GVTYkUSQzNTRGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSQyMDdGJ0Y5LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGYXBGY3AtRiM2Ji1GVTYkUSM0NkYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGaHRGW3VGOQ==">LCQqJiwmIiIjIiIiKiYsJiEiIkYmKiYsJiEiI0YmKiYsJkYmRiYqJiwmISMhKUYmKiYsJiIkdCNGJiomLCYhJGEkRiYqJiwmIiQyI0YmSSJ5RzYiISNZRiZGO0YmRiZGJkY7RiZGJkYmRjtGJkYmRiZGO0YmRiZGJkY7RiZGJkYmRjtGJkYmRiZGO0YmRiZGJkY7RiYjRiYiI0M=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfcC1GVTYkUSMxNkYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZecEZgcC1GIzYmLUZnbzYkLUYjNiZGYXBGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIjRGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcEZjcUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEkNDAwRidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFElMTM2NUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJTE3NzBGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSUxMDM1RidGOUZkcC1GIzYmLUZVNiRRJDIzMEYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGaHRGW3VGOQ==">LCQqJiwmISM7IiIiKiYsJiIjO0YmKiYsJiIiJUYmKiYsJiEiJUYmKiYsJiIkKyVGJiomLCYhJWw4RiYqJiwmIiVxPEYmKiYsJiElTjVGJkkieUc2IiIkSSNGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJiNGJiIjQw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtSSNtbkdGJDYkUSIxRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlktRiM2KC1JJm1mcmFjR0YkNihGUS1GUjYkUSMyNEYnRjkvJS5saW5ldGhpY2tuZXNzR0ZULyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmFvLyUpYmV2ZWxsZWRHRj0tRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZqby1GIzYmLUkobWZlbmNlZEdGJDYkLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRlhGWi1GUjYkUSMzMEYnRjlGVS1GIzYmLUZfcDYkLUYjNiYtRlI2JFEiNkYnRjlGVS1GIzYmLUZfcDYkLUYjNidGY3AtRlI2JFEkODAwRidGOUZVLUYjNiYtRl9wNiQtRiM2Ji1GUjYkUSUyNzMwRidGOUZVLUYjNiYtRl9wNiQtRiM2J0ZjcC1GUjYkUSUzNTQwRidGOUZVLUYjNiYtRl9wNiQtRiM2Ji1GUjYkUSUyMDcwRidGOS1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRlhGWi1GIzYmLUZSNiRRJDQ2MEYnRjlGZm8tRiw2JVEieUYnRi9GMkY5RjlGOUZmb0ZedEY5RjlGOUZmb0ZedEY5RjlGOUZmb0ZedEY5RjlGOUZmb0ZedEY5RjlGOUZmby1JJW1zdXBHRiQ2JUZedC1GUjYkUSIyRidGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGOUY5RjlGZm9GYXRGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RjlGanRGXXVGOQ==">LCYiIiJGIyomLCYhI0lGIyomLCYiIidGIyomLCYhJCspRiMqJiwmIiVJRkYjKiYsJiElU05GIyomLCYiJXE/RiNJInlHNiIhJGclRiNGNkYjRiNGI0Y2RiNGI0YjRjZGI0YjRiNGNkYjRiNGI0Y2IiIjRiNGI0Y2RjkjRiMiI0M=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZVNiRRIzE2RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmJwLUYjNiYtRmdvNiQtRiM2JkZbcEZecC1GIzYmLUZnbzYkLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmFwRmNwLUZVNiRRIjRGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZgcUZjcUZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEkODAwRidGOUZecC1GIzYmLUZnbzYkLUYjNidGYHEtRlU2JFElMjczMEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJTM1NDBGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZgcS1GVTYkUSUyMDcwRidGOUZecC1GIzYmLUZVNiRRJDQ2MEYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5RjlGOUZeb0ZldEY5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGaHRGW3VGOQ==">LCQqJiwmIiM7IiIiKiYsJkYlRiYqJiwmISIlRiYqJiwmRitGJiomLCYiJCspRiYqJiwmISVJRkYmKiYsJiIlU05GJiomLCYhJXE/RiZJInlHNiIiJGclRiZGOkYmRiZGJkY6RiZGJkYmRjpGJkYmRiZGOkYmRiZGJkY6RiZGJkYmRjpGJkYmRiZGOkYmRiZGJkY6RiYjRiYiI0M=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfcC1GVTYkUSIyRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2J0ZbcEZURmRwLUYjNiYtRmdvNiQtRiM2JkZhcEZkcC1GIzYmLUZnbzYkLUYjNiZGVEZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEkNDAwRidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFElMTM2NUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJTE3NzBGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSUxMDM1RidGOS1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRlU2JFEkMjMwRidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRmV0RjlGOUY5Rl5vRmV0RjlGOUY5Rl5vRmV0RjlGOUY5Rl5vRmV0RjlGOUY5Rl5vRmV0RjlGOUY5Rl5vRmV0RjlGOUY5Rl5vRmV0RjlGOUY5Rl5vRmV0RjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZodEZbdUY5">LCQqJiwmISIjIiIiKiYsJiEiIkYmKiYsJiIiI0YmKiYsJkYmRiYqJiwmISQrJUYmKiYsJiIlbDhGJiomLCYhJXE8RiYqJiwmIiVONUYmSSJ5RzYiISRJI0YmRjtGJkYmRiZGO0YmRiZGJkY7RiZGJkYmRjtGJkYmRiZGO0YmRiZGJkY7RiZGJkYmRjtGJkYmRiZGO0YmI0YmIiND</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzVGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEjMjRGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZVNiRRIzgwRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmJwLUYjNiYtRmdvNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGYXBGY3AtRlU2JFEkMjczRidGOUZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEkMzU0RidGOUZecC1GIzYmLUZnbzYkLUYjNidGanAtRlU2JFEkMjA3RidGOUZecC1GIzYmLUZVNiRRIzQ2RidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRmdyRjlGOUY5Rl5vRmdyRjlGOUY5Rl5vRmdyRjlGOUY5Rl5vLUklbXN1cEdGJDYlRmdyLUZVNiRRIjVGJ0Y5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJ0Y5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGY3NGZnNGOQ==">LCQqJiwmIiMhKSIiIiomLCYhJHQjRiYqJiwmIiRhJEYmKiYsJiEkMiNGJkkieUc2IiIjWUYmRjBGJkYmRiZGMEYmRiZGJkYwRiZGJkYmRjAiIiYjRiYiI0M=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L771" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C([w0, w1, w2, w3, w4, w5], declare = [y::float], resultname = 'w', coercetypes = false)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEiQ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzY1LUY2NiYtRiM2Ly1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkEtRiw2JVEjdzRGJ0YvRjJGQS1GLDYlUSN3NUYnRi9GMi8lK2V4ZWN1dGFibGVHRklGRUZFLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRkEtRkI2LVEifkYnRkVGRy9GS0ZJRkxGTkZQRlJGVEZWL0ZaRlgtRiw2JVEoZGVjbGFyZUYnRi9GMi1GQjYtUSI9RidGRUZHRmBwRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZpcC1GNjYmLUYjNictRiw2JVEieUYnRi9GMi1GQjYtUS0mUHJvcG9ydGlvbjtGJ0ZFRkdGYHBGTEZORlBGUkZURmhwRmpwLUYsNiVRJmZsb2F0RidGL0YyRmVvRkVGRUZnb0Zqb0ZBLUYsNiVRK3Jlc3VsdG5hbWVGJ0YvRjJGZXAtRkI2LVEiJ0YnRkVGR0ZgcEZMRk5GUEZSRlQvRldRLDAuMTExMTExMWVtRidGYXAtRiw2JVEid0YnRi9GMkZbckZBRl1wLUYsNiVRLGNvZXJjZXR5cGVzRidGL0YyRmVwLUYsNiVGSUYvRjJGZW9GRUZFRmVvRkU=">LUkiQ0c2IjYmNyhJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiQvSShkZWNsYXJlR0YkNyMnSSJ5R0YkSSZmbG9hdEclKnByb3RlY3RlZEcvSStyZXN1bHRuYW1lR0YkLkkid0dGJC9JLGNvZXJjZXR5cGVzR0YkSSZmYWxzZUdGMw==</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[0] = (2 + (-1 + (-2 + (1 + (-80 + (273 + (-354 + (207 - 46 * y) * y) * y) * y) * y) * y) * y) * y) * y / 24;</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[1] = (-16 + (16 + (4 + (-4 + (400 + (-1365 + (1770 + (-1035 + 230 * y) * y) * y) * y) * y) * y) * y) * y) * y / 24; -w[2] = 1 + (-30 + (6 + (-800 + (2730 + (-3540 + (2070 - 460 * y) * y) * y) * y) * y) * y * y) * y * y / 24; -w[3] = (16 + (16 + (-4 + (-4 + (800 + (-2730 + (3540 + (-2070 + 460 * y) * y) * y) * y) * y) * y) * y) * y) * y / 24; -w[4] = (-2 + (-1 + (2 + (1 + (-400 + (1365 + (-1770 + (1035 - 230 * y) * y) * y) * y) * y) * y) * y) * y) * y / 24; -w[5] = (80 + (-273 + (354 + (-207 + 46 * y) * y) * y) * y) * pow(y, 5) / 24;</Text-field> -</Output> -</Group> -<Group labelreference="L770" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Fortran([w0, w1, w2, w3, w4, w5], declare = [y::float], resultname = 'w')" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEoRm9ydHJhbkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYvLUY2NiYtRiM2Li1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkEtRiw2JVEjdzRGJ0YvRjJGQS1GLDYlUSN3NUYnRi9GMkZFRkUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGQS1GQjYtUSJ+RidGRUZHL0ZLRklGTEZORlBGUkZURlYvRlpGWC1GLDYlUShkZWNsYXJlRidGL0YyLUZCNi1RIj1GJ0ZFRkdGXnBGTEZORlBGUkZUL0ZXUSwwLjI3Nzc3NzhlbUYnL0ZaRmdwLUY2NiYtRiM2Ji1GLDYlUSJ5RidGL0YyLUZCNi1RLSZQcm9wb3J0aW9uO0YnRkVGR0ZecEZMRk5GUEZSRlRGZnBGaHAtRiw2JVEmZmxvYXRGJ0YvRjJGRUZFRmVvRmhvRkEtRiw2JVErcmVzdWx0bmFtZUYnRi9GMkZjcC1GQjYtUSInRidGRUZHRl5wRkxGTkZQRlJGVC9GV1EsMC4xMTExMTExZW1GJ0ZfcC1GLDYlUSJ3RidGL0YyRmlxRkVGRS8lK2V4ZWN1dGFibGVHRklGRQ==">LUkoRm9ydHJhbkc2IjYlNyhJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiQvSShkZWNsYXJlR0YkNyMnSSJ5R0YkSSZmbG9hdEclKnByb3RlY3RlZEcvSStyZXN1bHRuYW1lR0YkLkkid0dGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output"> w(1) = (0.2D1 + (-0.1D1 + (-0.2D1 + (0.1D1 + (-0.80D2 + (0.273D3 +</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output"> # (-0.354D3 + (0.207D3 - 0.46D2 * y) * y) * y) * y) * y) * y) * y) - #* y) * y / 0.24D2 - w(2) = (-0.16D2 + (0.16D2 + (0.4D1 + (-0.4D1 + (0.400D3 + (-0.1365 - #D4 + (0.1770D4 + (-0.1035D4 + 0.230D3 * y) * y) * y) * y) * y) * y - #) * y) * y) * y / 0.24D2 - w(3) = 0.1D1 + (-0.30D2 + (0.6D1 + (-0.800D3 + (0.2730D4 + (-0.354 - #0D4 + (0.2070D4 - 0.460D3 * y) * y) * y) * y) * y) * y ** 2) * y * - #* 2 / 0.24D2 - w(4) = (0.16D2 + (0.16D2 + (-0.4D1 + (-0.4D1 + (0.800D3 + (-0.2730 - #D4 + (0.3540D4 + (-0.2070D4 + 0.460D3 * y) * y) * y) * y) * y) * y - #) * y) * y) * y / 0.24D2 - w(5) = (-0.2D1 + (-0.1D1 + (0.2D1 + (0.1D1 + (-0.400D3 + (0.1365D4 - # + (-0.1770D4 + (0.1035D4 - 0.230D3 * y) * y) * y) * y) * y) * y) - #* y) * y) * y / 0.24D2 - w(6) = (0.80D2 + (-0.273D3 + (0.354D3 + (-0.207D3 + 0.46D2 * y) * - #y) * y) * y) * y ** 5 / 0.24D2</Text-field> -</Output> -</Group> -<Group labelreference="L617" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L622" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L645" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L637" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L642" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L616" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -</Worksheet> \ No newline at end of file diff --git a/Docs/remeshing_formulas/calcul_lambda6star.mw b/Docs/remeshing_formulas/calcul_lambda6star.mw deleted file mode 100644 index 42ded4dceca0ef147af5525df75b8e13f60aed55..0000000000000000000000000000000000000000 --- a/Docs/remeshing_formulas/calcul_lambda6star.mw +++ /dev/null @@ -1,409 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<Worksheet> -<Version major="16" minor="0"/> -<Label-Scheme value="2" prefix=""/> -<View-Properties presentation="false"><Zoom percentage="150"/></View-Properties> -<MapleNet-Properties elisiondigitsbefore="100" labelling="true" indentamount="4" elisiontermsthreshold="10000" ansi="false" errorbreak="1" useclientjvm="true" echo="1" imaginaryunit="I" labelwidth="20" contextmenusize="automatic" plotdriver="opengl" elisiondigitsafter="100" plotoutput="terminal" helpbrowser="standard" rtablesize="10" elisiontermsbefore="100" elisiondigitsthreshold="10000" typesetting="standard" plotdevice="inline" verboseproc="1" showassumed="1" errorcursor="false" longdelim="true" plotoptions="" quiet="false" elisiontermsafter="100" screenwidth="79" preplot="" prettyprint="3" displayprecision="-1" screenpixelheight="1050" warnlevel="3" screenheight="25" latexwidth="6.0" postplot="" prompt="> " ShowLabels="true"/> -<Styles><Font name="Ordered List 1" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 2" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 3" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 5" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Author" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Warning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Caption Reference" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input Placeholder" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[200,0,200]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="true"/> -<Font name="Maple Plot" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Code" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Line Printed Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Diagnostic" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[40,120,40]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Inert Output" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[144,144,144]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Normal" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,128,128]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Maple Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Dash Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Math" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Input" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkError" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Header and Footer" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="10" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Error" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 1" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Bullet Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Equation Label" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 3" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="14" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 2" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="16" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkWarning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Dictionary Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[147,0,15]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Caption Text" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="List Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Layout name="Ordered List 1" alignment="left" bullet="numeric" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 2" alignment="left" bullet="alphabetic" firstindent="0" leftmargin="36" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 3" alignment="left" bullet="roman" firstindent="0" leftmargin="72" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 4" alignment="left" bullet="ALPHABETIC" firstindent="0" leftmargin="108" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 5" alignment="left" bullet="ROMAN" firstindent="0" leftmargin="144" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Author" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="8" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Warning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Annotation Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Plot" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Line Printed Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Text Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="newline" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Diagnostic" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Normal" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Output" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.3" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Dash Item" alignment="left" bullet="dash" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkError" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Error" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 1" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="4" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Bullet Item" alignment="left" bullet="dot" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 4" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 3" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 2" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="2" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkWarning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="List Item" alignment="left" bullet="indent" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Pencil-style name="Pencil 5" pen-color="[255,0,0]" pen-height="5.0" pen-width="5.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 4" pen-color="[0,0,255]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 3" pen-color="[0,0,0]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 2" pen-color="[0,0,255]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 1" pen-color="[0,0,0]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Highlighter-style name="Highlighter 2" pen-color="[255,204,0]" pen-height="14.0" pen-width="14.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 1" pen-color="[255,153,255]" pen-height="12.0" pen-width="8.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 4" pen-color="[0,255,255]" pen-height="32.0" pen-width="32.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 3" pen-color="[51,255,0]" pen-height="24.0" pen-width="24.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 5" pen-color="[255,255,0]" pen-height="48.0" pen-width="48.0" pen-opacity="0.8"/> -</Styles> -<Task-table> - <Task-category name="<default>"> - </Task-category> -</Task-table> -<Task> -</Task> -<Group labelreference="L545" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYkLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjlGOS1GNjYtUSI6RidGOUY7L0Y/Rj1GQEZCRkRGRkZIL0ZLRk9GTS1GLDYlUSdob3JuZXJGJ0YvRjItRjY2LVEqJmNvbG9uZXE7RidGOUY7RmhuRkBGQkZERkZGSEZpbkZNLUYsNiVRKGNvZGVnZW5GJ0YvRjItRlQ2Ji1GIzYkRmpuRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zlbi8lK2V4ZWN1dGFibGVHRj1GOQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYjLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjktRjY2LVEiOkYnRjlGOy9GP0Y9RkBGQkZERkZGSC9GS0ZPRk0tRiw2JVEnaG9ybmVyRidGL0YyLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0ZobkZARkJGREZGRkhGaW5GTS1GLDYlUShjb2RlZ2VuRidGL0YyLUZUNiYtRiM2I0ZqbkY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmVu</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L560" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Calcul de la fomule Lambda_6^*:</Text-field> -<Text-field style="Text" layout="Normal"> - 8 points</Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8"> - degr\303\251 7</Font></Text-field> -<Text-field style="Text" layout="Normal"> - C3</Text-field> -<Text-field style="Text" layout="Normal"> - Moments d'ordre 6</Text-field> -</Input> -</Group> -<Group labelreference="L550" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="xrange := -4 .. 4; 1; d := 7" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlMtSSNtbkdGJDYkUSI0RidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZSL0ZOUSYwLjBlbUYnRlUtRjY2LVEiO0YnRjlGOy9GP0YxRkBGQkZERkZGSC9GS0ZnbkZNLUYsNiVRImRGJ0YvRjJGNS1GVjYkUSI3RidGOS8lK2V4ZWN1dGFibGVHRj1GOQ==">QyU+SSd4cmFuZ2VHNiI7ISIlIiIlIiIiPkkiZEdGJSIiKA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYoLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlctSSNtbkdGJDYkUSI0RidGOUY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRlYvRk5RJjAuMGVtRidGWS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RlxvRl9vRjk=">OyEiJSIiJQ==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiZEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSSNtbkdGJDYkUSI3RidGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5">IiIo</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L548" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="p[0] := proc (x) options operator, arrow; sum(c[0, i]*x^i, i = 0 .. d) end proc;" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZALUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYkLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJ0Y+LyUvc3Vic2NyaXB0c2hpZnRHRj0tSSNtb0dGJDYtUSomY29sb25lcTtGJ0Y+LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZILyUpc3RyZXRjaHlHRkgvJSpzeW1tZXRyaWNHRkgvJShsYXJnZW9wR0ZILyUubW92YWJsZWxpbWl0c0dGSC8lJ2FjY2VudEdGSC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRlctRi82JVEieEYnRjJGNS1GQzYtUSgmc3JhcnI7RidGPkZGRklGS0ZNRk9GUUZTL0ZWUSYwLjBlbUYnL0ZZRltvLUYvNiVRJHN1bUYnRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYtLUYsNiUtRi82JVEiY0YnRjJGNS1GIzYmRjotRkM2LVEiLEYnRj5GRi9GSkY0RktGTUZPRlFGU0Zqbi9GWVEsMC4zMzMzMzMzZW1GJy1GLzYlUSJpRidGMkY1Rj5GQC1GQzYtUScmc2RvdDtGJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG8tSSVtc3VwR0YkNiVGWi1GIzYlLUZDNi1RIn5GJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG9GYnBGPi8lMXN1cGVyc2NyaXB0c2hpZnRHRj1GXHBGXXFGYnAtRkM2LVEiPUYnRj5GRkZJRktGTUZPRlFGU0ZVRlhGOi1GQzYtUSMuLkYnRj5GRkZJRktGTUZPRlFGUy9GVlEsMC4yMjIyMjIyZW1GJ0Zcby1GLzYlUSJkRidGMkY1Rj5GPi1GQzYtUSI7RidGPkZGRl9wRktGTUZPRlFGU0ZqbkZYLUYsNiVGLi1GIzYkLUY7NiRRIjFGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGZHJGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLUYsNiVGLi1GIzYkLUY7NiRRIjJGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGY3NGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLUYsNiVGLi1GIzYkLUY7NiRRIjNGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGYnRGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLyUrZXhlY3V0YWJsZUdGSEY+">Qyo+JkkicEc2IjYjIiIhZio2I0kieEdGJkYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLUkkc3VtR0YmNiQqJiZJImNHRiY2JEYoSSJpR0YmIiIiKTkkRjZGNy9GNjtGKEkiZEdGJkYmRiZGJkY3PiZGJTYjRjdmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRjdGNkY3RjhGN0Y6RiZGJkYmRjc+JkYlNiMiIiNmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRklGNkY3RjhGN0Y6RiZGJkYmRjc+JkYlNiMiIiRmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRlNGNkY3RjhGN0Y6RiZGJkYmRjc=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R0Y9LUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZm4tRiM2KC1GLzYlUSJ4RidGMkY1LUZJNi1RKCYjODU5NDtGJ0Y+RkxGTkZQRlJGVEZWRlgvRmVuUSYwLjBlbUYnL0ZobkZiby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZJNi1RJiZTdW07RidGPkZMRk4vRlFGNEZSL0ZVRjQvRldGNEZYRmFvL0ZoblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRkk2LVEiPUYnRj5GTEZORlBGUkZURlZGWEZaRmduRjpGQEZDRj4tRi82JVEiZEYnRjJGNUZYLyUsYWNjZW50dW5kZXJHRkUtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdRJDUuMEYnLyUmZGVwdGhHRmNxLyUqbGluZWJyZWFrR1ElYXV0b0YnLUYjNiYtRiw2JS1GLzYlUSJjRidGMkY1LUYjNihGOi1GSTYtUSIsRidGPkZML0ZPRjRGUEZSRlRGVkZYRmFvL0ZoblEsMC4zMzMzMzMzZW1GJ0ZjcEZARkNGPkZGLUZJNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y+RkxGTkZQRlJGVEZWRlhGYW9GY28tSSVtc3VwR0YkNiVGW29GY3AvJTFzdXBlcnNjcmlwdHNoaWZ0R0Y9Rj5GQEZDRj5GQEZDRj5GQEZDRj4=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIUkiaUdGJSIiIik5JEYxRjIvRjE7RjBJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIkkiaUdGJUYwKTkkRjFGMC9GMTsiIiFJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMkYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiI0kiaUdGJSIiIik5JEYxRjIvRjE7IiIhSSJkR0YlRiVGJUYl</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiM0YnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiJEkiaUdGJSIiIik5JEYxRjIvRjE7IiIhSSJkR0YlRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L547" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="P := proc (x) options operator, arrow; piecewise(x < -4, 0, x < -3, p[0](x), x < -2, p[1](x), x < -1, p[2](x), x < 0, p[3](x), x < 1, p[3](-x), x < 2, p[2](-x), x < 3, p[1](-x), x < 4, p[0](-x), 4 <= x, 0) end proc" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KS1GLDYlUSJQRicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnRjcvJSZmZW5jZUdGNi8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0Y2LyUqc3ltbWV0cmljR0Y2LyUobGFyZ2VvcEdGNi8lLm1vdmFibGVsaW1pdHNHRjYvJSdhY2NlbnRHRjYvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZOLUYsNiVRInhGJ0Y0RjctRjs2LVEoJnNyYXJyO0YnRjdGPkZARkJGREZGRkhGSi9GTVEmMC4wZW1GJy9GUEZYLUYsNiVRKnBpZWNld2lzZUYnL0Y1USV0cnVlRicvRjhRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNltxRistSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWC8lJmRlcHRoR0Zlby8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GOzYtUSJ+RidGN0Y+RkBGQkZERkZGSEZKRldGWUZRLUY7Ni1RIjxGJ0Y3Rj5GQEZCRkRGRkZIRkpGTEZPLUY7Ni1RKiZ1bWludXMwO0YnRjdGPkZARkJGREZGRkhGSi9GTVEsMC4yMjIyMjIyZW1GJy9GUEZncC1JI21uR0YkNiRRIjRGJ0Y3LUY7Ni1RIixGJ0Y3Rj4vRkFGaG5GQkZERkZGSEZKRlcvRlBRLDAuMzMzMzMzM2VtRictRmpwNiRRIjBGJ0Y3Rl1xRl1wRmBvRl1wLUYsNiVGU0ZnbkZpbkZgcEZjcC1GanA2JFEiM0YnRjdGXXEtSSVtc3ViR0YkNiUtRiw2JVEicEYnRmduRmluLUYjNiVGY3FGZ25GaW4vJS9zdWJzY3JpcHRzaGlmdEdGZXEtRlxvNiQtRiM2JEZmcUY3RjdGXXFGYG9GXXBGZnFGYHBGY3AtRmpwNiRRIjJGJ0Y3Rl1xLUZccjYlRl5yLUYjNiUtRmpwNiRRIjFGJ0Y3RmduRmluRmNyRmVyRl1xRmBvRl1wRlFGYHBGY3BGYHNGXXEtRlxyNiUtRiw2JUZgckY0RjctRiM2JEZpckY3RmNyRmVyRl1xRmBvRl1wRmZxRmBwRmNxRl1xLUZccjYlRl5yLUYjNiRGaHFGN0ZjckZlckZdcUZgb0ZdcEZmcUZgcEZgc0ZdcUZpcy1GXG82JC1GIzYlRmNwRmZxRjdGN0ZdcUZgb0ZdcEZmcUZgcEZpckZdcS1GXHI2JUZeckZnc0ZjckZddEZdcUZgb0ZdcEZmcUZgcEZocUZdcUZcc0ZddEZdcUZgb0ZdcEZmcUZgcEZpcEZdcUZbckZddEZdcUZgb0ZdcEZmcS1GOzYtUS8mR3JlYXRlckVxdWFsO0YnRjdGPkZARkJGREZGRkhGSkZMRk9GaXBGXXFGXXBGY3FGN0Y3RjdGKy8lK2V4ZWN1dGFibGVHRjZGNw==">PkkiUEc2ImYqNiNJInhHRiRGJDYkSSlvcGVyYXRvckdGJEkmYXJyb3dHRiRGJC1JKnBpZWNld2lzZUclKnByb3RlY3RlZEc2NjI5JCEiJSIiITJGMCEiJC0mSSJwR0YkNiNGMjYjRjAyRjAhIiMtJkY3NiMiIiJGOTJGMCEiIi0mRjc2IyIiI0Y5MkYwRjItJkY3NiMiIiRGOTJGMEY/LUZINiMsJEYwRkEyRjBGRS1GQ0ZNMkYwRkotRj1GTTJGMCIiJS1GNkZNMUZURjBGMkYkRiRGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiUEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2KC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCYjODU5NDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWC1GIzYoLUYsNiVRKnBpZWNld2lzZUYnRi9GMi1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGV0ZZLUkobWZlbmNlZEdGJDYkLUYjNkwtRiM2KEZRLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlxwLUkjbW5HRiQ2JFEiNEYnRjlGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGVy9GTlEsMC4zMzMzMzMzZW1GJy1GX3A2JFEiMEYnRjlGZ3AtRiM2KEZRRmNvLUYjNiVGaG8tRl9wNiRRIjNGJ0Y5RjlGYnBGZXBGOUZncC1GIzYoLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JkZdcUZicEZlcEY5LyUvc3Vic2NyaXB0c2hpZnRHRl9xRmluLUZdbzYkLUYjNiZGUUZicEZlcEY5RjlGYnBGZXBGOUZncC1GIzYoRlFGY28tRiM2JUZoby1GX3A2JFEiMkYnRjlGOUZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2Ji1GX3A2JFEiMUYnRjlGYnBGZXBGOUZhckZpbkZjckZicEZlcEY5RmdwLUYjNihGUUZjby1GIzYlRmhvRmRzRjlGYnBGZXBGOUZncC1GIzYoLUZqcTYlRlxyLUYjNiZGW3NGYnBGZXBGOUZhckZpbkZjckZicEZlcEY5RmdwLUYjNihGUUZjb0ZdcUZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2JkZkcUZicEZlcEY5RmFyRmluRmNyRmJwRmVwRjlGZ3AtRiM2KEZRRmNvRmRzRmJwRmVwRjlGZ3AtRiM2KEZldEZpbi1GXW82JC1GIzYmLUYjNidGaG9GUUZicEZlcEY5RmJwRmVwRjlGOUZicEZlcEY5RmdwLUYjNihGUUZjb0Zbc0ZicEZlcEY5RmdwLUYjNihGXXRGaW5GXXVGYnBGZXBGOUZncC1GIzYoRlFGY29GZHFGYnBGZXBGOUZncC1GIzYoRmBzRmluRl11RmJwRmVwRjlGZ3AtRiM2KEZRRmNvRl5wRmJwRmVwRjlGZ3AtRiM2KEZpcUZpbkZddUZicEZlcEY5RmdwLUYjNihGXnAtRjY2LVElJmxlO0YnRjlGO0Y+RkBGQkZERkZGSEZKRk1GUUZicEZlcEY5RmdwRl1xRmJwRmVwRjlGOUZicEZlcEY5RmJwRmVwRjlGYnBGZXBGOQ==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzY2MjkkISIlIiIhMkYuISIkLSZJInBHRiU2I0YwNiNGLjJGLiEiIy0mRjU2IyIiIkY3MkYuISIiLSZGNTYjIiIjRjcyRi5GMC0mRjU2IyIiJEY3MkYuRj0tRkY2IywkRi5GPzJGLkZDLUZBRksyRi5GSC1GO0ZLMkYuIiIlLUY0RksxRlJGLkYwRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L566" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="E := [eval(P(x), x = 0) = 1, eval(P(x), x = -1) = 0, eval(P(x), x = -2) = 0, eval(P(x), x = -3) = 0, eval(P(x), x = -4) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiRUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNjwtRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNiktRiw2JVEiUEYnRi9GMi1GUDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5RjlGOUZnby1GW3A2JFEiMUYnRjlGX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ28tRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmlwRl5wRjlGOUZnb0Zqb0Zfb0ZULUZQNiQtRiM2KkZlbkZobkZfb0Zcb0Znb0ZlcC1GW3A2JFEiMkYnRjlGOUY5RmdvRmpvRl9vRlQtRlA2JC1GIzYqRmVuRmhuRl9vRlxvRmdvRmVwLUZbcDYkUSIzRidGOUY5RjlGZ29Gam9GX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ29GZXAtRltwNiRRIjRGJ0Y5RjlGOUZnb0Zqby8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmByRjk=">QyQ+SSJFRzYiNycvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJS9GLyIiISIiIi8tRik2JEYsL0YvISIiRjEvLUYpNiRGLC9GLyEiI0YxLy1GKTYkRiwvRi8hIiRGMS8tRik2JEYsL0YvISIlRjFGNw==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L558" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C0 := [seq(eval(p[j](x), x = j-4+1) = eval(p[j+1](x), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRl5wLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmRvLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYHEtSSNtbkdGJDYkUSI0RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl9xRmFxLUZjcTYkUSIxRidGOUY5RjlGaXBGZW4tRlA2JC1GIzYtLUZdbzYlRl9vLUYjNiZGZG9GZnFGaXFGOUZnb0Zqb0ZhcEZecEZpcEZkb0ZccUZicUZmcUZpcUY5RjlGYXBGZG9GaXAtRmNxNiRGaW9GOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZfcS9GTkZmcC1GY3E2JFEiMkYnRjlGOUY5LyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GXXNGOQ==">QyQ+SSNDMEc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS9GNS1JIitHRik2JCwmRjMiIiIhIiVGO0Y7LUYtNiQtJkYxNiMsJkYzRjtGO0Y7RjRGNi9GMzsiIiEiIiMhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L567" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C1 := [seq(eval(diff(p[j](x), x), x = j-4+1) = eval(diff(p[j+1](x), x), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwRjlGOUZocEZlcC1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbcC1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmdxLUkjbW5HRiQ2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocS1GanE2JFEiMUYnRjlGOUY5RmBxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JkZbcEZdckZgckY5Rl5wRmFwRmhwRmVwRjlGOUZocEZlcEZgcUZbcEZjcUZpcUZdckZgckY5RjlGaHBGW3BGYHEtRmpxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZmcS9GTkZdcS1GanE2JFEiMkYnRjlGOUY5LyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRiw2JVEkQzEwRidGL0YyRjUtRlA2Ji1GIzYpRmVuLUZQNiQtRiM2KUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JC1GanE2JFEiM0YnRjlGOUZecEZhcEZocEZlcEY5RjlGaHBGZXBGYHFGX3NGOUY5RmBxRmVuLUZQNiQtRiM2KUZcby1GUDYkLUYjNidGYnUtRlA2JC1GIzYlLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocUZlcEY5RjlGaHBGZXBGOUY5RmhwRmVwRmBxRl9zRjlGOUZoc0Y5RjlGanNGXXRGYHRGaHNGOQ==">QyY+SSNDMUc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJUY4L0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUY+Rj4tRi02JC1GMDYkLSZGNDYjLCZGNkY+Rj5GPkY3RjhGOS9GNjsiIiEiIiMhIiI+SSRDMTBHRiU3Iy8tRi02JC1GMDYkLSZGNDYjIiIkRjdGOC9GOEZKLUYtNiQtRjA2JC1GVjYjLCRGOEZMRjhGWUZM</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L555" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C2 := [seq(eval(diff(p[j](x), `$`(x, 2)), x = j-4+1) = eval(diff(p[j+1](x), `$`(x, 2)), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIyRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcUZkcUY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbdEY5">QyQ+SSNDMkc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIjL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiFGPCEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L578" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C3 := [seq(eval(diff(p[j](x), `$`(x, 3)), x = j-4+1) = eval(diff(p[j+1](x), `$`(x, 3)), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIzRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcS1GZXE2JFEiMkYnRjlGOUY5RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSRDMzBGJ0YvRjJGNS1GUDYmLUYjNihGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2KS1GZG82JUZmby1GIzYkRmRxRjlGXnBGYXBGaHBGZXBGYHFGZHFGOUY5RmhwRmVwRmhxRmZzRjlGOUZocUZlbi1GUDYkLUYjNilGXG8tRlA2JC1GIzYpRmZ1LUZQNiQtRiM2JS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGXnJGYHJGZXBGOUY5RmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZmc0Y5RjlGOUY5Rl50RmF0RmR0LyUrZXhlY3V0YWJsZUdGPUY5">QyY+SSNDM0c2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIkL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiEiIiMhIiI+SSRDMzBHRiU3Iy8tRi02JC1GMDYkLSZGNDYjRjxGN0Y5L0Y4Rk4tRi02JC1GMDYkLUZaNiMsJEY4RlBGOUZmbkZQ</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L553" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="CEND := [eval(diff(p[0](x), x), x = -4) = 0, eval(diff(p[0](x), `$`(x, 2)), x = -4) = 0, eval(diff(p[0](x), `$`(x, 3)), x = -4) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElQ0VOREYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GUy1JKG1mZW5jZWRHRiQ2Ji1GIzYyLUYsNiVRJWV2YWxGJ0YvRjItRlY2JC1GIzYqLUYsNiVRJWRpZmZGJ0YvRjItRlY2JC1GIzYnLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JC1JI21uR0YkNiRRIjBGJ0Y5RjkvJS9zdWJzY3JpcHRzaGlmdEdGXXAtRlY2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGSi9GTlEsMC4zMzMzMzMzZW1GJ0ZkcEY5RjlGZ3BGZHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmRxLUZbcDYkUSI0RidGOUY5RjlGXXFGam9GZ3BGWi1GVjYkLUYjNipGW28tRlY2JC1GIzYpRmJvRmBwRmdwRmRwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZbcDYkUSIyRidGOUY5RjlGZ3BGZHBGXXFGYHFGZnFGOUY5Rl1xRmpvRmdwRlotRlY2JC1GIzYqRltvLUZWNiQtRiM2KUZib0ZgcEZncEZkcEZhci1GW3A2JFEiM0YnRjlGOUY5RmdwRmRwRl1xRmBxRmZxRjlGOUZdcUZqby8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGUkZURmJzRjk=">QyQ+SSVDRU5ERzYiNyUvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JJWRpZmZHRio2JC0mSSJwR0YlNiMiIiE2I0kieEdGJUY1L0Y1ISIlRjMvLUYpNiQtRi02JEYvLUkiJEdGKjYkRjUiIiNGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIiRGNkYzISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L573" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM0 := `assuming`([PolynomialTools[CoefficientList](collect(sum(eval(P(x), x = s-l), l = xrange)-s^0, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0wRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRlM2JC1GIzYoLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlM2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GUzYkLUYjNiktRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0ZccS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXItRiw2JVEibEYnRi9GMkY5RjlGX3FGY3JGZ3EtRiw2JVEneHJhbmdlRidGL0YyRjlGOUZdci1JJW1zdXBHRiQ2JS1GUzYkLUYjNiRGanFGOUY5LUYjNiQtSSNtbkdGJDYkUSIwRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdGZXNGX3FGanFGOUY5Rl9xRmpxRlpGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGY3EvRk5GZHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGY3FGW3RGaHNGanEtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GYnNGaHMtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZodEY7Rj5GQEZCRkRGRkZIRmNxRlt0RmhzRmpxLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZjczYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZaRjk=">QyQ+SSRETTBHNiItSSlhc3N1bWluZ0dGJTYkNyMtJkkwUG9seW5vbWlhbFRvb2xzR0YlNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGJTYkLCYtSSRzdW1HNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2JC1JJWV2YWxHRjc2JC1JIlBHRiU2I0kieEdGJS9GQCwmSSJzR0YlIiIiSSJsR0YlISIiL0ZFSSd4cmFuZ2VHRiVGRC1JIl5HRjc2JEZDIiIhRkZGQ0ZDNyMtSSRhbmRHRjc2JC1JIj5HRjdGSzJGQ0ZERkY=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L577" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM0 := [seq(DM0[j] = 0, j = 1 .. numelems(DM0))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiYtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Ly1GLDYlUSRETTBGJ0YvRjItRlA2Ji1GIzYlLUYsNiVRImpGJ0YvRjIvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXG9GZ28tRltwNiRRIjFGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmNwLUYsNiVRKW51bWVsZW1zRidGL0YyLUZQNiQtRiM2JUZlbkZfb0Y5RjlGX29GOUY5Rl9vRjlGOUZhb0Zkby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYjUSFGJ0Zfb0Y5">QyQ+SSVsRE0wRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0wR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L551" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM1 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l*(eval(P(x), x = s-l)), l = xrange)-s, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistRiw2JVEibEYnRi9GMi1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaHAtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZncC9GTlEsMC4zMzMzMzMzZW1GJ0ZocS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GW3NGYXBGOUY5RltyRmFwRmFyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGZ3ItSSVtc3VwR0YkNiUtRlg2JC1GIzYkRmRyRjlGOS1GIzYkLUkjbW5HRiQ2JFEiMUYnRjlGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGW3JGZHJGOUY5RltyRmRyRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqczYkRl90RjlGYHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZhdUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmlzLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmB0LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTFHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIiLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiVGPEY7ISIiRjwvRjtJJ3hyYW5nZUdGJUY8RkZGR0ZGRkY3Iy1JJGFuZEdGLzYkLUkiPkdGLzYkRkYiIiEyRkZGPEZH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L559" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM1 := [seq(DM1[j] = 0, j = 1 .. numelems(DM1))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTFGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0xRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0xR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L544" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM2 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^2*(eval(P(x), x = s-l)), l = xrange)-s^2, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0yRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistSSVtc3VwR0YkNiUtRiw2JVEibEYnRi9GMi1GIzYlLUkjbW5HRiQ2JFEiMkYnRjlGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GZHEtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZjcS9GTlEsMC4zMzMzMzMzZW1GJ0Zkci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GZ3NGZHBGOUY5RmdyRmRwRl1zLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGY3MtRmJwNiUtRlg2JC1GIzYkRmBzRjlGOS1GIzYkRmlwRjlGXXFGZ3JGYHNGOUY5RmdyRmBzRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkRl9xRjlGZHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZldUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZkdC8lK2V4ZWN1dGFibGVHRj1GOQ==">QyQ+SSRETTJHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIjLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L576" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM2 := [seq(DM2[j] = 0, j = 1 .. numelems(DM2))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTJGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0yRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0yR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L564" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM3 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^3*(eval(P(x), x = s-l)), l = xrange)-s^3, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE0zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSIzRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTNHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIkLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L563" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM3 := [seq(DM3[j] = 0, j = 1 .. numelems(DM3))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNM0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTNGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0zRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0zR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L569" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM4 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^4*(eval(P(x), x = s-l)), l = xrange)-s^4, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE00RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI0RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTRHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIlLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L568" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM4 := [seq(DM4[j] = 0, j = 1 .. numelems(DM4))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTRGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE00RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE00R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L585" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM5 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^5*(eval(P(x), x = s-l)), l = xrange)-s^5, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE01RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI1RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTVHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiImLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L586" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM5 := [seq(DM5[j] = 0, j = 1 .. numelems(DM5))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTVGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE01RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE01R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L583" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM6 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^6*(eval(P(x), x = s-l)), l = xrange)-s^6, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE02RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI2RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTZHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiInLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L584" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM6 := [seq(DM6[j] = 0, j = 1 .. numelems(DM6))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTZGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE02RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE02R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L546" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="inconnues := [seq(seq(c[i, j], j = 0 .. d), i = 0 .. 3)]; 1; numelems(inconnues)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2Ji1GLDYlUSRzZXFGJ0YvRjItRlA2JC1GIzYrRlQtRlA2JC1GIzYqLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2Ji1GLDYlUSJpRidGL0YyLUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRictRiw2JVEiakYnRi9GMkY5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGZG9GXHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSNtbkdGJDYkRmFwRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GaW8tRiw2JVEiZEYnRi9GMkY5RjlGZG9GYW9GYnBGZXBGaHAtRmZwNiRRIjNGJ0Y5RjlGOS8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjtGJ0Y5RjtGZ29GQEZCRkRGRkZIRmhvRk0tRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRitGOUY5RmRxRjk=">QyU+SSppbmNvbm51ZXNHNiI3Iy1JJHNlcUclKnByb3RlY3RlZEc2JC1GKDYkJkkiY0dGJTYkSSJpR0YlSSJqR0YlL0YxOyIiIUkiZEdGJS9GMDtGNCIiJCIiIi1JKW51bWVsZW1zR0YpNiNGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZeby1JJW1zdWJHRiQ2JS1GLDYlUSJjRidGL0YyLUYjNigtSSNtbkdGJDYkUSIwRidGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmZuLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjkvJS9zdWJzY3JpcHRzaGlmdEdGaW5Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjFGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjJGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjNGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjRGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjVGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjZGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjdGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GZm5GYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZdcEZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmRwRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GW3FGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZicUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmlxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GYHJGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZnckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmZuRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GXXBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZkcEZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRltxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GYnFGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZpcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmByRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GZ3JGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZmbkZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRl1wRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GZHBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZbcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRmJxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GaXFGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZgckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRmdyRmJvRmVvRjlGZ29GYm9GZW9GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmJvRmVvRjk=">N0ImSSJjRzYiNiQiIiFGJyZGJDYkRiciIiImRiQ2JEYnIiIjJkYkNiRGJyIiJCZGJDYkRiciIiUmRiQ2JEYnIiImJkYkNiRGJyIiJyZGJDYkRiciIigmRiQ2JEYqRicmRiQ2JEYqRiomRiQ2JEYqRi0mRiQ2JEYqRjAmRiQ2JEYqRjMmRiQ2JEYqRjYmRiQ2JEYqRjkmRiQ2JEYqRjwmRiQ2JEYtRicmRiQ2JEYtRiomRiQ2JEYtRi0mRiQ2JEYtRjAmRiQ2JEYtRjMmRiQ2JEYtRjYmRiQ2JEYtRjkmRiQ2JEYtRjwmRiQ2JEYwRicmRiQ2JEYwRiomRiQ2JEYwRi0mRiQ2JEYwRjAmRiQ2JEYwRjMmRiQ2JEYwRjYmRiQ2JEYwRjkmRiQ2JEYwRjw=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNL</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L556" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="conditions := [E[], C0[], C1[], C10[], C2[], C3[], C30[], CEND[], lDM0[], lDM1[], lDM2[], lDM3[], lDM4[], lDM5[], lDM6[]]; -1; numelems(conditions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVErY29uZGl0aW9uc0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GU0Y1LUkobWZlbmNlZEdGJDYmLUYjNlAtRiw2JVEiRUYnRi9GMi1GVjYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRiw2JVEjQzBGJ0YvRjItRlY2Ji1GIzYkRltvRjlGOUZgb0Zjb0Zmby1GLDYlUSNDMUYnRi9GMkZfcEZmby1GLDYlUSRDMTBGJ0YvRjJGX3BGZm8tRiw2JVEjQzJGJ0YvRjJGZ25GZm8tRiw2JVEjQzNGJ0YvRjJGZ25GZm8tRiw2JVEkQzMwRidGL0YyRmduRmZvLUYsNiVRJUNFTkRGJ0YvRjJGX3BGZm8tRiw2JVElbERNMEYnRi9GMkZfcEZmby1GLDYlUSVsRE0xRidGL0YyRl9wRmZvLUYsNiVRJWxETTJGJ0YvRjJGX3BGZm8tRiw2JVElbERNM0YnRi9GMkZnbkZmby1GLDYlUSVsRE00RidGL0YyRmduRmZvLUYsNiVRJWxETTVGJ0YvRjJGZ25GZm8tRiw2JVElbERNNkYnRi9GMkZnbkZeb0Y5RjlGYG9GY28tRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlY2JC1GIzYkRitGOUY5Rl5vRjk=">QyU+SStjb25kaXRpb25zRzYiNzEmSSJFR0YlRiUmSSNDMEdGJUYlJkkjQzFHRiVGJSZJJEMxMEdGJUYlJkkjQzJHRiVGJSZJI0MzR0YlRiUmSSRDMzBHRiVGJSZJJUNFTkRHRiVGJSZJJWxETTBHRiVGJSZJJWxETTFHRiVGJSZJJWxETTJHRiVGJSZJJWxETTNHRiVGJSZJJWxETTRHRiVGJSZJJWxETTVHRiVGJSZJJWxETTZHRiVGJSEiIi1JKW51bWVsZW1zRyUqcHJvdGVjdGVkRzYjRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiN4</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L561" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="A, b := LinearAlgebra[GenerateMatrix](conditions, inconnues);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkobWZlbmNlZEdGJDYkLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y4USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZCLyUqc3ltbWV0cmljR0ZCLyUobGFyZ2VvcEdGQi8lLm1vdmFibGVsaW1pdHNHRkIvJSdhY2NlbnRHRkIvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYtUSJ+RidGPkZAL0ZERkJGRUZHRklGS0ZNRk8vRlNGUS1GMTYlUSJiRidGNEY3LyUrZXhlY3V0YWJsZUdGQkY+Rj4tRjs2LVEqJmNvbG9uZXE7RidGPkZARlhGRUZHRklGS0ZNL0ZQUSwwLjI3Nzc3NzhlbUYnL0ZTRl1vLUYxNiVRLkxpbmVhckFsZ2VicmFGJ0Y0RjctRiw2Ji1GIzYlLUYxNiVRL0dlbmVyYXRlTWF0cml4RidGNEY3RmduRj5GPi8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GLDYkLUYjNigtRjE2JVErY29uZGl0aW9uc0YnRjRGN0Y6RlUtRjE2JVEqaW5jb25udWVzRidGNEY3RmduRj5GPi1GOzYtUSI7RidGPkZARkNGRUZHRklGS0ZNRk9GXm9GZ25GPg==">QyQ+NiRJIkFHNiJJImJHRiYtJkkuTGluZWFyQWxnZWJyYUdGJjYjSS9HZW5lcmF0ZU1hdHJpeEdGJjYkSStjb25kaXRpb25zR0YmSSppbmNvbm51ZXNHRiYiIiI=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y1USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMy8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GLjYlUSJiRidGMUY0LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y/RjstRjg2LVEjOj1GJ0Y7Rj0vRkFGP0ZCRkRGRkZIRkovRk1RLDAuMjc3Nzc3OGVtRicvRlBGaW4tRiM2KC1JKG1hY3Rpb25HRiQ2JS1JKG1mZW5jZWRHRiQ2Ji1JJ210YWJsZUdGJDY4LUkkbXRyR0YkNiYtSSRtdGRHRiQ2KC1GIzYmLUYuNiVRKn43N354fjMyfkYnRjFGNC1GLjYlUSdNYXRyaXhGJ0YxRjRGVUY7LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZmcC8lK2dyb3VwYWxpZ25HRmZwLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRl1xRmRwRmdwRmlwLUZnbzYmLUZqbzYoLUYjNiYtRi42JVEsRGF0YX5UeXBlOn5GJ0YxRjQtRi42JVEpYW55dGhpbmdGJ0YxRjRGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwLUZnbzYmLUZqbzYoLUYjNiYtRi42JVEqU3RvcmFnZTp+RidGMUY0LUYuNiVRLHJlY3Rhbmd1bGFyRidGMUY0RlVGO0ZkcEZncEZpcEZbcUZecUZkcEZncEZpcC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKE9yZGVyOn5GJ0YxRjQtRi42JVEuRm9ydHJhbl9vcmRlckYnRjFGNEZVRjtGZHBGZ3BGaXBGW3FGXnFGZHBGZ3BGaXAvJSZhbGlnbkdRJWF4aXNGJy9GZXBRKWJhc2VsaW5lRicvRmhwUSdjZW50ZXJGJy9GanBRJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0YzLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGYXQvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGXHUvJSZmcmFtZUdGXHUvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y/LyUtZXF1YWxjb2x1bW5zR0Y/LyUtZGlzcGxheXN0eWxlR0Y/LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRml0RjsvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRicvJSthY3Rpb250eXBlR1EtYnJvd3NlcnRhYmxlRicvJSlydGFibGVpZEdRNTE4NDQ2NzQ0MDc4MjAyNzM1NzgyRidGNy1GXm82JS1GYW82Ji1GZG82OC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKn4xfi4ufjc3fkYnRjFGNC1JJW1zdWJHRiQ2JS1GLjYlUSdWZWN0b3JGJ0YxRjQtRiM2JS1GLjYlUSdjb2x1bW5GJ0YxRjRGVUY7LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwRmBxRlxyRmhyRmRzRmdzRmlzRlt0Rl10Rl90RmJ0RmR0Rmd0Rmp0Rl11Rl91RmF1RmR1RmZ1Rmh1Rmp1Rl12RjtGX3ZGYnZGZXYvRml2UTUxODQ0Njc0NDA3ODIwMjczNTY2MkYnRlVGWEY7RlVGWEY7">NiQtSSdNYXRyaXhHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2Iy9JJCVpZEdGKCI1I3lORj95U3VZJT0tJkknVmVjdG9yR0YlNiNJJ2NvbHVtbkdGKDYjL0YrIjVpY3QtI3lTdVklPQ==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L575" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[Rank](A)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJVJhbmtGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYkLUYjNiUtRiw2JVEiQUYnRi9GMkY9RkBGQC1GLDYjUSFGJ0Y9RkA=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0klUmFua0dGKDYjSSJBR0Yo</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNL</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L565" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="solutions := solve(conditions, {inconnues[]})" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yNzc3Nzc4ZW1GJy9GTkZTLUYsNiVRJnNvbHZlRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNictRiw2JVErY29uZGl0aW9uc0YnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRlk2Ji1GIzYmLUYsNiVRKmluY29ubnVlc0YnRi9GMi1GWTYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZecEY5RjkvRmFwUSJ8ZnJGJy9GZHBRInxockYnRl5wRjlGOUZecEY5">Pkkqc29sdXRpb25zRzYiLUkmc29sdmVHRiQ2JEkrY29uZGl0aW9uc0dGJDwjJkkqaW5jb25udWVzR0YkRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZeby1GIzYoLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2KC1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGaG4vJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOS8lL3N1YnNjcmlwdHNoaWZ0R0Zbby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JJm1mcmFjR0YkNigtRmluNiRRJTM2MzJGJ0Y5LUZpbjYkUSI1RidGOS8lLmxpbmV0aGlja25lc3NHUSIxRicvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGXHEvJSliZXZlbGxlZEdGPUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRGaXBGOUZkb0Znb0Y5RmlvRltwLUZfcDYoLUZpbjYkUSU3NDU2RidGOUZkcEZncEZqcEZdcUZfcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjJGJ0Y5RmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRJjU4Nzg2RidGOS1GaW42JFEjNDVGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiM0YnRjlGZG9GZ29GOUZpb0ZbcC1GaW42JFEkNjMzRidGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjRGJ0Y5RmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRJjI2MzgzRidGOS1GaW42JFEkMTQ0RidGOUZncEZqcEZdcUZfcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG9GZHBGZG9GZ29GOUZpb0ZbcC1GX3A2KC1GaW42JFEmMjI4MDdGJ0Y5LUZpbjYkUSQ3MjBGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiNkYnRjlGZG9GZ29GOUZpb0ZbcC1GX3A2KC1GaW42JFEkNzI3RidGOS1GaW42JFEkMjQwRidGOUZncEZqcEZdcUZfcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjdGJ0Y5RmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRIzg5RidGOUZndUZncEZqcEZdcUZfcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3FGXG9GaG5GZG9GZ29GOUZpb0ZbcC1GIzYlLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZleC1GaW42JFEkNDQwRidGOUY5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZncUZcb0ZncUZkb0Znb0Y5RmlvRltwLUYjNidGYXgtRl9wNigtRmluNiRRJjI1OTQ5RidGOS1GaW42JFEjMjBGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdxRlxvRmRyRmRvRmdvRjlGaW9GW3AtRiM2J0ZheC1GX3A2KC1GaW42JFEnMTE3MTMxRidGOS1GaW42JFEjNzJGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdxRlxvRmVzRmRvRmdvRjlGaW9GW3AtRiM2J0ZheC1GX3A2KC1GaW42JFElMjI0N0YnRjlGZHJGZ3BGanBGXXFGX3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3FGXG9GYXRGZG9GZ29GOUZpb0ZbcC1GIzYnRmF4LUZfcDYoLUZpbjYkUSY2NjQzN0YnRjlGaXRGZ3BGanBGXXFGX3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3FGXG9GZHBGZG9GZ29GOUZpb0ZbcC1GIzYnRmF4LUZfcDYoLUZpbjYkUSY4MTEwOUYnRjlGZ3VGZ3BGanBGXXFGX3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3FGXG9GYHZGZG9GZ29GOUZpb0ZbcC1GIzYnRmF4LUZfcDYoRmV2LUZpbjYkUSM0OEYnRjlGZ3BGanBGXXFGX3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3FGXG9GYXdGZG9GZ29GOUZpb0ZbcC1GIzYnRmF4LUZfcDYoLUZpbjYkUSQ2MjNGJ0Y5Rmd1RmdwRmpwRl1xRl9xRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmRyRlxvRmhuRmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRJDEzOEYnRjlGZHBGZ3BGanBGXXFGX3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmRyRlxvRmdxRmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRJTg2MTdGJ0Y5LUZpbjYkUSM2MEYnRjlGZ3BGanBGXXFGX3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmRyRlxvRmRyRmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRJjEyODczRidGOS1GaW42JFEjNDBGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZkckZcb0Zlc0Zkb0Znb0Y5RmlvRltwLUZfcDYoLUZpbjYkUSQ3OTFGJ0Y5RmRyRmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZkckZcb0ZhdEZkb0Znb0Y5RmlvRltwLUZfcDYoLUZpbjYkUSU0NTU3RidGOS1GaW42JFEjMTZGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZkckZcb0ZkcEZkb0Znb0Y5RmlvRltwLUZfcDYoLUZpbjYkUSU5NTgzRidGOS1GaW42JFEjODBGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZkckZcb0ZgdkZkb0Znb0Y5RmlvRltwLUZfcDYoLUZpbjYkUSUyMTgxRidGOUZmY2xGZ3BGanBGXXFGX3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmRyRlxvRmF3RmRvRmdvRjlGaW9GW3AtRl9wNihGaF5sRmh2RmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZlc0Zcb0ZobkZkb0Znb0Y5RmlvRltwRmdxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZlc0Zcb0ZncUZkb0Znb0Y5RmlvRltwRmhuRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZlc0Zcb0ZkckZkb0Znb0Y5RmlvRltwLUYjNidGYXgtRl9wNigtRmluNiRRIzQ5RidGOS1GaW42JFEjMzZGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmVzRlxvRmVzRmRvRmdvRjlGaW9GW3BGaG5GZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmVzRlxvRmF0RmRvRmdvRjlGaW9GW3AtRiM2J0ZheC1GX3A2KC1GaW42JFEkOTU5RidGOUZpdEZncEZqcEZdcUZfcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZlc0Zcb0ZkcEZkb0Znb0Y5RmlvRltwLUYjNidGYXgtRl9wNigtRmluNiRRJTI1NjlGJ0Y5Rml0RmdwRmpwRl1xRl9xRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmVzRlxvRmB2RmRvRmdvRjlGaW9GW3BGZ11sRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZlc0Zcb0Zhd0Zkb0Znb0Y5RmlvRltwLUYjNidGYXgtRl9wNihGaF5sRml0RmdwRmpwRl1xRl9xRmRvRmdvRjlGZG9GZ29GOUZkb0Znb0Y5RjkvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnRmRvRmdvRjk=">PEIvJkkiY0c2IjYkIiIhRigjIiVLTyIiJi8mRiU2JEYoIiIiIyIlY3VGKy8mRiU2JEYoIiIjIyImJ3llIiNYLyZGJTYkRigiIiQiJEwnLyZGJTYkRigiIiUjIiYkUUUiJFciLyZGJTYkRihGKyMiJjJHIyIkPygvJkYlNiRGKCIiJyMiJEYoIiRTIy8mRiU2JEYoIiIoIyIjKilGSi8mRiU2JEYvRighJFMlLyZGJTYkRi9GLyMhJlxmIyIjPy8mRiU2JEYvRjUjISdKcjYiI3MvJkYlNiRGL0Y8IyElWkFGNS8mRiU2JEYvRkEjISZQaydGRC8mRiU2JEYvRisjISY0NilGSi8mRiU2JEYvRk4jISRGKCIjWy8mRiU2JEYvRlUjISRCJ0ZKLyZGJTYkRjVGKCMiJFEiRisvJkYlNiRGNUYvIyIlPCcpIiNnLyZGJTYkRjVGNSMiJnRHIiIjUy8mRiU2JEY1RjwjIiQiekY1LyZGJTYkRjVGQSMiJWRYIiM7LyZGJTYkRjVGKyMiJSRlKiIjISkvJkYlNiRGNUZOIyIlIj0jRl1zLyZGJTYkRjVGVSMiJEInRlEvJkYlNiRGPEYoRi8vJkYlNiRGPEYvRigvJkYlNiRGPEY1IyEjXCIjTy8mRiU2JEY8RjxGKC8mRiU2JEY8RkEjISRmKkZELyZGJTYkRjxGKyMhJXBERkQvJkYlNiRGPEZORmRwLyZGJTYkRjxGVSNGW3FGRA==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L570" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[LinearSolve](A, b)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYkLUYsNiVRLExpbmVhclNvbHZlRidGL0YyL0YzUSdub3JtYWxGJ0Y9LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2NiQtRiM2Jy1GLDYlUSJBRidGL0YyLUkjbW9HRiQ2LVEiLEYnRj0vJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGUi8lKnN5bW1ldHJpY0dGUi8lKGxhcmdlb3BHRlIvJS5tb3ZhYmxlbGltaXRzR0ZSLyUnYWNjZW50R0ZSLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEiYkYnRi9GMi8lK2V4ZWN1dGFibGVHRlJGPUY9RmJvRj0=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0ksTGluZWFyU29sdmVHRig2JEkiQUdGKEkiYkdGKA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUkobWFjdGlvbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkobWZlbmNlZEdGJDYmLUknbXRhYmxlR0YkNjgtSSRtdHJHRiQ2Ji1JJG10ZEdGJDYoLUklbXJvd0dGJDYmLUkjbWlHRiQ2JVEqfjF+Li5+MzJ+RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUklbXN1YkdGJDYlLUY7NiVRJ1ZlY3RvckYnRj5GQS1GODYlLUY7NiVRJ2NvbHVtbkYnRj5GQS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvRkJRJ25vcm1hbEYnLyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGT0ZSLyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZZLyUrZ3JvdXBhbGlnbkdGWS8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZqbkZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEsRGF0YX5UeXBlOn5GJ0Y+RkEtRjs2JVEpYW55dGhpbmdGJ0Y+RkFGT0ZSRldGWkZmbkZobkZbb0ZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEqU3RvcmFnZTp+RidGPkZBLUY7NiVRLHJlY3Rhbmd1bGFyRidGPkZBRk9GUkZXRlpGZm5GaG5GW29GV0ZaRmZuLUYyNiYtRjU2KC1GODYmLUY7NiVRKE9yZGVyOn5GJ0Y+RkEtRjs2JVEuRm9ydHJhbl9vcmRlckYnRj5GQUZPRlJGV0ZaRmZuRmhuRltvRldGWkZmbi8lJmFsaWduR1ElYXhpc0YnL0ZYUSliYXNlbGluZUYnL0ZlblEnY2VudGVyRicvRmduUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGQC8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRl5yLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmlyLyUmZnJhbWVHRmlyLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dRJmZhbHNlRicvJS1lcXVhbGNvbHVtbnNHRmNzLyUtZGlzcGxheXN0eWxlR0Zjcy8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0ZmckZSLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLyUrYWN0aW9udHlwZUdRLWJyb3dzZXJ0YWJsZUYnLyUpcnRhYmxlaWRHUTUxODQ0Njc0NDA3ODI0Mzk1NzgwNkYn">LSZJJ1ZlY3Rvckc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkc2IjYjSSdjb2x1bW5HRig2Iy9JJCVpZEdGKCI1MXkmUkN5U3VZJT0=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L549" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[6, 3] := eval(P(x), solutions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KC1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictRiM2Ji1JI21uR0YkNiRRIjZGJ0Y6LUkjbW9HRiQ2LVEiLEYnRjovJSZmZW5jZUdGOS8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y5LyUqc3ltbWV0cmljR0Y5LyUobGFyZ2VvcEdGOS8lLm1vdmFibGVsaW1pdHNHRjkvJSdhY2NlbnRHRjkvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GQDYkUSIzRidGOkY6LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRkQ2LVEifkYnRjpGRy9GSkY5RkxGTkZQRlJGVEZWL0ZaRlgtRkQ2LVEqJmNvbG9uZXE7RidGOkZHRl9vRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZlby1GLDYlUSVldmFsRicvRjhGSy9GO1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Jy1GLDYlUSJQRidGam9GW3AtRl5wNiQtRiM2JC1GLDYlUSJ4RidGam9GW3BGOkY6RkMtRiw2JVEqc29sdXRpb25zRidGam9GW3BGOkY6RjpGKy8lK2V4ZWN1dGFibGVHRjlGOg==">PiZJJ0xhbWJkYUc2IjYkIiInIiIkLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJUkqc29sdXRpb25zR0Yl</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEnJiM5MjM7RicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1GIzYoLUkjbW5HRiQ2JFEiNkYnRjUtSSNtb0dGJDYtUSIsRidGNS8lJmZlbmNlR0Y0LyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjQvJSpzeW1tZXRyaWNHRjQvJShsYXJnZW9wR0Y0LyUubW92YWJsZWxpbWl0c0dGNC8lJ2FjY2VudEdGNC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUY7NiRRIjNGJ0Y1LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y0RjUvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GPzYtUSM6PUYnRjVGQi9GRUY0RkdGSUZLRk1GTy9GUlEsMC4yNzc3Nzc4ZW1GJy9GVUZhby1GIzYnLUY/Ni1RInxmckYnRjUvRkNGRkZfby9GSEZGRklGS0ZNRk8vRlJRLDAuMTY2NjY2N2VtRicvRlVGW3AtSSdtdGFibGVHRiQ2Pi1JJG10ckdGJDYnLUkkbXRkR0YkNigtRjs2JEZbb0Y1LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZqcC8lK2dyb3VwYWxpZ25HRmpwLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRmFxLUZkcDYoLUYjNigtRi82JVEieEYnL0YzRkYvRjZRJ2l0YWxpY0YnLUY/Ni1RIjxGJ0Y1RkJGX29GR0ZJRktGTUZPRmBvRmJvLUYjNiUtRj82LVEqJnVtaW51czA7RidGNUZCRl9vRkdGSUZLRk1GTy9GUlEsMC4yMjIyMjIyZW1GJy9GVUZnci1GOzYkUSI0RidGNUY1RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzYyLUkmbWZyYWNHRiQ2KC1GOzYkUSUzNjMyRidGNS1GOzYkUSI1RidGNS8lLmxpbmV0aGlja25lc3NHRmFxLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRl90LyUpYmV2ZWxsZWRHRjQtRj82LVEiK0YnRjVGQkZfb0ZHRklGS0ZNRk9GZnJGaHItRiM2KC1GY3M2KC1GOzYkUSU3NDU2RidGNUZoc0ZbdEZddEZgdEZidC1GPzYtUTEmSW52aXNpYmxlVGltZXM7RidGNUZCRl9vRkdGSUZLRk1GT0ZRL0ZVRlNGaHFGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFEmNTg3ODZGJ0Y1LUY7NiRRIzQ1RidGNUZbdEZddEZgdEZidEZedS1JJW1zdXBHRiQ2JUZocS1GOzYkUSIyRidGNS8lMXN1cGVyc2NyaXB0c2hpZnRHRltvRlpGZ25GNUZkdC1GIzYmLUY7NiRRJDYzM0YnRjVGXnUtRl12NiVGaHFGV0ZidkY1RmR0LUYjNigtRmNzNigtRjs2JFEmMjYzODNGJ0Y1LUY7NiRRJDE0NEYnRjVGW3RGXXRGYHRGYnRGXnUtRl12NiVGaHFGaXJGYnZGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFEmMjI4MDdGJ0Y1LUY7NiRRJDcyMEYnRjVGW3RGXXRGYHRGYnRGXnUtRl12NiVGaHFGaHNGYnZGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFEkNzI3RidGNS1GOzYkUSQyNDBGJ0Y1Rlt0Rl10RmB0RmJ0Rl51LUZddjYlRmhxRjpGYnZGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFEjODlGJ0Y1Rl54Rlt0Rl10RmB0RmJ0Rl51LUZddjYlRmhxLUY7NiRRIjdGJ0Y1RmJ2RlpGZ25GNUY1RmhwRltxRl1xRl9xRmJxLUZkcDYoLUYjNihGaHFGXnItRiM2JUZjckZXRjVGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjNGY3ItRjs2JFEkNDQwRidGNS1GPzYtUSgmbWludXM7RidGNUZCRl9vRkdGSUZLRk1GT0ZmckZoci1GIzYoLUZjczYoLUY7NiRRJjI1OTQ5RidGNS1GOzYkUSMyMEYnRjVGW3RGXXRGYHRGYnRGXnVGaHFGWkZnbkY1Rmp6LUYjNigtRmNzNigtRjs2JFEnMTE3MTMxRidGNS1GOzYkUSM3MkYnRjVGW3RGXXRGYHRGYnRGXnVGXHZGWkZnbkY1Rmp6LUYjNigtRmNzNigtRjs2JFElMjI0N0YnRjVGX3ZGW3RGXXRGYHRGYnRGXnVGaXZGWkZnbkY1Rmp6LUYjNigtRmNzNigtRjs2JFEmNjY0MzdGJ0Y1RmJ3Rlt0Rl10RmB0RmJ0Rl51RmV3RlpGZ25GNUZqei1GIzYoLUZjczYoLUY7NiRRJjgxMTA5RidGNUZeeEZbdEZddEZgdEZidEZedUZheEZaRmduRjVGanotRiM2KC1GY3M2KEZneC1GOzYkUSM0OEYnRjVGW3RGXXRGYHRGYnRGXnVGXXlGWkZnbkY1Rmp6LUYjNigtRmNzNigtRjs2JFEkNjIzRidGNUZeeEZbdEZddEZgdEZidEZedUZmeUZaRmduRjVGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yLUYjNiVGY3JGX3ZGNUZaRmduRjVGaHBGW3FGXXFGX3FGYnFGaHBGW3FGXXEtRmFwNictRmRwNigtRiM2Mi1GY3M2KC1GOzYkUSQxMzhGJ0Y1RmhzRlt0Rl10RmB0RmJ0RmR0LUYjNigtRmNzNigtRjs2JFElODYxN0YnRjUtRjs2JFEjNjBGJ0Y1Rlt0Rl10RmB0RmJ0Rl51RmhxRlpGZ25GNUZkdC1GIzYoLUZjczYoLUY7NiRRJjEyODczRidGNS1GOzYkUSM0MEYnRjVGW3RGXXRGYHRGYnRGXnVGXHZGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFEkNzkxRidGNUZfdkZbdEZddEZgdEZidEZedUZpdkZaRmduRjVGZHQtRiM2KC1GY3M2KC1GOzYkUSU0NTU3RidGNS1GOzYkUSMxNkYnRjVGW3RGXXRGYHRGYnRGXnVGZXdGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFElOTU4M0YnRjUtRjs2JFEjODBGJ0Y1Rlt0Rl10RmB0RmJ0Rl51RmF4RlpGZ25GNUZkdC1GIzYoLUZjczYoLUY7NiRRJTIxODFGJ0Y1RmFibEZbdEZddEZgdEZidEZedUZdeUZaRmduRjVGZHQtRiM2KC1GY3M2KEZhXmxGanhGW3RGXXRGYHRGYnRGXnVGZnlGWkZnbkY1RjVGaHBGW3FGXXFGX3FGYnEtRmRwNigtRiM2KEZocUZeci1GIzYlRmNyLUY7NiRGYXFGNUY1RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzYuRmVjbEZqei1GIzYoLUZjczYoLUY7NiRRIzQ5RidGNS1GOzYkUSMzNkYnRjVGW3RGXXRGYHRGYnRGXnVGXHZGWkZnbkY1Rmp6LUYjNigtRmNzNigtRjs2JFEkOTU5RidGNUZid0ZbdEZddEZgdEZidEZedUZld0ZaRmduRjVGanotRiM2KC1GY3M2KC1GOzYkUSUyNTY5RidGNUZid0ZbdEZddEZgdEZidEZedUZheEZaRmduRjVGanpGZl1sRmp6LUYjNigtRmNzNihGYV5sRmJ3Rlt0Rl10RmB0RmJ0Rl51RmZ5RlpGZ25GNUY1RmhwRltxRl1xRl9xRmJxLUZkcDYoLUYjNihGaHFGXnJGZnBGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNi5GZWNsRmp6Rl1kbEZqekZnZGxGZHRGXmVsRmp6RmZdbEZkdEZlZWxGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRmVjbEZaRmduRjVGaHBGW3FGXXFGX3FGYnFGaHBGW3FGXXEtRmFwNictRmRwNigtRiM2MkZgX2xGanpGZV9sRmR0Rl9gbEZqekZpYGxGZHRGYGFsRmp6RmphbEZkdEZkYmxGanpGW2NsRjVGaHBGW3FGXXFGX3FGYnEtRmRwNigtRiM2KEZocUZeckZfdkZaRmduRjVGaHBGW3FGXXFGX3FGYnFGaHBGW3FGXXEtRmFwNictRmRwNigtRiM2M0ZjckZnekZkdEZdW2xGanpGZ1tsRmR0RmFcbEZqekZoXGxGZHRGX11sRmp6RmZdbEZkdEZdXmxGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRldGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjJGYnNGanpGZ3RGZHRGYnVGanpGZHZGZHRGW3dGanpGZ3dGZHRGY3hGanpGX3lGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRmlyRlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2J0ZjcC1GZHA2KC1GIzYoRmlyLUY/Ni1RJSZsZTtGJ0Y1RkJGX29GR0ZJRktGTUZPRmBvRmJvRmhxRlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS8lJmFsaWduR1ElYXhpc0YnL0ZpcFEpYmFzZWxpbmVGJy9GXHFGX3QvRl5xUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGRi8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRmppbC8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJDJlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGZWpsLyUmZnJhbWVHRmVqbC8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRjQvJS1lcXVhbGNvbHVtbnNHRjQvJS1kaXNwbGF5c3R5bGVHRjQvJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dRJjAuOGVtRidGWkZnbkY1RlpGZ25GNQ==">LUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzY2MkkieEc2IiEiJSIiITJGJyEiJCwyIyIlS08iIiYiIiJGJyMiJWN1RjAqJEYnIiIjIyImJ3llIiNYKiRGJyIiJCIkTCcqJEYnIiIlIyImJFFFIiRXIiokRidGMCMiJjJHIyIkPygqJEYnIiInIyIkRigiJFMjKiRGJyIiKCMiIyopRkQyRichIiMsMiEkUyVGMUYnIyEmXGYjIiM/RjQjISdKcjYiI3NGOSMhJVpBRjVGPCMhJlBrJ0ZARkEjISY0NilGREZFIyEkRigiI1tGSiMhJEInRkQyRichIiIsMiMiJFEiRjBGMUYnIyIlPCcpIiNnRjQjIiZ0RyIiI1NGOSMiJCJ6RjVGPCMiJWRYIiM7RkEjIiUkZSoiIyEpRkUjIiUiPSNGX3BGSiMiJEInRkkyRidGKiwuRjFGMUY0IyEjXCIjT0Y8IyEkZipGQEZBIyElcERGQEZFRmhuRkojRlxvRkAyRidGMSwuRjFGMUY0RmZwRjxGaXBGQSMiJXBERkBGRUZobkZKI0ZjcEZAMkYnRjUsMkZgb0YxRicjISU8JylGZG9GNEZlb0Y5IyEkInpGNUY8RmpvRkEjISUkZSpGX3BGRUZgcEZKI0Zcb0ZJMkYnRjosMkZRRjFGJyMiJlxmI0ZURjRGVUY5IyIlWkFGNUY8RlpGQSMiJjQ2KUZERkVGaG5GSiNGY3BGRDJGJ0Y9LDJGLkYxRicjISVjdUYwRjRGNkY5ISRMJ0Y8Rj5GQSMhJjJHI0ZERkVGR0ZKIyEjKilGRDFGPUYnRio=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L552" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="seq(evalb(simplify(conditions[i], solutions)), i = 1 .. numelems(conditions));" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEkc2VxRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNi0tRiw2JVEmZXZhbGJGJ0YvRjItRjY2JC1GIzYmLUYsNiVRKXNpbXBsaWZ5RidGL0YyLUY2NiQtRiM2KS1GLDYlUStjb25kaXRpb25zRidGL0YyLUY2NiYtRiM2JS1GLDYlUSJpRidGL0YyLyUrZXhlY3V0YWJsZUdRJmZhbHNlRicvRjNRJ25vcm1hbEYnRlUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictSSNtb0dGJDYtUSIsRidGVS8lJmZlbmNlR0ZULyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRlQvJSpzeW1tZXRyaWNHRlQvJShsYXJnZW9wR0ZULyUubW92YWJsZWxpbWl0c0dGVC8lJ2FjY2VudEdGVC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUZobjYtUSJ+RidGVUZbby9GXm9GVEZfb0Zhb0Zjb0Zlb0Znb0Zpby9GXXBGW3AtRiw2JVEqc29sdXRpb25zRidGL0YyRlJGVUZVRlJGVUZVRmduRk8tRmhuNi1RIj1GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yNzc3Nzc4ZW1GJy9GXXBGW3EtSSNtbkdGJDYkUSIxRidGVS1GaG42LVEjLi5GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yMjIyMjIyZW1GJ0ZjcC1GLDYlUSludW1lbGVtc0YnRi9GMi1GNjYkLUYjNiRGSEZVRlVGUkZVRlUtRmhuNi1RIjtGJ0ZVRltvRl1vRl9vRmFvRmNvRmVvRmdvRmlvRlxxRlJGVQ==">QyQtSSRzZXFHJSpwcm90ZWN0ZWRHNiQtSSZldmFsYkdGJTYjLUkpc2ltcGxpZnlHNiI2JCZJK2NvbmRpdGlvbnNHRiw2I0kiaUdGLEkqc29sdXRpb25zR0YsL0YxOyIiIi1JKW51bWVsZW1zR0YlNiNGL0Y1</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NmlvSSV0cnVlRyUqcHJvdGVjdGVkR0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0Yj</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L554" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="evalb(int(Lambda[6, 3], x = xrange) = 1); 1; seq(evalb(int(x^i*Lambda[6, 3], x = xrange) = 0), i = 1 .. 6)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEmZXZhbGJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2KC1GLDYlUSRpbnRGJ0YvRjItRjY2JC1GIzYqLUYsNiNRIUYnLUYjNiZGQS1GIzYkLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBRJmZhbHNlRicvRjNRJ25vcm1hbEYnLUYjNiYtSSNtbkdGJDYkUSI2RidGUC1JI21vR0YkNi1RIixGJ0ZQLyUmZmVuY2VHRk8vJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGTy8lKnN5bW1ldHJpY0dGTy8lKGxhcmdlb3BHRk8vJS5tb3ZhYmxlbGltaXRzR0ZPLyUnYWNjZW50R0ZPLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRlU2JFEiM0YnRlBGUC8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnRlBGQUZQRkFGWC1GLDYlUSJ4RidGL0YyLUZZNi1RIj1GJ0ZQRmZuL0ZpbkZPRmpuRlxvRl5vRmBvRmJvL0Zlb1EsMC4yNzc3Nzc4ZW1GJy9GaG9GaHAtRiw2JVEneHJhbmdlRidGL0YyRlBGUEZjcC1GVTYkUSIxRidGUC8lK2V4ZWN1dGFibGVHRk9GUEZQLUZZNi1RIjtGJ0ZQRmZuRmhuRmpuRlxvRl5vRmBvRmJvRmRvRmlwLUYsNiVRJHNlcUYnRi9GMi1GNjYkLUYjNixGKy1GNjYkLUYjNihGOi1GNjYkLUYjNiotSSVtc3VwR0YkNiVGYHAtRiM2JS1GLDYlUSJpRidGL0YyRi9GMi8lMXN1cGVyc2NyaXB0c2hpZnRHRl9wLUZZNi1RJyZzZG90O0YnRlBGZm5GZnBGam5GXG9GXm9GYG9GYm9GZG8vRmhvRmZvLUZJNiUtRiw2JVEnJiM5MjM7RidGTkZQRlJGXXBGWEZgcEZjcEZqcEZQRlBGY3AtRlU2JEZfcEZQRmBxRlBGUEZYRmlyRmNwRl1xLUZZNi1RIy4uRidGUEZmbkZmcEZqbkZcb0Zeb0Zgb0Ziby9GZW9RLDAuMjIyMjIyMmVtRidGYXNGVEZgcUZQRlBGYHFGUA==">QyUtSSZldmFsYkclKnByb3RlY3RlZEc2Iy8tSSRpbnRHNiRGJUkoX3N5c2xpYkc2IjYkJkknTGFtYmRhR0YsNiQiIiciIiQvSSJ4R0YsSSd4cmFuZ2VHRiwiIiJGNi1JJHNlcUdGJTYkLUYkNiMvLUYpNiQqJilGNEkiaUdGLEY2Ri5GNkYzIiIhL0ZBO0Y2RjE=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">SSV0cnVlRyUqcHJvdGVjdGVkRw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NihJJXRydWVHJSpwcm90ZWN0ZWRHRiNGI0YjRiNGIw==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L574" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="fac := 720:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZddS1JI21pR0YkNiVRJGZhY0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkjbW5HRiQ2JFEkNzIwRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORlotRiw2JVEjdzBGJ0YvRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYkLUkmbWZyYWNHRiQ2KC1GUDYkUSIxRidGOS1GIzYkRitGOS8lLmxpbmV0aGlja25lc3NHRmNvLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmpvLyUpYmV2ZWxsZWRHRj1GOUY5LUY2Ni1RJyZzZG90O0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuLUYsNiVRJ2hvcm5lckYnRi9GMi1Gam42JC1GIzYqRitGX3AtRiw2JVEnZXhwYW5kRidGL0YyLUZqbjYkLUYjNiUtRiw2JVElZXZhbEYnRi9GMi1Gam42JC1GIzYtRmBxLUZqbjYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEpJkxhbWJkYTtGJy9GMEY9RjktRiM2Ji1GUDYkUSI2RidGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRlkvRk5RLDAuMzMzMzMzM2VtRictRlA2JFEiM0YnRjlGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUYsNiNRIUYnRmdyLUYsNiVRKnNvbHV0aW9uc0YnRi9GMkY5RjlGZ3ItRiw2JVEieEYnRi9GMi1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GY3RGXXMtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZidEZkdEZWLUYsNiVRInlGJ0YvRjJGOUY5RjlGOUZnckZodC8lK2V4ZWN1dGFibGVHRj1GOUY5LUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRllGZW5GVkZodC1GNjYtUSI+RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GUDYkRmJzRjlGVi1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRlt2RjtGPkZARkJGREZGRkhGWUZlbkZWRmh0LUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmFvLUY2Ni1RIjtGJ0Y5RjtGanJGQEZCRkRGRkZIRllGTS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0ZaLyUmZGVwdGhHRml2LyUqbGluZWJyZWFrR1EobmV3bGluZUYnLUYsNiVRI3cxRidGL0YyRjVGaW5GX3BGYnAtRmpuNiQtRiM2KkYrRl9wRmlwLUZqbjYkLUYjNiVGYHEtRmpuNiQtRiM2LUZgcUZncUZnckZpc0ZcdEZfdC1GUDYkUSIyRidGOUZldEZWRmh0RjlGOUY5RjlGZ3JGaHRGW3VGOUY5Rl11RlZGaHRGYHVGY3VGVkZldUZWRmh0Rl52RmFvRmF2RmR2LUYsNiVRI3cyRidGL0YyRjVGaW5GX3BGYnAtRmpuNiQtRiM2KkYrRl9wRmlwLUZqbjYkLUYjNiVGYHEtRmpuNiQtRiM2LUZgcUZncUZnckZpc0ZcdEZfdEZhb0ZldEZWRmh0RjlGOUY5RjlGZ3JGaHRGW3VGOUY5Rl11RlZGaHRGYHVGY3VGVkZldUZWRmh0Rl52RmFvRmF2RmR2LUYsNiVRI3czRidGL0YyRjVGaW5GX3BGYnAtRmpuNiQtRiM2KkYrRl9wRmlwLUZqbjYkLUYjNiVGYHEtRmpuNiQtRiM2K0ZgcUZncUZnckZpc0ZcdEZfdEZWRmh0RjlGOUY5RjlGZ3JGaHRGW3VGOUY5RlZGXXVGVkZodEZgdUZjdUZWRmV1RlZGaHRGXnZGYW9GYXZGZHYtRiw2JVEjdzRGJ0YvRjJGNUZpbkZfcEZicC1Gam42JC1GIzYqRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYtRmBxLUZqbjYkLUYjNiZGW3JGZ3JGZnNGOUY5RmdyRmlzRlx0RlZGYW9GX3RGVkZodEY5RjlGOUY5RmdyRmh0Rlt1RjlGOUZWRl11RlZGaHRGYHVGY3VGVkZldUZWRmh0Rl52RmFvRmF2RmR2LUYsNiVRI3c1RidGL0YyRjVGaW5GX3BGYnAtRmpuNiQtRiM2KkYrRl9wRmlwLUZqbjYkLUYjNiVGYHEtRmpuNiQtRiM2LEZgcUZncUZnckZpc0ZcdEZgeEZfdEZWRmh0RjlGOUY5RjlGZ3JGaHRGW3VGOUY5RlZGXXVGVkZodEZgdUZjdUZWRmV1RlZGaHRGXnZGYW9GYXZGZHYtRiw2JVEjdzZGJ0YvRjJGNUZpbkZfcEZicC1Gam42JC1GIzYqRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYsRmBxRmdxRmdyRmlzRlx0Rl1zRl90RlZGaHRGOUY5RjlGOUZnckZodEZbdUY5RjlGXXVGVkZodEZgdUZjdUZWRmV1RlZGaHRGXnZGYW9GYXZGZHYtRiw2JVEjdzdGJ0YvRjJGNUZpbkZfcEZicC1Gam42JC1GIzYqRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYsRmBxRmdxRmdyRmlzRlx0LUZQNiRRIjRGJ0Y5RmV0RlZGaHRGOUY5RjlGOUZnckZodEZbdUY5RjlGXXVGVkZodEZgdUZjdUZWRmV1RlZGaHRGXnZGYW9GYXZGW3VGOQ==">QzQ+SSRmYWNHNiIiJD8oISIiPkkjdzBHRiUtSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjKiZGJEYnLUknaG9ybmVyR0YlNiQqJkYkIiIiLUknZXhwYW5kRyUqcHJvdGVjdGVkRzYjLUklZXZhbEdGNzYkLUY6NiQmSSdMYW1iZGFHRiU2JCIiJyIiJEkqc29sdXRpb25zR0YlL0kieEdGJSwmISIkRjRJInlHRiVGJ0Y0RkhGNDcjLUkkYW5kR0Y3NiQtSSI+R0Y3NiRGSCIiITJGSEY0RjQ+SSN3MUdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmISIjRjRGSEYnRjRGSEY0RklGND5JI3cyR0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZFLCZGJ0Y0RkhGJ0Y0RkhGNEZJRjQ+SSN3M0dGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwkRkhGJ0Y0RkhGNEZJRjQ+SSN3NEdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmRjRGNEZIRidGNEZIRjRGSUY0PkkjdzVHRiUtRis2JDcjKiZGJEYnLUYxNiQqJkYkRjQtRjY2Iy1GOjYkRjwvRkUsJiIiI0Y0RkhGJ0Y0RkhGNEZJRjQ+SSN3NkdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmRkJGNEZIRidGNEZIRjRGSUY0PkkjdzdHRiUtRis2JDcjKiZGJEYnLUYxNiQqJkYkRjQtRjY2Iy1GOjYkRjwvRkUsJiIiJUY0RkhGJ0Y0RkhGNEZJRjQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFEjMTJGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGXnBGYHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIjRGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSMxNUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJDE0MEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJDM3MEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJDMxMkYnRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZecEZgcC1GIzYmLUZVNiRRIzg5RidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRlx0RjlGOUY5Rl5vRlx0RjlGOUY5Rl5vRlx0RjlGOUY5Rl5vRlx0RjlGOUY5Rl5vRlx0RjlGOUY5Rl5vRlx0RjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZfdEZidEY5">LCQqJiwmISM3IiIiKiYsJiIiJUYmKiYsJiIjOkYmKiYsJiIkUyJGJiomLCYhJHEkRiYqJiwmIiQ3JEYmSSJ5RzYiISMqKUYmRjZGJkYmRiZGNkYmRiZGJkY2RiZGJkYmRjZGJkYmRiZGNkYmRiZGJkY2RiYjRiYiJD8o</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Ji1GVTYkUSQxMDhGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GVTYkUSM1NEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmpwLUZVNiRRJDEyMEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmpwLUZVNiRRJDk1NUYnRjlGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJTI1ODFGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZqcC1GVTYkUSUyMTgzRidGOUZecC1GIzYmLUZVNiRRJDYyM0YnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGXHRGX3RGOQ==">LCQqJiwmIiQzIiIiIiomLCYhI2FGJiomLCYhJD8iRiYqJiwmISRiKkYmKiYsJiIlImUjRiYqJiwmISUkPSNGJkkieUc2IiIkQidGJkY2RiZGJkYmRjZGJkYmRiZGNkYmRiZGJkY2RiZGJkYmRjZGJkYmRiZGNkYmI0YmIiQ/KA==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFEkNTQwRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2JkZhcEZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEkMTk1RidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFElMjg1MEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJTc3MjJGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSU2NTQ2RidGOS1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRlU2JFElMTg2OUYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5RjlGOUZeb0Zpc0Y5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGXHRGX3RGOQ==">LCQqJiwmISRTJiIiIiomLCYiJFMmRiYqJiwmIiQmPkYmKiYsJiIlXUdGJiomLCYhJUF4RiYqJiwmIiVZbEYmSSJ5RzYiISVwPUYmRjZGJkYmRiZGNkYmRiZGJkY2RiZGJkYmRjZGJkYmRiZGNkYmRiZGJkY2RiYjRiYiJD8o</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtSSNtbkdGJDYkUSIxRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlktRiM2KC1JJm1mcmFjR0YkNihGUS1GUjYkUSQ3MjBGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVC8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zhby8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5Gam8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZYRlotRlI2JFEkOTgwRidGOUZVLUYjNiYtRl9wNiQtRiM2J0ZjcC1GUjYkUSU0Nzk1RidGOUZVLUYjNiYtRl9wNiQtRiM2Ji1GUjYkUSYxMjg0NUYnRjlGVS1GIzYmLUZfcDYkLUYjNidGY3AtRlI2JFEmMTA5MDVGJ0Y5RlUtRiM2Ji1GUjYkUSUzMTE1RidGOUZmby1GLDYlUSJ5RidGL0YyRjlGOUY5RmZvRmlyRjlGOUY5RmZvRmlyRjlGOUY5RmZvLUklbXN1cEdGJDYlRmlyLUZSNiRRIjJGJ0Y5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJ0Y5RjlGOUZmb0Zcc0Y5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGOUZlc0Zoc0Y5">LCYiIiJGIyomLCYhJCEpKkYjKiYsJiElJnolRiMqJiwmIiZYRyJGIyomLCYhJjA0IkYjSSJ5RzYiIiU6SkYjRjBGI0YjRiNGMEYjRiNGI0YwIiIjRiNGI0YwRjMjRiMiJD8o</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Ji1GVTYkUSQ1NDBGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYmRltwRl5wLUYjNiYtRmdvNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGYXBGY3AtRlU2JFEkMTk1RidGOUZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFElNDg4MEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmBxLUZVNiRRJjEyODMwRidGOUZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEmMTA5MDBGJ0Y5LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGYXBGY3AtRiM2Ji1GVTYkUSUzMTE1RidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRmlzRjlGOUY5Rl5vRmlzRjlGOUY5Rl5vRmlzRjlGOUY5Rl5vRmlzRjlGOUY5Rl5vRmlzRjlGOUY5Rl5vRmlzRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZcdEZfdEY5">LCQqJiwmIiRTJiIiIiomLCZGJUYmKiYsJiEkJj5GJiomLCYiJSEpW0YmKiYsJiEmSUciRiYqJiwmIiYrNCJGJkkieUc2IiElOkpGJkY1RiZGJkYmRjVGJkYmRiZGNUYmRiZGJkY1RiZGJkYmRjVGJkYmRiZGNUYmI0YmIiQ/KA==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzVGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFEkMTA4RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSM1NEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJDEyMEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJTI5ODVGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSU3Njk1RidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFElNjUzN0YnRjlGZHAtRiM2Ji1GVTYkUSUxODY5RidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRmlzRjlGOUY5Rl5vRmlzRjlGOUY5Rl5vRmlzRjlGOUY5Rl5vRmlzRjlGOUY5Rl5vRmlzRjlGOUY5Rl5vRmlzRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZcdEZfdEY5">LCQqJiwmISQzIiIiIiomLCYhI2FGJiomLCYiJD8iRiYqJiwmISUmKUhGJiomLCYiJSZwKEYmKiYsJiElUGxGJkkieUc2IiIlcD1GJkY2RiZGJkYmRjZGJkYmRiZGNkYmRiZGJkY2RiZGJkYmRjZGJkYmRiZGNkYmI0YmIiQ/KA==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzZGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Ji1GVTYkUSMxMkYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZicC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEiNEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GVTYkUSMxNUYnRjlGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJTEwMTBGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZjcS1GVTYkUSUyNTY2RidGOUZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFElMjE3OEYnRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GIzYmLUZVNiRRJDYyM0YnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0ZcdEY5RjlGOUZeb0ZcdEY5RjlGOUZeb0ZcdEY5RjlGOUZeb0ZcdEY5RjlGOUZeb0ZcdEY5RjlGOUZeb0ZcdEY5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGX3RGYnRGOQ==">LCQqJiwmIiM3IiIiKiYsJiIiJUYmKiYsJiEjOkYmKiYsJiIlNTVGJiomLCYhJW1ERiYqJiwmIiV5QEYmSSJ5RzYiISRCJ0YmRjZGJkYmRiZGNkYmRiZGJkY2RiZGJkYmRjZGJkYmRiZGNkYmRiZGJkY2RiYjRiYiJD8o</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFEkMTQ1RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSQzNjdGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSQzMTFGJ0Y5RmRwLUYjNiYtRlU2JFEjODlGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GXnJGOUY5RjlGXm9GXnJGOUY5RjlGXm8tSSVtc3VwR0YkNiVGXnItRlU2JFEiNEYnRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZqckZdc0Y5">LCQqJiwmISRYIiIiIiomLCYiJG4kRiYqJiwmISQ2JEYmSSJ5RzYiIiMqKUYmRi1GJkYmRiZGLUYmRiZGJkYtIiIlI0YmIiQ/KA==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L767" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C([w0, w1, w2, w3, w4, w5, w6, w7], declare = [y::float], resultname = 'w', coercetypes = false)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEiQ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzY1LUY2NiYtRiM2My1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkEtRiw2JVEjdzRGJ0YvRjJGQS1GLDYlUSN3NUYnRi9GMkZBLUYsNiVRI3c2RidGL0YyRkEtRiw2JVEjdzdGJ0YvRjIvJStleGVjdXRhYmxlR0ZJRkVGRS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZBLUZCNi1RIn5GJ0ZFRkcvRktGSUZMRk5GUEZSRlRGVi9GWkZYLUYsNiVRKGRlY2xhcmVGJ0YvRjItRkI2LVEiPUYnRkVGR0ZmcEZMRk5GUEZSRlQvRldRLDAuMjc3Nzc3OGVtRicvRlpGX3EtRjY2Ji1GIzYnLUYsNiVRInlGJ0YvRjItRkI2LVEtJlByb3BvcnRpb247RidGRUZHRmZwRkxGTkZQRlJGVEZecUZgcS1GLDYlUSZmbG9hdEYnRi9GMkZbcEZFRkVGXXBGYHBGQS1GLDYlUStyZXN1bHRuYW1lRidGL0YyRltxLUZCNi1RIidGJ0ZFRkdGZnBGTEZORlBGUkZUL0ZXUSwwLjExMTExMTFlbUYnRmdwLUYsNiVRIndGJ0YvRjJGYXJGQUZjcC1GLDYlUSxjb2VyY2V0eXBlc0YnRi9GMkZbcS1GLDYlRklGL0YyRltwRkVGRUZbcEZF">LUkiQ0c2IjYmNypJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiRJI3c2R0YkSSN3N0dGJC9JKGRlY2xhcmVHRiQ3IydJInlHRiRJJmZsb2F0RyUqcHJvdGVjdGVkRy9JK3Jlc3VsdG5hbWVHRiQuSSJ3R0YkL0ksY29lcmNldHlwZXNHRiRJJmZhbHNlR0Y1</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[0] = (-12 + (4 + (15 + (140 + (-370 + (312 - 89 * y) * y) * y) * y) * y) * y) * y / 720;</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[1] = (108 + (-54 + (-120 + (-955 + (2581 + (-2183 + 623 * y) * y) * y) * y) * y) * y) * y / 720; -w[2] = (-540 + (540 + (195 + (2850 + (-7722 + (6546 - 1869 * y) * y) * y) * y) * y) * y) * y / 720; -w[3] = 1 + (-980 + (-4795 + (12845 + (-10905 + 3115 * y) * y) * y) * y * y) * y * y / 720; -w[4] = (540 + (540 + (-195 + (4880 + (-12830 + (10900 - 3115 * y) * y) * y) * y) * y) * y) * y / 720; -w[5] = (-108 + (-54 + (120 + (-2985 + (7695 + (-6537 + 1869 * y) * y) * y) * y) * y) * y) * y / 720; -w[6] = (12 + (4 + (-15 + (1010 + (-2566 + (2178 - 623 * y) * y) * y) * y) * y) * y) * y / 720; -w[7] = (-145 + (367 + (-311 + 89 * y) * y) * y) * pow(y, 4) / 720;</Text-field> -</Output> -</Group> -<Group labelreference="L768" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Fortran([w0, w1, w2, w3, w4, w5, w6, w7], declare = [y::float], resultname = 'w')" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEoRm9ydHJhbkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYvLUY2NiYtRiM2Mi1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkEtRiw2JVEjdzRGJ0YvRjJGQS1GLDYlUSN3NUYnRi9GMkZBLUYsNiVRI3c2RidGL0YyRkEtRiw2JVEjdzdGJ0YvRjJGRUZFLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRkEtRkI2LVEifkYnRkVGRy9GS0ZJRkxGTkZQRlJGVEZWL0ZaRlgtRiw2JVEoZGVjbGFyZUYnRi9GMi1GQjYtUSI9RidGRUZHRmRwRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZdcS1GNjYmLUYjNiYtRiw2JVEieUYnRi9GMi1GQjYtUS0mUHJvcG9ydGlvbjtGJ0ZFRkdGZHBGTEZORlBGUkZURlxxRl5xLUYsNiVRJmZsb2F0RidGL0YyRkVGRUZbcEZecEZBLUYsNiVRK3Jlc3VsdG5hbWVGJ0YvRjJGaXAtRkI2LVEiJ0YnRkVGR0ZkcEZMRk5GUEZSRlQvRldRLDAuMTExMTExMWVtRidGZXAtRiw2JVEid0YnRi9GMkZfckZFRkUvJStleGVjdXRhYmxlR0ZJRkU=">LUkoRm9ydHJhbkc2IjYlNypJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiRJI3c2R0YkSSN3N0dGJC9JKGRlY2xhcmVHRiQ3IydJInlHRiRJJmZsb2F0RyUqcHJvdGVjdGVkRy9JK3Jlc3VsdG5hbWVHRiQuSSJ3R0Yk</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output"> w(1) = (-0.12D2 + (0.4D1 + (0.15D2 + (0.140D3 + (-0.370D3 + (0.312</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output"> #D3 - 0.89D2 * y) * y) * y) * y) * y) * y) * y / 0.720D3 - w(2) = (0.108D3 + (-0.54D2 + (-0.120D3 + (-0.955D3 + (0.2581D4 + ( - #-0.2183D4 + 0.623D3 * y) * y) * y) * y) * y) * y) * y / 0.720D3 - w(3) = (-0.540D3 + (0.540D3 + (0.195D3 + (0.2850D4 + (-0.7722D4 + - #(0.6546D4 - 0.1869D4 * y) * y) * y) * y) * y) * y) * y / 0.720D3 - w(4) = 0.1D1 + (-0.980D3 + (-0.4795D4 + (0.12845D5 + (-0.10905D5 + - # 0.3115D4 * y) * y) * y) * y ** 2) * y ** 2 / 0.720D3 - w(5) = (0.540D3 + (0.540D3 + (-0.195D3 + (0.4880D4 + (-0.12830D5 + - # (0.10900D5 - 0.3115D4 * y) * y) * y) * y) * y) * y) * y / 0.720D3 - w(6) = (-0.108D3 + (-0.54D2 + (0.120D3 + (-0.2985D4 + (0.7695D4 + - #(-0.6537D4 + 0.1869D4 * y) * y) * y) * y) * y) * y) * y / 0.720D3 - w(7) = (0.12D2 + (0.4D1 + (-0.15D2 + (0.1010D4 + (-0.2566D4 + (0.2 - #178D4 - 0.623D3 * y) * y) * y) * y) * y) * y) * y / 0.720D3 - w(8) = (-0.145D3 + (0.367D3 + (-0.311D3 + 0.89D2 * y) * y) * y) * - #y ** 4 / 0.720D3</Text-field> -</Output> -</Group> -<Group labelreference="L572" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L571" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L557" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L562" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L447" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -</Worksheet> \ No newline at end of file diff --git a/Docs/remeshing_formulas/calcul_lambda6star_C4.mw b/Docs/remeshing_formulas/calcul_lambda6star_C4.mw deleted file mode 100644 index 50516a959d8bdc9fc248cb7bfb5deed9ac789d93..0000000000000000000000000000000000000000 --- a/Docs/remeshing_formulas/calcul_lambda6star_C4.mw +++ /dev/null @@ -1,426 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<Worksheet> -<Version major="16" minor="0"/> -<Label-Scheme value="2" prefix=""/> -<View-Properties presentation="false"><Zoom percentage="150"/></View-Properties> -<MapleNet-Properties elisiondigitsbefore="100" labelling="true" indentamount="4" elisiontermsthreshold="10000" ansi="false" errorbreak="1" useclientjvm="true" echo="1" imaginaryunit="I" labelwidth="20" contextmenusize="automatic" plotdriver="opengl" elisiondigitsafter="100" plotoutput="terminal" helpbrowser="standard" rtablesize="10" elisiontermsbefore="100" elisiondigitsthreshold="10000" typesetting="standard" plotdevice="inline" verboseproc="1" showassumed="1" errorcursor="false" longdelim="true" plotoptions="" quiet="false" elisiontermsafter="100" screenwidth="79" preplot="" prettyprint="3" displayprecision="-1" screenpixelheight="1050" warnlevel="3" screenheight="25" latexwidth="6.0" postplot="" prompt="> " ShowLabels="true"/> -<Styles><Font name="Ordered List 1" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 2" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 3" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 5" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Author" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Warning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Caption Reference" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input Placeholder" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[200,0,200]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="true"/> -<Font name="Maple Plot" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Code" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Line Printed Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Diagnostic" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[40,120,40]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Inert Output" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[144,144,144]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Normal" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,128,128]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Maple Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Dash Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Math" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Input" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkError" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Header and Footer" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="10" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Error" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 1" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Bullet Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Equation Label" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 3" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="14" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 2" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="16" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkWarning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Dictionary Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[147,0,15]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Caption Text" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="List Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Layout name="Ordered List 1" alignment="left" bullet="numeric" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 2" alignment="left" bullet="alphabetic" firstindent="0" leftmargin="36" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 3" alignment="left" bullet="roman" firstindent="0" leftmargin="72" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 4" alignment="left" bullet="ALPHABETIC" firstindent="0" leftmargin="108" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 5" alignment="left" bullet="ROMAN" firstindent="0" leftmargin="144" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Author" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="8" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Warning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Annotation Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Plot" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Line Printed Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Text Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="newline" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Diagnostic" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Normal" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Output" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.3" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Dash Item" alignment="left" bullet="dash" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkError" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Error" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 1" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="4" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Bullet Item" alignment="left" bullet="dot" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 4" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 3" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 2" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="2" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkWarning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="List Item" alignment="left" bullet="indent" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Pencil-style name="Pencil 5" pen-color="[255,0,0]" pen-height="5.0" pen-width="5.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 4" pen-color="[0,0,255]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 3" pen-color="[0,0,0]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 2" pen-color="[0,0,255]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 1" pen-color="[0,0,0]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Highlighter-style name="Highlighter 2" pen-color="[255,204,0]" pen-height="14.0" pen-width="14.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 1" pen-color="[255,153,255]" pen-height="12.0" pen-width="8.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 4" pen-color="[0,255,255]" pen-height="32.0" pen-width="32.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 3" pen-color="[51,255,0]" pen-height="24.0" pen-width="24.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 5" pen-color="[255,255,0]" pen-height="48.0" pen-width="48.0" pen-opacity="0.8"/> -</Styles> -<Task-table> - <Task-category name="<default>"> - </Task-category> -</Task-table> -<Task> -</Task> -<Group labelreference="L643" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYkLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjlGOS1GNjYtUSI6RidGOUY7L0Y/Rj1GQEZCRkRGRkZIL0ZLRk9GTS1GLDYlUSdob3JuZXJGJ0YvRjItRjY2LVEqJmNvbG9uZXE7RidGOUY7RmhuRkBGQkZERkZGSEZpbkZNLUYsNiVRKGNvZGVnZW5GJ0YvRjItRlQ2Ji1GIzYkRmpuRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zlbi8lK2V4ZWN1dGFibGVHRj1GOQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYjLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjktRjY2LVEiOkYnRjlGOy9GP0Y9RkBGQkZERkZGSC9GS0ZPRk0tRiw2JVEnaG9ybmVyRidGL0YyLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0ZobkZARkJGREZGRkhGaW5GTS1GLDYlUShjb2RlZ2VuRidGL0YyLUZUNiYtRiM2I0ZqbkY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmVu</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L655" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Calcul de la fomule Lambda_6^*:</Text-field> -<Text-field style="Text" layout="Normal"> - 8 points</Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8"> - degr\303\251 9</Font></Text-field> -<Text-field style="Text" layout="Normal"> - C4</Text-field> -<Text-field style="Text" layout="Normal"> - Moments d'ordre 6</Text-field> -</Input> -</Group> -<Group labelreference="L669" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="xrange := -4 .. 4; 1; d := 9" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlMtSSNtbkdGJDYkUSI0RidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZSL0ZOUSYwLjBlbUYnRlUtRjY2LVEiO0YnRjlGOy9GP0YxRkBGQkZERkZGSC9GS0ZnbkZNLUYsNiVRImRGJ0YvRjJGNS1GVjYkUSI5RidGOS8lK2V4ZWN1dGFibGVHRj1GOQ==">QyU+SSd4cmFuZ2VHNiI7ISIlIiIlIiIiPkkiZEdGJSIiKg==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYoLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlctSSNtbkdGJDYkUSI0RidGOUY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRlYvRk5RJjAuMGVtRidGWS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RlxvRl9vRjk=">OyEiJSIiJQ==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiZEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSSNtbkdGJDYkUSI5RidGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5">IiIq</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L645" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="p[0] := proc (x) options operator, arrow; sum(c[0, i]*x^i, i = 0 .. d) end proc;" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZALUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYkLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJ0Y+LyUvc3Vic2NyaXB0c2hpZnRHRj0tSSNtb0dGJDYtUSomY29sb25lcTtGJ0Y+LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZILyUpc3RyZXRjaHlHRkgvJSpzeW1tZXRyaWNHRkgvJShsYXJnZW9wR0ZILyUubW92YWJsZWxpbWl0c0dGSC8lJ2FjY2VudEdGSC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRlctRi82JVEieEYnRjJGNS1GQzYtUSgmc3JhcnI7RidGPkZGRklGS0ZNRk9GUUZTL0ZWUSYwLjBlbUYnL0ZZRltvLUYvNiVRJHN1bUYnRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYtLUYsNiUtRi82JVEiY0YnRjJGNS1GIzYmRjotRkM2LVEiLEYnRj5GRi9GSkY0RktGTUZPRlFGU0Zqbi9GWVEsMC4zMzMzMzMzZW1GJy1GLzYlUSJpRidGMkY1Rj5GQC1GQzYtUScmc2RvdDtGJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG8tSSVtc3VwR0YkNiVGWi1GIzYlLUZDNi1RIn5GJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG9GYnBGPi8lMXN1cGVyc2NyaXB0c2hpZnRHRj1GXHBGXXFGYnAtRkM2LVEiPUYnRj5GRkZJRktGTUZPRlFGU0ZVRlhGOi1GQzYtUSMuLkYnRj5GRkZJRktGTUZPRlFGUy9GVlEsMC4yMjIyMjIyZW1GJ0Zcby1GLzYlUSJkRidGMkY1Rj5GPi1GQzYtUSI7RidGPkZGRl9wRktGTUZPRlFGU0ZqbkZYLUYsNiVGLi1GIzYkLUY7NiRRIjFGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGZHJGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLUYsNiVGLi1GIzYkLUY7NiRRIjJGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGY3NGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLUYsNiVGLi1GIzYkLUY7NiRRIjNGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGYnRGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLyUrZXhlY3V0YWJsZUdGSEY+">Qyo+JkkicEc2IjYjIiIhZio2I0kieEdGJkYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLUkkc3VtR0YmNiQqJiZJImNHRiY2JEYoSSJpR0YmIiIiKTkkRjZGNy9GNjtGKEkiZEdGJkYmRiZGJkY3PiZGJTYjRjdmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRjdGNkY3RjhGN0Y6RiZGJkYmRjc+JkYlNiMiIiNmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRklGNkY3RjhGN0Y6RiZGJkYmRjc+JkYlNiMiIiRmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRlNGNkY3RjhGN0Y6RiZGJkYmRjc=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R0Y9LUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZm4tRiM2KC1GLzYlUSJ4RidGMkY1LUZJNi1RKCYjODU5NDtGJ0Y+RkxGTkZQRlJGVEZWRlgvRmVuUSYwLjBlbUYnL0ZobkZiby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZJNi1RJiZTdW07RidGPkZMRk4vRlFGNEZSL0ZVRjQvRldGNEZYRmFvL0ZoblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRkk2LVEiPUYnRj5GTEZORlBGUkZURlZGWEZaRmduRjpGQEZDRj4tRi82JVEiZEYnRjJGNUZYLyUsYWNjZW50dW5kZXJHRkUtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdRJDUuMEYnLyUmZGVwdGhHRmNxLyUqbGluZWJyZWFrR1ElYXV0b0YnLUYjNiYtRiw2JS1GLzYlUSJjRidGMkY1LUYjNihGOi1GSTYtUSIsRidGPkZML0ZPRjRGUEZSRlRGVkZYRmFvL0ZoblEsMC4zMzMzMzMzZW1GJ0ZjcEZARkNGPkZGLUZJNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y+RkxGTkZQRlJGVEZWRlhGYW9GY28tSSVtc3VwR0YkNiVGW29GY3AvJTFzdXBlcnNjcmlwdHNoaWZ0R0Y9Rj5GQEZDRj5GQEZDRj5GQEZDRj4=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIUkiaUdGJSIiIik5JEYxRjIvRjE7RjBJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIkkiaUdGJUYwKTkkRjFGMC9GMTsiIiFJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMkYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiI0kiaUdGJSIiIik5JEYxRjIvRjE7IiIhSSJkR0YlRiVGJUYl</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiM0YnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiJEkiaUdGJSIiIik5JEYxRjIvRjE7IiIhSSJkR0YlRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L647" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="P := proc (x) options operator, arrow; piecewise(x < -4, 0, x < -3, p[0](x), x < -2, p[1](x), x < -1, p[2](x), x < 0, p[3](x), x < 1, p[3](-x), x < 2, p[2](-x), x < 3, p[1](-x), x < 4, p[0](-x), 4 <= x, 0) end proc" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KS1GLDYlUSJQRicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnRjcvJSZmZW5jZUdGNi8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0Y2LyUqc3ltbWV0cmljR0Y2LyUobGFyZ2VvcEdGNi8lLm1vdmFibGVsaW1pdHNHRjYvJSdhY2NlbnRHRjYvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZOLUYsNiVRInhGJ0Y0RjctRjs2LVEoJnNyYXJyO0YnRjdGPkZARkJGREZGRkhGSi9GTVEmMC4wZW1GJy9GUEZYLUYsNiVRKnBpZWNld2lzZUYnL0Y1USV0cnVlRicvRjhRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNltxRistSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWC8lJmRlcHRoR0Zlby8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GOzYtUSJ+RidGN0Y+RkBGQkZERkZGSEZKRldGWUZRLUY7Ni1RIjxGJ0Y3Rj5GQEZCRkRGRkZIRkpGTEZPLUY7Ni1RKiZ1bWludXMwO0YnRjdGPkZARkJGREZGRkhGSi9GTVEsMC4yMjIyMjIyZW1GJy9GUEZncC1JI21uR0YkNiRRIjRGJ0Y3LUY7Ni1RIixGJ0Y3Rj4vRkFGaG5GQkZERkZGSEZKRlcvRlBRLDAuMzMzMzMzM2VtRictRmpwNiRRIjBGJ0Y3Rl1xRl1wRmBvRl1wLUYsNiVGU0ZnbkZpbkZgcEZjcC1GanA2JFEiM0YnRjdGXXEtSSVtc3ViR0YkNiUtRiw2JVEicEYnRmduRmluLUYjNiVGY3FGZ25GaW4vJS9zdWJzY3JpcHRzaGlmdEdGZXEtRlxvNiQtRiM2JEZmcUY3RjdGXXFGYG9GXXBGZnFGYHBGY3AtRmpwNiRRIjJGJ0Y3Rl1xLUZccjYlRl5yLUYjNiUtRmpwNiRRIjFGJ0Y3RmduRmluRmNyRmVyRl1xRmBvRl1wRlFGYHBGY3BGYHNGXXEtRlxyNiUtRiw2JUZgckY0RjctRiM2JEZpckY3RmNyRmVyRl1xRmBvRl1wRmZxRmBwRmNxRl1xLUZccjYlRl5yLUYjNiRGaHFGN0ZjckZlckZdcUZgb0ZdcEZmcUZgcEZgc0ZdcUZpcy1GXG82JC1GIzYlRmNwRmZxRjdGN0ZdcUZgb0ZdcEZmcUZgcEZpckZdcS1GXHI2JUZeckZnc0ZjckZddEZdcUZgb0ZdcEZmcUZgcEZocUZdcUZcc0ZddEZdcUZgb0ZdcEZmcUZgcEZpcEZdcUZbckZddEZdcUZgb0ZdcEZmcS1GOzYtUS8mR3JlYXRlckVxdWFsO0YnRjdGPkZARkJGREZGRkhGSkZMRk9GaXBGXXFGXXBGY3FGN0Y3RjdGKy8lK2V4ZWN1dGFibGVHRjZGNw==">PkkiUEc2ImYqNiNJInhHRiRGJDYkSSlvcGVyYXRvckdGJEkmYXJyb3dHRiRGJC1JKnBpZWNld2lzZUclKnByb3RlY3RlZEc2NjI5JCEiJSIiITJGMCEiJC0mSSJwR0YkNiNGMjYjRjAyRjAhIiMtJkY3NiMiIiJGOTJGMCEiIi0mRjc2IyIiI0Y5MkYwRjItJkY3NiMiIiRGOTJGMEY/LUZINiMsJEYwRkEyRjBGRS1GQ0ZNMkYwRkotRj1GTTJGMCIiJS1GNkZNMUZURjBGMkYkRiRGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiUEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2KC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCYjODU5NDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWC1GIzYoLUYsNiVRKnBpZWNld2lzZUYnRi9GMi1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGV0ZZLUkobWZlbmNlZEdGJDYkLUYjNkwtRiM2KEZRLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlxwLUkjbW5HRiQ2JFEiNEYnRjlGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGVy9GTlEsMC4zMzMzMzMzZW1GJy1GX3A2JFEiMEYnRjlGZ3AtRiM2KEZRRmNvLUYjNiVGaG8tRl9wNiRRIjNGJ0Y5RjlGYnBGZXBGOUZncC1GIzYoLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JkZdcUZicEZlcEY5LyUvc3Vic2NyaXB0c2hpZnRHRl9xRmluLUZdbzYkLUYjNiZGUUZicEZlcEY5RjlGYnBGZXBGOUZncC1GIzYoRlFGY28tRiM2JUZoby1GX3A2JFEiMkYnRjlGOUZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2Ji1GX3A2JFEiMUYnRjlGYnBGZXBGOUZhckZpbkZjckZicEZlcEY5RmdwLUYjNihGUUZjby1GIzYlRmhvRmRzRjlGYnBGZXBGOUZncC1GIzYoLUZqcTYlRlxyLUYjNiZGW3NGYnBGZXBGOUZhckZpbkZjckZicEZlcEY5RmdwLUYjNihGUUZjb0ZdcUZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2JkZkcUZicEZlcEY5RmFyRmluRmNyRmJwRmVwRjlGZ3AtRiM2KEZRRmNvRmRzRmJwRmVwRjlGZ3AtRiM2KEZldEZpbi1GXW82JC1GIzYmLUYjNidGaG9GUUZicEZlcEY5RmJwRmVwRjlGOUZicEZlcEY5RmdwLUYjNihGUUZjb0Zbc0ZicEZlcEY5RmdwLUYjNihGXXRGaW5GXXVGYnBGZXBGOUZncC1GIzYoRlFGY29GZHFGYnBGZXBGOUZncC1GIzYoRmBzRmluRl11RmJwRmVwRjlGZ3AtRiM2KEZRRmNvRl5wRmJwRmVwRjlGZ3AtRiM2KEZpcUZpbkZddUZicEZlcEY5RmdwLUYjNihGXnAtRjY2LVElJmxlO0YnRjlGO0Y+RkBGQkZERkZGSEZKRk1GUUZicEZlcEY5RmdwRl1xRmJwRmVwRjlGOUZicEZlcEY5RmJwRmVwRjlGYnBGZXBGOQ==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzY2MjkkISIlIiIhMkYuISIkLSZJInBHRiU2I0YwNiNGLjJGLiEiIy0mRjU2IyIiIkY3MkYuISIiLSZGNTYjIiIjRjcyRi5GMC0mRjU2IyIiJEY3MkYuRj0tRkY2IywkRi5GPzJGLkZDLUZBRksyRi5GSC1GO0ZLMkYuIiIlLUY0RksxRlJGLkYwRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L644" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="E := [eval(P(x), x = 0) = 1, eval(P(x), x = -1) = 0, eval(P(x), x = -2) = 0, eval(P(x), x = -3) = 0, eval(P(x), x = -4) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiRUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNjwtRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNiktRiw2JVEiUEYnRi9GMi1GUDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5RjlGOUZnby1GW3A2JFEiMUYnRjlGX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ28tRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmlwRl5wRjlGOUZnb0Zqb0Zfb0ZULUZQNiQtRiM2KkZlbkZobkZfb0Zcb0Znb0ZlcC1GW3A2JFEiMkYnRjlGOUY5RmdvRmpvRl9vRlQtRlA2JC1GIzYqRmVuRmhuRl9vRlxvRmdvRmVwLUZbcDYkUSIzRidGOUY5RjlGZ29Gam9GX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ29GZXAtRltwNiRRIjRGJ0Y5RjlGOUZnb0Zqby8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmByRjk=">QyQ+SSJFRzYiNycvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJS9GLyIiISIiIi8tRik2JEYsL0YvISIiRjEvLUYpNiRGLC9GLyEiI0YxLy1GKTYkRiwvRi8hIiRGMS8tRik2JEYsL0YvISIlRjFGNw==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L661" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C0 := [seq(eval(p[j](x), x = j-4+1) = eval(p[j+1](x), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRl5wLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmRvLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYHEtSSNtbkdGJDYkUSI0RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl9xRmFxLUZjcTYkUSIxRidGOUY5RjlGaXBGZW4tRlA2JC1GIzYtLUZdbzYlRl9vLUYjNiZGZG9GZnFGaXFGOUZnb0Zqb0ZhcEZecEZpcEZkb0ZccUZicUZmcUZpcUY5RjlGYXBGZG9GaXAtRmNxNiRGaW9GOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZfcS9GTkZmcC1GY3E2JFEiMkYnRjlGOUY5LyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GXXNGOQ==">QyQ+SSNDMEc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS9GNS1JIitHRik2JCwmRjMiIiIhIiVGO0Y7LUYtNiQtJkYxNiMsJkYzRjtGO0Y7RjRGNi9GMzsiIiEiIiMhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L650" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C1 := [seq(eval(diff(p[j](x), x), x = j-4+1) = eval(diff(p[j+1](x), x), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwRjlGOUZocEZlcC1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbcC1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmdxLUkjbW5HRiQ2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocS1GanE2JFEiMUYnRjlGOUY5RmBxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JkZbcEZdckZgckY5Rl5wRmFwRmhwRmVwRjlGOUZocEZlcEZgcUZbcEZjcUZpcUZdckZgckY5RjlGaHBGW3BGYHEtRmpxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZmcS9GTkZdcS1GanE2JFEiMkYnRjlGOUY5LyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRiw2JVEkQzEwRidGL0YyRjUtRlA2Ji1GIzYpRmVuLUZQNiQtRiM2KUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JC1GanE2JFEiM0YnRjlGOUZecEZhcEZocEZlcEY5RjlGaHBGZXBGYHFGX3NGOUY5RmBxRmVuLUZQNiQtRiM2KUZcby1GUDYkLUYjNidGYnUtRlA2JC1GIzYlLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocUZlcEY5RjlGaHBGZXBGOUY5RmhwRmVwRmBxRl9zRjlGOUZoc0Y5RjlGanNGXXRGYHRGaHNGOQ==">QyY+SSNDMUc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJUY4L0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUY+Rj4tRi02JC1GMDYkLSZGNDYjLCZGNkY+Rj5GPkY3RjhGOS9GNjsiIiEiIiMhIiI+SSRDMTBHRiU3Iy8tRi02JC1GMDYkLSZGNDYjIiIkRjdGOC9GOEZKLUYtNiQtRjA2JC1GVjYjLCRGOEZMRjhGWUZM</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L664" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C2 := [seq(eval(diff(p[j](x), `$`(x, 2)), x = j-4+1) = eval(diff(p[j+1](x), `$`(x, 2)), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIyRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcUZkcUY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbdEY5">QyQ+SSNDMkc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIjL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiFGPCEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L639" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C3 := [seq(eval(diff(p[j](x), `$`(x, 3)), x = j-4+1) = eval(diff(p[j+1](x), `$`(x, 3)), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIzRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcS1GZXE2JFEiMkYnRjlGOUY5RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSRDMzBGJ0YvRjJGNS1GUDYmLUYjNihGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2KS1GZG82JUZmby1GIzYkRmRxRjlGXnBGYXBGaHBGZXBGYHFGZHFGOUY5RmhwRmVwRmhxRmZzRjlGOUZocUZlbi1GUDYkLUYjNilGXG8tRlA2JC1GIzYpRmZ1LUZQNiQtRiM2JS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGXnJGYHJGZXBGOUY5RmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZmc0Y5RjlGOUY5Rl50RmF0RmR0LyUrZXhlY3V0YWJsZUdGPUY5">QyY+SSNDM0c2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIkL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiEiIiMhIiI+SSRDMzBHRiU3Iy8tRi02JC1GMDYkLSZGNDYjRjxGN0Y5L0Y4Rk4tRi02JC1GMDYkLUZaNiMsJEY4RlBGOUZmbkZQ</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L670" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C4 := [seq(eval(diff(p[j](x), `$`(x, 4)), x = j-4+1) = eval(diff(p[j+1](x), `$`(x, 4)), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSI0RidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfckZkcS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5yRmByLUZlcTYkUSIxRidGOUY5RjlGaHFGZW4tRlA2JC1GIzYtRlxvLUZQNiQtRiM2KS1GZG82JUZmby1GIzYmRltwRmFyRmRyRjlGXnBGYXBGaHBGZXBGYHFGZHFGOUY5RmhwRmVwRmhxRltwRltyRmRxRmFyRmRyRjlGOUZocEZbcEZocS1GZXE2JEZgcEY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRl5yRmNxLUZlcTYkUSIyRidGOUY5RjlGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSNDNEc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIlL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiEiIiMhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L666" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="CEND := [eval(diff(p[0](x), x), x = -4) = 0, eval(diff(p[0](x), `$`(x, 2)), x = -4) = 0, eval(diff(p[0](x), `$`(x, 3)), x = -4) = 0, eval(diff(p[0](x), `$`(x, 4)), x = -4) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElQ0VOREYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GUy1JKG1mZW5jZWRHRiQ2Ji1GIzY3LUYsNiVRJWV2YWxGJ0YvRjItRlY2JC1GIzYqLUYsNiVRJWRpZmZGJ0YvRjItRlY2JC1GIzYnLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JC1JI21uR0YkNiRRIjBGJ0Y5RjkvJS9zdWJzY3JpcHRzaGlmdEdGXXAtRlY2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGSi9GTlEsMC4zMzMzMzMzZW1GJ0ZkcEY5RjlGZ3BGZHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmRxLUZbcDYkUSI0RidGOUY5RjlGXXFGam9GZ3BGWi1GVjYkLUYjNipGW28tRlY2JC1GIzYpRmJvRmBwRmdwRmRwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZbcDYkUSIyRidGOUY5RjlGZ3BGZHBGXXFGYHFGZnFGOUY5Rl1xRmpvRmdwRlotRlY2JC1GIzYqRltvLUZWNiQtRiM2KUZib0ZgcEZncEZkcEZhci1GW3A2JFEiM0YnRjlGOUY5RmdwRmRwRl1xRmBxRmZxRjlGOUZdcUZqb0ZncEZaLUZWNiQtRiM2KkZbby1GVjYkLUYjNilGYm9GYHBGZ3BGZHBGYXJGZnFGOUY5RmdwRmRwRl1xRmBxRmZxRjlGOUZdcUZqby8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGUkZURmpzRjk=">QyQ+SSVDRU5ERzYiNyYvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JJWRpZmZHRio2JC0mSSJwR0YlNiMiIiE2I0kieEdGJUY1L0Y1ISIlRjMvLUYpNiQtRi02JEYvLUkiJEdGKjYkRjUiIiNGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIiRGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIiVGNkYzISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L631" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM0 := `assuming`([PolynomialTools[CoefficientList](collect(sum(eval(P(x), x = s-l), l = xrange)-s^0, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0wRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRlM2JC1GIzYoLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlM2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GUzYkLUYjNiktRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0ZccS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXItRiw2JVEibEYnRi9GMkY5RjlGX3FGY3JGZ3EtRiw2JVEneHJhbmdlRidGL0YyRjlGOUZdci1JJW1zdXBHRiQ2JS1GUzYkLUYjNiRGanFGOUY5LUYjNiQtSSNtbkdGJDYkUSIwRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdGZXNGX3FGanFGOUY5Rl9xRmpxRlpGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGY3EvRk5GZHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGY3FGW3RGaHNGanEtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GYnNGaHMtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZodEY7Rj5GQEZCRkRGRkZIRmNxRlt0RmhzRmpxLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZjczYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZaRjk=">QyQ+SSRETTBHNiItSSlhc3N1bWluZ0dGJTYkNyMtJkkwUG9seW5vbWlhbFRvb2xzR0YlNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGJTYkLCYtSSRzdW1HNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2JC1JJWV2YWxHRjc2JC1JIlBHRiU2I0kieEdGJS9GQCwmSSJzR0YlIiIiSSJsR0YlISIiL0ZFSSd4cmFuZ2VHRiVGRC1JIl5HRjc2JEZDIiIhRkZGQ0ZDNyMtSSRhbmRHRjc2JC1JIj5HRjdGSzJGQ0ZERkY=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L637" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM0 := [seq(DM0[j] = 0, j = 1 .. numelems(DM0))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiYtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Ly1GLDYlUSRETTBGJ0YvRjItRlA2Ji1GIzYlLUYsNiVRImpGJ0YvRjIvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXG9GZ28tRltwNiRRIjFGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmNwLUYsNiVRKW51bWVsZW1zRidGL0YyLUZQNiQtRiM2JUZlbkZfb0Y5RjlGX29GOUY5Rl9vRjlGOUZhb0Zkby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYjUSFGJ0Zfb0Y5">QyQ+SSVsRE0wRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0wR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L668" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM1 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l*(eval(P(x), x = s-l)), l = xrange)-s, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistRiw2JVEibEYnRi9GMi1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaHAtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZncC9GTlEsMC4zMzMzMzMzZW1GJ0ZocS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GW3NGYXBGOUY5RltyRmFwRmFyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGZ3ItSSVtc3VwR0YkNiUtRlg2JC1GIzYkRmRyRjlGOS1GIzYkLUkjbW5HRiQ2JFEiMUYnRjlGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGW3JGZHJGOUY5RltyRmRyRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqczYkRl90RjlGYHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZhdUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmlzLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmB0LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTFHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIiLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiVGPEY7ISIiRjwvRjtJJ3hyYW5nZUdGJUY8RkZGR0ZGRkY3Iy1JJGFuZEdGLzYkLUkiPkdGLzYkRkYiIiEyRkZGPEZH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L660" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM1 := [seq(DM1[j] = 0, j = 1 .. numelems(DM1))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTFGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0xRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0xR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L640" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM2 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^2*(eval(P(x), x = s-l)), l = xrange)-s^2, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0yRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistSSVtc3VwR0YkNiUtRiw2JVEibEYnRi9GMi1GIzYlLUkjbW5HRiQ2JFEiMkYnRjlGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GZHEtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZjcS9GTlEsMC4zMzMzMzMzZW1GJ0Zkci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GZ3NGZHBGOUY5RmdyRmRwRl1zLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGY3MtRmJwNiUtRlg2JC1GIzYkRmBzRjlGOS1GIzYkRmlwRjlGXXFGZ3JGYHNGOUY5RmdyRmBzRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkRl9xRjlGZHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZldUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZkdC8lK2V4ZWN1dGFibGVHRj1GOQ==">QyQ+SSRETTJHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIjLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L636" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM2 := [seq(DM2[j] = 0, j = 1 .. numelems(DM2))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTJGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0yRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0yR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L653" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM3 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^3*(eval(P(x), x = s-l)), l = xrange)-s^3, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE0zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSIzRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTNHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIkLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L654" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM3 := [seq(DM3[j] = 0, j = 1 .. numelems(DM3))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNM0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTNGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0zRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0zR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L641" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM4 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^4*(eval(P(x), x = s-l)), l = xrange)-s^4, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE00RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI0RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTRHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIlLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L648" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM4 := [seq(DM4[j] = 0, j = 1 .. numelems(DM4))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTRGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE00RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE00R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L656" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM5 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^5*(eval(P(x), x = s-l)), l = xrange)-s^5, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE01RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI1RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTVHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiImLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L657" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM5 := [seq(DM5[j] = 0, j = 1 .. numelems(DM5))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTVGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE01RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE01R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L658" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM6 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^6*(eval(P(x), x = s-l)), l = xrange)-s^6, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE02RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI2RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTZHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiInLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L659" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM6 := [seq(DM6[j] = 0, j = 1 .. numelems(DM6))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTZGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE02RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE02R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L642" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="inconnues := [seq(seq(c[i, j], j = 0 .. d), i = 0 .. 3)]; 1; numelems(inconnues)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2Ji1GLDYlUSRzZXFGJ0YvRjItRlA2JC1GIzYrRlQtRlA2JC1GIzYqLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2Ji1GLDYlUSJpRidGL0YyLUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRictRiw2JVEiakYnRi9GMkY5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGZG9GXHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSNtbkdGJDYkRmFwRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GaW8tRiw2JVEiZEYnRi9GMkY5RjlGZG9GYW9GYnBGZXBGaHAtRmZwNiRRIjNGJ0Y5RjlGOS8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjtGJ0Y5RjtGZ29GQEZCRkRGRkZIRmhvRk0tRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRitGOUY5RmRxRjk=">QyU+SSppbmNvbm51ZXNHNiI3Iy1JJHNlcUclKnByb3RlY3RlZEc2JC1GKDYkJkkiY0dGJTYkSSJpR0YlSSJqR0YlL0YxOyIiIUkiZEdGJS9GMDtGNCIiJCIiIi1JKW51bWVsZW1zR0YpNiNGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZecC1JJW1zdWJHRiQ2JS1GLDYlUSJjRidGL0YyLUYjNigtSSNtbkdGJDYkUSIwRidGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmZuLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjkvJS9zdWJzY3JpcHRzaGlmdEdGaW5Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjFGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjJGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjNGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjRGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjVGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjZGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjdGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjhGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjlGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GZm5GYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZdcEZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmRwRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GW3FGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZicUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmlxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GYHJGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZnckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRl5zRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GZXNGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZmbkZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRl1wRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GZHBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZbcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmJxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GaXFGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZgckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmdyRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GXnNGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZlc0Zib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRmZuRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GXXBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZkcEZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRltxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GYnFGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZpcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRmByRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GZ3JGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZec0Zib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRmVzRmJvRmVvRjlGZ29GYm9GZW9GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmJvRmVvRjk=">N0omSSJjRzYiNiQiIiFGJyZGJDYkRiciIiImRiQ2JEYnIiIjJkYkNiRGJyIiJCZGJDYkRiciIiUmRiQ2JEYnIiImJkYkNiRGJyIiJyZGJDYkRiciIigmRiQ2JEYnIiIpJkYkNiRGJyIiKiZGJDYkRipGJyZGJDYkRipGKiZGJDYkRipGLSZGJDYkRipGMCZGJDYkRipGMyZGJDYkRipGNiZGJDYkRipGOSZGJDYkRipGPCZGJDYkRipGPyZGJDYkRipGQiZGJDYkRi1GJyZGJDYkRi1GKiZGJDYkRi1GLSZGJDYkRi1GMCZGJDYkRi1GMyZGJDYkRi1GNiZGJDYkRi1GOSZGJDYkRi1GPCZGJDYkRi1GPyZGJDYkRi1GQiZGJDYkRjBGJyZGJDYkRjBGKiZGJDYkRjBGLSZGJDYkRjBGMCZGJDYkRjBGMyZGJDYkRjBGNiZGJDYkRjBGOSZGJDYkRjBGPCZGJDYkRjBGPyZGJDYkRjBGQg==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNT</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L663" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="conditions := [E[], C0[], C1[], C10[], C2[], C3[], C30[], C4[], CEND[], lDM0[], lDM1[], lDM2[], lDM3[], lDM4[], lDM5[], lDM6[]]; -1; numelems(conditions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVErY29uZGl0aW9uc0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GU0Y1LUkobWZlbmNlZEdGJDYmLUYjNlMtRiw2JVEiRUYnRi9GMi1GVjYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRiw2JVEjQzBGJ0YvRjItRlY2Ji1GIzYkRltvRjlGOUZgb0Zjb0Zmby1GLDYlUSNDMUYnRi9GMkZfcEZmby1GLDYlUSRDMTBGJ0YvRjJGX3BGZm8tRiw2JVEjQzJGJ0YvRjJGZ25GZm8tRiw2JVEjQzNGJ0YvRjJGZ25GZm8tRiw2JVEkQzMwRidGL0YyRmduRmZvLUYsNiVRI0M0RidGL0YyRmduRmZvLUYsNiVRJUNFTkRGJ0YvRjJGX3BGZm8tRiw2JVElbERNMEYnRi9GMkZfcEZmby1GLDYlUSVsRE0xRidGL0YyRl9wRmZvLUYsNiVRJWxETTJGJ0YvRjJGX3BGZm8tRiw2JVElbERNM0YnRi9GMkZnbkZmby1GLDYlUSVsRE00RidGL0YyRmduRmZvLUYsNiVRJWxETTVGJ0YvRjJGZ25GZm8tRiw2JVElbERNNkYnRi9GMkZnbkZeb0Y5RjlGYG9GY28tRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlY2JC1GIzYkRitGOUY5Rl5vRjk=">QyU+SStjb25kaXRpb25zRzYiNzImSSJFR0YlRiUmSSNDMEdGJUYlJkkjQzFHRiVGJSZJJEMxMEdGJUYlJkkjQzJHRiVGJSZJI0MzR0YlRiUmSSRDMzBHRiVGJSZJI0M0R0YlRiUmSSVDRU5ER0YlRiUmSSVsRE0wR0YlRiUmSSVsRE0xR0YlRiUmSSVsRE0yR0YlRiUmSSVsRE0zR0YlRiUmSSVsRE00R0YlRiUmSSVsRE01R0YlRiUmSSVsRE02R0YlRiUhIiItSSludW1lbGVtc0clKnByb3RlY3RlZEc2I0Yk</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiMmKg==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L652" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="A, b := LinearAlgebra[GenerateMatrix](conditions, inconnues);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkobWZlbmNlZEdGJDYkLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y4USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZCLyUqc3ltbWV0cmljR0ZCLyUobGFyZ2VvcEdGQi8lLm1vdmFibGVsaW1pdHNHRkIvJSdhY2NlbnRHRkIvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYtUSJ+RidGPkZAL0ZERkJGRUZHRklGS0ZNRk8vRlNGUS1GMTYlUSJiRidGNEY3LyUrZXhlY3V0YWJsZUdGQkY+Rj4tRjs2LVEqJmNvbG9uZXE7RidGPkZARlhGRUZHRklGS0ZNL0ZQUSwwLjI3Nzc3NzhlbUYnL0ZTRl1vLUYxNiVRLkxpbmVhckFsZ2VicmFGJ0Y0RjctRiw2Ji1GIzYlLUYxNiVRL0dlbmVyYXRlTWF0cml4RidGNEY3RmduRj5GPi8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GLDYkLUYjNigtRjE2JVErY29uZGl0aW9uc0YnRjRGN0Y6RlUtRjE2JVEqaW5jb25udWVzRidGNEY3RmduRj5GPi1GOzYtUSI7RidGPkZARkNGRUZHRklGS0ZNRk9GXm9GZ25GPg==">QyQ+NiRJIkFHNiJJImJHRiYtJkkuTGluZWFyQWxnZWJyYUdGJjYjSS9HZW5lcmF0ZU1hdHJpeEdGJjYkSStjb25kaXRpb25zR0YmSSppbmNvbm51ZXNHRiYiIiI=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y1USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMy8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GLjYlUSJiRidGMUY0LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y/RjstRjg2LVEjOj1GJ0Y7Rj0vRkFGP0ZCRkRGRkZIRkovRk1RLDAuMjc3Nzc3OGVtRicvRlBGaW4tRiM2KC1JKG1hY3Rpb25HRiQ2JS1JKG1mZW5jZWRHRiQ2Ji1JJ210YWJsZUdGJDY4LUkkbXRyR0YkNiYtSSRtdGRHRiQ2KC1GIzYmLUYuNiVRKn45NX54fjQwfkYnRjFGNC1GLjYlUSdNYXRyaXhGJ0YxRjRGVUY7LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZmcC8lK2dyb3VwYWxpZ25HRmZwLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRl1xRmRwRmdwRmlwLUZnbzYmLUZqbzYoLUYjNiYtRi42JVEsRGF0YX5UeXBlOn5GJ0YxRjQtRi42JVEpYW55dGhpbmdGJ0YxRjRGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwLUZnbzYmLUZqbzYoLUYjNiYtRi42JVEqU3RvcmFnZTp+RidGMUY0LUYuNiVRLHJlY3Rhbmd1bGFyRidGMUY0RlVGO0ZkcEZncEZpcEZbcUZecUZkcEZncEZpcC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKE9yZGVyOn5GJ0YxRjQtRi42JVEuRm9ydHJhbl9vcmRlckYnRjFGNEZVRjtGZHBGZ3BGaXBGW3FGXnFGZHBGZ3BGaXAvJSZhbGlnbkdRJWF4aXNGJy9GZXBRKWJhc2VsaW5lRicvRmhwUSdjZW50ZXJGJy9GanBRJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0YzLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGYXQvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGXHUvJSZmcmFtZUdGXHUvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y/LyUtZXF1YWxjb2x1bW5zR0Y/LyUtZGlzcGxheXN0eWxlR0Y/LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRml0RjsvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRicvJSthY3Rpb250eXBlR1EtYnJvd3NlcnRhYmxlRicvJSlydGFibGVpZEdRNTE4NDQ2NzQ0MDc4MTgwMjcwMTk4RidGNy1GXm82JS1GYW82Ji1GZG82OC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKn4xfi4ufjk1fkYnRjFGNC1JJW1zdWJHRiQ2JS1GLjYlUSdWZWN0b3JGJ0YxRjQtRiM2JS1GLjYlUSdjb2x1bW5GJ0YxRjRGVUY7LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwRmBxRlxyRmhyRmRzRmdzRmlzRlt0Rl10Rl90RmJ0RmR0Rmd0Rmp0Rl11Rl91RmF1RmR1RmZ1Rmh1Rmp1Rl12RjtGX3ZGYnZGZXYvRml2UTUxODQ0Njc0NDA3ODE4MDI3MDA3OEYnRlVGWEY7RlVGWEY7">NiQtSSdNYXRyaXhHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2Iy9JJCVpZEdGKCI1KT5xLT15U3VZJT0tJkknVmVjdG9yR0YlNiNJJ2NvbHVtbkdGKDYjL0YrIjV5K0YhPXlTdVklPQ==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L633" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[Rank](A)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJVJhbmtGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYkLUYjNiUtRiw2JVEiQUYnRi9GMkY9RkBGQC1GLDYjUSFGJ0Y9RkA=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0klUmFua0dGKDYjSSJBR0Yo</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNT</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L646" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="solutions := solve(conditions, {inconnues[]})" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yNzc3Nzc4ZW1GJy9GTkZTLUYsNiVRJnNvbHZlRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNictRiw2JVErY29uZGl0aW9uc0YnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRlk2Ji1GIzYmLUYsNiVRKmluY29ubnVlc0YnRi9GMi1GWTYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZecEY5RjkvRmFwUSJ8ZnJGJy9GZHBRInxockYnRl5wRjlGOUZecEY5">Pkkqc29sdXRpb25zRzYiLUkmc29sdmVHRiQ2JEkrY29uZGl0aW9uc0dGJDwjJkkqaW5jb25udWVzR0YkRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZecC1GIzYoLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2KC1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGaG4vJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOS8lL3N1YnNjcmlwdHNoaWZ0R0Zbby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZkcC1JJm1mcmFjR0YkNigtRmluNiRRJzE0MjUyOEYnRjktRmluNiRRIjVGJ0Y5LyUubGluZXRoaWNrbmVzc0dRIjFGJy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZkcS8lKWJldmVsbGVkR0Y9RmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkRmFxRjlGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSczNzUzNDRGJ0Y5RlxxRl9xRmJxRmVxRmdxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIyRidGOUZkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmdwNigtRmluNiRRKDM5NDIzNDRGJ0Y5LUZpbjYkUSM0NUYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjNGJ0Y5RmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFEnMTc4Mzk0RidGOUZhdEZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiNEYnRjlGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSc5MzEzMTVGJ0Y5LUZpbjYkUSMzNkYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG9GXHFGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSg1Mzg1OTgzRidGOS1GaW42JFEkNzIwRidGOUZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiNkYnRjlGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSgxMDM1MTQ5RidGOUZbd0ZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiN0YnRjlGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUScxMjc1MTFGJ0Y5Rlt3Rl9xRmJxRmVxRmdxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSI4RidGOUZkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmdwNigtRmluNiRRJDIwM0YnRjktRmluNiRRIzE2RidGOUZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiOUYnRjlGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSMyOUYnRjktRmluNiRRIzcyRidGOUZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZfckZcb0ZobkZkb0Znb0Y5RmlvRltwLUZpbjYkUSU4Njk1RidGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGX3JGXG9GX3JGZG9GZ29GOUZpb0ZbcC1GZ3A2KC1GaW42JFEnNjU2MTMxRidGOS1GaW42JFEjMjBGJ0Y5Rl9xRmJxRmVxRmdxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZfckZcb0Zec0Zkb0Znb0Y5RmlvRltwLUZncDYoLUZpbjYkUSgzOTM4ODA5RidGOUZhW2xGX3FGYnFGZXFGZ3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl9yRlxvRmF0RmRvRmdvRjlGaW9GW3AtRmdwNigtRmluNiRRJzE1ODcyNUYnRjlGYXRGX3FGYnFGZXFGZ3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl9yRlxvRmF1RmRvRmdvRjlGaW9GW3AtRmdwNigtRmluNiRRKDIzNTQ1NjlGJ0Y5RmFbbEZfcUZicUZlcUZncUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGX3JGXG9GXHFGZG9GZ29GOUZpb0ZbcC1GZ3A2KC1GaW42JFEoOTY0NDYyMUYnRjlGW3dGX3FGYnFGZXFGZ3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl9yRlxvRmR3RmRvRmdvRjlGaW9GW3AtRmdwNigtRmluNiRRJzUyMzU4OUYnRjktRmluNiRRJDE0NEYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl9yRlxvRmR4RmRvRmdvRjlGaW9GW3AtRmdwNigtRmluNiRRJzQ1NDA5N0YnRjlGW3dGX3FGYnFGZXFGZ3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl9yRlxvRmR5RmRvRmdvRjlGaW9GW3AtRmdwNigtRmluNiRRJTEwMTVGJ0Y5Rl56Rl9xRmJxRmVxRmdxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZfckZcb0ZnekZkb0Znb0Y5RmlvRltwLUZncDYoRlt6RmFbbEZfcUZicUZlcUZncUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGXnNGXG9GaG5GZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSQ4NzdGJ0Y5RlxxRl9xRmJxRmVxRmdxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl5zRlxvRl9yRmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFEmNzI1ODNGJ0Y5LUZpbjYkUSM2MEYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGXnNGXG9GXnNGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUScxNDU0NjdGJ0Y5LUZpbjYkUSM0MEYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGXnNGXG9GYXRGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSYxODgwOUYnRjlGYXRGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGXnNGXG9GYXVGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSY1NDY2M0YnRjlGZHlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGXnNGXG9GXHFGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSczOTAzMjdGJ0Y5LUZpbjYkUSM4MEYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGXnNGXG9GZHdGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUScxODI1NDlGJ0Y5RmdnbEZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZec0Zcb0ZkeEZkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmdwNigtRmluNiRRJzE2MTc3N0YnRjktRmluNiRRJDI0MEYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGXnNGXG9GZHlGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSUxODI3RidGOUZeekZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZec0Zcb0ZnekZkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmdwNihGW3otRmluNiRRIzI0RidGOUZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZhdEZcb0ZobkZkb0Znb0Y5RmlvRltwRl9yRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZhdEZcb0ZfckZkb0Znb0Y5RmlvRltwRmhuRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZhdEZcb0Zec0Zkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmdwNigtRmluNiRRIzQ5RidGOUZbdkZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZhdEZcb0ZhdEZkb0Znb0Y5RmlvRltwRmhuRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZhdEZcb0ZhdUZkb0Znb0Y5RmlvRltwLUZncDYoRmR4LUZpbjYkUSMxOEYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmF0RlxvRlxxRmRvRmdvRjlGaW9GW3AtRmdwNigtRmluNiRRJTM1MjFGJ0Y5RmJgbEZfcUZicUZlcUZncUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYXRGXG9GZHdGZG9GZ29GOUZpb0ZbcC1GZ3A2KC1GaW42JFEmMTIwMjlGJ0Y5RmJgbEZfcUZicUZlcUZncUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYXRGXG9GZHhGZG9GZ29GOUZpb0ZbcC1GZ3A2KC1GaW42JFEmMTU2MTdGJ0Y5RmJgbEZfcUZicUZlcUZncUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYXRGXG9GZHlGZG9GZ29GOUZpb0ZbcEZmYWxGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmF0RlxvRmd6RmRvRmdvRjlGaW9GW3AtRmdwNihGaGFsRmFbbEZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGOS8lJW9wZW5HUSJ8ZnJGJy8lJmNsb3NlR1EifGhyRidGZG9GZ29GOQ==">PEovJkkiY0c2IjYkIiIhRigjISdHRDkiIiYvJkYlNiRGKCIiIiMhJ1dgUEYrLyZGJTYkRigiIiMjIShXQiVSIiNYLyZGJTYkRigiIiQjISclUnkiRjwvJkYlNiRGKCIiJSMhJzo4JCoiI08vJkYlNiRGKEYrIyEoJClmUSYiJD8oLyZGJTYkRigiIicjIShcXi4iRksvJkYlNiRGKCIiKCMhJzZ2N0ZLLyZGJTYkRigiIikjISQuIyIjOy8mRiU2JEYoIiIqIyEjSCIjcy8mRiU2JEYvRigiJSZwKS8mRiU2JEYvRi8jIidKaGwiIz8vJkYlNiRGL0Y1IyIoNClRUkZfby8mRiU2JEYvRjwjIidEKGUiRjwvJkYlNiRGL0ZCIyIocFhOI0Zfby8mRiU2JEYvRisjIihAWWsqRksvJkYlNiRGL0ZPIyInKmVCJiIkVyIvJkYlNiRGL0ZVIyInKDRhJUZLLyZGJTYkRi9GZW4jIiU6NUZobi8mRiU2JEYvRlxvIyIkLiNGX28vJkYlNiRGNUYoIyEkeClGKy8mRiU2JEY1Ri8jISYkZXMiI2cvJkYlNiRGNUY1IyEnbmE5IiNTLyZGJTYkRjVGPCMhJjQpPUY8LyZGJTYkRjVGQiMhJmpZJkZlbi8mRiU2JEY1RisjISdGLlIiIyEpLyZGJTYkRjVGTyMhJ1xEPUZjdC8mRiU2JEY1RlUjISd4PDsiJFMjLyZGJTYkRjVGZW4jISVGPUZobi8mRiU2JEY1RlxvI0ZnbiIjQy8mRiU2JEY8RihGLy8mRiU2JEY8Ri9GKC8mRiU2JEY8RjUjISNcRkUvJkYlNiRGPEY8RigvJkYlNiRGPEZCI0ZVIiM9LyZGJTYkRjxGKyMiJUBORmNxLyZGJTYkRjxGTyMiJkg/IkZjcS8mRiU2JEY8RlUjIiY8YyJGY3EvJkYlNiRGPEZlbkZcci8mRiU2JEY8RlxvI0ZdckZfbw==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L634" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[LinearSolve](A, b)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYkLUYsNiVRLExpbmVhclNvbHZlRidGL0YyL0YzUSdub3JtYWxGJ0Y9LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2NiQtRiM2Jy1GLDYlUSJBRidGL0YyLUkjbW9HRiQ2LVEiLEYnRj0vJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGUi8lKnN5bW1ldHJpY0dGUi8lKGxhcmdlb3BHRlIvJS5tb3ZhYmxlbGltaXRzR0ZSLyUnYWNjZW50R0ZSLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEiYkYnRi9GMi8lK2V4ZWN1dGFibGVHRlJGPUY9RmJvRj0=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0ksTGluZWFyU29sdmVHRig2JEkiQUdGKEkiYkdGKA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUkobWFjdGlvbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkobWZlbmNlZEdGJDYmLUknbXRhYmxlR0YkNjgtSSRtdHJHRiQ2Ji1JJG10ZEdGJDYoLUklbXJvd0dGJDYmLUkjbWlHRiQ2JVEqfjF+Li5+NDB+RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUklbXN1YkdGJDYlLUY7NiVRJ1ZlY3RvckYnRj5GQS1GODYlLUY7NiVRJ2NvbHVtbkYnRj5GQS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvRkJRJ25vcm1hbEYnLyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGT0ZSLyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZZLyUrZ3JvdXBhbGlnbkdGWS8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZqbkZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEsRGF0YX5UeXBlOn5GJ0Y+RkEtRjs2JVEpYW55dGhpbmdGJ0Y+RkFGT0ZSRldGWkZmbkZobkZbb0ZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEqU3RvcmFnZTp+RidGPkZBLUY7NiVRLHJlY3Rhbmd1bGFyRidGPkZBRk9GUkZXRlpGZm5GaG5GW29GV0ZaRmZuLUYyNiYtRjU2KC1GODYmLUY7NiVRKE9yZGVyOn5GJ0Y+RkEtRjs2JVEuRm9ydHJhbl9vcmRlckYnRj5GQUZPRlJGV0ZaRmZuRmhuRltvRldGWkZmbi8lJmFsaWduR1ElYXhpc0YnL0ZYUSliYXNlbGluZUYnL0ZlblEnY2VudGVyRicvRmduUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGQC8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRl5yLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmlyLyUmZnJhbWVHRmlyLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dRJmZhbHNlRicvJS1lcXVhbGNvbHVtbnNHRmNzLyUtZGlzcGxheXN0eWxlR0Zjcy8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0ZmckZSLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLyUrYWN0aW9udHlwZUdRLWJyb3dzZXJ0YWJsZUYnLyUpcnRhYmxlaWRHUTUxODQ0Njc0NDA3ODIxNDc3NTc0MkYn">LSZJJ1ZlY3Rvckc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkc2IjYjSSdjb2x1bW5HRig2Iy9JJCVpZEdGKCI1VWR4OSN5U3VZJT0=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L649" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[6, 4] := eval(P(x), solutions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KC1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictRiM2Ji1JI21uR0YkNiRRIjZGJ0Y6LUkjbW9HRiQ2LVEiLEYnRjovJSZmZW5jZUdGOS8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y5LyUqc3ltbWV0cmljR0Y5LyUobGFyZ2VvcEdGOS8lLm1vdmFibGVsaW1pdHNHRjkvJSdhY2NlbnRHRjkvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GQDYkUSI0RidGOkY6LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRkQ2LVEifkYnRjpGRy9GSkY5RkxGTkZQRlJGVEZWL0ZaRlgtRkQ2LVEqJmNvbG9uZXE7RidGOkZHRl9vRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZlby1GLDYlUSVldmFsRicvRjhGSy9GO1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Jy1GLDYlUSJQRidGam9GW3AtRl5wNiQtRiM2JC1GLDYlUSJ4RidGam9GW3BGOkY6RkMtRiw2JVEqc29sdXRpb25zRidGam9GW3BGOkY6RjpGKy8lK2V4ZWN1dGFibGVHRjlGOg==">PiZJJ0xhbWJkYUc2IjYkIiInIiIlLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJUkqc29sdXRpb25zR0Yl</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEnJiM5MjM7RicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1GIzYoLUkjbW5HRiQ2JFEiNkYnRjUtSSNtb0dGJDYtUSIsRidGNS8lJmZlbmNlR0Y0LyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjQvJSpzeW1tZXRyaWNHRjQvJShsYXJnZW9wR0Y0LyUubW92YWJsZWxpbWl0c0dGNC8lJ2FjY2VudEdGNC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUY7NiRRIjRGJ0Y1LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y0RjUvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GPzYtUSM6PUYnRjVGQi9GRUY0RkdGSUZLRk1GTy9GUlEsMC4yNzc3Nzc4ZW1GJy9GVUZhby1GIzYnLUY/Ni1RInxmckYnRjUvRkNGRkZfby9GSEZGRklGS0ZNRk8vRlJRLDAuMTY2NjY2N2VtRicvRlVGW3AtSSdtdGFibGVHRiQ2Pi1JJG10ckdGJDYnLUkkbXRkR0YkNigtRjs2JEZbb0Y1LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZqcC8lK2dyb3VwYWxpZ25HRmpwLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRmFxLUZkcDYoLUYjNigtRi82JVEieEYnL0YzRkYvRjZRJ2l0YWxpY0YnLUY/Ni1RIjxGJ0Y1RkJGX29GR0ZJRktGTUZPRmBvRmJvLUYjNiUtRj82LVEqJnVtaW51czA7RidGNUZCRl9vRkdGSUZLRk1GTy9GUlEsMC4yMjIyMjIyZW1GJy9GVUZnckZXRjVGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjdGY3ItSSZtZnJhY0dGJDYoLUY7NiRRJzE0MjUyOEYnRjUtRjs2JFEiNUYnRjUvJS5saW5ldGhpY2tuZXNzR0ZhcS8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZcdC8lKWJldmVsbGVkR0Y0LUY/Ni1RKCZtaW51cztGJ0Y1RkJGX29GR0ZJRktGTUZPRmZyRmhyLUYjNigtRmBzNigtRjs2JFEnMzc1MzQ0RidGNUZlc0Zoc0Zqc0ZddEZfdC1GPzYtUTEmSW52aXNpYmxlVGltZXM7RidGNUZCRl9vRkdGSUZLRk1GT0ZRL0ZVRlNGaHFGWkZnbkY1RmF0LUYjNigtRmBzNigtRjs2JFEoMzk0MjM0NEYnRjUtRjs2JFEjNDVGJ0Y1RmhzRmpzRl10Rl90Rlt1LUklbXN1cEdGJDYlRmhxLUY7NiRRIjJGJ0Y1LyUxc3VwZXJzY3JpcHRzaGlmdEdGW29GWkZnbkY1RmF0LUYjNigtRmBzNigtRjs2JFEnMTc4Mzk0RidGNS1GOzYkUSIzRidGNUZoc0Zqc0ZddEZfdEZbdS1GanU2JUZocUZodkZfdkZaRmduRjVGYXQtRiM2KC1GYHM2KC1GOzYkUSc5MzEzMTVGJ0Y1LUY7NiRRIzM2RidGNUZoc0Zqc0ZddEZfdEZbdS1GanU2JUZocUZXRl92RlpGZ25GNUZhdC1GIzYoLUZgczYoLUY7NiRRKDUzODU5ODNGJ0Y1LUY7NiRRJDcyMEYnRjVGaHNGanNGXXRGX3RGW3UtRmp1NiVGaHFGZXNGX3ZGWkZnbkY1RmF0LUYjNigtRmBzNigtRjs2JFEoMTAzNTE0OUYnRjVGYHhGaHNGanNGXXRGX3RGW3UtRmp1NiVGaHFGOkZfdkZaRmduRjVGYXQtRiM2KC1GYHM2KC1GOzYkUScxMjc1MTFGJ0Y1RmB4RmhzRmpzRl10Rl90Rlt1LUZqdTYlRmhxLUY7NiRRIjdGJ0Y1Rl92RlpGZ25GNUZhdC1GIzYoLUZgczYoLUY7NiRRJDIwM0YnRjUtRjs2JFEjMTZGJ0Y1RmhzRmpzRl10Rl90Rlt1LUZqdTYlRmhxLUY7NiRRIjhGJ0Y1Rl92RlpGZ25GNUZhdC1GIzYoLUZgczYoLUY7NiRRIzI5RidGNS1GOzYkUSM3MkYnRjVGaHNGanNGXXRGX3RGW3UtRmp1NiVGaHEtRjs2JFEiOUYnRjVGX3ZGWkZnbkY1RjVGaHBGW3FGXXFGX3FGYnEtRmRwNigtRiM2KEZocUZeci1GIzYlRmNyRmh2RjVGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjYtRjs2JFElODY5NUYnRjUtRj82LVEiK0YnRjVGQkZfb0ZHRklGS0ZNRk9GZnJGaHItRiM2KC1GYHM2KC1GOzYkUSc2NTYxMzFGJ0Y1LUY7NiRRIzIwRidGNUZoc0Zqc0ZddEZfdEZbdUZocUZaRmduRjVGZ1xsLUYjNigtRmBzNigtRjs2JFEoMzkzODgwOUYnRjVGYFtsRmhzRmpzRl10Rl90Rlt1Rml1RlpGZ25GNUZnXGwtRiM2KC1GYHM2KC1GOzYkUScxNTg3MjVGJ0Y1Rmh2RmhzRmpzRl10Rl90Rlt1Rlt3RlpGZ25GNUZnXGwtRiM2KC1GYHM2KC1GOzYkUSgyMzU0NTY5RidGNUZgW2xGaHNGanNGXXRGX3RGW3VGZ3dGWkZnbkY1RmdcbC1GIzYoLUZgczYoLUY7NiRRKDk2NDQ2MjFGJ0Y1RmB4RmhzRmpzRl10Rl90Rlt1RmN4RlpGZ25GNUZnXGwtRiM2KC1GYHM2KC1GOzYkUSc1MjM1ODlGJ0Y1LUY7NiRRJDE0NEYnRjVGaHNGanNGXXRGX3RGW3VGXHlGWkZnbkY1RmdcbC1GIzYoLUZgczYoLUY7NiRRJzQ1NDA5N0YnRjVGYHhGaHNGanNGXXRGX3RGW3VGZXlGWkZnbkY1RmdcbC1GIzYoLUZgczYoLUY7NiRRJTEwMTVGJ0Y1RmF6RmhzRmpzRl10Rl90Rlt1RmR6RlpGZ25GNUZnXGwtRiM2KC1GYHM2KEZeekZgW2xGaHNGanNGXXRGX3RGW3VGY1tsRlpGZ25GNUY1RmhwRltxRl1xRl9xRmJxLUZkcDYoLUYjNihGaHFGXnItRiM2JUZjckZcdkY1RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzY3RmNyLUZgczYoLUY7NiRRJDg3N0YnRjVGZXNGaHNGanNGXXRGX3RGYXQtRiM2KC1GYHM2KC1GOzYkUSY3MjU4M0YnRjUtRjs2JFEjNjBGJ0Y1RmhzRmpzRl10Rl90Rlt1RmhxRlpGZ25GNUZhdC1GIzYoLUZgczYoLUY7NiRRJzE0NTQ2N0YnRjUtRjs2JFEjNDBGJ0Y1RmhzRmpzRl10Rl90Rlt1Rml1RlpGZ25GNUZhdC1GIzYoLUZgczYoLUY7NiRRJjE4ODA5RidGNUZodkZoc0Zqc0ZddEZfdEZbdUZbd0ZaRmduRjVGYXQtRiM2KC1GYHM2KC1GOzYkUSY1NDY2M0YnRjVGZnpGaHNGanNGXXRGX3RGW3VGZ3dGWkZnbkY1RmF0LUYjNigtRmBzNigtRjs2JFEnMzkwMzI3RidGNS1GOzYkUSM4MEYnRjVGaHNGanNGXXRGX3RGW3VGY3hGWkZnbkY1RmF0LUYjNigtRmBzNigtRjs2JFEnMTgyNTQ5RidGNUZmZGxGaHNGanNGXXRGX3RGW3VGXHlGWkZnbkY1RmF0LUYjNigtRmBzNigtRjs2JFEnMTYxNzc3RidGNS1GOzYkUSQyNDBGJ0Y1RmhzRmpzRl10Rl90Rlt1RmV5RlpGZ25GNUZhdC1GIzYoLUZgczYoLUY7NiRRJTE4MjdGJ0Y1RmF6RmhzRmpzRl10Rl90Rlt1RmR6RlpGZ25GNUZhdC1GIzYoLUZgczYoRl56LUY7NiRRIzI0RidGNUZoc0Zqc0ZddEZfdEZbdUZjW2xGWkZnbkY1RjVGaHBGW3FGXXFGX3FGYnEtRmRwNigtRiM2KEZocUZeci1GIzYlRmNyLUY7NiRGYXFGNUY1RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzYyRl5nbEZhdC1GIzYoLUZgczYoLUY7NiRRIzQ5RidGNUZkd0Zoc0Zqc0ZddEZfdEZbdUZpdUZaRmduRjVGZ1xsLUYjNigtRmBzNihGZ3ktRjs2JFEjMThGJ0Y1RmhzRmpzRl10Rl90Rlt1Rmd3RlpGZ25GNUZnXGwtRiM2KC1GYHM2KC1GOzYkUSUzNTIxRidGNUZnX2xGaHNGanNGXXRGX3RGW3VGY3hGWkZnbkY1RmdcbC1GIzYoLUZgczYoLUY7NiRRJjEyMDI5RidGNUZnX2xGaHNGanNGXXRGX3RGW3VGXHlGWkZnbkY1RmdcbC1GIzYoLUZgczYoLUY7NiRRJjE1NjE3RidGNUZnX2xGaHNGanNGXXRGX3RGW3VGZXlGWkZnbkY1RmdcbEZhYGxGZ1xsLUYjNigtRmBzNihGZWBsRmBbbEZoc0Zqc0ZddEZfdEZbdUZjW2xGWkZnbkY1RjVGaHBGW3FGXXFGX3FGYnEtRmRwNigtRiM2KEZocUZeckZmcEZaRmduRjVGaHBGW3FGXXFGX3FGYnFGaHBGW3FGXXEtRmFwNictRmRwNigtRiM2MkZeZ2xGYXRGZmdsRmdcbEZdaGxGYXRGZGhsRmdcbEZbaWxGYXRGYmlsRmdcbEZhYGxGYXRGaWlsRjVGaHBGW3FGXXFGX3FGYnEtRmRwNigtRiM2KEZocUZeckZeZ2xGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjdGY3JGaGFsRmdcbEZdYmxGYXRGZ2JsRmdcbEZhY2xGYXRGaGNsRmdcbEZfZGxGYXRGaWRsRmdcbEZgZWxGYXRGamVsRmdcbEZhZmxGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRlx2RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzY2RmRcbEZhdEZqXGxGZ1xsRmRdbEZhdEZbXmxGZ1xsRmJebEZhdEZpXmxGZ1xsRmBfbEZhdEZqX2xGZ1xsRmFgbEZhdEZoYGxGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRmh2RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzY3RmNyRl9zRmdcbEZkdEZhdEZfdUZnXGxGYXZGYXRGXXdGZ1xsRml3RmF0RmV4RmdcbEZeeUZhdEZqeUZnXGxGaXpGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRldGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnRmNwLUZkcDYoLUYjNihGVy1GPzYtUSUmbGU7RidGNUZCRl9vRkdGSUZLRk1GT0Zgb0Zib0ZocUZaRmduRjVGaHBGW3FGXXFGX3FGYnFGaHBGW3FGXXEvJSZhbGlnbkdRJWF4aXNGJy9GaXBRKWJhc2VsaW5lRicvRlxxRlx0L0ZecVEnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRkYvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZeXm0vJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSQyZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmlebS8lJmZyYW1lR0ZpXm0vJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y0LyUtZXF1YWxjb2x1bW5zR0Y0LyUtZGlzcGxheXN0eWxlR0Y0LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHUSYwLjhlbUYnRlpGZ25GNUZaRmduRjU=">LUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzY2MkkieEc2IiEiJSIiITJGJyEiJCw2IyEnR0Q5IiImIiIiRicjISdXYFBGMCokRiciIiMjIShXQiVSIiNYKiRGJyIiJCMhJyVSeSJGOiokRiciIiUjISc6OCQqIiNPKiRGJ0YwIyEoJClmUSYiJD8oKiRGJyIiJyMhKFxeLiJGRSokRiciIigjISc2djdGRSokRiciIikjISQuIyIjOyokRiciIiojISNIIiNzMkYnISIjLDYiJSZwKUYxRicjIidKaGwiIz9GNCMiKDQpUVJGV0Y5IyInRChlIkY6Rj0jIihwWE4jRldGQiMiKEBZaypGRUZGIyInKmVCJiIkVyJGSiMiJyg0YSVGRUZOIyIlOjVGUkZTIyIkLiNGVzJGJyEiIiw2IyEkeClGMEYxRicjISYkZXMiI2dGNCMhJ25hOSIjU0Y5IyEmNCk9RjpGPSMhJmpZJkZPRkIjISdGLlIiIyEpRkYjISdcRD1GW3FGSiMhJ3g8OyIkUyNGTiMhJUY9RlJGUyNGUSIjQzJGJ0YqLDJGMUYxRjQjISNcRkFGPSNGSyIjPUZCIyIlQE5GY29GRiMiJkg/IkZjb0ZKIyImPGMiRmNvRk5GZm9GUyNGZ29GVzJGJ0YxLDJGMUYxRjRGZ3FGPUZpcUZCIyElQE5GY29GRkZdckZKIyEmPGMiRmNvRk5GZm9GUyMhJTo1RlcyRidGNSw2Rl1wRjFGJyMiJiRlc0ZhcEY0RmJwRjkjIiY0KT1GOkY9RmdwRkIjIidGLlJGW3FGRkZccUZKIyIneDw7RmBxRk5GYXFGUyNGaW9GZHEyRidGOiw2RmVuRjFGJyMhJ0pobEZobkY0RmluRjkjISdEKGUiRjpGPUZdb0ZCIyEoQFlrKkZFRkZGYW9GSiMhJyg0YSVGRUZORmZvRlMjRlFGVzJGJ0Y+LDZGLkYxRicjIidXYFBGMEY0RjZGOSMiJyVSeSJGOkY9Rj9GQiMiKCQpZlEmRkVGRkZIRkojIic2djdGRUZORlBGUyMiI0hGVzFGPkYnRio=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L667" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="seq(evalb(simplify(conditions[i], solutions)), i = 1 .. numelems(conditions));" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEkc2VxRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNi0tRiw2JVEmZXZhbGJGJ0YvRjItRjY2JC1GIzYmLUYsNiVRKXNpbXBsaWZ5RidGL0YyLUY2NiQtRiM2KS1GLDYlUStjb25kaXRpb25zRidGL0YyLUY2NiYtRiM2JS1GLDYlUSJpRidGL0YyLyUrZXhlY3V0YWJsZUdRJmZhbHNlRicvRjNRJ25vcm1hbEYnRlUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictSSNtb0dGJDYtUSIsRidGVS8lJmZlbmNlR0ZULyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRlQvJSpzeW1tZXRyaWNHRlQvJShsYXJnZW9wR0ZULyUubW92YWJsZWxpbWl0c0dGVC8lJ2FjY2VudEdGVC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUZobjYtUSJ+RidGVUZbby9GXm9GVEZfb0Zhb0Zjb0Zlb0Znb0Zpby9GXXBGW3AtRiw2JVEqc29sdXRpb25zRidGL0YyRlJGVUZVRlJGVUZVRmduRk8tRmhuNi1RIj1GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yNzc3Nzc4ZW1GJy9GXXBGW3EtSSNtbkdGJDYkUSIxRidGVS1GaG42LVEjLi5GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yMjIyMjIyZW1GJ0ZjcC1GLDYlUSludW1lbGVtc0YnRi9GMi1GNjYkLUYjNiRGSEZVRlVGUkZVRlUtRmhuNi1RIjtGJ0ZVRltvRl1vRl9vRmFvRmNvRmVvRmdvRmlvRlxxRlJGVQ==">QyQtSSRzZXFHJSpwcm90ZWN0ZWRHNiQtSSZldmFsYkdGJTYjLUkpc2ltcGxpZnlHNiI2JCZJK2NvbmRpdGlvbnNHRiw2I0kiaUdGLEkqc29sdXRpb25zR0YsL0YxOyIiIi1JKW51bWVsZW1zR0YlNiNGL0Y1</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NltxSSV0cnVlRyUqcHJvdGVjdGVkR0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0Yj</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L665" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="evalb(int(Lambda[6, 4], x = xrange) = 1); 1; seq(evalb(int(x^i*Lambda[6, 4], x = xrange) = 0), i = 1 .. 6)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEmZXZhbGJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2KC1GLDYlUSRpbnRGJ0YvRjItRjY2JC1GIzYqLUYsNiNRIUYnLUYjNiZGQS1GIzYkLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBRJmZhbHNlRicvRjNRJ25vcm1hbEYnLUYjNiYtSSNtbkdGJDYkUSI2RidGUC1JI21vR0YkNi1RIixGJ0ZQLyUmZmVuY2VHRk8vJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGTy8lKnN5bW1ldHJpY0dGTy8lKGxhcmdlb3BHRk8vJS5tb3ZhYmxlbGltaXRzR0ZPLyUnYWNjZW50R0ZPLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRlU2JFEiNEYnRlBGUC8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnRlBGQUZQRkFGWC1GLDYlUSJ4RidGL0YyLUZZNi1RIj1GJ0ZQRmZuL0ZpbkZPRmpuRlxvRl5vRmBvRmJvL0Zlb1EsMC4yNzc3Nzc4ZW1GJy9GaG9GaHAtRiw2JVEneHJhbmdlRidGL0YyRlBGUEZjcC1GVTYkUSIxRidGUC8lK2V4ZWN1dGFibGVHRk9GUEZQLUZZNi1RIjtGJ0ZQRmZuRmhuRmpuRlxvRl5vRmBvRmJvRmRvRmlwLUYsNiVRJHNlcUYnRi9GMi1GNjYkLUYjNixGKy1GNjYkLUYjNihGOi1GNjYkLUYjNiotSSVtc3VwR0YkNiVGYHAtRiM2JS1GLDYlUSJpRidGL0YyRi9GMi8lMXN1cGVyc2NyaXB0c2hpZnRHRl9wLUZZNi1RJyZzZG90O0YnRlBGZm5GZnBGam5GXG9GXm9GYG9GYm9GZG8vRmhvRmZvLUZJNiUtRiw2JVEnJiM5MjM7RidGTkZQRlJGXXBGWEZgcEZjcEZqcEZQRlBGY3AtRlU2JEZfcEZQRmBxRlBGUEZYRmlyRmNwRl1xLUZZNi1RIy4uRidGUEZmbkZmcEZqbkZcb0Zeb0Zgb0Ziby9GZW9RLDAuMjIyMjIyMmVtRidGYXNGVEZgcUZQRlBGYHFGUA==">QyUtSSZldmFsYkclKnByb3RlY3RlZEc2Iy8tSSRpbnRHNiRGJUkoX3N5c2xpYkc2IjYkJkknTGFtYmRhR0YsNiQiIiciIiUvSSJ4R0YsSSd4cmFuZ2VHRiwiIiJGNi1JJHNlcUdGJTYkLUYkNiMvLUYpNiQqJilGNEkiaUdGLEY2Ri5GNkYzIiIhL0ZBO0Y2RjE=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">SSV0cnVlRyUqcHJvdGVjdGVkRw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NihJJXRydWVHJSpwcm90ZWN0ZWRHRiNGI0YjRiNGIw==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L632" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="fac := 720:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZddS1JI21pR0YkNiVRJGZhY0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkjbW5HRiQ2JFEkNzIwRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSN3MEYnRi9GMkY1LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GZ24tSShtZmVuY2VkR0YkNiQtRiM2JC1JJm1mcmFjR0YkNigtRlA2JFEiMUYnRjktRiM2JEYrRjkvJS5saW5ldGhpY2tuZXNzR0Zjby8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zqby8lKWJldmVsbGVkR0Y9RjlGOS1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkhGZm5GaG4tRiw2JVEnaG9ybmVyRidGL0YyLUZqbjYkLUYjNipGK0ZfcC1GLDYlUSdleHBhbmRGJ0YvRjItRmpuNiQtRiM2JS1GLDYlUSVldmFsRidGL0YyLUZqbjYkLUYjNi1GYHEtRmpuNiQtRiM2Jy1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnL0YwRj1GOS1GIzYmLUZQNiRRIjZGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGZm4vRk5RLDAuMzMzMzMzM2VtRictRlA2JFEiNEYnRjlGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUYsNiNRIUYnRmdyLUYsNiVRKnNvbHV0aW9uc0YnRi9GMkY5RjlGZ3ItRiw2JVEieEYnRi9GMi1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GY3QtRlA2JFEiM0YnRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZidEZkdEZZLUYsNiVRInlGJ0YvRjJGOUY5RjlGOUZnckZbdS8lK2V4ZWN1dGFibGVHRj1GOUY5LUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmZuRmhuRllGW3UtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRlA2JEZic0Y5RlktRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZedkY7Rj5GQEZCRkRGRkZIRmZuRmhuRllGW3UtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GYW8tRjY2LVEiO0YnRjlGO0ZqckZARkJGREZGRkhGZm5GTS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0Znbi8lJmRlcHRoR0Zcdy8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GLDYlUSN3MUYnRi9GMkY1RmluRl9wRmJwLUZqbjYkLUYjNipGK0ZfcEZpcC1Gam42JC1GIzYlRmBxLUZqbjYkLUYjNi1GYHFGZ3FGZ3JGaXNGXHRGX3QtRlA2JFEiMkYnRjlGaHRGWUZbdUY5RjlGOUY5RmdyRlt1Rl51RjlGOUZgdUZZRlt1RmN1RmZ1RllGaHVGWUZbdUZhdkZhb0ZkdkZndi1GLDYlUSN3MkYnRi9GMkY1RmluRl9wRmJwLUZqbjYkLUYjNipGK0ZfcEZpcC1Gam42JC1GIzYlRmBxLUZqbjYkLUYjNi1GYHFGZ3FGZ3JGaXNGXHRGX3RGYW9GaHRGWUZbdUY5RjlGOUY5RmdyRlt1Rl51RjlGOUZgdUZZRlt1RmN1RmZ1RllGaHVGWUZbdUZhdkZhb0ZkdkZndi1GLDYlUSN3M0YnRi9GMkY1RmluRl9wRmJwLUZqbjYkLUYjNipGK0ZfcEZpcC1Gam42JC1GIzYlRmBxLUZqbjYkLUYjNitGYHFGZ3FGZ3JGaXNGXHRGX3RGWUZbdUY5RjlGOUY5RmdyRlt1Rl51RjlGOUZZRmB1RllGW3VGY3VGZnVGWUZodUZZRlt1RmF2RmFvRmR2Rmd2LUYsNiVRI3c0RidGL0YyRjVGaW5GX3BGYnAtRmpuNiQtRiM2KkYrRl9wRmlwLUZqbjYkLUYjNiVGYHEtRmpuNiQtRiM2LUZgcS1Gam42JC1GIzYmRltyRmdyRmZzRjlGOUZnckZpc0ZcdEZZRmFvRl90RllGW3VGOUY5RjlGOUZnckZbdUZedUY5RjlGWUZgdUZZRlt1RmN1RmZ1RllGaHVGWUZbdUZhdkZhb0ZkdkZndi1GLDYlUSN3NUYnRi9GMkY1RmluRl9wRmJwLUZqbjYkLUYjNipGK0ZfcEZpcC1Gam42JC1GIzYlRmBxLUZqbjYkLUYjNixGYHFGZ3FGZ3JGaXNGXHRGY3hGX3RGWUZbdUY5RjlGOUY5RmdyRlt1Rl51RjlGOUZZRmB1RllGW3VGY3VGZnVGWUZodUZZRlt1RmF2RmFvRmR2Rmd2LUYsNiVRI3c2RidGL0YyRjVGaW5GX3BGYnAtRmpuNiQtRiM2KkYrRl9wRmlwLUZqbjYkLUYjNiVGYHEtRmpuNiQtRiM2LEZgcUZncUZnckZpc0ZcdEZldEZfdEZZRlt1RjlGOUY5RjlGZ3JGW3VGXnVGOUY5RmB1RllGW3VGY3VGZnVGWUZodUZZRlt1RmF2RmFvRmR2Rmd2LUYsNiVRI3c3RidGL0YyRjVGaW5GX3BGYnAtRmpuNiQtRiM2KkYrRl9wRmlwLUZqbjYkLUYjNiVGYHEtRmpuNiQtRiM2LEZgcUZncUZnckZpc0ZcdEZdc0ZodEZZRlt1RjlGOUY5RjlGZ3JGW3VGXnVGOUY5RmB1RllGW3VGY3VGZnVGWUZodUZZRlt1RmF2RmFvRmR2Rl51Rjk=">QzQ+SSRmYWNHNiIiJD8oISIiPkkjdzBHRiUtSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjKiZGJEYnLUknaG9ybmVyR0YlNiQqJkYkIiIiLUknZXhwYW5kRyUqcHJvdGVjdGVkRzYjLUklZXZhbEdGNzYkLUY6NiQmSSdMYW1iZGFHRiU2JCIiJyIiJUkqc29sdXRpb25zR0YlL0kieEdGJSwmISIkRjRJInlHRiVGJ0Y0RkhGNDcjLUkkYW5kR0Y3NiQtSSI+R0Y3NiRGSCIiITJGSEY0RjQ+SSN3MUdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmISIjRjRGSEYnRjRGSEY0RklGND5JI3cyR0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZFLCZGJ0Y0RkhGJ0Y0RkhGNEZJRjQ+SSN3M0dGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwkRkhGJ0Y0RkhGNEZJRjQ+SSN3NEdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmRjRGNEZIRidGNEZIRjRGSUY0PkkjdzVHRiUtRis2JDcjKiZGJEYnLUYxNiQqJkYkRjQtRjY2Iy1GOjYkRjwvRkUsJiIiI0Y0RkhGJ0Y0RkhGNEZJRjQ+SSN3NkdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmIiIkRjRGSEYnRjRGSEY0RklGND5JI3c3R0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZFLCZGQkY0RkhGJ0Y0RkhGNEZJRjQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFEjMTJGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGXnBGYHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIjRGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSMxNUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRIjVGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSQ1MDBGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSUxNzE4RidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFElMjIzMUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJTEzMDVGJ0Y5RmRwLUYjNiYtRlU2JFEkMjkwRidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRlt1RjlGOUY5Rl5vRlt1RjlGOUY5Rl5vRlt1RjlGOUY5Rl5vRlt1RjlGOUY5Rl5vRlt1RjlGOUY5Rl5vRlt1RjlGOUY5Rl5vRlt1RjlGOUY5Rl5vRlt1RjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZedUZhdUY5">LCQqJiwmISM3IiIiKiYsJiIiJUYmKiYsJiIjOkYmKiYsJiEiJkYmKiYsJiIkKyZGJiomLCYhJT08RiYqJiwmIiVKQUYmKiYsJiElMDhGJkkieUc2IiIkIUhGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJiNGJiIkPyg=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Ji1GVTYkUSQxMDhGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GVTYkUSM1NEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmpwLUZVNiRRJDEyMEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIzYwRidGOUZecC1GIzYmLUZnbzYkLUYjNidGanAtRlU2JFElMzUwOUYnRjlGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJjEyMDI3RidGOUZecC1GIzYmLUZnbzYkLUYjNidGanAtRlU2JFEmMTU2MTdGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSU5MTM1RidGOS1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRmFwRmNwLUYjNiYtRlU2JFElMjAzMEYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0ZedUY5RjlGOUZeb0ZedUY5RjlGOUZeb0ZedUY5RjlGOUZeb0ZedUY5RjlGOUZeb0ZedUY5RjlGOUZeb0ZedUY5RjlGOUZeb0ZedUY5RjlGOUZeb0ZedUY5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGYXVGZHVGOQ==">LCQqJiwmIiQzIiIiIiomLCYhI2FGJiomLCYhJD8iRiYqJiwmIiNnRiYqJiwmISU0TkYmKiYsJiImRj8iRiYqJiwmISY8YyJGJiomLCYiJU4iKkYmSSJ5RzYiISVJP0YmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmI0YmIiQ/KA==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFEkNTQwRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2JkZhcEZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEkMTk1RidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3BGY3FGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJjEwNTQ4RidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEmMzYwODRGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSY0Njg1MUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJjI3NDA1RidGOUZkcC1GIzYmLUZVNiRRJTYwOTBGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5Rmh0Rlt1Rjk=">LCQqJiwmISRTJiIiIiomLCYiJFMmRiYqJiwmIiQmPkYmKiYsJiEkJj5GJiomLCYiJlswIkYmKiYsJiEmJTNPRiYqJiwmIiZebyVGJiomLCYhJjB1I0YmSSJ5RzYiIiUhNCdGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJiNGJiIkPyg=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtSSNtbkdGJDYkUSIxRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlktRiM2KC1JJm1mcmFjR0YkNihGUS1GUjYkUSQ3MjBGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVC8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zhby8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5Gam8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZYRlotRlI2JFEkOTgwRidGOUZVLUYjNiYtRl9wNiQtRiM2Ji1GUjYkUSQyODBGJ0Y5RlUtRiM2Ji1GX3A2JC1GIzYnRmNwLUZSNiRRJjE3NjA1RidGOUZVLUYjNiYtRl9wNiQtRiM2Ji1GUjYkUSY2MDE0NUYnRjlGVS1GIzYmLUZfcDYkLUYjNidGY3AtRlI2JFEmNzgwODVGJ0Y5RlUtRiM2Ji1GX3A2JC1GIzYmLUZSNiRRJjQ1Njc1RidGOS1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRlhGWi1GIzYmLUZSNiRRJjEwMTUwRidGOUZmby1GLDYlUSJ5RidGL0YyRjlGOUY5RmZvRl50RjlGOUY5RmZvRl50RjlGOUY5RmZvRl50RjlGOUY5RmZvRl50RjlGOUY5RmZvLUklbXN1cEdGJDYlRl50LUZSNiRRIjJGJ0Y5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJ0Y5RjlGOUZmb0ZhdEY5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGOUZqdEZddUY5">LCYiIiJGIyomLCYhJCEpKkYjKiYsJiIkIUdGIyomLCYhJjB3IkYjKiYsJiImWCwnRiMqJiwmISYmM3lGIyomLCYiJnZjJUYjSSJ5RzYiISZdLCJGI0Y2RiNGI0YjRjZGI0YjRiNGNkYjRiNGI0Y2RiNGI0YjRjYiIiNGI0YjRjZGOSNGIyIkPyg=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Ji1GVTYkUSQ1NDBGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYmRltwRl5wLUYjNiYtRmdvNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGYXBGY3AtRlU2JFEkMTk1RidGOUZecC1GIzYmLUZnbzYkLUYjNidGYHFGY3FGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJjE3NjIwRidGOUZecC1GIzYmLUZnbzYkLUYjNidGYHEtRlU2JFEmNjAxNTBGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSY3ODA4NUYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmBxLUZVNiRRJjQ1Njc1RidGOUZecC1GIzYmLUZVNiRRJjEwMTUwRidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRmV0RjlGOUY5Rl5vRmV0RjlGOUY5Rl5vRmV0RjlGOUY5Rl5vRmV0RjlGOUY5Rl5vRmV0RjlGOUY5Rl5vRmV0RjlGOUY5Rl5vRmV0RjlGOUY5Rl5vRmV0RjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZodEZbdUY5">LCQqJiwmIiRTJiIiIiomLCZGJUYmKiYsJiEkJj5GJiomLCZGK0YmKiYsJiImP3ciRiYqJiwmISZdLCdGJiomLCYiJiYzeUYmKiYsJiEmdmMlRiZJInlHNiIiJl0sIkYmRjpGJkYmRiZGOkYmRiZGJkY6RiZGJkYmRjpGJkYmRiZGOkYmRiZGJkY6RiZGJkYmRjpGJkYmRiZGOkYmI0YmIiQ/KA==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzVGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFEkMTA4RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSM1NEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJDEyMEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIzYwRidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEmMTA1NzVGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSYzNjA5M0YnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJjQ2ODUxRidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEmMjc0MDVGJ0Y5LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGXnBGYHAtRiM2Ji1GVTYkUSU2MDkwRidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRl51RjlGOUY5Rl5vRl51RjlGOUY5Rl5vRl51RjlGOUY5Rl5vRl51RjlGOUY5Rl5vRl51RjlGOUY5Rl5vRl51RjlGOUY5Rl5vRl51RjlGOUY5Rl5vRl51RjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZhdUZkdUY5">LCQqJiwmISQzIiIiIiomLCYhI2FGJiomLCYiJD8iRiYqJiwmIiNnRiYqJiwmISZ2MCJGJiomLCYiJiQ0T0YmKiYsJiEmXm8lRiYqJiwmIiYwdSNGJkkieUc2IiElITQnRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiYjRiYiJD8o</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzZGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Ji1GVTYkUSMxMkYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZicC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEiNEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GVTYkUSMxNUYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmNxLUZVNiRRIjVGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSUzNTI0RidGOUZecC1GIzYmLUZnbzYkLUYjNidGY3EtRlU2JFEmMTIwMzJGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSYxNTYxN0YnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmNxLUZVNiRRJTkxMzVGJ0Y5Rl5wLUYjNiYtRlU2JFElMjAzMEYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0ZbdUY5RjlGOUZeb0ZbdUY5RjlGOUZeb0ZbdUY5RjlGOUZeb0ZbdUY5RjlGOUZeb0ZbdUY5RjlGOUZeb0ZbdUY5RjlGOUZeb0ZbdUY5RjlGOUZeb0ZbdUY5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGXnVGYXVGOQ==">LCQqJiwmIiM3IiIiKiYsJiIiJUYmKiYsJiEjOkYmKiYsJiEiJkYmKiYsJiIlQ05GJiomLCYhJks/IkYmKiYsJiImPGMiRiYqJiwmISVOIipGJkkieUc2IiIlST9GJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJiNGJiIkPyg=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFEkNTAzRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSUxNzE5RidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFElMjIzMUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJTEzMDVGJ0Y5LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGXnBGYHAtRiM2Ji1GVTYkUSQyOTBGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GanJGOUY5RjlGXm9GanJGOUY5RjlGXm9GanJGOUY5RjlGXm8tSSVtc3VwR0YkNiVGanItRlU2JFEiNUYnRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZmc0Zpc0Y5">LCQqJiwmISQuJiIiIiomLCYiJT48RiYqJiwmISVKQUYmKiYsJiIlMDhGJkkieUc2IiEkIUhGJkYwRiZGJkYmRjBGJkYmRiZGMEYmRiZGJkYwIiImI0YmIiQ/KA==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L765" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C([w0, w1, w2, w3, w4, w5, w6, w7], declare = [y::float], resultname = 'w', coercetypes = false)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEiQ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzY1LUY2NiYtRiM2My1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkEtRiw2JVEjdzRGJ0YvRjJGQS1GLDYlUSN3NUYnRi9GMkZBLUYsNiVRI3c2RidGL0YyRkEtRiw2JVEjdzdGJ0YvRjIvJStleGVjdXRhYmxlR0ZJRkVGRS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZBLUZCNi1RIn5GJ0ZFRkcvRktGSUZMRk5GUEZSRlRGVi9GWkZYLUYsNiVRKGRlY2xhcmVGJ0YvRjItRkI2LVEiPUYnRkVGR0ZmcEZMRk5GUEZSRlQvRldRLDAuMjc3Nzc3OGVtRicvRlpGX3EtRjY2Ji1GIzYnLUYsNiVRInlGJ0YvRjItRkI2LVEtJlByb3BvcnRpb247RidGRUZHRmZwRkxGTkZQRlJGVEZecUZgcS1GLDYlUSZmbG9hdEYnRi9GMkZbcEZFRkVGXXBGYHBGQS1GLDYlUStyZXN1bHRuYW1lRidGL0YyRltxLUZCNi1RIidGJ0ZFRkdGZnBGTEZORlBGUkZUL0ZXUSwwLjExMTExMTFlbUYnRmdwLUYsNiVRIndGJ0YvRjJGYXJGQUZjcC1GLDYlUSxjb2VyY2V0eXBlc0YnRi9GMkZbcS1GLDYlRklGL0YyRltwRkVGRUZbcEZF">LUkiQ0c2IjYmNypJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiRJI3c2R0YkSSN3N0dGJC9JKGRlY2xhcmVHRiQ3IydJInlHRiRJJmZsb2F0RyUqcHJvdGVjdGVkRy9JK3Jlc3VsdG5hbWVHRiQuSSJ3R0YkL0ksY29lcmNldHlwZXNHRiRJJmZhbHNlR0Y1</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[0] = (-12 + (4 + (15 + (-5 + (500 + (-1718 + (2231 + (-1305 + 290 * y) * y) * y) * y) * y) * y) * y) * y) * y / 720;</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[1] = (108 + (-54 + (-120 + (60 + (-3509 + (12027 + (-15617 + (9135 - 2030 * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[2] = (-540 + (540 + (195 + (-195 + (10548 + (-36084 + (46851 + (-27405 + 6090 * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[3] = 1 + (-980 + (280 + (-17605 + (60145 + (-78085 + (45675 - 10150 * y) * y) * y) * y) * y) * y * y) * y * y / 720; -w[4] = (540 + (540 + (-195 + (-195 + (17620 + (-60150 + (78085 + (-45675 + 10150 * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[5] = (-108 + (-54 + (120 + (60 + (-10575 + (36093 + (-46851 + (27405 - 6090 * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[6] = (12 + (4 + (-15 + (-5 + (3524 + (-12032 + (15617 + (-9135 + 2030 * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[7] = (-503 + (1719 + (-2231 + (1305 - 290 * y) * y) * y) * y) * pow(y, 5) / 720;</Text-field> -</Output> -</Group> -<Group labelreference="L764" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Fortran([w0, w1, w2, w3, w4, w5, w6, w7], declare = [y::float], resultname = 'w')" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEoRm9ydHJhbkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYvLUY2NiYtRiM2Mi1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkEtRiw2JVEjdzRGJ0YvRjJGQS1GLDYlUSN3NUYnRi9GMkZBLUYsNiVRI3c2RidGL0YyRkEtRiw2JVEjdzdGJ0YvRjJGRUZFLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRkEtRkI2LVEifkYnRkVGRy9GS0ZJRkxGTkZQRlJGVEZWL0ZaRlgtRiw2JVEoZGVjbGFyZUYnRi9GMi1GQjYtUSI9RidGRUZHRmRwRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZdcS1GNjYmLUYjNiYtRiw2JVEieUYnRi9GMi1GQjYtUS0mUHJvcG9ydGlvbjtGJ0ZFRkdGZHBGTEZORlBGUkZURlxxRl5xLUYsNiVRJmZsb2F0RidGL0YyRkVGRUZbcEZecEZBLUYsNiVRK3Jlc3VsdG5hbWVGJ0YvRjJGaXAtRkI2LVEiJ0YnRkVGR0ZkcEZMRk5GUEZSRlQvRldRLDAuMTExMTExMWVtRidGZXAtRiw2JVEid0YnRi9GMkZfckZFRkUvJStleGVjdXRhYmxlR0ZJRkU=">LUkoRm9ydHJhbkc2IjYlNypJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiRJI3c2R0YkSSN3N0dGJC9JKGRlY2xhcmVHRiQ3IydJInlHRiRJJmZsb2F0RyUqcHJvdGVjdGVkRy9JK3Jlc3VsdG5hbWVHRiQuSSJ3R0Yk</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output"> w(1) = (-0.12D2 + (0.4D1 + (0.15D2 + (-0.5D1 + (0.500D3 + (-0.1718</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output"> #D4 + (0.2231D4 + (-0.1305D4 + 0.290D3 * y) * y) * y) * y) * y) * y - #) * y) * y) * y / 0.720D3 - w(2) = (0.108D3 + (-0.54D2 + (-0.120D3 + (0.60D2 + (-0.3509D4 + (0 - #.12027D5 + (-0.15617D5 + (0.9135D4 - 0.2030D4 * y) * y) * y) * y) - #* y) * y) * y) * y) * y / 0.720D3 - w(3) = (-0.540D3 + (0.540D3 + (0.195D3 + (-0.195D3 + (0.10548D5 + - #(-0.36084D5 + (0.46851D5 + (-0.27405D5 + 0.6090D4 * y) * y) * y) * - # y) * y) * y) * y) * y) * y / 0.720D3 - w(4) = 0.1D1 + (-0.980D3 + (0.280D3 + (-0.17605D5 + (0.60145D5 + ( - #-0.78085D5 + (0.45675D5 - 0.10150D5 * y) * y) * y) * y) * y) * y * - #* 2) * y ** 2 / 0.720D3 - w(5) = (0.540D3 + (0.540D3 + (-0.195D3 + (-0.195D3 + (0.17620D5 + - #(-0.60150D5 + (0.78085D5 + (-0.45675D5 + 0.10150D5 * y) * y) * y) - #* y) * y) * y) * y) * y) * y / 0.720D3 - w(6) = (-0.108D3 + (-0.54D2 + (0.120D3 + (0.60D2 + (-0.10575D5 + ( - #0.36093D5 + (-0.46851D5 + (0.27405D5 - 0.6090D4 * y) * y) * y) * y - #) * y) * y) * y) * y) * y / 0.720D3 - w(7) = (0.12D2 + (0.4D1 + (-0.15D2 + (-0.5D1 + (0.3524D4 + (-0.120 - #32D5 + (0.15617D5 + (-0.9135D4 + 0.2030D4 * y) * y) * y) * y) * y) - # * y) * y) * y) * y / 0.720D3 - w(8) = (-0.503D3 + (0.1719D4 + (-0.2231D4 + (0.1305D4 - 0.290D3 * - #y) * y) * y) * y) * y ** 5 / 0.720D3</Text-field> -</Output> -</Group> -<Group labelreference="L630" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L635" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L662" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L651" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L638" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L629" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -</Worksheet> \ No newline at end of file diff --git a/Docs/remeshing_formulas/calcul_lambda6star_C5.mw b/Docs/remeshing_formulas/calcul_lambda6star_C5.mw deleted file mode 100644 index 15c53124857d4cc855573cc9e3f90298fc685423..0000000000000000000000000000000000000000 --- a/Docs/remeshing_formulas/calcul_lambda6star_C5.mw +++ /dev/null @@ -1,463 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<Worksheet> -<Version major="16" minor="0"/> -<Label-Scheme value="2" prefix=""/> -<View-Properties presentation="false"><Zoom percentage="150"/></View-Properties> -<MapleNet-Properties elisiondigitsbefore="100" labelling="true" indentamount="4" elisiontermsthreshold="10000" ansi="false" errorbreak="1" useclientjvm="true" echo="1" imaginaryunit="I" labelwidth="20" contextmenusize="automatic" plotdriver="opengl" elisiondigitsafter="100" plotoutput="terminal" helpbrowser="standard" rtablesize="10" elisiontermsbefore="100" elisiondigitsthreshold="10000" typesetting="standard" plotdevice="inline" verboseproc="1" showassumed="1" errorcursor="false" longdelim="true" plotoptions="" quiet="false" elisiontermsafter="100" screenwidth="79" preplot="" prettyprint="3" displayprecision="-1" screenpixelheight="1050" warnlevel="3" screenheight="25" latexwidth="6.0" postplot="" prompt="> " ShowLabels="true"/> -<Styles><Font name="Ordered List 1" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 2" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 3" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 5" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Author" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Warning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Caption Reference" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input Placeholder" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[200,0,200]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="true"/> -<Font name="Maple Plot" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Code" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Line Printed Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Diagnostic" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[40,120,40]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Inert Output" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[144,144,144]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Normal" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,128,128]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Maple Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Dash Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Math" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Input" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkError" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Header and Footer" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="10" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Error" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 1" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Bullet Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Equation Label" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 3" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="14" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 2" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="16" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkWarning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Dictionary Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[147,0,15]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Caption Text" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="List Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Layout name="Ordered List 1" alignment="left" bullet="numeric" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 2" alignment="left" bullet="alphabetic" firstindent="0" leftmargin="36" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 3" alignment="left" bullet="roman" firstindent="0" leftmargin="72" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 4" alignment="left" bullet="ALPHABETIC" firstindent="0" leftmargin="108" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 5" alignment="left" bullet="ROMAN" firstindent="0" leftmargin="144" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Author" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="8" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Warning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Annotation Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Plot" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Line Printed Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Text Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="newline" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Diagnostic" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Normal" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Output" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.3" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Dash Item" alignment="left" bullet="dash" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkError" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Error" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 1" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="4" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Bullet Item" alignment="left" bullet="dot" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 4" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 3" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 2" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="2" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkWarning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="List Item" alignment="left" bullet="indent" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Pencil-style name="Pencil 5" pen-color="[255,0,0]" pen-height="5.0" pen-width="5.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 4" pen-color="[0,0,255]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 3" pen-color="[0,0,0]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 2" pen-color="[0,0,255]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 1" pen-color="[0,0,0]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Highlighter-style name="Highlighter 2" pen-color="[255,204,0]" pen-height="14.0" pen-width="14.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 1" pen-color="[255,153,255]" pen-height="12.0" pen-width="8.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 4" pen-color="[0,255,255]" pen-height="32.0" pen-width="32.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 3" pen-color="[51,255,0]" pen-height="24.0" pen-width="24.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 5" pen-color="[255,255,0]" pen-height="48.0" pen-width="48.0" pen-opacity="0.8"/> -</Styles> -<Task-table> - <Task-category name="<default>"> - </Task-category> -</Task-table> -<Task> -</Task> -<Group labelreference="L679" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYkLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjlGOS1GNjYtUSI6RidGOUY7L0Y/Rj1GQEZCRkRGRkZIL0ZLRk9GTS1GLDYlUSdob3JuZXJGJ0YvRjItRjY2LVEqJmNvbG9uZXE7RidGOUY7RmhuRkBGQkZERkZGSEZpbkZNLUYsNiVRKGNvZGVnZW5GJ0YvRjItRlQ2Ji1GIzYkRmpuRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zlbi8lK2V4ZWN1dGFibGVHRj1GOQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYjLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjktRjY2LVEiOkYnRjlGOy9GP0Y9RkBGQkZERkZGSC9GS0ZPRk0tRiw2JVEnaG9ybmVyRidGL0YyLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0ZobkZARkJGREZGRkhGaW5GTS1GLDYlUShjb2RlZ2VuRidGL0YyLUZUNiYtRiM2I0ZqbkY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmVu</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L708" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Calcul de la fomule Lambda_6^*:</Text-field> -<Text-field style="Text" layout="Normal"> - 8 points</Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8"> - degr\303\251 11</Font></Text-field> -<Text-field style="Text" layout="Normal"> - C5</Text-field> -<Text-field style="Text" layout="Normal"> - Moments d'ordre 6</Text-field> -</Input> -</Group> -<Group labelreference="L691" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="xrange := -4 .. 4; 1; d := 11" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlMtSSNtbkdGJDYkUSI0RidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZSL0ZOUSYwLjBlbUYnRlUtRjY2LVEiO0YnRjlGOy9GP0YxRkBGQkZERkZGSC9GS0ZnbkZNLUYsNiVRImRGJ0YvRjJGNS1GVjYkUSMxMUYnRjkvJStleGVjdXRhYmxlR0Y9Rjk=">QyU+SSd4cmFuZ2VHNiI7ISIlIiIlIiIiPkkiZEdGJSIjNg==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYoLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlctSSNtbkdGJDYkUSI0RidGOUY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRlYvRk5RJjAuMGVtRidGWS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RlxvRl9vRjk=">OyEiJSIiJQ==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiZEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSSNtbkdGJDYkUSMxMUYnRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOQ==">IiM2</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L684" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="p[0] := proc (x) options operator, arrow; sum(c[0, i]*x^i, i = 0 .. d) end proc;" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZALUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYkLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJ0Y+LyUvc3Vic2NyaXB0c2hpZnRHRj0tSSNtb0dGJDYtUSomY29sb25lcTtGJ0Y+LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZILyUpc3RyZXRjaHlHRkgvJSpzeW1tZXRyaWNHRkgvJShsYXJnZW9wR0ZILyUubW92YWJsZWxpbWl0c0dGSC8lJ2FjY2VudEdGSC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRlctRi82JVEieEYnRjJGNS1GQzYtUSgmc3JhcnI7RidGPkZGRklGS0ZNRk9GUUZTL0ZWUSYwLjBlbUYnL0ZZRltvLUYvNiVRJHN1bUYnRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYtLUYsNiUtRi82JVEiY0YnRjJGNS1GIzYmRjotRkM2LVEiLEYnRj5GRi9GSkY0RktGTUZPRlFGU0Zqbi9GWVEsMC4zMzMzMzMzZW1GJy1GLzYlUSJpRidGMkY1Rj5GQC1GQzYtUScmc2RvdDtGJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG8tSSVtc3VwR0YkNiVGWi1GIzYlLUZDNi1RIn5GJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG9GYnBGPi8lMXN1cGVyc2NyaXB0c2hpZnRHRj1GXHBGXXFGYnAtRkM2LVEiPUYnRj5GRkZJRktGTUZPRlFGU0ZVRlhGOi1GQzYtUSMuLkYnRj5GRkZJRktGTUZPRlFGUy9GVlEsMC4yMjIyMjIyZW1GJ0Zcby1GLzYlUSJkRidGMkY1Rj5GPi1GQzYtUSI7RidGPkZGRl9wRktGTUZPRlFGU0ZqbkZYLUYsNiVGLi1GIzYkLUY7NiRRIjFGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGZHJGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLUYsNiVGLi1GIzYkLUY7NiRRIjJGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGY3NGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLUYsNiVGLi1GIzYkLUY7NiRRIjNGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGYnRGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLyUrZXhlY3V0YWJsZUdGSEY+">Qyo+JkkicEc2IjYjIiIhZio2I0kieEdGJkYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLUkkc3VtR0YmNiQqJiZJImNHRiY2JEYoSSJpR0YmIiIiKTkkRjZGNy9GNjtGKEkiZEdGJkYmRiZGJkY3PiZGJTYjRjdmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRjdGNkY3RjhGN0Y6RiZGJkYmRjc+JkYlNiMiIiNmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRklGNkY3RjhGN0Y6RiZGJkYmRjc+JkYlNiMiIiRmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRlNGNkY3RjhGN0Y6RiZGJkYmRjc=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R0Y9LUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZm4tRiM2KC1GLzYlUSJ4RidGMkY1LUZJNi1RKCYjODU5NDtGJ0Y+RkxGTkZQRlJGVEZWRlgvRmVuUSYwLjBlbUYnL0ZobkZiby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZJNi1RJiZTdW07RidGPkZMRk4vRlFGNEZSL0ZVRjQvRldGNEZYRmFvL0ZoblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRkk2LVEiPUYnRj5GTEZORlBGUkZURlZGWEZaRmduRjpGQEZDRj4tRi82JVEiZEYnRjJGNUZYLyUsYWNjZW50dW5kZXJHRkUtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdRJDUuMEYnLyUmZGVwdGhHRmNxLyUqbGluZWJyZWFrR1ElYXV0b0YnLUYjNiYtRiw2JS1GLzYlUSJjRidGMkY1LUYjNihGOi1GSTYtUSIsRidGPkZML0ZPRjRGUEZSRlRGVkZYRmFvL0ZoblEsMC4zMzMzMzMzZW1GJ0ZjcEZARkNGPkZGLUZJNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y+RkxGTkZQRlJGVEZWRlhGYW9GY28tSSVtc3VwR0YkNiVGW29GY3AvJTFzdXBlcnNjcmlwdHNoaWZ0R0Y9Rj5GQEZDRj5GQEZDRj5GQEZDRj4=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIUkiaUdGJSIiIik5JEYxRjIvRjE7RjBJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIkkiaUdGJUYwKTkkRjFGMC9GMTsiIiFJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMkYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiI0kiaUdGJSIiIik5JEYxRjIvRjE7IiIhSSJkR0YlRiVGJUYl</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiM0YnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiJEkiaUdGJSIiIik5JEYxRjIvRjE7IiIhSSJkR0YlRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L674" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="P := proc (x) options operator, arrow; piecewise(x < -4, 0, x < -3, p[0](x), x < -2, p[1](x), x < -1, p[2](x), x < 0, p[3](x), x < 1, p[3](-x), x < 2, p[2](-x), x < 3, p[1](-x), x < 4, p[0](-x), 4 <= x, 0) end proc" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KS1GLDYlUSJQRicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnRjcvJSZmZW5jZUdGNi8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0Y2LyUqc3ltbWV0cmljR0Y2LyUobGFyZ2VvcEdGNi8lLm1vdmFibGVsaW1pdHNHRjYvJSdhY2NlbnRHRjYvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZOLUYsNiVRInhGJ0Y0RjctRjs2LVEoJnNyYXJyO0YnRjdGPkZARkJGREZGRkhGSi9GTVEmMC4wZW1GJy9GUEZYLUYsNiVRKnBpZWNld2lzZUYnL0Y1USV0cnVlRicvRjhRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNltxRistSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWC8lJmRlcHRoR0Zlby8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GOzYtUSJ+RidGN0Y+RkBGQkZERkZGSEZKRldGWUZRLUY7Ni1RIjxGJ0Y3Rj5GQEZCRkRGRkZIRkpGTEZPLUY7Ni1RKiZ1bWludXMwO0YnRjdGPkZARkJGREZGRkhGSi9GTVEsMC4yMjIyMjIyZW1GJy9GUEZncC1JI21uR0YkNiRRIjRGJ0Y3LUY7Ni1RIixGJ0Y3Rj4vRkFGaG5GQkZERkZGSEZKRlcvRlBRLDAuMzMzMzMzM2VtRictRmpwNiRRIjBGJ0Y3Rl1xRl1wRmBvRl1wLUYsNiVGU0ZnbkZpbkZgcEZjcC1GanA2JFEiM0YnRjdGXXEtSSVtc3ViR0YkNiUtRiw2JVEicEYnRmduRmluLUYjNiVGY3FGZ25GaW4vJS9zdWJzY3JpcHRzaGlmdEdGZXEtRlxvNiQtRiM2JEZmcUY3RjdGXXFGYG9GXXBGZnFGYHBGY3AtRmpwNiRRIjJGJ0Y3Rl1xLUZccjYlRl5yLUYjNiUtRmpwNiRRIjFGJ0Y3RmduRmluRmNyRmVyRl1xRmBvRl1wRlFGYHBGY3BGYHNGXXEtRlxyNiUtRiw2JUZgckY0RjctRiM2JEZpckY3RmNyRmVyRl1xRmBvRl1wRmZxRmBwRmNxRl1xLUZccjYlRl5yLUYjNiRGaHFGN0ZjckZlckZdcUZgb0ZdcEZmcUZgcEZgc0ZdcUZpcy1GXG82JC1GIzYlRmNwRmZxRjdGN0ZdcUZgb0ZdcEZmcUZgcEZpckZdcS1GXHI2JUZeckZnc0ZjckZddEZdcUZgb0ZdcEZmcUZgcEZocUZdcUZcc0ZddEZdcUZgb0ZdcEZmcUZgcEZpcEZdcUZbckZddEZdcUZgb0ZdcEZmcS1GOzYtUS8mR3JlYXRlckVxdWFsO0YnRjdGPkZARkJGREZGRkhGSkZMRk9GaXBGXXFGXXBGY3FGN0Y3RjdGKy8lK2V4ZWN1dGFibGVHRjZGNw==">PkkiUEc2ImYqNiNJInhHRiRGJDYkSSlvcGVyYXRvckdGJEkmYXJyb3dHRiRGJC1JKnBpZWNld2lzZUclKnByb3RlY3RlZEc2NjI5JCEiJSIiITJGMCEiJC0mSSJwR0YkNiNGMjYjRjAyRjAhIiMtJkY3NiMiIiJGOTJGMCEiIi0mRjc2IyIiI0Y5MkYwRjItJkY3NiMiIiRGOTJGMEY/LUZINiMsJEYwRkEyRjBGRS1GQ0ZNMkYwRkotRj1GTTJGMCIiJS1GNkZNMUZURjBGMkYkRiRGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiUEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2KC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCYjODU5NDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWC1GIzYoLUYsNiVRKnBpZWNld2lzZUYnRi9GMi1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGV0ZZLUkobWZlbmNlZEdGJDYkLUYjNkwtRiM2KEZRLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlxwLUkjbW5HRiQ2JFEiNEYnRjlGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGVy9GTlEsMC4zMzMzMzMzZW1GJy1GX3A2JFEiMEYnRjlGZ3AtRiM2KEZRRmNvLUYjNiVGaG8tRl9wNiRRIjNGJ0Y5RjlGYnBGZXBGOUZncC1GIzYoLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JkZdcUZicEZlcEY5LyUvc3Vic2NyaXB0c2hpZnRHRl9xRmluLUZdbzYkLUYjNiZGUUZicEZlcEY5RjlGYnBGZXBGOUZncC1GIzYoRlFGY28tRiM2JUZoby1GX3A2JFEiMkYnRjlGOUZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2Ji1GX3A2JFEiMUYnRjlGYnBGZXBGOUZhckZpbkZjckZicEZlcEY5RmdwLUYjNihGUUZjby1GIzYlRmhvRmRzRjlGYnBGZXBGOUZncC1GIzYoLUZqcTYlRlxyLUYjNiZGW3NGYnBGZXBGOUZhckZpbkZjckZicEZlcEY5RmdwLUYjNihGUUZjb0ZdcUZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2JkZkcUZicEZlcEY5RmFyRmluRmNyRmJwRmVwRjlGZ3AtRiM2KEZRRmNvRmRzRmJwRmVwRjlGZ3AtRiM2KEZldEZpbi1GXW82JC1GIzYmLUYjNidGaG9GUUZicEZlcEY5RmJwRmVwRjlGOUZicEZlcEY5RmdwLUYjNihGUUZjb0Zbc0ZicEZlcEY5RmdwLUYjNihGXXRGaW5GXXVGYnBGZXBGOUZncC1GIzYoRlFGY29GZHFGYnBGZXBGOUZncC1GIzYoRmBzRmluRl11RmJwRmVwRjlGZ3AtRiM2KEZRRmNvRl5wRmJwRmVwRjlGZ3AtRiM2KEZpcUZpbkZddUZicEZlcEY5RmdwLUYjNihGXnAtRjY2LVElJmxlO0YnRjlGO0Y+RkBGQkZERkZGSEZKRk1GUUZicEZlcEY5RmdwRl1xRmJwRmVwRjlGOUZicEZlcEY5RmJwRmVwRjlGYnBGZXBGOQ==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzY2MjkkISIlIiIhMkYuISIkLSZJInBHRiU2I0YwNiNGLjJGLiEiIy0mRjU2IyIiIkY3MkYuISIiLSZGNTYjIiIjRjcyRi5GMC0mRjU2IyIiJEY3MkYuRj0tRkY2IywkRi5GPzJGLkZDLUZBRksyRi5GSC1GO0ZLMkYuIiIlLUY0RksxRlJGLkYwRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L682" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="E := [eval(P(x), x = 0) = 1, eval(P(x), x = -1) = 0, eval(P(x), x = -2) = 0, eval(P(x), x = -3) = 0, eval(P(x), x = -4) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiRUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNjwtRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNiktRiw2JVEiUEYnRi9GMi1GUDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5RjlGOUZnby1GW3A2JFEiMUYnRjlGX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ28tRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmlwRl5wRjlGOUZnb0Zqb0Zfb0ZULUZQNiQtRiM2KkZlbkZobkZfb0Zcb0Znb0ZlcC1GW3A2JFEiMkYnRjlGOUY5RmdvRmpvRl9vRlQtRlA2JC1GIzYqRmVuRmhuRl9vRlxvRmdvRmVwLUZbcDYkUSIzRidGOUY5RjlGZ29Gam9GX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ29GZXAtRltwNiRRIjRGJ0Y5RjlGOUZnb0Zqby8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmByRjk=">QyQ+SSJFRzYiNycvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJS9GLyIiISIiIi8tRik2JEYsL0YvISIiRjEvLUYpNiRGLC9GLyEiI0YxLy1GKTYkRiwvRi8hIiRGMS8tRik2JEYsL0YvISIlRjFGNw==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L678" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C0 := [seq(eval(p[j](x), x = j-4+1) = eval(p[j+1](x), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRl5wLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmRvLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYHEtSSNtbkdGJDYkUSI0RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl9xRmFxLUZjcTYkUSIxRidGOUY5RjlGaXBGZW4tRlA2JC1GIzYtLUZdbzYlRl9vLUYjNiZGZG9GZnFGaXFGOUZnb0Zqb0ZhcEZecEZpcEZkb0ZccUZicUZmcUZpcUY5RjlGYXBGZG9GaXAtRmNxNiRGaW9GOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZfcS9GTkZmcC1GY3E2JFEiMkYnRjlGOUY5LyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GXXNGOQ==">QyQ+SSNDMEc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS9GNS1JIitHRik2JCwmRjMiIiIhIiVGO0Y7LUYtNiQtJkYxNiMsJkYzRjtGO0Y7RjRGNi9GMzsiIiEiIiMhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L704" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C1 := [seq(eval(diff(p[j](x), x), x = j-4+1) = eval(diff(p[j+1](x), x), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwRjlGOUZocEZlcC1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbcC1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmdxLUkjbW5HRiQ2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocS1GanE2JFEiMUYnRjlGOUY5RmBxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JkZbcEZdckZgckY5Rl5wRmFwRmhwRmVwRjlGOUZocEZlcEZgcUZbcEZjcUZpcUZdckZgckY5RjlGaHBGW3BGYHEtRmpxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZmcS9GTkZdcS1GanE2JFEiMkYnRjlGOUY5LyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRiw2JVEkQzEwRidGL0YyRjUtRlA2Ji1GIzYpRmVuLUZQNiQtRiM2KUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JC1GanE2JFEiM0YnRjlGOUZecEZhcEZocEZlcEY5RjlGaHBGZXBGYHFGX3NGOUY5RmBxRmVuLUZQNiQtRiM2KUZcby1GUDYkLUYjNidGYnUtRlA2JC1GIzYlLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocUZlcEY5RjlGaHBGZXBGOUY5RmhwRmVwRmBxRl9zRjlGOUZoc0Y5RjlGanNGXXRGYHRGaHNGOQ==">QyY+SSNDMUc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJUY4L0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUY+Rj4tRi02JC1GMDYkLSZGNDYjLCZGNkY+Rj5GPkY3RjhGOS9GNjsiIiEiIiMhIiI+SSRDMTBHRiU3Iy8tRi02JC1GMDYkLSZGNDYjIiIkRjdGOC9GOEZKLUYtNiQtRjA2JC1GVjYjLCRGOEZMRjhGWUZM</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L686" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C2 := [seq(eval(diff(p[j](x), `$`(x, 2)), x = j-4+1) = eval(diff(p[j+1](x), `$`(x, 2)), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIyRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcUZkcUY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbdEY5">QyQ+SSNDMkc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIjL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiFGPCEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L693" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C3 := [seq(eval(diff(p[j](x), `$`(x, 3)), x = j-4+1) = eval(diff(p[j+1](x), `$`(x, 3)), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIzRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcS1GZXE2JFEiMkYnRjlGOUY5RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSRDMzBGJ0YvRjJGNS1GUDYmLUYjNihGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2KS1GZG82JUZmby1GIzYkRmRxRjlGXnBGYXBGaHBGZXBGYHFGZHFGOUY5RmhwRmVwRmhxRmZzRjlGOUZocUZlbi1GUDYkLUYjNilGXG8tRlA2JC1GIzYpRmZ1LUZQNiQtRiM2JS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGXnJGYHJGZXBGOUY5RmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZmc0Y5RjlGOUY5Rl50RmF0RmR0LyUrZXhlY3V0YWJsZUdGPUY5">QyY+SSNDM0c2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIkL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiEiIiMhIiI+SSRDMzBHRiU3Iy8tRi02JC1GMDYkLSZGNDYjRjxGN0Y5L0Y4Rk4tRi02JC1GMDYkLUZaNiMsJEY4RlBGOUZmbkZQ</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L700" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C4 := [seq(eval(diff(p[j](x), `$`(x, 4)), x = j-4+1) = eval(diff(p[j+1](x), `$`(x, 4)), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSI0RidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfckZkcS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5yRmByLUZlcTYkUSIxRidGOUY5RjlGaHFGZW4tRlA2JC1GIzYtRlxvLUZQNiQtRiM2KS1GZG82JUZmby1GIzYmRltwRmFyRmRyRjlGXnBGYXBGaHBGZXBGYHFGZHFGOUY5RmhwRmVwRmhxRltwRltyRmRxRmFyRmRyRjlGOUZocEZbcEZocS1GZXE2JEZgcEY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRl5yRmNxLUZlcTYkUSIyRidGOUY5RjlGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSNDNEc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIlL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiEiIiMhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L714" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C5 := [seq(eval(diff(p[j](x), `$`(x, 5)), x = j-4+1) = eval(diff(p[j+1](x), `$`(x, 5)), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzVGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSI1RidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcS1GZXE2JFEiMkYnRjlGOUY5RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSRDNTBGJ0YvRjJGNS1GUDYmLUYjNihGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2KS1GZG82JUZmby1GIzYkLUZlcTYkUSIzRidGOUY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZmc0Y5RjlGaHFGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2KUZmdS1GUDYkLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRl5yRmByRmVwRjlGOUZocEZlcEZgcUZkcUY5RjlGaHBGZXBGaHFGZnNGOUY5RjlGOUZedEZhdEZkdC8lK2V4ZWN1dGFibGVHRj1GOQ==">QyY+SSNDNUc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiImL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiEiIiMhIiI+SSRDNTBHRiU3Iy8tRi02JC1GMDYkLSZGNDYjIiIkRjdGOS9GOEZOLUYtNiQtRjA2JC1GWjYjLCRGOEZQRjlGZ25GUA==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L689" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="CEND := [eval(diff(p[0](x), x), x = -4) = 0, eval(diff(p[0](x), `$`(x, 2)), x = -4) = 0, eval(diff(p[0](x), `$`(x, 3)), x = -4) = 0, eval(diff(p[0](x), `$`(x, 4)), x = -4) = 0, eval(diff(p[0](x), `$`(x, 5)), x = -4) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElQ0VOREYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GUy1JKG1mZW5jZWRHRiQ2Ji1GIzY8LUYsNiVRJWV2YWxGJ0YvRjItRlY2JC1GIzYqLUYsNiVRJWRpZmZGJ0YvRjItRlY2JC1GIzYnLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JC1JI21uR0YkNiRRIjBGJ0Y5RjkvJS9zdWJzY3JpcHRzaGlmdEdGXXAtRlY2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGSi9GTlEsMC4zMzMzMzMzZW1GJ0ZkcEY5RjlGZ3BGZHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmRxLUZbcDYkUSI0RidGOUY5RjlGXXFGam9GZ3BGWi1GVjYkLUYjNipGW28tRlY2JC1GIzYpRmJvRmBwRmdwRmRwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZbcDYkUSIyRidGOUY5RjlGZ3BGZHBGXXFGYHFGZnFGOUY5Rl1xRmpvRmdwRlotRlY2JC1GIzYqRltvLUZWNiQtRiM2KUZib0ZgcEZncEZkcEZhci1GW3A2JFEiM0YnRjlGOUY5RmdwRmRwRl1xRmBxRmZxRjlGOUZdcUZqb0ZncEZaLUZWNiQtRiM2KkZbby1GVjYkLUYjNilGYm9GYHBGZ3BGZHBGYXJGZnFGOUY5RmdwRmRwRl1xRmBxRmZxRjlGOUZdcUZqb0ZncEZaLUZWNiQtRiM2KkZbby1GVjYkLUYjNilGYm9GYHBGZ3BGZHBGYXItRltwNiRRIjVGJ0Y5RjlGOUZncEZkcEZdcUZgcUZmcUY5RjlGXXFGam8vJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRlJGVEZldEY5">QyQ+SSVDRU5ERzYiNycvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JJWRpZmZHRio2JC0mSSJwR0YlNiMiIiE2I0kieEdGJUY1L0Y1ISIlRjMvLUYpNiQtRi02JEYvLUkiJEdGKjYkRjUiIiNGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIiRGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIiVGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIiZGNkYzISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L703" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM0 := `assuming`([PolynomialTools[CoefficientList](collect(sum(eval(P(x), x = s-l), l = xrange)-s^0, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0wRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRlM2JC1GIzYoLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlM2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GUzYkLUYjNiktRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0ZccS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXItRiw2JVEibEYnRi9GMkY5RjlGX3FGY3JGZ3EtRiw2JVEneHJhbmdlRidGL0YyRjlGOUZdci1JJW1zdXBHRiQ2JS1GUzYkLUYjNiRGanFGOUY5LUYjNiQtSSNtbkdGJDYkUSIwRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdGZXNGX3FGanFGOUY5Rl9xRmpxRlpGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGY3EvRk5GZHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGY3FGW3RGaHNGanEtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GYnNGaHMtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZodEY7Rj5GQEZCRkRGRkZIRmNxRlt0RmhzRmpxLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZjczYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZaRjk=">QyQ+SSRETTBHNiItSSlhc3N1bWluZ0dGJTYkNyMtJkkwUG9seW5vbWlhbFRvb2xzR0YlNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGJTYkLCYtSSRzdW1HNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2JC1JJWV2YWxHRjc2JC1JIlBHRiU2I0kieEdGJS9GQCwmSSJzR0YlIiIiSSJsR0YlISIiL0ZFSSd4cmFuZ2VHRiVGRC1JIl5HRjc2JEZDIiIhRkZGQ0ZDNyMtSSRhbmRHRjc2JC1JIj5HRjdGSzJGQ0ZERkY=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L694" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM0 := [seq(DM0[j] = 0, j = 1 .. numelems(DM0))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiYtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Ly1GLDYlUSRETTBGJ0YvRjItRlA2Ji1GIzYlLUYsNiVRImpGJ0YvRjIvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXG9GZ28tRltwNiRRIjFGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmNwLUYsNiVRKW51bWVsZW1zRidGL0YyLUZQNiQtRiM2JUZlbkZfb0Y5RjlGX29GOUY5Rl9vRjlGOUZhb0Zkby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYjUSFGJ0Zfb0Y5">QyQ+SSVsRE0wRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0wR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L692" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM1 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l*(eval(P(x), x = s-l)), l = xrange)-s, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistRiw2JVEibEYnRi9GMi1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaHAtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZncC9GTlEsMC4zMzMzMzMzZW1GJ0ZocS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GW3NGYXBGOUY5RltyRmFwRmFyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGZ3ItSSVtc3VwR0YkNiUtRlg2JC1GIzYkRmRyRjlGOS1GIzYkLUkjbW5HRiQ2JFEiMUYnRjlGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGW3JGZHJGOUY5RltyRmRyRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqczYkRl90RjlGYHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZhdUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmlzLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmB0LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTFHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIiLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiVGPEY7ISIiRjwvRjtJJ3hyYW5nZUdGJUY8RkZGR0ZGRkY3Iy1JJGFuZEdGLzYkLUkiPkdGLzYkRkYiIiEyRkZGPEZH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L680" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM1 := [seq(DM1[j] = 0, j = 1 .. numelems(DM1))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTFGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0xRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0xR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L688" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM2 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^2*(eval(P(x), x = s-l)), l = xrange)-s^2, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0yRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistSSVtc3VwR0YkNiUtRiw2JVEibEYnRi9GMi1GIzYlLUkjbW5HRiQ2JFEiMkYnRjlGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GZHEtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZjcS9GTlEsMC4zMzMzMzMzZW1GJ0Zkci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GZ3NGZHBGOUY5RmdyRmRwRl1zLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGY3MtRmJwNiUtRlg2JC1GIzYkRmBzRjlGOS1GIzYkRmlwRjlGXXFGZ3JGYHNGOUY5RmdyRmBzRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkRl9xRjlGZHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZldUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZkdC8lK2V4ZWN1dGFibGVHRj1GOQ==">QyQ+SSRETTJHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIjLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L697" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM2 := [seq(DM2[j] = 0, j = 1 .. numelems(DM2))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTJGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0yRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0yR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L710" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM3 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^3*(eval(P(x), x = s-l)), l = xrange)-s^3, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE0zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSIzRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTNHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIkLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L709" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM3 := [seq(DM3[j] = 0, j = 1 .. numelems(DM3))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNM0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTNGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0zRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0zR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L690" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM4 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^4*(eval(P(x), x = s-l)), l = xrange)-s^4, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE00RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI0RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTRHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIlLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L675" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM4 := [seq(DM4[j] = 0, j = 1 .. numelems(DM4))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTRGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE00RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE00R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L706" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM5 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^5*(eval(P(x), x = s-l)), l = xrange)-s^5, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE01RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI1RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTVHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiImLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L713" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM5 := [seq(DM5[j] = 0, j = 1 .. numelems(DM5))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTVGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE01RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE01R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L712" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM6 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^6*(eval(P(x), x = s-l)), l = xrange)-s^6, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE02RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI2RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTZHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiInLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L711" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM6 := [seq(DM6[j] = 0, j = 1 .. numelems(DM6))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTZGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE02RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE02R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L677" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="inconnues := [seq(seq(c[i, j], j = 0 .. d), i = 0 .. 3)]; 1; numelems(inconnues)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2Ji1GLDYlUSRzZXFGJ0YvRjItRlA2JC1GIzYrRlQtRlA2JC1GIzYqLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2Ji1GLDYlUSJpRidGL0YyLUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRictRiw2JVEiakYnRi9GMkY5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGZG9GXHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSNtbkdGJDYkRmFwRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GaW8tRiw2JVEiZEYnRi9GMkY5RjlGZG9GYW9GYnBGZXBGaHAtRmZwNiRRIjNGJ0Y5RjlGOS8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjtGJ0Y5RjtGZ29GQEZCRkRGRkZIRmhvRk0tRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRitGOUY5RmRxRjk=">QyU+SSppbmNvbm51ZXNHNiI3Iy1JJHNlcUclKnByb3RlY3RlZEc2JC1GKDYkJkkiY0dGJTYkSSJpR0YlSSJqR0YlL0YxOyIiIUkiZEdGJS9GMDtGNCIiJCIiIi1JKW51bWVsZW1zR0YpNiNGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZecS1JJW1zdWJHRiQ2JS1GLDYlUSJjRidGL0YyLUYjNigtSSNtbkdGJDYkUSIwRidGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmZuLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjkvJS9zdWJzY3JpcHRzaGlmdEdGaW5Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjFGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjJGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjNGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjRGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjVGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjZGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjdGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjhGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjlGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIzEwRidGOUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmZuRmpuLUZnbjYkUSMxMUYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZmbkZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRl1wRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GZHBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZbcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmJxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GaXFGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZgckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmdyRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GXnNGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZlc0Zib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRlx0RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GY3RGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZmbkZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRl1wRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GZHBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZbcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmJxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GaXFGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZgckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmdyRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GXnNGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZlc0Zib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRlx0RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GY3RGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZmbkZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRl1wRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GZHBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZbcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRmJxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GaXFGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZgckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRmdyRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GXnNGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZlc0Zib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRlx0RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GY3RGYm9GZW9GOUZnb0Zib0Zlb0Y5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGYm9GZW9GOQ==">N1ImSSJjRzYiNiQiIiFGJyZGJDYkRiciIiImRiQ2JEYnIiIjJkYkNiRGJyIiJCZGJDYkRiciIiUmRiQ2JEYnIiImJkYkNiRGJyIiJyZGJDYkRiciIigmRiQ2JEYnIiIpJkYkNiRGJyIiKiZGJDYkRiciIzUmRiQ2JEYnIiM2JkYkNiRGKkYnJkYkNiRGKkYqJkYkNiRGKkYtJkYkNiRGKkYwJkYkNiRGKkYzJkYkNiRGKkY2JkYkNiRGKkY5JkYkNiRGKkY8JkYkNiRGKkY/JkYkNiRGKkZCJkYkNiRGKkZFJkYkNiRGKkZIJkYkNiRGLUYnJkYkNiRGLUYqJkYkNiRGLUYtJkYkNiRGLUYwJkYkNiRGLUYzJkYkNiRGLUY2JkYkNiRGLUY5JkYkNiRGLUY8JkYkNiRGLUY/JkYkNiRGLUZCJkYkNiRGLUZFJkYkNiRGLUZIJkYkNiRGMEYnJkYkNiRGMEYqJkYkNiRGMEYtJkYkNiRGMEYwJkYkNiRGMEYzJkYkNiRGMEY2JkYkNiRGMEY5JkYkNiRGMEY8JkYkNiRGMEY/JkYkNiRGMEZCJkYkNiRGMEZFJkYkNiRGMEZI</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNb</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L681" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="conditions := [E[], C0[], C1[], C10[], C2[], C3[], C30[], C4[], C5[], C50[], CEND[], lDM0[], lDM1[], lDM2[], lDM3[], lDM4[], lDM5[], lDM6[]]; -1; numelems(conditions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVErY29uZGl0aW9uc0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GU0Y1LUkobWZlbmNlZEdGJDYmLUYjNlktRiw2JVEiRUYnRi9GMi1GVjYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRiw2JVEjQzBGJ0YvRjItRlY2Ji1GIzYkRltvRjlGOUZgb0Zjb0Zmby1GLDYlUSNDMUYnRi9GMkZfcEZmby1GLDYlUSRDMTBGJ0YvRjJGX3BGZm8tRiw2JVEjQzJGJ0YvRjJGZ25GZm8tRiw2JVEjQzNGJ0YvRjJGZ25GZm8tRiw2JVEkQzMwRidGL0YyRmduRmZvLUYsNiVRI0M0RidGL0YyRmduRmZvLUYsNiVRI0M1RidGL0YyRmduRmZvLUYsNiVRJEM1MEYnRi9GMkZnbkZmby1GLDYlUSVDRU5ERidGL0YyRl9wRmZvLUYsNiVRJWxETTBGJ0YvRjJGX3BGZm8tRiw2JVElbERNMUYnRi9GMkZfcEZmby1GLDYlUSVsRE0yRidGL0YyRl9wRmZvLUYsNiVRJWxETTNGJ0YvRjJGZ25GZm8tRiw2JVElbERNNEYnRi9GMkZnbkZmby1GLDYlUSVsRE01RidGL0YyRmduRmZvLUYsNiVRJWxETTZGJ0YvRjJGZ25GXm9GOUY5RmBvRmNvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGUkZULUYsNiVRKW51bWVsZW1zRidGL0YyLUZWNiQtRiM2JEYrRjlGOUZeb0Y5">QyU+SStjb25kaXRpb25zRzYiNzQmSSJFR0YlRiUmSSNDMEdGJUYlJkkjQzFHRiVGJSZJJEMxMEdGJUYlJkkjQzJHRiVGJSZJI0MzR0YlRiUmSSRDMzBHRiVGJSZJI0M0R0YlRiUmSSNDNUdGJUYlJkkkQzUwR0YlRiUmSSVDRU5ER0YlRiUmSSVsRE0wR0YlRiUmSSVsRE0xR0YlRiUmSSVsRE0yR0YlRiUmSSVsRE0zR0YlRiUmSSVsRE00R0YlRiUmSSVsRE01R0YlRiUmSSVsRE02R0YlRiUhIiItSSludW1lbGVtc0clKnByb3RlY3RlZEc2I0Yk</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiQ5Ig==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L699" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="A, b := LinearAlgebra[GenerateMatrix](conditions, inconnues);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkobWZlbmNlZEdGJDYkLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y4USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZCLyUqc3ltbWV0cmljR0ZCLyUobGFyZ2VvcEdGQi8lLm1vdmFibGVsaW1pdHNHRkIvJSdhY2NlbnRHRkIvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYtUSJ+RidGPkZAL0ZERkJGRUZHRklGS0ZNRk8vRlNGUS1GMTYlUSJiRidGNEY3LyUrZXhlY3V0YWJsZUdGQkY+Rj4tRjs2LVEqJmNvbG9uZXE7RidGPkZARlhGRUZHRklGS0ZNL0ZQUSwwLjI3Nzc3NzhlbUYnL0ZTRl1vLUYxNiVRLkxpbmVhckFsZ2VicmFGJ0Y0RjctRiw2Ji1GIzYlLUYxNiVRL0dlbmVyYXRlTWF0cml4RidGNEY3RmduRj5GPi8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GLDYkLUYjNigtRjE2JVErY29uZGl0aW9uc0YnRjRGN0Y6RlUtRjE2JVEqaW5jb25udWVzRidGNEY3RmduRj5GPi1GOzYtUSI7RidGPkZARkNGRUZHRklGS0ZNRk9GXm9GZ25GPg==">QyQ+NiRJIkFHNiJJImJHRiYtJkkuTGluZWFyQWxnZWJyYUdGJjYjSS9HZW5lcmF0ZU1hdHJpeEdGJjYkSStjb25kaXRpb25zR0YmSSppbmNvbm51ZXNHRiYiIiI=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y1USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMy8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GLjYlUSJiRidGMUY0LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y/RjstRjg2LVEjOj1GJ0Y7Rj0vRkFGP0ZCRkRGRkZIRkovRk1RLDAuMjc3Nzc3OGVtRicvRlBGaW4tRiM2KC1JKG1hY3Rpb25HRiQ2JS1JKG1mZW5jZWRHRiQ2Ji1JJ210YWJsZUdGJDY4LUkkbXRyR0YkNiYtSSRtdGRHRiQ2KC1GIzYmLUYuNiVRK34xMTR+eH40OH5GJ0YxRjQtRi42JVEnTWF0cml4RidGMUY0RlVGOy8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGZnAvJStncm91cGFsaWduR0ZmcC8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZdcUZkcEZncEZpcC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRLERhdGF+VHlwZTp+RidGMUY0LUYuNiVRKWFueXRoaW5nRidGMUY0RlVGO0ZkcEZncEZpcEZbcUZecUZkcEZncEZpcC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKlN0b3JhZ2U6fkYnRjFGNC1GLjYlUSxyZWN0YW5ndWxhckYnRjFGNEZVRjtGZHBGZ3BGaXBGW3FGXnFGZHBGZ3BGaXAtRmdvNiYtRmpvNigtRiM2Ji1GLjYlUShPcmRlcjp+RidGMUY0LUYuNiVRLkZvcnRyYW5fb3JkZXJGJ0YxRjRGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwLyUmYWxpZ25HUSVheGlzRicvRmVwUSliYXNlbGluZUYnL0ZocFEnY2VudGVyRicvRmpwUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGMy8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRmF0LyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRlx1LyUmZnJhbWVHRlx1LyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dGPy8lLWVxdWFsY29sdW1uc0dGPy8lLWRpc3BsYXlzdHlsZUdGPy8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0ZpdEY7LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLyUrYWN0aW9udHlwZUdRLWJyb3dzZXJ0YWJsZUYnLyUpcnRhYmxlaWRHUTUxODQ0Njc0NDA3ODIwODEyMjYyMkYnRjctRl5vNiUtRmFvNiYtRmRvNjgtRmdvNiYtRmpvNigtRiM2Ji1GLjYlUSt+MX4uLn4xMTR+RidGMUY0LUklbXN1YkdGJDYlLUYuNiVRJ1ZlY3RvckYnRjFGNC1GIzYlLUYuNiVRJ2NvbHVtbkYnRjFGNEZVRjsvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJ0ZVRjtGZHBGZ3BGaXBGW3FGXnFGZHBGZ3BGaXBGYHFGXHJGaHJGZHNGZ3NGaXNGW3RGXXRGX3RGYnRGZHRGZ3RGanRGXXVGX3VGYXVGZHVGZnVGaHVGanVGXXZGO0ZfdkZidkZldi9GaXZRNTE4NDQ2NzQ0MDc4MjA4MTIyNTAyRidGVUZYRjtGVUZYRjs=">NiQtSSdNYXRyaXhHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2Iy9JJCVpZEdGKCI1QUU3MyN5U3VZJT0tJkknVmVjdG9yR0YlNiNJJ2NvbHVtbkdGKDYjL0YrIjUtRDczI3lTdVklPQ==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L698" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[Rank](A)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJVJhbmtGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYkLUYjNiUtRiw2JVEiQUYnRi9GMkY9RkBGQC1GLDYjUSFGJ0Y9RkA=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0klUmFua0dGKDYjSSJBR0Yo</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNb</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L673" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="solutions := solve(conditions, {inconnues[]})" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yNzc3Nzc4ZW1GJy9GTkZTLUYsNiVRJnNvbHZlRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNictRiw2JVErY29uZGl0aW9uc0YnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRlk2Ji1GIzYmLUYsNiVRKmluY29ubnVlc0YnRi9GMi1GWTYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZecEY5RjkvRmFwUSJ8ZnJGJy9GZHBRInxockYnRl5wRjlGOUZecEY5">Pkkqc29sdXRpb25zRzYiLUkmc29sdmVHRiQ2JEkrY29uZGl0aW9uc0dGJDwjJkkqaW5jb25udWVzR0YkRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZecS1GIzYoLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2KC1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGaG4vJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOS8lL3N1YnNjcmlwdHNoaWZ0R0Zbby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GaW42JFEoMTE4ODM1MkYnRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIxRidGOUZkb0Znb0Y5RmlvRltwLUkmbWZyYWNHRiQ2KC1GaW42JFEpMTkxMDg4NjRGJ0Y5LUZpbjYkUSI1RidGOS8lLmxpbmV0aGlja25lc3NHRmlwLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmdxLyUpYmV2ZWxsZWRHRj1GZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIyRidGOUZkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSoyNTA4MzcyMTZGJ0Y5LUZpbjYkUSM0NUYnRjlGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIzRidGOUZkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSkxNDYwMDc1MkYnRjlGY3NGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSI0RidGOUZkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSkyNTQzNzkwMkYnRjktRmluNiRRIjlGJ0Y5RmNxRmVxRmhxRmpxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcb0ZgcUZkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSkxNzE5NTI3OEYnRjktRmluNiRRIzE1RidGOUZjcUZlcUZocUZqcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjZGJ0Y5RmRvRmdvRjlGaW9GW3AtRltxNigtRmluNiRRKTEzMjUzMjQxRidGOS1GaW42JFEjNDBGJ0Y5RmNxRmVxRmhxRmpxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiN0YnRjlGZG9GZ29GOUZpb0ZbcC1GW3E2KC1GaW42JFEpNDkxMzYzMDlGJ0Y5LUZpbjYkUSQ3MjBGJ0Y5RmNxRmVxRmhxRmpxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiOEYnRjlGZG9GZ29GOUZpb0ZbcC1GW3E2KC1GaW42JFEnNDcxMjA1RidGOS1GaW42JFEjNDhGJ0Y5RmNxRmVxRmhxRmpxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcb0ZpdEZkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSY0NTA4M0YnRjlGanhGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSMxMEYnRjlGZG9GZ29GOUZpb0ZbcC1GW3E2KC1GaW42JFEmMzg3MzFGJ0Y5Rml3RmNxRmVxRmhxRmpxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEjMTFGJ0Y5RmRvRmdvRjlGaW9GW3AtRltxNigtRmluNiRRJDUwM0YnRjktRmluNiRRJDM2MEYnRjlGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdwRlxvRmhuRmRvRmdvRjlGaW9GW3AtRiM2JS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GY1xsLUZpbjYkUScxODE0MzlGJ0Y5RjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdwRlxvRmdwRmRvRmdvRjlGaW9GW3AtRiM2J0ZfXGwtRltxNigtRmluNiRRKTE2NzA5NDQxRidGOS1GaW42JFEjMjBGJ0Y5RmNxRmVxRmhxRmpxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdwRlxvRmJyRmRvRmdvRjlGaW9GW3AtRiM2J0ZfXGwtRltxNigtRmluNiRRKjEyNTM1MjMxMUYnRjktRmluNiRRIzcyRidGOUZjcUZlcUZocUZqcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZncEZcb0Zjc0Zkb0Znb0Y5RmlvRltwLUYjNidGX1xsLUZbcTYoLUZpbjYkUSkxMzAwMjQ5M0YnRjlGYHZGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GYXRGZG9GZ29GOUZpb0ZbcC1GIzYnRl9cbC1GW3E2KC1GaW42JFEpNjQ0NDUzNTNGJ0Y5LUZpbjYkUSMzNkYnRjlGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GYHFGZG9GZ29GOUZpb0ZbcC1GIzYnRl9cbC1GW3E2KC1GaW42JFEpMzA5MTIzMDFGJ0Y5LUZpbjYkUSMzMEYnRjlGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GYHZGZG9GZ29GOUZpb0ZbcC1GIzYnRl9cbC1GW3E2KC1GaW42JFEoMzM3MzU2N0YnRjlGYnhGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GYXdGZG9GZ29GOUZpb0ZbcC1GIzYnRl9cbC1GW3E2KC1GaW42JFEpODgzNDU1MjNGJ0Y5Rml3RmNxRmVxRmhxRmpxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdwRlxvRmJ4RmRvRmdvRjlGaW9GW3AtRiM2J0ZfXGwtRltxNigtRmluNiRRKDExOTQwOTVGJ0Y5Rmp4RmNxRmVxRmhxRmpxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdwRlxvRml0RmRvRmdvRjlGaW9GW3AtRiM2J0ZfXGwtRltxNigtRmluNiRRJzE2MDY1N0YnRjlGanhGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GXnpGZG9GZ29GOUZpb0ZbcC1GIzYnRl9cbC1GW3E2KEZjei1GaW42JFEkMTQ0RidGOUZjcUZlcUZocUZqcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZncEZcb0ZcW2xGZG9GZ29GOUZpb0ZbcC1GIzYnRl9cbC1GW3E2KC1GaW42JFElMzUyMUYnRjlGZFtsRmNxRmVxRmhxRmpxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmJyRlxvRmhuRmRvRmdvRjlGaW9GW3AtRmluNiRRJTEyMzNGJ0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0ZncEZkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSc2MTc1MzNGJ0Y5LUZpbjYkUSM2MEYnRjlGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmJyRlxvRmJyRmRvRmdvRjlGaW9GW3AtRltxNigtRmluNiRRKDE1NDQ2MTNGJ0Y5Rmh2RmNxRmVxRmhxRmpxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0Zjc0Zkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSc1MTUxNzlGJ0Y5RmB2RmNxRmVxRmhxRmpxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0ZhdEZkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSc1MDI1NzlGJ0Y5RmF0RmNxRmVxRmhxRmpxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0ZgcUZkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSgzODA5OTExRidGOUZiYWxGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmJyRlxvRmB2RmRvRmdvRjlGaW9GW3AtRltxNigtRmluNiRRKDM2MTgwOTlGJ0Y5Rmh2RmNxRmVxRmhxRmpxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0Zhd0Zkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSkxMDg5NDE2M0YnRjktRmluNiRRJDI0MEYnRjlGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmJyRlxvRmJ4RmRvRmdvRjlGaW9GW3AtRltxNigtRmluNiRRJzI1MTY4NUYnRjktRmluNiRRIzE2RidGOUZjcUZlcUZocUZqcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYnJGXG9GaXRGZG9GZ29GOUZpb0ZbcC1GW3E2KC1GaW42JFEnMTcyMTIzRidGOUZqeEZjcUZlcUZocUZqcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYnJGXG9GXnpGZG9GZ29GOUZpb0ZbcC1GW3E2KEZjei1GaW42JFEjODBGJ0Y5RmNxRmVxRmhxRmpxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0ZcW2xGZG9GZ29GOUZpb0ZbcC1GW3E2KEZgZmwtRmluNiRRJDEyMEYnRjlGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmNzRlxvRmhuRmRvRmdvRjlGaW9GW3BGZ3BGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmNzRlxvRmdwRmRvRmdvRjlGaW9GW3BGaG5GZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmNzRlxvRmJyRmRvRmdvRjlGaW9GW3AtRiM2J0ZfXGwtRltxNigtRmluNiRRIzQ5RidGOUZiYGxGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGY3NGXG9GY3NGZG9GZ29GOUZpb0ZbcEZobkZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGY3NGXG9GYXRGZG9GZ29GOUZpb0ZbcC1GW3E2KEZhdy1GaW42JFEjMThGJ0Y5RmNxRmVxRmhxRmpxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZjc0Zcb0ZgcUZkb0Znb0Y5RmlvRltwRmhuRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZjc0Zcb0ZgdkZkb0Znb0Y5RmlvRltwLUYjNidGX1xsLUZbcTYoLUZpbjYkUSQ3MDFGJ0Y5RmJ4RmNxRmVxRmhxRmpxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmNzRlxvRmF3RmRvRmdvRjlGaW9GW3AtRiM2J0ZfXGwtRltxNigtRmluNiRRJjU0ODAzRidGOUZjZWxGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGY3NGXG9GYnhGZG9GZ29GOUZpb0ZbcC1GIzYnRl9cbC1GW3E2KC1GaW42JFEmMzIxNjVGJ0Y5Rmp4RmNxRmVxRmhxRmpxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmNzRlxvRml0RmRvRmdvRjlGaW9GW3AtRiM2J0ZfXGwtRltxNigtRmluNiRRJTk1NTVGJ0Y5RmpcbUZjcUZlcUZocUZqcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZjc0Zcb0ZeekZkb0Znb0Y5RmlvRltwRl9lbEZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGY3NGXG9GXFtsRmRvRmdvRjlGaW9GW3AtRiM2J0ZfXGwtRltxNihGYGZsRmVebEZjcUZlcUZocUZqcUZkb0Znb0Y5RmRvRmdvRjlGZG9GZ29GOUY5LyUlb3BlbkdRInxmckYnLyUmY2xvc2VHUSJ8aHJGJ0Zkb0Znb0Y5">PFIvJkkiY0c2IjYkIiIhRigiKF8kKT0iLyZGJTYkRigiIiIjIilrKTMiPiIiJi8mRiU2JEYoIiIjIyIqO3MkM0QiI1gvJkYlNiRGKCIiJCMiKV8yZzlGOy8mRiU2JEYoIiIlIyIpLXpWRCIiKi8mRiU2JEYoRjAjIil5Xz48IiM6LyZGJTYkRigiIicjIilUS0Q4IiNTLyZGJTYkRigiIigjIik0ajhcIiQ/KC8mRiU2JEYoIiIpIyInMDdaIiNbLyZGJTYkRihGRCMiJiQzWEZpbi8mRiU2JEYoIiM1IyImSihRRlgvJkYlNiRGKCIjNiMiJC4mIiRnJC8mRiU2JEYtRighJ1I5PS8mRiU2JEYtRi0jISlUJTRuIiIjPy8mRiU2JEYtRjQjISo2Qk5EIiIjcy8mRiU2JEYtRjsjISkkXC1JIkZOLyZGJTYkRi1GQSMhKWBgV2siI08vJkYlNiRGLUYwIyEpLEIiNCQiI0kvJkYlNiRGLUZOIyEobk5QJEZmbi8mRiU2JEYtRlUjISlCYk0pKUZYLyZGJTYkRi1GZm4jISgmNCU+IkZpbi8mRiU2JEYtRkQjISdkMTtGaW4vJkYlNiRGLUZibyMhJkooUSIkVyIvJkYlNiRGLUZobyMhJUBORltwLyZGJTYkRjRGKCIlTDcvJkYlNiRGNEYtIyInTHZoIiNnLyZGJTYkRjRGNCMiKDhZYSJGUS8mRiU2JEY0RjsjIid6Xl5GTi8mRiU2JEY0RkEjIid6RF1GQS8mRiU2JEY0RjAjIig2KjRRRlxyLyZGJTYkRjRGTiMiKCo0PU9GUS8mRiU2JEY0RlUjIilqVCozIiIkUyMvJkYlNiRGNEZmbiMiJyZvXiMiIzsvJkYlNiRGNEZEIyInQkA8RmluLyZGJTYkRjRGYm8jRmRvIiMhKS8mRiU2JEY0RmhvIyIlQE4iJD8iLyZGJTYkRjtGKEYtLyZGJTYkRjtGLUYoLyZGJTYkRjtGNCMhI1xGZnEvJkYlNiRGO0Y7RigvJkYlNiRGO0ZBI0ZVIiM9LyZGJTYkRjtGMEYoLyZGJTYkRjtGTiMhJCwoRmZuLyZGJTYkRjtGVSMhJi5bJkZmcy8mRiU2JEY7RmZuIyEmbEAkRmluLyZGJTYkRjtGRCMhJWImKkZqdi8mRiU2JEY7RmJvRmRzLyZGJTYkRjtGaG8jRlt0Rltx</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L702" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[LinearSolve](A, b)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYkLUYsNiVRLExpbmVhclNvbHZlRidGL0YyL0YzUSdub3JtYWxGJ0Y9LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2NiQtRiM2Jy1GLDYlUSJBRidGL0YyLUkjbW9HRiQ2LVEiLEYnRj0vJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGUi8lKnN5bW1ldHJpY0dGUi8lKGxhcmdlb3BHRlIvJS5tb3ZhYmxlbGltaXRzR0ZSLyUnYWNjZW50R0ZSLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEiYkYnRi9GMi8lK2V4ZWN1dGFibGVHRlJGPUY9RmJvRj0=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0ksTGluZWFyU29sdmVHRig2JEkiQUdGKEkiYkdGKA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUkobWFjdGlvbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkobWZlbmNlZEdGJDYmLUknbXRhYmxlR0YkNjgtSSRtdHJHRiQ2Ji1JJG10ZEdGJDYoLUklbXJvd0dGJDYmLUkjbWlHRiQ2JVEqfjF+Li5+NDh+RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUklbXN1YkdGJDYlLUY7NiVRJ1ZlY3RvckYnRj5GQS1GODYlLUY7NiVRJ2NvbHVtbkYnRj5GQS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvRkJRJ25vcm1hbEYnLyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGT0ZSLyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZZLyUrZ3JvdXBhbGlnbkdGWS8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZqbkZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEsRGF0YX5UeXBlOn5GJ0Y+RkEtRjs2JVEpYW55dGhpbmdGJ0Y+RkFGT0ZSRldGWkZmbkZobkZbb0ZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEqU3RvcmFnZTp+RidGPkZBLUY7NiVRLHJlY3Rhbmd1bGFyRidGPkZBRk9GUkZXRlpGZm5GaG5GW29GV0ZaRmZuLUYyNiYtRjU2KC1GODYmLUY7NiVRKE9yZGVyOn5GJ0Y+RkEtRjs2JVEuRm9ydHJhbl9vcmRlckYnRj5GQUZPRlJGV0ZaRmZuRmhuRltvRldGWkZmbi8lJmFsaWduR1ElYXhpc0YnL0ZYUSliYXNlbGluZUYnL0ZlblEnY2VudGVyRicvRmduUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGQC8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRl5yLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmlyLyUmZnJhbWVHRmlyLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dRJmZhbHNlRicvJS1lcXVhbGNvbHVtbnNHRmNzLyUtZGlzcGxheXN0eWxlR0Zjcy8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0ZmckZSLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLyUrYWN0aW9udHlwZUdRLWJyb3dzZXJ0YWJsZUYnLyUpcnRhYmxlaWRHUTUxODQ0Njc0NDA3ODIwOTQ3MzIyMkYn">LSZJJ1ZlY3Rvckc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkc2IjYjSSdjb2x1bW5HRig2Iy9JJCVpZEdGKCI1QUtaNCN5U3VZJT0=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L676" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[6, 5] := eval(P(x), solutions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KC1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictRiM2Ji1JI21uR0YkNiRRIjZGJ0Y6LUkjbW9HRiQ2LVEiLEYnRjovJSZmZW5jZUdGOS8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y5LyUqc3ltbWV0cmljR0Y5LyUobGFyZ2VvcEdGOS8lLm1vdmFibGVsaW1pdHNHRjkvJSdhY2NlbnRHRjkvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GQDYkUSI1RidGOkY6LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRkQ2LVEifkYnRjpGRy9GSkY5RkxGTkZQRlJGVEZWL0ZaRlgtRkQ2LVEqJmNvbG9uZXE7RidGOkZHRl9vRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZlby1GLDYlUSVldmFsRicvRjhGSy9GO1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Jy1GLDYlUSJQRidGam9GW3AtRl5wNiQtRiM2JC1GLDYlUSJ4RidGam9GW3BGOkY6RkMtRiw2JVEqc29sdXRpb25zRidGam9GW3BGOkY6RjpGKy8lK2V4ZWN1dGFibGVHRjlGOg==">PiZJJ0xhbWJkYUc2IjYkIiInIiImLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJUkqc29sdXRpb25zR0Yl</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEnJiM5MjM7RicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1GIzYoLUkjbW5HRiQ2JFEiNkYnRjUtSSNtb0dGJDYtUSIsRidGNS8lJmZlbmNlR0Y0LyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjQvJSpzeW1tZXRyaWNHRjQvJShsYXJnZW9wR0Y0LyUubW92YWJsZWxpbWl0c0dGNC8lJ2FjY2VudEdGNC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUY7NiRRIjVGJ0Y1LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y0RjUvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GPzYtUSM6PUYnRjVGQi9GRUY0RkdGSUZLRk1GTy9GUlEsMC4yNzc3Nzc4ZW1GJy9GVUZhby1GIzYnLUY/Ni1RInxmckYnRjUvRkNGRkZfby9GSEZGRklGS0ZNRk8vRlJRLDAuMTY2NjY2N2VtRicvRlVGW3AtSSdtdGFibGVHRiQ2Pi1JJG10ckdGJDYnLUkkbXRkR0YkNigtRjs2JEZbb0Y1LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZqcC8lK2dyb3VwYWxpZ25HRmpwLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRmFxLUZkcDYoLUYjNigtRi82JVEieEYnL0YzRkYvRjZRJ2l0YWxpY0YnLUY/Ni1RIjxGJ0Y1RkJGX29GR0ZJRktGTUZPRmBvRmJvLUYjNiUtRj82LVEqJnVtaW51czA7RidGNUZCRl9vRkdGSUZLRk1GTy9GUlEsMC4yMjIyMjIyZW1GJy9GVUZnci1GOzYkUSI0RidGNUY1RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzY6LUY7NiRRKDExODgzNTJGJ0Y1LUY/Ni1RIitGJ0Y1RkJGX29GR0ZJRktGTUZPRmZyRmhyLUYjNigtSSZtZnJhY0dGJDYoLUY7NiRRKTE5MTA4ODY0RidGNUZXLyUubGluZXRoaWNrbmVzc0dGYXEvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGZHQvJSliZXZlbGxlZEdGNC1GPzYtUTEmSW52aXNpYmxlVGltZXM7RidGNUZCRl9vRkdGSUZLRk1GT0ZRL0ZVRlNGaHFGWkZnbkY1RmVzLUYjNigtRlt0NigtRjs2JFEqMjUwODM3MjE2RidGNS1GOzYkUSM0NUYnRjVGYHRGYnRGZXRGZ3RGaXQtSSVtc3VwR0YkNiVGaHEtRjs2JFEiMkYnRjUvJTFzdXBlcnNjcmlwdHNoaWZ0R0Zbb0ZaRmduRjVGZXMtRiM2KC1GW3Q2KC1GOzYkUSkxNDYwMDc1MkYnRjUtRjs2JFEiM0YnRjVGYHRGYnRGZXRGZ3RGaXQtRmh1NiVGaHFGZnZGXXZGWkZnbkY1RmVzLUYjNigtRlt0NigtRjs2JFEpMjU0Mzc5MDJGJ0Y1LUY7NiRRIjlGJ0Y1RmB0RmJ0RmV0Rmd0Rml0LUZodTYlRmhxRmlyRl12RlpGZ25GNUZlcy1GIzYoLUZbdDYoLUY7NiRRKTE3MTk1Mjc4RidGNS1GOzYkUSMxNUYnRjVGYHRGYnRGZXRGZ3RGaXQtRmh1NiVGaHFGV0ZddkZaRmduRjVGZXMtRiM2KC1GW3Q2KC1GOzYkUSkxMzI1MzI0MUYnRjUtRjs2JFEjNDBGJ0Y1RmB0RmJ0RmV0Rmd0Rml0LUZodTYlRmhxRjpGXXZGWkZnbkY1RmVzLUYjNigtRlt0NigtRjs2JFEpNDkxMzYzMDlGJ0Y1LUY7NiRRJDcyMEYnRjVGYHRGYnRGZXRGZ3RGaXQtRmh1NiVGaHEtRjs2JFEiN0YnRjVGXXZGWkZnbkY1RmVzLUYjNigtRlt0NigtRjs2JFEnNDcxMjA1RidGNS1GOzYkUSM0OEYnRjVGYHRGYnRGZXRGZ3RGaXQtRmh1NiVGaHEtRjs2JFEiOEYnRjVGXXZGWkZnbkY1RmVzLUYjNigtRlt0NigtRjs2JFEmNDUwODNGJ0Y1RmV6RmB0RmJ0RmV0Rmd0Rml0LUZodTYlRmhxRmJ3Rl12RlpGZ25GNUZlcy1GIzYoLUZbdDYoLUY7NiRRJjM4NzMxRidGNUZmeUZgdEZidEZldEZndEZpdC1GaHU2JUZocS1GOzYkUSMxMEYnRjVGXXZGWkZnbkY1RmVzLUYjNigtRlt0NigtRjs2JFEkNTAzRidGNS1GOzYkUSQzNjBGJ0Y1RmB0RmJ0RmV0Rmd0Rml0LUZodTYlRmhxLUY7NiRRIzExRidGNUZddkZaRmduRjVGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yLUYjNiVGY3JGZnZGNUZaRmduRjVGaHBGW3FGXXFGX3FGYnFGaHBGW3FGXXEtRmFwNictRmRwNigtRiM2O0Zjci1GOzYkUScxODE0MzlGJ0Y1LUY/Ni1RKCZtaW51cztGJ0Y1RkJGX29GR0ZJRktGTUZPRmZyRmhyLUYjNigtRlt0NigtRjs2JFEpMTY3MDk0NDFGJ0Y1LUY7NiRRIzIwRidGNUZgdEZidEZldEZndEZpdEZocUZaRmduRjVGYF5sLUYjNigtRlt0NigtRjs2JFEqMTI1MzUyMzExRidGNS1GOzYkUSM3MkYnRjVGYHRGYnRGZXRGZ3RGaXRGZ3VGWkZnbkY1RmBebC1GIzYoLUZbdDYoLUY7NiRRKTEzMDAyNDkzRidGNUY6RmB0RmJ0RmV0Rmd0Rml0Rml2RlpGZ25GNUZgXmwtRiM2KC1GW3Q2KC1GOzYkUSk2NDQ0NTM1M0YnRjUtRjs2JFEjMzZGJ0Y1RmB0RmJ0RmV0Rmd0Rml0RmV3RlpGZ25GNUZgXmwtRiM2KC1GW3Q2KC1GOzYkUSkzMDkxMjMwMUYnRjUtRjs2JFEjMzBGJ0Y1RmB0RmJ0RmV0Rmd0Rml0RmF4RlpGZ25GNUZgXmwtRiM2KC1GW3Q2KC1GOzYkUSgzMzczNTY3RidGNUZqekZgdEZidEZldEZndEZpdEZdeUZaRmduRjVGYF5sLUYjNigtRlt0NigtRjs2JFEpODgzNDU1MjNGJ0Y1RmZ5RmB0RmJ0RmV0Rmd0Rml0Rml5RlpGZ25GNUZgXmwtRiM2KC1GW3Q2KC1GOzYkUSgxMTk0MDk1RidGNUZlekZgdEZidEZldEZndEZpdEZoekZaRmduRjVGYF5sLUYjNigtRlt0NigtRjs2JFEnMTYwNjU3RidGNUZlekZgdEZidEZldEZndEZpdEZkW2xGWkZnbkY1RmBebC1GIzYoLUZbdDYoRmpbbC1GOzYkUSQxNDRGJ0Y1RmB0RmJ0RmV0Rmd0Rml0Rl1cbEZaRmduRjVGYF5sLUYjNigtRlt0NigtRjs2JFElMzUyMUYnRjVGaVxsRmB0RmJ0RmV0Rmd0Rml0RlxdbEZaRmduRjVGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yLUYjNiVGY3JGanVGNUZaRmduRjVGaHBGW3FGXXFGX3FGYnFGaHBGW3FGXXEtRmFwNictRmRwNigtRiM2Oi1GOzYkUSUxMjMzRidGNUZlcy1GIzYoLUZbdDYoLUY7NiRRJzYxNzUzM0YnRjUtRjs2JFEjNjBGJ0Y1RmB0RmJ0RmV0Rmd0Rml0RmhxRlpGZ25GNUZlcy1GIzYoLUZbdDYoLUY7NiRRKDE1NDQ2MTNGJ0Y1Rmp4RmB0RmJ0RmV0Rmd0Rml0Rmd1RlpGZ25GNUZlcy1GIzYoLUZbdDYoLUY7NiRRJzUxNTE3OUYnRjVGOkZgdEZidEZldEZndEZpdEZpdkZaRmduRjVGZXMtRiM2KC1GW3Q2KC1GOzYkUSc1MDI1NzlGJ0Y1RmlyRmB0RmJ0RmV0Rmd0Rml0RmV3RlpGZ25GNUZlcy1GIzYoLUZbdDYoLUY7NiRRKDM4MDk5MTFGJ0Y1Rl9hbEZgdEZidEZldEZndEZpdEZheEZaRmduRjVGZXMtRiM2KC1GW3Q2KC1GOzYkUSgzNjE4MDk5RidGNUZqeEZgdEZidEZldEZndEZpdEZdeUZaRmduRjVGZXMtRiM2KC1GW3Q2KC1GOzYkUSkxMDg5NDE2M0YnRjUtRjs2JFEkMjQwRidGNUZgdEZidEZldEZndEZpdEZpeUZaRmduRjVGZXMtRiM2KC1GW3Q2KC1GOzYkUScyNTE2ODVGJ0Y1LUY7NiRRIzE2RidGNUZgdEZidEZldEZndEZpdEZoekZaRmduRjVGZXMtRiM2KC1GW3Q2KC1GOzYkUScxNzIxMjNGJ0Y1RmV6RmB0RmJ0RmV0Rmd0Rml0RmRbbEZaRmduRjVGZXMtRiM2KC1GW3Q2KEZqW2wtRjs2JFEjODBGJ0Y1RmB0RmJ0RmV0Rmd0Rml0Rl1cbEZaRmduRjVGZXMtRiM2KC1GW3Q2KEZpY2wtRjs2JFEkMTIwRidGNUZgdEZidEZldEZndEZpdEZcXWxGWkZnbkY1RjVGaHBGW3FGXXFGX3FGYnEtRmRwNigtRiM2KEZocUZeci1GIzYlRmNyLUY7NiRGYXFGNUY1RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzY0RmdqbEZgXmwtRiM2KC1GW3Q2KC1GOzYkUSM0OUYnRjVGZWBsRmB0RmJ0RmV0Rmd0Rml0Rmd1RlpGZ25GNUZlcy1GIzYoLUZbdDYoRlt6LUY7NiRRIzE4RidGNUZgdEZidEZldEZndEZpdEZld0ZaRmduRjVGYF5sLUYjNigtRlt0NigtRjs2JFEkNzAxRidGNUZqekZgdEZidEZldEZndEZpdEZdeUZaRmduRjVGYF5sLUYjNigtRlt0NigtRjs2JFEmNTQ4MDNGJ0Y1RmJjbEZgdEZidEZldEZndEZpdEZpeUZaRmduRjVGYF5sLUYjNigtRlt0NigtRjs2JFEmMzIxNjVGJ0Y1RmV6RmB0RmJ0RmV0Rmd0Rml0Rmh6RlpGZ25GNUZgXmwtRiM2KC1GW3Q2KC1GOzYkUSU5NTU1RidGNUZpaGxGYHRGYnRGZXRGZ3RGaXRGZFtsRlpGZ25GNUZgXmxGXmNsRmBebC1GIzYoLUZbdDYoRmljbEZkX2xGYHRGYnRGZXRGZ3RGaXRGXF1sRlpGZ25GNUY1RmhwRltxRl1xRl9xRmJxLUZkcDYoLUYjNihGaHFGXnJGZnBGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjRGZ2psRmBebEZfW21GZXNGZlttRmBebEZdXG1GZXNGZFxtRmBebEZbXW1GZXNGYl1tRmBebEZeY2xGZXNGaV1tRjVGaHBGW3FGXXFGX3FGYnEtRmRwNigtRiM2KEZocUZeckZnamxGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjpGaGRsRmBebEZbZWxGZXNGZWVsRmBebEZcZmxGZXNGY2ZsRmBebEZqZmxGZXNGYWdsRmBebEZoZ2xGZXNGYmhsRmBebEZcaWxGZXNGY2lsRmBebEZqaWxGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRmp1RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzY7RmNyRl1ebEZlc0ZjXmxGYF5sRl1fbEZlc0ZnX2xGYF5sRl5gbEZlc0ZoYGxGYF5sRmJhbEZlc0ZpYWxGYF5sRmBibEZlc0ZnYmxGYF5sRl5jbEZlc0ZlY2xGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRmZ2RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzY6RmJzRmBebEZoc0Zlc0ZddUZgXmxGX3ZGZXNGW3dGYF5sRmd3RmVzRmN4RmBebEZfeUZlc0ZeekZgXmxGXVtsRmVzRmZbbEZgXmxGYlxsRjVGaHBGW3FGXXFGX3FGYnEtRmRwNigtRiM2KEZocUZeckZpckZaRmduRjVGaHBGW3FGXXFGX3FGYnFGaHBGW3FGXXEtRmFwNidGY3AtRmRwNigtRiM2KEZpci1GPzYtUSUmbGU7RidGNUZCRl9vRkdGSUZLRk1GT0Zgb0Zib0ZocUZaRmduRjVGaHBGW3FGXXFGX3FGYnFGaHBGW3FGXXEvJSZhbGlnbkdRJWF4aXNGJy9GaXBRKWJhc2VsaW5lRicvRlxxRmR0L0ZecVEnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRkYvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZeYm0vJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSQyZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmlibS8lJmZyYW1lR0ZpYm0vJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y0LyUtZXF1YWxjb2x1bW5zR0Y0LyUtZGlzcGxheXN0eWxlR0Y0LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHUSYwLjhlbUYnRlpGZ25GNUZaRmduRjU=">LUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzY2MkkieEc2IiEiJSIiITJGJyEiJCw6IihfJCk9IiIiIkYnIyIpaykzIj4iIiYqJEYnIiIjIyIqO3MkM0QiI1gqJEYnIiIkIyIpXzJnOUY5KiRGJyIiJSMiKS16VkQiIioqJEYnRjIjIil5Xz48IiM6KiRGJyIiJyMiKVRLRDgiI1MqJEYnIiIoIyIpNGo4XCIkPygqJEYnIiIpIyInMDdaIiNbKiRGJ0ZAIyImJDNYRlMqJEYnIiM1IyImSihRRk4qJEYnIiM2IyIkLiYiJGckMkYnISIjLDohJ1I5PUYvRicjISlUJTRuIiIjP0YzIyEqNkJORCIiI3NGOCMhKSRcLUkiRkZGPCMhKWBgV2siI09GQSMhKSxCIjQkIiNJRkUjIShuTlAkRlBGSiMhKUJiTSkpRk5GTyMhKCY0JT4iRlNGVCMhJ2QxO0ZTRlcjISZKKFEiJFciRmVuIyElQE5GaW4yRichIiIsOiIlTDdGL0YnIyInTHZoIiNnRjMjIig4WWEiRklGOCMiJ3peXkZGRjwjIid6RF1GPUZBIyIoNio0UUZbcEZFIyIoKjQ9T0ZJRkojIilqVCozIiIkUyNGTyMiJyZvXiMiIztGVCMiJ0JAPEZTRlcjRloiIyEpRmVuIyIlQE4iJD8iMkYnRiosNEYvRi9GMyMhI1xGaG9GPCNGSyIjPUZFIyEkLChGUEZKIyEmLlsmRmZwRk8jISZsQCRGU0ZUIyElYiYqRl9yRldGZHBGZW4jRmhwRmNvMkYnRi8sNEYvRi9GM0ZpckY8RltzRkVGXXNGSiMiJi5bJkZmcEZPRmFzRlQjIiViJipGX3JGV0ZkcEZlbiNGZXJGY28yRidGNCw6RlxxRi9GJyMhJ0x2aEZfcUYzRmBxRjgjISd6Xl5GRkY8RmRxRkEjISg2KjRRRltwRkVGaHFGSiMhKWpUKjMiRlxyRk9GXXJGVCMhJ0JAPEZTRldGYnJGZW4jRmhwRmZyMkYnRjksOkZdb0YvRicjIilUJTRuIkZgb0YzRmFvRjgjIikkXC1JIkZGRjxGZm9GQSMiKSxCIjQkRltwRkVGXHBGSiMiKUJiTSkpRk5GT0ZgcEZUIyInZDE7RlNGV0ZkcEZlbiNGZXJGaW4yRidGPSw6Ri5GL0YnIyEpaykzIj5GMkYzRjVGOCMhKV8yZzlGOUY8Rj5GQSMhKXlfPjxGREZFRkdGSiMhKTRqOFxGTkZPRlFGVCMhJiQzWEZTRldGWUZlbiMhJC4mRmluMUY9RidGKg==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L687" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="seq(evalb(simplify(conditions[i], solutions)), i = 1 .. numelems(conditions));" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEkc2VxRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNi0tRiw2JVEmZXZhbGJGJ0YvRjItRjY2JC1GIzYmLUYsNiVRKXNpbXBsaWZ5RidGL0YyLUY2NiQtRiM2KS1GLDYlUStjb25kaXRpb25zRidGL0YyLUY2NiYtRiM2JS1GLDYlUSJpRidGL0YyLyUrZXhlY3V0YWJsZUdRJmZhbHNlRicvRjNRJ25vcm1hbEYnRlUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictSSNtb0dGJDYtUSIsRidGVS8lJmZlbmNlR0ZULyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRlQvJSpzeW1tZXRyaWNHRlQvJShsYXJnZW9wR0ZULyUubW92YWJsZWxpbWl0c0dGVC8lJ2FjY2VudEdGVC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUZobjYtUSJ+RidGVUZbby9GXm9GVEZfb0Zhb0Zjb0Zlb0Znb0Zpby9GXXBGW3AtRiw2JVEqc29sdXRpb25zRidGL0YyRlJGVUZVRlJGVUZVRmduRk8tRmhuNi1RIj1GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yNzc3Nzc4ZW1GJy9GXXBGW3EtSSNtbkdGJDYkUSIxRidGVS1GaG42LVEjLi5GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yMjIyMjIyZW1GJ0ZjcC1GLDYlUSludW1lbGVtc0YnRi9GMi1GNjYkLUYjNiRGSEZVRlVGUkZVRlUtRmhuNi1RIjtGJ0ZVRltvRl1vRl9vRmFvRmNvRmVvRmdvRmlvRlxxRlJGVQ==">QyQtSSRzZXFHJSpwcm90ZWN0ZWRHNiQtSSZldmFsYkdGJTYjLUkpc2ltcGxpZnlHNiI2JCZJK2NvbmRpdGlvbnNHRiw2I0kiaUdGLEkqc29sdXRpb25zR0YsL0YxOyIiIi1JKW51bWVsZW1zR0YlNiNGL0Y1</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">Nl5ySSV0cnVlRyUqcHJvdGVjdGVkR0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiM=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L685" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="evalb(int(Lambda[6, 5], x = xrange) = 1); 1; seq(evalb(int(x^i*Lambda[6, 5], x = xrange) = 0), i = 1 .. 6)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEmZXZhbGJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2KC1GLDYlUSRpbnRGJ0YvRjItRjY2JC1GIzYqLUYsNiNRIUYnLUYjNiZGQS1GIzYkLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBRJmZhbHNlRicvRjNRJ25vcm1hbEYnLUYjNiYtSSNtbkdGJDYkUSI2RidGUC1JI21vR0YkNi1RIixGJ0ZQLyUmZmVuY2VHRk8vJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGTy8lKnN5bW1ldHJpY0dGTy8lKGxhcmdlb3BHRk8vJS5tb3ZhYmxlbGltaXRzR0ZPLyUnYWNjZW50R0ZPLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRlU2JFEiNUYnRlBGUC8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnRlBGQUZQRkFGWC1GLDYlUSJ4RidGL0YyLUZZNi1RIj1GJ0ZQRmZuL0ZpbkZPRmpuRlxvRl5vRmBvRmJvL0Zlb1EsMC4yNzc3Nzc4ZW1GJy9GaG9GaHAtRiw2JVEneHJhbmdlRidGL0YyRlBGUEZjcC1GVTYkUSIxRidGUC8lK2V4ZWN1dGFibGVHRk9GUEZQLUZZNi1RIjtGJ0ZQRmZuRmhuRmpuRlxvRl5vRmBvRmJvRmRvRmlwLUYsNiVRJHNlcUYnRi9GMi1GNjYkLUYjNixGKy1GNjYkLUYjNihGOi1GNjYkLUYjNiotSSVtc3VwR0YkNiVGYHAtRiM2JS1GLDYlUSJpRidGL0YyRi9GMi8lMXN1cGVyc2NyaXB0c2hpZnRHRl9wLUZZNi1RJyZzZG90O0YnRlBGZm5GZnBGam5GXG9GXm9GYG9GYm9GZG8vRmhvRmZvLUZJNiUtRiw2JVEnJiM5MjM7RidGTkZQRlJGXXBGWEZgcEZjcEZqcEZQRlBGY3AtRlU2JEZfcEZQRmBxRlBGUEZYRmlyRmNwRl1xLUZZNi1RIy4uRidGUEZmbkZmcEZqbkZcb0Zeb0Zgb0Ziby9GZW9RLDAuMjIyMjIyMmVtRidGYXNGVEZgcUZQRlBGYHFGUA==">QyUtSSZldmFsYkclKnByb3RlY3RlZEc2Iy8tSSRpbnRHNiRGJUkoX3N5c2xpYkc2IjYkJkknTGFtYmRhR0YsNiQiIiciIiYvSSJ4R0YsSSd4cmFuZ2VHRiwiIiJGNi1JJHNlcUdGJTYkLUYkNiMvLUYpNiQqJilGNEkiaUdGLEY2Ri5GNkYzIiIhL0ZBO0Y2RjE=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">SSV0cnVlRyUqcHJvdGVjdGVkRw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NihJJXRydWVHJSpwcm90ZWN0ZWRHRiNGI0YjRiNGIw==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L705" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="fac := 720:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZedS1JI21pR0YkNiVRJGZhY0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkjbW5HRiQ2JFEkNzIwRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORlotRiw2JVEjdzBGJ0YvRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYkLUkmbWZyYWNHRiQ2KC1GUDYkUSIxRidGOS1GIzYkRitGOS8lLmxpbmV0aGlja25lc3NHRmNvLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmpvLyUpYmV2ZWxsZWRHRj1GOUY5LUY2Ni1RJyZzZG90O0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuLUYsNiVRJ2hvcm5lckYnRi9GMi1Gam42JC1GIzYpRitGX3AtRiw2JVEnZXhwYW5kRidGL0YyLUZqbjYkLUYjNiUtRiw2JVElZXZhbEYnRi9GMi1Gam42JC1GIzYtRmBxLUZqbjYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEpJkxhbWJkYTtGJy9GMEY9RjktRiM2Ji1GUDYkUSI2RidGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRlkvRk5RLDAuMzMzMzMzM2VtRictRlA2JFEiNUYnRjlGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUYsNiNRIUYnRmdyLUYsNiVRKnNvbHV0aW9uc0YnRi9GMkY5RjlGZ3ItRiw2JVEieEYnRi9GMi1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GY3QtRlA2JFEiM0YnRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZidEZkdEZWLUYsNiVRInlGJ0YvRjJGOUY5RjlGOUZnckZbdUY5RjlGVi1GNjYtUSlhc3N1bWluZ0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuRlZGW3UtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRlA2JEZic0Y5RlYtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZcdkY7Rj5GQEZCRkRGRkZIRllGZW5GVkZbdS1GNjYtUSI8RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZhby1GNjYtUSI7RidGOUY7RmpyRkBGQkZERkZGSEZZRk0tSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWi8lJmRlcHRoR0Zqdi8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GLDYlUSN3MUYnRi9GMkY1RmluRl9wRmJwLUZqbjYkLUYjNipGK0ZfcEZpcC1Gam42JC1GIzYlRmBxLUZqbjYkLUYjNi1GYHFGZ3FGZ3JGaXNGXHRGX3QtRlA2JFEiMkYnRjlGaHRGVkZbdUY5RjlGOUY5RmdyRlt1LyUrZXhlY3V0YWJsZUdGPUY5RjlGXnVGVkZbdUZhdUZkdUZWRmZ1RlZGW3VGX3ZGYW9GYnZGZXYtRiw2JVEjdzJGJ0YvRjJGNUZpbkZfcEZicC1Gam42JC1GIzYqRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYtRmBxRmdxRmdyRmlzRlx0Rl90RmFvRmh0RlZGW3VGOUY5RjlGOUZnckZbdUZkeEY5RjlGXnVGVkZbdUZhdUZkdUZWRmZ1RlZGW3VGX3ZGYW9GYnZGZXYtRiw2JVEjdzNGJ0YvRjJGNUZpbkZfcEZicC1Gam42JC1GIzYqRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYrRmBxRmdxRmdyRmlzRlx0Rl90RlZGW3VGOUY5RjlGOUZnckZbdUZkeEY5RjlGVkZedUZWRlt1RmF1RmR1RlZGZnVGVkZbdUZfdkZhb0ZidkZldi1GLDYlUSN3NEYnRi9GMkY1RmluRl9wRmJwLUZqbjYkLUYjNipGK0ZfcEZpcC1Gam42JC1GIzYlRmBxLUZqbjYkLUYjNi1GYHEtRmpuNiQtRiM2JkZbckZnckZmc0Y5RjlGZ3JGaXNGXHRGVkZhb0ZfdEZWRlt1RjlGOUY5RjlGZ3JGW3VGZHhGOUY5RlZGXnVGVkZbdUZhdUZkdUZWRmZ1RlZGW3VGX3ZGYW9GYnZGZXYtRiw2JVEjdzVGJ0YvRjJGNUZpbkZfcEZicC1Gam42JC1GIzYqRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYsRmBxRmdxRmdyRmlzRlx0RmF4Rl90RlZGW3VGOUY5RjlGOUZnckZbdUZkeEY5RjlGVkZedUZWRlt1RmF1RmR1RlZGZnVGVkZbdUZfdkZhb0ZidkZldi1GLDYlUSN3NkYnRi9GMkY1RmluRl9wRmJwLUZqbjYkLUYjNipGK0ZfcEZpcC1Gam42JC1GIzYlRmBxLUZqbjYkLUYjNixGYHFGZ3FGZ3JGaXNGXHRGZXRGX3RGVkZbdUY5RjlGOUY5RmdyRlt1RmR4RjlGOUZedUZWRlt1RmF1RmR1RlZGZnVGVkZbdUZfdkZhb0ZidkZldi1GLDYlUSN3N0YnRi9GMkY1RmluRl9wRmJwLUZqbjYkLUYjNipGK0ZfcEZpcC1Gam42JC1GIzYlRmBxLUZqbjYkLUYjNixGYHFGZ3FGZ3JGaXNGXHQtRlA2JFEiNEYnRjlGaHRGVkZbdUY5RjlGOUY5RmdyRlt1RmR4RjlGOUZedUZWRlt1RmF1RmR1RlZGZnVGVkZbdUZfdkZhb0ZidkZkeEY5">QzQ+SSRmYWNHNiIiJD8oISIiPkkjdzBHRiUtSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjKiZGJEYnLUknaG9ybmVyR0YlNiQqJkYkIiIiLUknZXhwYW5kRyUqcHJvdGVjdGVkRzYjLUklZXZhbEdGNzYkLUY6NiQmSSdMYW1iZGFHRiU2JCIiJyIiJkkqc29sdXRpb25zR0YlL0kieEdGJSwmISIkRjRJInlHRiVGJ0Y0RkhGNDcjLUkkYW5kR0Y3NiQtSSI+R0Y3NiRGSCIiITJGSEY0RjQ+SSN3MUdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmISIjRjRGSEYnRjRGSEY0RklGND5JI3cyR0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZFLCZGJ0Y0RkhGJ0Y0RkhGNEZJRjQ+SSN3M0dGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwkRkhGJ0Y0RkhGNEZJRjQ+SSN3NEdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmRjRGNEZIRidGNEZIRjRGSUY0PkkjdzVHRiUtRis2JDcjKiZGJEYnLUYxNiQqJkYkRjQtRjY2Iy1GOjYkRjwvRkUsJiIiI0Y0RkhGJ0Y0RkhGNEZJRjQ+SSN3NkdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmIiIkRjRGSEYnRjRGSEY0RklGND5JI3c3R0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZFLCYiIiVGNEZIRidGNEZIRjRGSUY0</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFEjMTJGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGXnBGYHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIjRGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSMxNUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRIjVGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSIzRidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFElMTgwM0YnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJTc4MjlGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSYxMzc4NUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJjEyMjg1RidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFElNTUzM0YnRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZecEZgcC1GIzYmLUZVNiRRJTEwMDZGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RmN2RmZ2Rjk=">LCQqJiwmISM3IiIiKiYsJiIiJUYmKiYsJiIjOkYmKiYsJiEiJkYmKiYsJiEiJEYmKiYsJiIlLj1GJiomLCYhJUh5RiYqJiwmIiYmeThGJiomLCYhJiZHN0YmKiYsJiIlTGJGJkkieUc2IiElMTVGJkZCRiZGJkYmRkJGJkYmRiZGQkYmRiZGJkZCRiZGJkYmRkJGJkYmRiZGQkYmRiZGJkZCRiZGJkYmRkJGJkYmRiZGQkYmRiZGJkZCRiYjRiYiJD8o</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Ji1GVTYkUSQxMDhGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GVTYkUSM1NEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmpwLUZVNiRRJDEyMEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIzYwRidGOUZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEjMTJGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZqcC1GVTYkUSYxMjYyMEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJjU0ODAzRidGOUZecC1GIzYmLUZnbzYkLUYjNidGanAtRlU2JFEmOTY0OTVGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSY4NTk5NUYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmpwLUZVNiRRJjM4NzMxRidGOUZecC1GIzYmLUZVNiRRJTcwNDJGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GXXZGOUY5RjlGXm9GXXZGOUY5RjlGXm9GXXZGOUY5RjlGXm9GXXZGOUY5RjlGXm9GXXZGOUY5RjlGXm9GXXZGOUY5RjlGXm9GXXZGOUY5RjlGXm9GXXZGOUY5RjlGXm9GXXZGOUY5RjlGXm9GXXZGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RmB2RmN2Rjk=">LCQqJiwmIiQzIiIiIiomLCYhI2FGJiomLCYhJD8iRiYqJiwmIiNnRiYqJiwmIiM3RiYqJiwmISY/RSJGJiomLCYiJi5bJkYmKiYsJiEmJlwnKkYmKiYsJiImJipmKUYmKiYsJiEmSihRRiZJInlHNiIiJVVxRiZGQkYmRiZGJkZCRiZGJkYmRkJGJkYmRiZGQkYmRiZGJkZCRiZGJkYmRkJGJkYmRiZGQkYmRiZGJkZCRiZGJkYmRkJGJkYmRiZGQkYmI0YmIiQ/KA==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFEkNTQwRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2JkZhcEZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEkMTk1RidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3BGY3FGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRIzE1RidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEmMzc4NTdGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUScxNjQ0MDlGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUScyODk0ODVGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUScyNTc5ODVGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUScxMTYxOTNGJ0Y5LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGXnBGYHAtRiM2Ji1GVTYkUSYyMTEyNkYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGXXZGYHZGOQ==">LCQqJiwmISRTJiIiIiomLCYiJFMmRiYqJiwmIiQmPkYmKiYsJiEkJj5GJiomLCYhIzpGJiomLCYiJmR5JEYmKiYsJiEnNFc7RiYqJiwmIicmWypHRiYqJiwmIScmKXpERiYqJiwmIickPjsiRiZJInlHNiIhJkU2I0YmRkJGJkYmRiZGQkYmRiZGJkZCRiZGJkYmRkJGJkYmRiZGQkYmRiZGJkZCRiZGJkYmRkJGJkYmRiZGQkYmRiZGJkZCRiZGJkYmRkJGJiNGJiIkPyg=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtSSNtbkdGJDYkUSIxRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlktRiM2KC1JJm1mcmFjR0YkNihGUS1GUjYkUSQ3MjBGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVC8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zhby8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5Gam8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZYRlotRlI2JFEkOTgwRidGOUZVLUYjNiYtRl9wNiQtRiM2Ji1GUjYkUSQyODBGJ0Y5RlUtRiM2Ji1GX3A2JC1GIzYnRmNwLUZSNiRRJjYzMDkwRidGOUZVLUYjNiYtRl9wNiQtRiM2Ji1GUjYkUScyNzQwMTVGJ0Y5RlUtRiM2Ji1GX3A2JC1GIzYnRmNwLUZSNiRRJzQ4MjQ3NUYnRjlGVS1GIzYmLUZfcDYkLUYjNiYtRlI2JFEnNDI5OTc1RidGOUZVLUYjNiYtRl9wNiQtRiM2J0ZjcC1GUjYkUScxOTM2NTVGJ0Y5RlUtRiM2Ji1GUjYkUSYzNTIxMEYnRjlGZm8tRiw2JVEieUYnRi9GMkY5RjlGOUZmb0ZkdEY5RjlGOUZmb0ZkdEY5RjlGOUZmb0ZkdEY5RjlGOUZmb0ZkdEY5RjlGOUZmby1JJW1zdXBHRiQ2JUZkdC1GUjYkUSIyRidGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGOUY5RjlGZm9GZ3RGOUY5RjlGZm9GZ3RGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RjlGYHVGY3VGOQ==">LCYiIiJGIyomLCYhJCEpKkYjKiYsJiIkIUdGIyomLCYhJiE0akYjKiYsJiInOlNGRiMqJiwmISd2Q1tGIyomLCYiJ3YqSCVGIyomLCYhJ2JPPkYjSSJ5RzYiIiY1XyRGI0Y5RiNGI0YjRjlGI0YjRiNGOUYjRiNGI0Y5RiNGI0YjRjkiIiNGI0YjRjlGPEYjRiNGOUY8I0YjIiQ/KA==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Ji1GVTYkUSQ1NDBGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYmRltwRl5wLUYjNiYtRmdvNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGYXBGY3AtRlU2JFEkMTk1RidGOUZecC1GIzYmLUZnbzYkLUYjNidGYHFGY3FGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIzE1RidGOUZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEmNjMwODVGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZgcS1GVTYkUScyNzQwMTVGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSc0ODI0NzVGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZgcS1GVTYkUSc0Mjk5NzVGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUScxOTM2NTVGJ0Y5LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGYXBGY3AtRiM2Ji1GVTYkUSYzNTIxMEYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5RjlGOUZeb0ZqdUY5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGXXZGYHZGOQ==">LCQqJiwmIiRTJiIiIiomLCZGJUYmKiYsJiEkJj5GJiomLCZGK0YmKiYsJiIjOkYmKiYsJiImJjNqRiYqJiwmISc6U0ZGJiomLCYiJ3ZDW0YmKiYsJiEndipIJUYmKiYsJiInYk8+RiZJInlHNiIhJjVfJEYmRkBGJkYmRiZGQEYmRiZGJkZARiZGJkYmRkBGJkYmRiZGQEYmRiZGJkZARiZGJkYmRkBGJkYmRiZGQEYmRiZGJkZARiZGJkYmRkBGJiNGJiIkPyg=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzVGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFEkMTA4RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSM1NEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJDEyMEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIzYwRidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEjMTJGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSYzNzg0OEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJzE2NDQwOUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJzI4OTQ4NUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJzI1Nzk4NUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJzExNjE5M0YnRjlGZHAtRiM2Ji1GVTYkUSYyMTEyNkYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0ZddkY5RjlGOUZeb0ZddkY5RjlGOUZeb0ZddkY5RjlGOUZeb0ZddkY5RjlGOUZeb0ZddkY5RjlGOUZeb0ZddkY5RjlGOUZeb0ZddkY5RjlGOUZeb0ZddkY5RjlGOUZeb0ZddkY5RjlGOUZeb0ZddkY5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGYHZGY3ZGOQ==">LCQqJiwmISQzIiIiIiomLCYhI2FGJiomLCYiJD8iRiYqJiwmIiNnRiYqJiwmISM3RiYqJiwmISZbeSRGJiomLCYiJzRXO0YmKiYsJiEnJlsqR0YmKiYsJiInJil6REYmKiYsJiEnJD47IkYmSSJ5RzYiIiZFNiNGJkZCRiZGJkYmRkJGJkYmRiZGQkYmRiZGJkZCRiZGJkYmRkJGJkYmRiZGQkYmRiZGJkZCRiZGJkYmRkJGJkYmRiZGQkYmRiZGJkZCRiYjRiYiJD8o</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzZGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Ji1GVTYkUSMxMkYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZicC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEiNEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GVTYkUSMxNUYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmNxLUZVNiRRIjVGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSIzRidGOUZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEmMTI2MTVGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZjcS1GVTYkUSY1NDgwM0YnRjlGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJjk2NDk1RidGOUZecC1GIzYmLUZnbzYkLUYjNidGY3EtRlU2JFEmODU5OTVGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSYzODczMUYnRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GIzYmLUZVNiRRJTcwNDJGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOUY5RjlGXm9GYHZGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RmN2RmZ2Rjk=">LCQqJiwmIiM3IiIiKiYsJiIiJUYmKiYsJiEjOkYmKiYsJiEiJkYmKiYsJiIiJEYmKiYsJiImOkUiRiYqJiwmISYuWyZGJiomLCYiJiZcJypGJiomLCYhJiYqZilGJiomLCYiJkooUUYmSSJ5RzYiISVVcUYmRkJGJkYmRiZGQkYmRiZGJkZCRiZGJkYmRkJGJkYmRiZGQkYmRiZGJkZCRiZGJkYmRkJGJkYmRiZGQkYmRiZGJkZCRiZGJkYmRkJGJiNGJiIkPyg=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFElMTgwMkYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZecEZgcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFElNzgyOUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJjEzNzg1RidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEmMTIyODVGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSU1NTMzRidGOUZkcC1GIzYmLUZVNiRRJTEwMDZGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GYHNGOUY5RjlGXm9GYHNGOUY5RjlGXm9GYHNGOUY5RjlGXm9GYHNGOUY5RjlGXm8tSSVtc3VwR0YkNiVGYHMtRlU2JFEiNkYnRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZcdEZfdEY5">LCQqJiwmISUtPSIiIiomLCYiJUh5RiYqJiwmISYmeThGJiomLCYiJiZHN0YmKiYsJiElTGJGJkkieUc2IiIlMTVGJkYzRiZGJkYmRjNGJkYmRiZGM0YmRiZGJkYzRiZGJkYmRjMiIicjRiYiJD8o</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L767" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C([w0, w1, w2, w3, w4, w5, w6, w7], declare = [y::float], resultname = 'w', coercetypes = false)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEiQ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzY1LUY2NiYtRiM2My1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkEtRiw2JVEjdzRGJ0YvRjJGQS1GLDYlUSN3NUYnRi9GMkZBLUYsNiVRI3c2RidGL0YyRkEtRiw2JVEjdzdGJ0YvRjIvJStleGVjdXRhYmxlR0ZJRkVGRS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZBLUZCNi1RIn5GJ0ZFRkcvRktGSUZMRk5GUEZSRlRGVi9GWkZYLUYsNiVRKGRlY2xhcmVGJ0YvRjItRkI2LVEiPUYnRkVGR0ZmcEZMRk5GUEZSRlQvRldRLDAuMjc3Nzc3OGVtRicvRlpGX3EtRjY2Ji1GIzYnLUYsNiVRInlGJ0YvRjItRkI2LVEtJlByb3BvcnRpb247RidGRUZHRmZwRkxGTkZQRlJGVEZecUZgcS1GLDYlUSZmbG9hdEYnRi9GMkZbcEZFRkVGXXBGYHBGQS1GLDYlUStyZXN1bHRuYW1lRidGL0YyRltxLUZCNi1RIidGJ0ZFRkdGZnBGTEZORlBGUkZUL0ZXUSwwLjExMTExMTFlbUYnRmdwLUYsNiVRIndGJ0YvRjJGYXJGQUZjcC1GLDYlUSxjb2VyY2V0eXBlc0YnRi9GMkZbcS1GLDYlRklGL0YyRltwRkVGRUZbcEZF">LUkiQ0c2IjYmNypJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiRJI3c2R0YkSSN3N0dGJC9JKGRlY2xhcmVHRiQ3IydJInlHRiRJJmZsb2F0RyUqcHJvdGVjdGVkRy9JK3Jlc3VsdG5hbWVHRiQuSSJ3R0YkL0ksY29lcmNldHlwZXNHRiRJJmZhbHNlR0Y1</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[0] = (-12 + (4 + (15 + (-5 + (-3 + (1803 + (-7829 + (13785 + (-12285 + (5533 - 1006 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 720;</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[1] = (108 + (-54 + (-120 + (60 + (12 + (-12620 + (54803 + (-96495 + (85995 + (-38731 + 7042 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[2] = (-540 + (540 + (195 + (-195 + (-15 + (37857 + (-164409 + (289485 + (-257985 + (116193 - 21126 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[3] = 1 + (-980 + (280 + (-63090 + (274015 + (-482475 + (429975 + (-193655 + 35210 * y) * y) * y) * y) * y) * y * y) * y * y) * y * y / 720; -w[4] = (540 + (540 + (-195 + (-195 + (15 + (63085 + (-274015 + (482475 + (-429975 + (193655 - 35210 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[5] = (-108 + (-54 + (120 + (60 + (-12 + (-37848 + (164409 + (-289485 + (257985 + (-116193 + 21126 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[6] = (12 + (4 + (-15 + (-5 + (3 + (12615 + (-54803 + (96495 + (-85995 + (38731 - 7042 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[7] = (-1802 + (7829 + (-13785 + (12285 + (-5533 + 1006 * y) * y) * y) * y) * y) * pow(y, 6) / 720;</Text-field> -</Output> -</Group> -<Group labelreference="L766" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Fortran([w0, w1, w2, w3, w4, w5, w6, w7], declare = [y::float], resultname = 'w')" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEoRm9ydHJhbkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYvLUY2NiYtRiM2Mi1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkEtRiw2JVEjdzRGJ0YvRjJGQS1GLDYlUSN3NUYnRi9GMkZBLUYsNiVRI3c2RidGL0YyRkEtRiw2JVEjdzdGJ0YvRjJGRUZFLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRkEtRkI2LVEifkYnRkVGRy9GS0ZJRkxGTkZQRlJGVEZWL0ZaRlgtRiw2JVEoZGVjbGFyZUYnRi9GMi1GQjYtUSI9RidGRUZHRmRwRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZdcS1GNjYmLUYjNiYtRiw2JVEieUYnRi9GMi1GQjYtUS0mUHJvcG9ydGlvbjtGJ0ZFRkdGZHBGTEZORlBGUkZURlxxRl5xLUYsNiVRJmZsb2F0RidGL0YyRkVGRUZbcEZecEZBLUYsNiVRK3Jlc3VsdG5hbWVGJ0YvRjJGaXAtRkI2LVEiJ0YnRkVGR0ZkcEZMRk5GUEZSRlQvRldRLDAuMTExMTExMWVtRidGZXAtRiw2JVEid0YnRi9GMkZfckZFRkUvJStleGVjdXRhYmxlR0ZJRkU=">LUkoRm9ydHJhbkc2IjYlNypJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiRJI3c2R0YkSSN3N0dGJC9JKGRlY2xhcmVHRiQ3IydJInlHRiRJJmZsb2F0RyUqcHJvdGVjdGVkRy9JK3Jlc3VsdG5hbWVHRiQuSSJ3R0Yk</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output"> w(1) = (-0.12D2 + (0.4D1 + (0.15D2 + (-0.5D1 + (-0.3D1 + (0.1803D4</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output"> # + (-0.7829D4 + (0.13785D5 + (-0.12285D5 + (0.5533D4 - 0.1006D4 * - #y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 0.720D3 - w(2) = (0.108D3 + (-0.54D2 + (-0.120D3 + (0.60D2 + (0.12D2 + (-0.1 - #2620D5 + (0.54803D5 + (-0.96495D5 + (0.85995D5 + (-0.38731D5 + 0.7 - #042D4 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 0.72 - #0D3 - w(3) = (-0.540D3 + (0.540D3 + (0.195D3 + (-0.195D3 + (-0.15D2 + (0 - #.37857D5 + (-0.164409D6 + (0.289485D6 + (-0.257985D6 + (0.116193D6 - # - 0.21126D5 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y - # / 0.720D3 - w(4) = 0.1D1 + (-0.980D3 + (0.280D3 + (-0.63090D5 + (0.274015D6 + - #(-0.482475D6 + (0.429975D6 + (-0.193655D6 + 0.35210D5 * y) * y) * - #y) * y) * y) * y ** 2) * y ** 2) * y ** 2 / 0.720D3 - w(5) = (0.540D3 + (0.540D3 + (-0.195D3 + (-0.195D3 + (0.15D2 + (0. - #63085D5 + (-0.274015D6 + (0.482475D6 + (-0.429975D6 + (0.193655D6 - #- 0.35210D5 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y - #/ 0.720D3 - w(6) = (-0.108D3 + (-0.54D2 + (0.120D3 + (0.60D2 + (-0.12D2 + (-0. - #37848D5 + (0.164409D6 + (-0.289485D6 + (0.257985D6 + (-0.116193D6 - #+ 0.21126D5 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y - #/ 0.720D3 - w(7) = (0.12D2 + (0.4D1 + (-0.15D2 + (-0.5D1 + (0.3D1 + (0.12615D5 - # + (-0.54803D5 + (0.96495D5 + (-0.85995D5 + (0.38731D5 - 0.7042D4 - #* y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 0.720D3 - w(8) = (-0.1802D4 + (0.7829D4 + (-0.13785D5 + (0.12285D5 + (-0.553 - #3D4 + 0.1006D4 * y) * y) * y) * y) * y) * y ** 6 / 0.720D3</Text-field> -</Output> -</Group> -<Group labelreference="L765" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L764" drawlabel="true"> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output"> w(1) = (-0.12D2 + (0.4D1 + (0.15D2 + (-0.5D1 + (-0.3D1 + (0.1803D4</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output"> # + (-0.7829D4 + (0.13785D5 + (-0.12285D5 + (0.5533D4 - 0.1006D4 * - #y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 0.720D3 - w(2) = (0.108D3 + (-0.54D2 + (-0.120D3 + (0.60D2 + (0.12D2 + (-0.1 - #2620D5 + (0.54803D5 + (-0.96495D5 + (0.85995D5 + (-0.38731D5 + 0.7 - #042D4 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 0.72 - #0D3 - w(3) = (-0.540D3 + (0.540D3 + (0.195D3 + (-0.195D3 + (-0.15D2 + (0 - #.37857D5 + (-0.164409D6 + (0.289485D6 + (-0.257985D6 + (0.116193D6 - # - 0.21126D5 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y - # / 0.720D3 - w(4) = 0.1D1 + (-0.980D3 + (0.280D3 + (-0.63090D5 + (0.274015D6 + - #(-0.482475D6 + (0.429975D6 + (-0.193655D6 + 0.35210D5 * y) * y) * - #y) * y) * y) * y ** 2) * y ** 2) * y ** 2 / 0.720D3</Text-field> -</Output> -</Group> -<Group labelreference="L707" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L696" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L683" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L701" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L695" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L672" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L1" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -</Worksheet> \ No newline at end of file diff --git a/Docs/remeshing_formulas/calcul_lambda6star_C6.mw b/Docs/remeshing_formulas/calcul_lambda6star_C6.mw deleted file mode 100644 index 2713ffa5b13bb5f35c54a483e5becc00717a36ac..0000000000000000000000000000000000000000 --- a/Docs/remeshing_formulas/calcul_lambda6star_C6.mw +++ /dev/null @@ -1,457 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<Worksheet> -<Version major="16" minor="0"/> -<Label-Scheme value="2" prefix=""/> -<View-Properties presentation="false"><Zoom percentage="150"/></View-Properties> -<MapleNet-Properties elisiondigitsbefore="100" labelling="true" indentamount="4" elisiontermsthreshold="10000" ansi="false" errorbreak="1" useclientjvm="true" echo="1" imaginaryunit="I" labelwidth="20" contextmenusize="automatic" plotdriver="opengl" elisiondigitsafter="100" plotoutput="terminal" helpbrowser="standard" rtablesize="10" elisiontermsbefore="100" elisiondigitsthreshold="10000" typesetting="standard" plotdevice="inline" verboseproc="1" showassumed="1" errorcursor="false" longdelim="true" plotoptions="" quiet="false" elisiontermsafter="100" screenwidth="79" preplot="" prettyprint="3" displayprecision="-1" screenpixelheight="1050" warnlevel="3" screenheight="25" latexwidth="6.0" postplot="" prompt="> " ShowLabels="true"/> -<Styles><Font name="Ordered List 1" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 2" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 3" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 5" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Author" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Warning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Caption Reference" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input Placeholder" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[200,0,200]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="true"/> -<Font name="Maple Plot" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Code" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Line Printed Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Diagnostic" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[40,120,40]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Inert Output" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[144,144,144]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Normal" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,128,128]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Maple Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Dash Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Math" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Input" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkError" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Header and Footer" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="10" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Error" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 1" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Bullet Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Equation Label" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 3" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="14" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 2" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="16" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkWarning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Dictionary Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[147,0,15]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Caption Text" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="List Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Layout name="Ordered List 1" alignment="left" bullet="numeric" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 2" alignment="left" bullet="alphabetic" firstindent="0" leftmargin="36" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 3" alignment="left" bullet="roman" firstindent="0" leftmargin="72" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 4" alignment="left" bullet="ALPHABETIC" firstindent="0" leftmargin="108" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 5" alignment="left" bullet="ROMAN" firstindent="0" leftmargin="144" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Author" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="8" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Warning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Annotation Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Plot" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Line Printed Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Text Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="newline" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Diagnostic" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Normal" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Output" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.3" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Dash Item" alignment="left" bullet="dash" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkError" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Error" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 1" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="4" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Bullet Item" alignment="left" bullet="dot" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 4" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 3" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 2" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="2" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkWarning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="List Item" alignment="left" bullet="indent" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Pencil-style name="Pencil 5" pen-color="[255,0,0]" pen-height="5.0" pen-width="5.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 4" pen-color="[0,0,255]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 3" pen-color="[0,0,0]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 2" pen-color="[0,0,255]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 1" pen-color="[0,0,0]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Highlighter-style name="Highlighter 2" pen-color="[255,204,0]" pen-height="14.0" pen-width="14.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 1" pen-color="[255,153,255]" pen-height="12.0" pen-width="8.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 4" pen-color="[0,255,255]" pen-height="32.0" pen-width="32.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 3" pen-color="[51,255,0]" pen-height="24.0" pen-width="24.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 5" pen-color="[255,255,0]" pen-height="48.0" pen-width="48.0" pen-opacity="0.8"/> -</Styles> -<Task-table> - <Task-category name="<default>"> - </Task-category> -</Task-table> -<Task> -</Task> -<Group labelreference="L755" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYkLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjlGOS1GNjYtUSI6RidGOUY7L0Y/Rj1GQEZCRkRGRkZIL0ZLRk9GTS1GLDYlUSdob3JuZXJGJ0YvRjItRjY2LVEqJmNvbG9uZXE7RidGOUY7RmhuRkBGQkZERkZGSEZpbkZNLUYsNiVRKGNvZGVnZW5GJ0YvRjItRlQ2Ji1GIzYkRmpuRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zlbi8lK2V4ZWN1dGFibGVHRj1GOQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYkLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjlGOS1GNjYtUSI6RidGOUY7L0Y/Rj1GQEZCRkRGRkZIL0ZLRk9GTS1GLDYlUSdob3JuZXJGJ0YvRjItRjY2LVEqJmNvbG9uZXE7RidGOUY7RmhuRkBGQkZERkZGSEZpbkZNLUYsNiVRKGNvZGVnZW5GJ0YvRjItRlQ2Ji1GIzYkRmpuRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zlbi8lK2V4ZWN1dGFibGVHRj1GOQ==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEnaG9ybmVyRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GLDYlUTBjb2RlZ2VuOi1ob3JuZXJGJ0YvRjIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOQ==">SSdob3JuZXJHNiQlKnByb3RlY3RlZEcvSSttb2R1bGVuYW1lRzYiSShjb2RlZ2VuRzYkRiRJKF9zeXNsaWJHRic=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L744" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Calcul de la fomule Lambda_6^*:</Text-field> -<Text-field style="Text" layout="Normal"> - 8 points</Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8"> - degr\303\251 13</Font></Text-field> -<Text-field style="Text" layout="Normal"> - C6</Text-field> -<Text-field style="Text" layout="Normal"> - Moments d'ordre 6</Text-field> -</Input> -</Group> -<Group labelreference="L724" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="xrange := -4 .. 4; 1; d := 13" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlMtSSNtbkdGJDYkUSI0RidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZSL0ZOUSYwLjBlbUYnRlUtRjY2LVEiO0YnRjlGOy9GP0YxRkBGQkZERkZGSC9GS0ZnbkZNLUYsNiVRImRGJ0YvRjJGNS1GVjYkUSMxM0YnRjkvJStleGVjdXRhYmxlR0Y9Rjk=">QyU+SSd4cmFuZ2VHNiI7ISIlIiIlIiIiPkkiZEdGJSIjOA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYoLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlctSSNtbkdGJDYkUSI0RidGOUY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRlYvRk5RJjAuMGVtRidGWS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RlxvRl9vRjk=">OyEiJSIiJQ==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiZEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSSNtbkdGJDYkUSMxM0YnRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOQ==">IiM4</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L731" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="p[0] := proc (x) options operator, arrow; sum(c[0, i]*x^i, i = 0 .. d) end proc;" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZALUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYkLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJ0Y+LyUvc3Vic2NyaXB0c2hpZnRHRj0tSSNtb0dGJDYtUSomY29sb25lcTtGJ0Y+LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZILyUpc3RyZXRjaHlHRkgvJSpzeW1tZXRyaWNHRkgvJShsYXJnZW9wR0ZILyUubW92YWJsZWxpbWl0c0dGSC8lJ2FjY2VudEdGSC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRlctRi82JVEieEYnRjJGNS1GQzYtUSgmc3JhcnI7RidGPkZGRklGS0ZNRk9GUUZTL0ZWUSYwLjBlbUYnL0ZZRltvLUYvNiVRJHN1bUYnRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYtLUYsNiUtRi82JVEiY0YnRjJGNS1GIzYmRjotRkM2LVEiLEYnRj5GRi9GSkY0RktGTUZPRlFGU0Zqbi9GWVEsMC4zMzMzMzMzZW1GJy1GLzYlUSJpRidGMkY1Rj5GQC1GQzYtUScmc2RvdDtGJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG8tSSVtc3VwR0YkNiVGWi1GIzYlLUZDNi1RIn5GJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG9GYnBGPi8lMXN1cGVyc2NyaXB0c2hpZnRHRj1GXHBGXXFGYnAtRkM2LVEiPUYnRj5GRkZJRktGTUZPRlFGU0ZVRlhGOi1GQzYtUSMuLkYnRj5GRkZJRktGTUZPRlFGUy9GVlEsMC4yMjIyMjIyZW1GJ0Zcby1GLzYlUSJkRidGMkY1Rj5GPi1GQzYtUSI7RidGPkZGRl9wRktGTUZPRlFGU0ZqbkZYLUYsNiVGLi1GIzYkLUY7NiRRIjFGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGZHJGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLUYsNiVGLi1GIzYkLUY7NiRRIjJGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGY3NGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLUYsNiVGLi1GIzYkLUY7NiRRIjNGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGYnRGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLyUrZXhlY3V0YWJsZUdGSEY+">Qyo+JkkicEc2IjYjIiIhZio2I0kieEdGJkYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLUkkc3VtR0YmNiQqJiZJImNHRiY2JEYoSSJpR0YmIiIiKTkkRjZGNy9GNjtGKEkiZEdGJkYmRiZGJkY3PiZGJTYjRjdmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRjdGNkY3RjhGN0Y6RiZGJkYmRjc+JkYlNiMiIiNmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRklGNkY3RjhGN0Y6RiZGJkYmRjc+JkYlNiMiIiRmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRlNGNkY3RjhGN0Y6RiZGJkYmRjc=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R0Y9LUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZm4tRiM2KC1GLzYlUSJ4RidGMkY1LUZJNi1RKCYjODU5NDtGJ0Y+RkxGTkZQRlJGVEZWRlgvRmVuUSYwLjBlbUYnL0ZobkZiby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZJNi1RJiZTdW07RidGPkZMRk4vRlFGNEZSL0ZVRjQvRldGNEZYRmFvL0ZoblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRkk2LVEiPUYnRj5GTEZORlBGUkZURlZGWEZaRmduRjpGQEZDRj4tRi82JVEiZEYnRjJGNUZYLyUsYWNjZW50dW5kZXJHRkUtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdRJDUuMEYnLyUmZGVwdGhHRmNxLyUqbGluZWJyZWFrR1ElYXV0b0YnLUYjNiYtRiw2JS1GLzYlUSJjRidGMkY1LUYjNihGOi1GSTYtUSIsRidGPkZML0ZPRjRGUEZSRlRGVkZYRmFvL0ZoblEsMC4zMzMzMzMzZW1GJ0ZjcEZARkNGPkZGLUZJNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y+RkxGTkZQRlJGVEZWRlhGYW9GY28tSSVtc3VwR0YkNiVGW29GY3AvJTFzdXBlcnNjcmlwdHNoaWZ0R0Y9Rj5GQEZDRj5GQEZDRj5GQEZDRj4=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIUkiaUdGJSIiIik5JEYxRjIvRjE7RjBJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIkkiaUdGJUYwKTkkRjFGMC9GMTsiIiFJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMkYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiI0kiaUdGJSIiIik5JEYxRjIvRjE7IiIhSSJkR0YlRiVGJUYl</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiM0YnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiJEkiaUdGJSIiIik5JEYxRjIvRjE7IiIhSSJkR0YlRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L747" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="P := proc (x) options operator, arrow; piecewise(x < -4, 0, x < -3, p[0](x), x < -2, p[1](x), x < -1, p[2](x), x < 0, p[3](x), x < 1, p[3](-x), x < 2, p[2](-x), x < 3, p[1](-x), x < 4, p[0](-x), 4 <= x, 0) end proc" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KS1GLDYlUSJQRicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnRjcvJSZmZW5jZUdGNi8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0Y2LyUqc3ltbWV0cmljR0Y2LyUobGFyZ2VvcEdGNi8lLm1vdmFibGVsaW1pdHNHRjYvJSdhY2NlbnRHRjYvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZOLUYsNiVRInhGJ0Y0RjctRjs2LVEoJnNyYXJyO0YnRjdGPkZARkJGREZGRkhGSi9GTVEmMC4wZW1GJy9GUEZYLUYsNiVRKnBpZWNld2lzZUYnL0Y1USV0cnVlRicvRjhRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNltxRistSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWC8lJmRlcHRoR0Zlby8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GOzYtUSJ+RidGN0Y+RkBGQkZERkZGSEZKRldGWUZRLUY7Ni1RIjxGJ0Y3Rj5GQEZCRkRGRkZIRkpGTEZPLUY7Ni1RKiZ1bWludXMwO0YnRjdGPkZARkJGREZGRkhGSi9GTVEsMC4yMjIyMjIyZW1GJy9GUEZncC1JI21uR0YkNiRRIjRGJ0Y3LUY7Ni1RIixGJ0Y3Rj4vRkFGaG5GQkZERkZGSEZKRlcvRlBRLDAuMzMzMzMzM2VtRictRmpwNiRRIjBGJ0Y3Rl1xRl1wRmBvRl1wLUYsNiVGU0ZnbkZpbkZgcEZjcC1GanA2JFEiM0YnRjdGXXEtSSVtc3ViR0YkNiUtRiw2JVEicEYnRmduRmluLUYjNiVGY3FGZ25GaW4vJS9zdWJzY3JpcHRzaGlmdEdGZXEtRlxvNiQtRiM2JEZmcUY3RjdGXXFGYG9GXXBGZnFGYHBGY3AtRmpwNiRRIjJGJ0Y3Rl1xLUZccjYlRl5yLUYjNiUtRmpwNiRRIjFGJ0Y3RmduRmluRmNyRmVyRl1xRmBvRl1wRlFGYHBGY3BGYHNGXXEtRlxyNiUtRiw2JUZgckY0RjctRiM2JEZpckY3RmNyRmVyRl1xRmBvRl1wRmZxRmBwRmNxRl1xLUZccjYlRl5yLUYjNiRGaHFGN0ZjckZlckZdcUZgb0ZdcEZmcUZgcEZgc0ZdcUZpcy1GXG82JC1GIzYlRmNwRmZxRjdGN0ZdcUZgb0ZdcEZmcUZgcEZpckZdcS1GXHI2JUZeckZnc0ZjckZddEZdcUZgb0ZdcEZmcUZgcEZocUZdcUZcc0ZddEZdcUZgb0ZdcEZmcUZgcEZpcEZdcUZbckZddEZdcUZgb0ZdcEZmcS1GOzYtUS8mR3JlYXRlckVxdWFsO0YnRjdGPkZARkJGREZGRkhGSkZMRk9GaXBGXXFGXXBGY3FGN0Y3RjdGKy8lK2V4ZWN1dGFibGVHRjZGNw==">PkkiUEc2ImYqNiNJInhHRiRGJDYkSSlvcGVyYXRvckdGJEkmYXJyb3dHRiRGJC1JKnBpZWNld2lzZUclKnByb3RlY3RlZEc2NjI5JCEiJSIiITJGMCEiJC0mSSJwR0YkNiNGMjYjRjAyRjAhIiMtJkY3NiMiIiJGOTJGMCEiIi0mRjc2IyIiI0Y5MkYwRjItJkY3NiMiIiRGOTJGMEY/LUZINiMsJEYwRkEyRjBGRS1GQ0ZNMkYwRkotRj1GTTJGMCIiJS1GNkZNMUZURjBGMkYkRiRGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiUEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2KC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCYjODU5NDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWC1GIzYoLUYsNiVRKnBpZWNld2lzZUYnRi9GMi1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGV0ZZLUkobWZlbmNlZEdGJDYkLUYjNkwtRiM2KEZRLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlxwLUkjbW5HRiQ2JFEiNEYnRjlGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGVy9GTlEsMC4zMzMzMzMzZW1GJy1GX3A2JFEiMEYnRjlGZ3AtRiM2KEZRRmNvLUYjNiVGaG8tRl9wNiRRIjNGJ0Y5RjlGYnBGZXBGOUZncC1GIzYoLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JkZdcUZicEZlcEY5LyUvc3Vic2NyaXB0c2hpZnRHRl9xRmluLUZdbzYkLUYjNiZGUUZicEZlcEY5RjlGYnBGZXBGOUZncC1GIzYoRlFGY28tRiM2JUZoby1GX3A2JFEiMkYnRjlGOUZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2Ji1GX3A2JFEiMUYnRjlGYnBGZXBGOUZhckZpbkZjckZicEZlcEY5RmdwLUYjNihGUUZjby1GIzYlRmhvRmRzRjlGYnBGZXBGOUZncC1GIzYoLUZqcTYlRlxyLUYjNiZGW3NGYnBGZXBGOUZhckZpbkZjckZicEZlcEY5RmdwLUYjNihGUUZjb0ZdcUZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2JkZkcUZicEZlcEY5RmFyRmluRmNyRmJwRmVwRjlGZ3AtRiM2KEZRRmNvRmRzRmJwRmVwRjlGZ3AtRiM2KEZldEZpbi1GXW82JC1GIzYmLUYjNidGaG9GUUZicEZlcEY5RmJwRmVwRjlGOUZicEZlcEY5RmdwLUYjNihGUUZjb0Zbc0ZicEZlcEY5RmdwLUYjNihGXXRGaW5GXXVGYnBGZXBGOUZncC1GIzYoRlFGY29GZHFGYnBGZXBGOUZncC1GIzYoRmBzRmluRl11RmJwRmVwRjlGZ3AtRiM2KEZRRmNvRl5wRmJwRmVwRjlGZ3AtRiM2KEZpcUZpbkZddUZicEZlcEY5RmdwLUYjNihGXnAtRjY2LVElJmxlO0YnRjlGO0Y+RkBGQkZERkZGSEZKRk1GUUZicEZlcEY5RmdwRl1xRmJwRmVwRjlGOUZicEZlcEY5RmJwRmVwRjlGYnBGZXBGOQ==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzY2MjkkISIlIiIhMkYuISIkLSZJInBHRiU2I0YwNiNGLjJGLiEiIy0mRjU2IyIiIkY3MkYuISIiLSZGNTYjIiIjRjcyRi5GMC0mRjU2IyIiJEY3MkYuRj0tRkY2IywkRi5GPzJGLkZDLUZBRksyRi5GSC1GO0ZLMkYuIiIlLUY0RksxRlJGLkYwRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L728" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="E := [eval(P(x), x = 0) = 1, eval(P(x), x = -1) = 0, eval(P(x), x = -2) = 0, eval(P(x), x = -3) = 0, eval(P(x), x = -4) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiRUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNjwtRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNiktRiw2JVEiUEYnRi9GMi1GUDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5RjlGOUZnby1GW3A2JFEiMUYnRjlGX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ28tRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmlwRl5wRjlGOUZnb0Zqb0Zfb0ZULUZQNiQtRiM2KkZlbkZobkZfb0Zcb0Znb0ZlcC1GW3A2JFEiMkYnRjlGOUY5RmdvRmpvRl9vRlQtRlA2JC1GIzYqRmVuRmhuRl9vRlxvRmdvRmVwLUZbcDYkUSIzRidGOUY5RjlGZ29Gam9GX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ29GZXAtRltwNiRRIjRGJ0Y5RjlGOUZnb0Zqby8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmByRjk=">QyQ+SSJFRzYiNycvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJS9GLyIiISIiIi8tRik2JEYsL0YvISIiRjEvLUYpNiRGLC9GLyEiI0YxLy1GKTYkRiwvRi8hIiRGMS8tRik2JEYsL0YvISIlRjFGNw==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L756" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C0 := [seq(eval(p[j](x), x = j-4+1) = eval(p[j+1](x), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRl5wLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmRvLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYHEtSSNtbkdGJDYkUSI0RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl9xRmFxLUZjcTYkUSIxRidGOUY5RjlGaXBGZW4tRlA2JC1GIzYtLUZdbzYlRl9vLUYjNiZGZG9GZnFGaXFGOUZnb0Zqb0ZhcEZecEZpcEZkb0ZccUZicUZmcUZpcUY5RjlGYXBGZG9GaXAtRmNxNiRGaW9GOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZfcS9GTkZmcC1GY3E2JFEiMkYnRjlGOUY5LyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GXXNGOQ==">QyQ+SSNDMEc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS9GNS1JIitHRik2JCwmRjMiIiIhIiVGO0Y7LUYtNiQtJkYxNiMsJkYzRjtGO0Y7RjRGNi9GMzsiIiEiIiMhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L754" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C1 := [seq(eval(diff(p[j](x), x), x = j-4+1) = eval(diff(p[j+1](x), x), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwRjlGOUZocEZlcC1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbcC1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmdxLUkjbW5HRiQ2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocS1GanE2JFEiMUYnRjlGOUY5RmBxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JkZbcEZdckZgckY5Rl5wRmFwRmhwRmVwRjlGOUZocEZlcEZgcUZbcEZjcUZpcUZdckZgckY5RjlGaHBGW3BGYHEtRmpxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZmcS9GTkZdcS1GanE2JFEiMkYnRjlGOUY5LyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRiw2JVEkQzEwRidGL0YyRjUtRlA2Ji1GIzYpRmVuLUZQNiQtRiM2KUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JC1GanE2JFEiM0YnRjlGOUZecEZhcEZocEZlcEY5RjlGaHBGZXBGYHFGX3NGOUY5RmBxRmVuLUZQNiQtRiM2KUZcby1GUDYkLUYjNidGYnUtRlA2JC1GIzYlLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocUZlcEY5RjlGaHBGZXBGOUY5RmhwRmVwRmBxRl9zRjlGOUZoc0Y5RjlGanNGXXRGYHRGaHNGOQ==">QyY+SSNDMUc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJUY4L0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUY+Rj4tRi02JC1GMDYkLSZGNDYjLCZGNkY+Rj5GPkY3RjhGOS9GNjsiIiEiIiMhIiI+SSRDMTBHRiU3Iy8tRi02JC1GMDYkLSZGNDYjIiIkRjdGOC9GOEZKLUYtNiQtRjA2JC1GVjYjLCRGOEZMRjhGWUZM</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L738" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C2 := [seq(eval(diff(p[j](x), `$`(x, 2)), x = j-4+1) = eval(diff(p[j+1](x), `$`(x, 2)), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIyRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcUZkcUY5RjkvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbdEY5">QyQ+SSNDMkc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIjL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiFGPCEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L719" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C3 := [seq(eval(diff(p[j](x), `$`(x, 3)), x = j-4+1) = eval(diff(p[j+1](x), `$`(x, 3)), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIzRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcS1GZXE2JFEiMkYnRjlGOUY5RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSRDMzBGJ0YvRjJGNS1GUDYmLUYjNihGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2KS1GZG82JUZmby1GIzYkRmRxRjlGXnBGYXBGaHBGZXBGYHFGZHFGOUY5RmhwRmVwRmhxRmZzRjlGOUZocUZlbi1GUDYkLUYjNilGXG8tRlA2JC1GIzYpRmZ1LUZQNiQtRiM2JS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGXnJGYHJGZXBGOUY5RmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZmc0Y5RjlGOUY5Rl50RmF0RmR0LyUrZXhlY3V0YWJsZUdGPUY5">QyY+SSNDM0c2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIkL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiEiIiMhIiI+SSRDMzBHRiU3Iy8tRi02JC1GMDYkLSZGNDYjRjxGN0Y5L0Y4Rk4tRi02JC1GMDYkLUZaNiMsJEY4RlBGOUZmbkZQ</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L750" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C4 := [seq(eval(diff(p[j](x), `$`(x, 4)), x = j-4+1) = eval(diff(p[j+1](x), `$`(x, 4)), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSI0RidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfckZkcS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5yRmByLUZlcTYkUSIxRidGOUY5RjlGaHFGZW4tRlA2JC1GIzYtRlxvLUZQNiQtRiM2KS1GZG82JUZmby1GIzYmRltwRmFyRmRyRjlGXnBGYXBGaHBGZXBGYHFGZHFGOUY5RmhwRmVwRmhxRltwRltyRmRxRmFyRmRyRjlGOUZocEZbcEZocS1GZXE2JEZgcEY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRl5yRmNxLUZlcTYkUSIyRidGOUY5RjlGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSNDNEc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIlL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiEiIiMhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L727" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C5 := [seq(eval(diff(p[j](x), `$`(x, 5)), x = j-4+1) = eval(diff(p[j+1](x), `$`(x, 5)), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzVGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSI1RidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcS1GZXE2JFEiMkYnRjlGOUY5RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSRDNTBGJ0YvRjJGNS1GUDYmLUYjNihGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2KS1GZG82JUZmby1GIzYkLUZlcTYkUSIzRidGOUY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZmc0Y5RjlGaHFGZW4tRlA2JC1GIzYpRlxvLUZQNiQtRiM2KUZmdS1GUDYkLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRl5yRmByRmVwRjlGOUZocEZlcEZgcUZkcUY5RjlGaHBGZXBGaHFGZnNGOUY5RjlGOUZedEZhdEZkdC8lK2V4ZWN1dGFibGVHRj1GOQ==">QyY+SSNDNUc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiImL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiEiIiMhIiI+SSRDNTBHRiU3Iy8tRi02JC1GMDYkLSZGNDYjIiIkRjdGOS9GOEZOLUYtNiQtRjA2JC1GWjYjLCRGOEZQRjlGZ25GUA==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L760" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C6 := [seq(eval(diff(p[j](x), `$`(x, 6)), x = j-4+1) = eval(diff(p[j+1](x), `$`(x, 6)), x = j-4+1), j = 0 .. 2)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzZGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSI2RidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiNEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcS1GZXE2JFEiMkYnRjlGOUY5RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS8lK2V4ZWN1dGFibGVHRj1GOQ==">QyQ+SSNDNkc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiInL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJUZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiEiIiMhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L739" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="CEND := [eval(diff(p[0](x), x), x = -4) = 0, eval(diff(p[0](x), `$`(x, 2)), x = -4) = 0, eval(diff(p[0](x), `$`(x, 3)), x = -4) = 0, eval(diff(p[0](x), `$`(x, 4)), x = -4) = 0, eval(diff(p[0](x), `$`(x, 5)), x = -4) = 0, eval(diff(p[0](x), `$`(x, 6)), x = -4) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElQ0VOREYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GUy1JKG1mZW5jZWRHRiQ2Ji1GIzZBLUYsNiVRJWV2YWxGJ0YvRjItRlY2JC1GIzYqLUYsNiVRJWRpZmZGJ0YvRjItRlY2JC1GIzYnLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JC1JI21uR0YkNiRRIjBGJ0Y5RjkvJS9zdWJzY3JpcHRzaGlmdEdGXXAtRlY2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGSi9GTlEsMC4zMzMzMzMzZW1GJ0ZkcEY5RjlGZ3BGZHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmRxLUZbcDYkUSI0RidGOUY5RjlGXXFGam9GZ3BGWi1GVjYkLUYjNipGW28tRlY2JC1GIzYpRmJvRmBwRmdwRmRwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZbcDYkUSIyRidGOUY5RjlGZ3BGZHBGXXFGYHFGZnFGOUY5Rl1xRmpvRmdwRlotRlY2JC1GIzYqRltvLUZWNiQtRiM2KUZib0ZgcEZncEZkcEZhci1GW3A2JFEiM0YnRjlGOUY5RmdwRmRwRl1xRmBxRmZxRjlGOUZdcUZqb0ZncEZaLUZWNiQtRiM2KkZbby1GVjYkLUYjNilGYm9GYHBGZ3BGZHBGYXJGZnFGOUY5RmdwRmRwRl1xRmBxRmZxRjlGOUZdcUZqb0ZncEZaLUZWNiQtRiM2KkZbby1GVjYkLUYjNilGYm9GYHBGZ3BGZHBGYXItRltwNiRRIjVGJ0Y5RjlGOUZncEZkcEZdcUZgcUZmcUY5RjlGXXFGam9GZ3BGWi1GVjYkLUYjNipGW28tRlY2JC1GIzYpRmJvRmBwRmdwRmRwRmFyLUZbcDYkUSI2RidGOUY5RjlGZ3BGZHBGXXFGYHFGZnFGOUY5Rl1xRmpvLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZSRlRGYHVGOQ==">QyQ+SSVDRU5ERzYiNygvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JJWRpZmZHRio2JC0mSSJwR0YlNiMiIiE2I0kieEdGJUY1L0Y1ISIlRjMvLUYpNiQtRi02JEYvLUkiJEdGKjYkRjUiIiNGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIiRGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIiVGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIiZGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIidGNkYzISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L753" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM0 := `assuming`([PolynomialTools[CoefficientList](collect(sum(eval(P(x), x = s-l), l = xrange)-s^0, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0wRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRlM2JC1GIzYoLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlM2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GUzYkLUYjNiktRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0ZccS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXItRiw2JVEibEYnRi9GMkY5RjlGX3FGY3JGZ3EtRiw2JVEneHJhbmdlRidGL0YyRjlGOUZdci1JJW1zdXBHRiQ2JS1GUzYkLUYjNiRGanFGOUY5LUYjNiQtSSNtbkdGJDYkUSIwRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdGZXNGX3FGanFGOUY5Rl9xRmpxRlpGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGY3EvRk5GZHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGY3FGW3RGaHNGanEtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GYnNGaHMtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZodEY7Rj5GQEZCRkRGRkZIRmNxRlt0RmhzRmpxLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZjczYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZaRjk=">QyQ+SSRETTBHNiItSSlhc3N1bWluZ0dGJTYkNyMtJkkwUG9seW5vbWlhbFRvb2xzR0YlNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGJTYkLCYtSSRzdW1HNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2JC1JJWV2YWxHRjc2JC1JIlBHRiU2I0kieEdGJS9GQCwmSSJzR0YlIiIiSSJsR0YlISIiL0ZFSSd4cmFuZ2VHRiVGRC1JIl5HRjc2JEZDIiIhRkZGQ0ZDNyMtSSRhbmRHRjc2JC1JIj5HRjdGSzJGQ0ZERkY=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L720" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM0 := [seq(DM0[j] = 0, j = 1 .. numelems(DM0))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiYtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Ly1GLDYlUSRETTBGJ0YvRjItRlA2Ji1GIzYlLUYsNiVRImpGJ0YvRjIvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXG9GZ28tRltwNiRRIjFGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmNwLUYsNiVRKW51bWVsZW1zRidGL0YyLUZQNiQtRiM2JUZlbkZfb0Y5RjlGX29GOUY5Rl9vRjlGOUZhb0Zkby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYjUSFGJ0Zfb0Y5">QyQ+SSVsRE0wRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0wR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L725" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM1 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l*(eval(P(x), x = s-l)), l = xrange)-s, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistRiw2JVEibEYnRi9GMi1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaHAtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZncC9GTlEsMC4zMzMzMzMzZW1GJ0ZocS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GW3NGYXBGOUY5RltyRmFwRmFyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGZ3ItSSVtc3VwR0YkNiUtRlg2JC1GIzYkRmRyRjlGOS1GIzYkLUkjbW5HRiQ2JFEiMUYnRjlGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGW3JGZHJGOUY5RltyRmRyRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqczYkRl90RjlGYHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZhdUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmlzLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmB0LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTFHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIiLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiVGPEY7ISIiRjwvRjtJJ3hyYW5nZUdGJUY8RkZGR0ZGRkY3Iy1JJGFuZEdGLzYkLUkiPkdGLzYkRkYiIiEyRkZGPEZH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L736" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM1 := [seq(DM1[j] = 0, j = 1 .. numelems(DM1))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTFGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0xRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0xR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L740" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM2 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^2*(eval(P(x), x = s-l)), l = xrange)-s^2, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0yRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistSSVtc3VwR0YkNiUtRiw2JVEibEYnRi9GMi1GIzYlLUkjbW5HRiQ2JFEiMkYnRjlGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GZHEtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZjcS9GTlEsMC4zMzMzMzMzZW1GJ0Zkci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GZ3NGZHBGOUY5RmdyRmRwRl1zLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGY3MtRmJwNiUtRlg2JC1GIzYkRmBzRjlGOS1GIzYkRmlwRjlGXXFGZ3JGYHNGOUY5RmdyRmBzRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkRl9xRjlGZHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZldUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZkdC8lK2V4ZWN1dGFibGVHRj1GOQ==">QyQ+SSRETTJHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIjLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L716" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM2 := [seq(DM2[j] = 0, j = 1 .. numelems(DM2))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTJGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0yRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0yR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L733" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM3 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^3*(eval(P(x), x = s-l)), l = xrange)-s^3, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE0zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSIzRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTNHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIkLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L746" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM3 := [seq(DM3[j] = 0, j = 1 .. numelems(DM3))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNM0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTNGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0zRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0zR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L723" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM4 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^4*(eval(P(x), x = s-l)), l = xrange)-s^4, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE00RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI0RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTRHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIlLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L759" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM4 := [seq(DM4[j] = 0, j = 1 .. numelems(DM4))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTRGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE00RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE00R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L742" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM5 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^5*(eval(P(x), x = s-l)), l = xrange)-s^5, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE01RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI1RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTVHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiImLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L732" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM5 := [seq(DM5[j] = 0, j = 1 .. numelems(DM5))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTVGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE01RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE01R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L730" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM6 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^6*(eval(P(x), x = s-l)), l = xrange)-s^6, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE02RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI2RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTZHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiInLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L734" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM6 := [seq(DM6[j] = 0, j = 1 .. numelems(DM6))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTZGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE02RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE02R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L757" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="inconnues := [seq(seq(c[i, j], j = 0 .. d), i = 0 .. 3)]; 1; numelems(inconnues)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2Ji1GLDYlUSRzZXFGJ0YvRjItRlA2JC1GIzYrRlQtRlA2JC1GIzYqLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2Ji1GLDYlUSJpRidGL0YyLUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRictRiw2JVEiakYnRi9GMkY5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGZG9GXHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSNtbkdGJDYkRmFwRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GaW8tRiw2JVEiZEYnRi9GMkY5RjlGZG9GYW9GYnBGZXBGaHAtRmZwNiRRIjNGJ0Y5RjlGOS8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjtGJ0Y5RjtGZ29GQEZCRkRGRkZIRmhvRk0tRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRitGOUY5RmRxRjk=">QyU+SSppbmNvbm51ZXNHNiI3Iy1JJHNlcUclKnByb3RlY3RlZEc2JC1GKDYkJkkiY0dGJTYkSSJpR0YlSSJqR0YlL0YxOyIiIUkiZEdGJS9GMDtGNCIiJCIiIi1JKW51bWVsZW1zR0YpNiNGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZeci1JJW1zdWJHRiQ2JS1GLDYlUSJjRidGL0YyLUYjNigtSSNtbkdGJDYkUSIwRidGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmZuLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjkvJS9zdWJzY3JpcHRzaGlmdEdGaW5Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjFGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjJGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjNGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjRGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjVGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjZGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjdGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjhGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjlGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIzEwRidGOUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmZuRmpuLUZnbjYkUSMxMUYnRjlGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZmbkZqbi1GZ242JFEjMTJGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIzEzRidGOUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmZuRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GXXBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZkcEZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRltxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GYnFGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZpcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmByRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GZ3JGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZec0Zib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmVzRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GXHRGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZjdEZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmp0RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GYXVGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZmbkZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRl1wRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GZHBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZbcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmJxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GaXFGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZgckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmdyRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GXnNGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZlc0Zib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRlx0RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GY3RGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZqdEZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmF1RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GZm5GYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZdcEZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRmRwRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GW3FGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZicUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRmlxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GYHJGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZnckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRl5zRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GZXNGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZcdEZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRmN0RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GanRGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZhdUZib0Zlb0Y5RmdvRmJvRmVvRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zib0Zlb0Y5">N1omSSJjRzYiNiQiIiFGJyZGJDYkRiciIiImRiQ2JEYnIiIjJkYkNiRGJyIiJCZGJDYkRiciIiUmRiQ2JEYnIiImJkYkNiRGJyIiJyZGJDYkRiciIigmRiQ2JEYnIiIpJkYkNiRGJyIiKiZGJDYkRiciIzUmRiQ2JEYnIiM2JkYkNiRGJyIjNyZGJDYkRiciIzgmRiQ2JEYqRicmRiQ2JEYqRiomRiQ2JEYqRi0mRiQ2JEYqRjAmRiQ2JEYqRjMmRiQ2JEYqRjYmRiQ2JEYqRjkmRiQ2JEYqRjwmRiQ2JEYqRj8mRiQ2JEYqRkImRiQ2JEYqRkUmRiQ2JEYqRkgmRiQ2JEYqRksmRiQ2JEYqRk4mRiQ2JEYtRicmRiQ2JEYtRiomRiQ2JEYtRi0mRiQ2JEYtRjAmRiQ2JEYtRjMmRiQ2JEYtRjYmRiQ2JEYtRjkmRiQ2JEYtRjwmRiQ2JEYtRj8mRiQ2JEYtRkImRiQ2JEYtRkUmRiQ2JEYtRkgmRiQ2JEYtRksmRiQ2JEYtRk4mRiQ2JEYwRicmRiQ2JEYwRiomRiQ2JEYwRi0mRiQ2JEYwRjAmRiQ2JEYwRjMmRiQ2JEYwRjYmRiQ2JEYwRjkmRiQ2JEYwRjwmRiQ2JEYwRj8mRiQ2JEYwRkImRiQ2JEYwRkUmRiQ2JEYwRkgmRiQ2JEYwRksmRiQ2JEYwRk4=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNj</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L735" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="conditions := [E[], C0[], C1[], C10[], C2[], C3[], C30[], C4[], C5[], C50[], C6[], CEND[], lDM0[], lDM1[], lDM2[], lDM3[], lDM4[], lDM5[], lDM6[]]; -1; numelems(conditions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVErY29uZGl0aW9uc0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GU0Y1LUkobWZlbmNlZEdGJDYmLUYjNmZuLUYsNiVRIkVGJ0YvRjItRlY2Ji1GIzYlLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZKL0ZOUSwwLjMzMzMzMzNlbUYnLUYsNiVRI0MwRidGL0YyLUZWNiYtRiM2JEZbb0Y5RjlGYG9GY29GZm8tRiw2JVEjQzFGJ0YvRjJGX3BGZm8tRiw2JVEkQzEwRidGL0YyRl9wRmZvLUYsNiVRI0MyRidGL0YyRmduRmZvLUYsNiVRI0MzRidGL0YyRmduRmZvLUYsNiVRJEMzMEYnRi9GMkZnbkZmby1GLDYlUSNDNEYnRi9GMkZnbkZmby1GLDYlUSNDNUYnRi9GMkZnbkZmby1GLDYlUSRDNTBGJ0YvRjJGZ25GZm8tRiw2JVEjQzZGJ0YvRjJGZ25GZm8tRiw2JVElQ0VOREYnRi9GMkZfcEZmby1GLDYlUSVsRE0wRidGL0YyRl9wRmZvLUYsNiVRJWxETTFGJ0YvRjJGX3BGZm8tRiw2JVElbERNMkYnRi9GMkZfcEZmby1GLDYlUSVsRE0zRidGL0YyRmduRmZvLUYsNiVRJWxETTRGJ0YvRjJGZ25GZm8tRiw2JVElbERNNUYnRi9GMkZnbkZmby1GLDYlUSVsRE02RidGL0YyRmduRl5vRjlGOUZgb0Zjby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRlJGVC1GLDYlUSludW1lbGVtc0YnRi9GMi1GVjYkLUYjNiRGK0Y5RjlGXm9GOQ==">QyU+SStjb25kaXRpb25zRzYiNzUmSSJFR0YlRiUmSSNDMEdGJUYlJkkjQzFHRiVGJSZJJEMxMEdGJUYlJkkjQzJHRiVGJSZJI0MzR0YlRiUmSSRDMzBHRiVGJSZJI0M0R0YlRiUmSSNDNUdGJUYlJkkkQzUwR0YlRiUmSSNDNkdGJUYlJkklQ0VOREdGJUYlJkklbERNMEdGJUYlJkklbERNMUdGJUYlJkklbERNMkdGJUYlJkklbERNM0dGJUYlJkklbERNNEdGJUYlJkklbERNNUdGJUYlJkklbERNNkdGJUYlISIiLUkpbnVtZWxlbXNHJSpwcm90ZWN0ZWRHNiNGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiRLIg==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L718" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="A, b := LinearAlgebra[GenerateMatrix](conditions, inconnues);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkobWZlbmNlZEdGJDYkLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y4USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZCLyUqc3ltbWV0cmljR0ZCLyUobGFyZ2VvcEdGQi8lLm1vdmFibGVsaW1pdHNHRkIvJSdhY2NlbnRHRkIvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYtUSJ+RidGPkZAL0ZERkJGRUZHRklGS0ZNRk8vRlNGUS1GMTYlUSJiRidGNEY3LyUrZXhlY3V0YWJsZUdGQkY+Rj4tRjs2LVEqJmNvbG9uZXE7RidGPkZARlhGRUZHRklGS0ZNL0ZQUSwwLjI3Nzc3NzhlbUYnL0ZTRl1vLUYxNiVRLkxpbmVhckFsZ2VicmFGJ0Y0RjctRiw2Ji1GIzYlLUYxNiVRL0dlbmVyYXRlTWF0cml4RidGNEY3RmduRj5GPi8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GLDYkLUYjNigtRjE2JVErY29uZGl0aW9uc0YnRjRGN0Y6RlUtRjE2JVEqaW5jb25udWVzRidGNEY3RmduRj5GPi1GOzYtUSI7RidGPkZARkNGRUZHRklGS0ZNRk9GXm9GZ25GPg==">QyQ+NiRJIkFHNiJJImJHRiYtJkkuTGluZWFyQWxnZWJyYUdGJjYjSS9HZW5lcmF0ZU1hdHJpeEdGJjYkSStjb25kaXRpb25zR0YmSSppbmNvbm51ZXNHRiYiIiI=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y1USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMy8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GLjYlUSJiRidGMUY0LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y/RjstRjg2LVEjOj1GJ0Y7Rj0vRkFGP0ZCRkRGRkZIRkovRk1RLDAuMjc3Nzc3OGVtRicvRlBGaW4tRiM2KC1JKG1hY3Rpb25HRiQ2JS1JKG1mZW5jZWRHRiQ2Ji1JJ210YWJsZUdGJDY4LUkkbXRyR0YkNiYtSSRtdGRHRiQ2KC1GIzYmLUYuNiVRK34xMzJ+eH41Nn5GJ0YxRjQtRi42JVEnTWF0cml4RidGMUY0RlVGOy8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGZnAvJStncm91cGFsaWduR0ZmcC8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZdcUZkcEZncEZpcC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRLERhdGF+VHlwZTp+RidGMUY0LUYuNiVRKWFueXRoaW5nRidGMUY0RlVGO0ZkcEZncEZpcEZbcUZecUZkcEZncEZpcC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKlN0b3JhZ2U6fkYnRjFGNC1GLjYlUSxyZWN0YW5ndWxhckYnRjFGNEZVRjtGZHBGZ3BGaXBGW3FGXnFGZHBGZ3BGaXAtRmdvNiYtRmpvNigtRiM2Ji1GLjYlUShPcmRlcjp+RidGMUY0LUYuNiVRLkZvcnRyYW5fb3JkZXJGJ0YxRjRGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwLyUmYWxpZ25HUSVheGlzRicvRmVwUSliYXNlbGluZUYnL0ZocFEnY2VudGVyRicvRmpwUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGMy8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRmF0LyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRlx1LyUmZnJhbWVHRlx1LyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dGPy8lLWVxdWFsY29sdW1uc0dGPy8lLWRpc3BsYXlzdHlsZUdGPy8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0ZpdEY7LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLyUrYWN0aW9udHlwZUdRLWJyb3dzZXJ0YWJsZUYnLyUpcnRhYmxlaWRHUTUxODQ0Njc0NDA3ODIwNjU3OTQwNkYnRjctRl5vNiUtRmFvNiYtRmRvNjgtRmdvNiYtRmpvNigtRiM2Ji1GLjYlUSt+MX4uLn4xMzJ+RidGMUY0LUklbXN1YkdGJDYlLUYuNiVRJ1ZlY3RvckYnRjFGNC1GIzYlLUYuNiVRJ2NvbHVtbkYnRjFGNEZVRjsvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJ0ZVRjtGZHBGZ3BGaXBGW3FGXnFGZHBGZ3BGaXBGYHFGXHJGaHJGZHNGZ3NGaXNGW3RGXXRGX3RGYnRGZHRGZ3RGanRGXXVGX3VGYXVGZHVGZnVGaHVGanVGXXZGO0ZfdkZidkZldi9GaXZRNTE4NDQ2NzQ0MDc4MjA2NTc5Mjg2RidGVUZYRjtGVUZYRjs=">NiQtSSdNYXRyaXhHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2Iy9JJCVpZEdGKCI1MSV6bD95U3VZJT0tJkknVmVjdG9yR0YlNiNJJ2NvbHVtbkdGKDYjL0YrIjUnR3psP3lTdVklPQ==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L717" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[Rank](A)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJVJhbmtGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYkLUYjNiUtRiw2JVEiQUYnRi9GMkY9RkBGQC1GLDYjUSFGJ0Y9RkA=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0klUmFua0dGKDYjSSJBR0Yo</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNj</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L748" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="solutions := solve(conditions, {inconnues[]})" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yNzc3Nzc4ZW1GJy9GTkZTLUYsNiVRJnNvbHZlRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNictRiw2JVErY29uZGl0aW9uc0YnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRlk2Ji1GIzYmLUYsNiVRKmluY29ubnVlc0YnRi9GMi1GWTYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZecEY5RjkvRmFwUSJ8ZnJGJy9GZHBRInxockYnRl5wRjlGOUZecEY5">Pkkqc29sdXRpb25zRzYiLUkmc29sdmVHRiQ2JEkrY29uZGl0aW9uc0dGJDwjJkkqaW5jb25udWVzR0YkRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZeci1GIzYoLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2KC1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGaG4vJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOS8lL3N1YnNjcmlwdHNoaWZ0R0Zbby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZkcC1JJm1mcmFjR0YkNigtRmluNiRRKjI1NTYyMjE0NEYnRjktRmluNiRRIjVGJ0Y5LyUubGluZXRoaWNrbmVzc0dRIjFGJy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZkcS8lKWJldmVsbGVkR0Y9RmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkRmFxRjlGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSo5NzEwOTczNDRGJ0Y5RlxxRl9xRmJxRmVxRmdxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIyRidGOUZkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmdwNigtRmluNiRRLDE1Mjk1ODY3MzI4RidGOS1GaW42JFEjNDVGJ0Y5Rl9xRmJxRmVxRmdxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIzRidGOUZkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmdwNigtRmluNiRRKzU0NDI5MzI2NTZGJ0Y5LUZpbjYkUSMxNUYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjRGJ0Y5RmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFErMjM3MjU3MTc5NkYnRjktRmluNiRRIjlGJ0Y5Rl9xRmJxRmVxRmdxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvRlxxRmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFErMjA2NDUxNzQ2OUYnRjlGW3VGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjZGJ0Y5RmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFErOTU2MzA1NDM4MUYnRjktRmluNiRRJDE4MEYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjdGJ0Y5RmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFErMjIxMDY2NjMzNUYnRjktRmluNiRRJDE0NEYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjhGJ0Y5RmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFEqNzk2OTgwNTQxRidGOS1GaW42JFEkMjQwRidGOUZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcb0ZedkZkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmdwNigtRmluNiRRKTc2NDc0OTc5RidGOUZheUZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEjMTBGJ0Y5RmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFEpNDM5NDYyODdGJ0Y5LUZpbjYkUSQ3MjBGJ0Y5Rl9xRmJxRmVxRmdxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSMxMUYnRjlGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSczNDM3MjFGJ0Y5LUZpbjYkUSM3MkYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIzEyRidGOUZkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmdwNigtRmluNiRRJjgxOTkxRidGOS1GaW42JFEkMzYwRidGOUZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEjMTNGJ0Y5RmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFEkOTAxRidGOUZeeEZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZfckZcb0ZobkZkb0Znb0Y5RmlvRltwLUZpbjYkUSgzOTA1NDk3RidGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGX3JGXG9GX3JGZG9GZ29GOUZpb0ZbcC1GZ3A2KC1GaW42JFEqNDI0Njc5NjQ3RidGOS1GaW42JFEjMjBGJ0Y5Rl9xRmJxRmVxRmdxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZfckZcb0Zec0Zkb0Znb0Y5RmlvRltwLUZncDYoLUZpbjYkUSszODIyNjI3ODY1RidGOUZnXWxGX3FGYnFGZXFGZ3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl9yRlxvRmF0RmRvRmdvRjlGaW9GW3AtRmdwNigtRmluNiRRKzI0MjQ4Mzk3NjdGJ0Y5LUZpbjYkUSMzMEYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl9yRlxvRmR1RmRvRmdvRjlGaW9GW3AtRmdwNigtRmluNiRRKzMwMDkyNzEwOTdGJ0Y5LUZpbjYkUSMzNkYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl9yRlxvRlxxRmRvRmdvRjlGaW9GW3AtRmdwNigtRmluNiRRKjkzMDE2ODEyN0YnRjlGW3VGX3FGYnFGZXFGZ3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl9yRlxvRmR3RmRvRmdvRjlGaW9GW3AtRmdwNigtRmluNiRRKjMwNTUzNTQ5NEYnRjlGXnZGX3FGYnFGZXFGZ3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl9yRlxvRmd4RmRvRmdvRjlGaW9GW3AtRmdwNigtRmluNiRRKzk5OTgzMTM0MzdGJ0Y5RmRcbEZfcUZicUZlcUZncUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGX3JGXG9GanlGZG9GZ29GOUZpb0ZbcC1GZ3A2KC1GaW42JFEqMjAzNzIwMzM1RidGOS1GaW42JFEjNDhGJ0Y5Rl9xRmJxRmVxRmdxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZfckZcb0ZedkZkb0Znb0Y5RmlvRltwLUZncDYoLUZpbjYkUSoxMzc4NDMxNTNGJ0Y5RmF5Rl9xRmJxRmVxRmdxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZfckZcb0ZqW2xGZG9GZ29GOUZpb0ZbcC1GZ3A2KC1GaW42JFEpMjIzMDA2NjNGJ0Y5RmF5Rl9xRmJxRmVxRmdxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZfckZcb0ZdXWxGZG9GZ29GOUZpb0ZbcC1GZ3A2KC1GaW42JFEoNjEyNjg4M0YnRjlGal5sRl9xRmJxRmVxRmdxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZfckZcb0ZgXmxGZG9GZ29GOUZpb0ZbcC1GZ3A2KEZnXmxGZ11sRl9xRmJxRmVxRmdxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZfckZcb0ZjX2xGZG9GZ29GOUZpb0ZbcC1GZ3A2KC1GaW42JFElNjMwN0YnRjlGXnhGX3FGYnFGZXFGZ3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl5zRlxvRmhuRmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFEmNDQyOTFGJ0Y5RlxxRl9xRmJxRmVxRmdxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl5zRlxvRl9yRmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFEoMTc0NTEyMUYnRjlGYWFsRl9xRmJxRmVxRmdxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl5zRlxvRl5zRmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFEpMTU3MTEzMzlGJ0Y5LUZpbjYkUSM0MEYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGXnNGXG9GYXRGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSkzMjA4NzM3N0YnRjlGamJsRl9xRmJxRmVxRmdxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl5zRlxvRmR1RmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFEoNzg2MDUwM0YnRjlGZHVGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGXnNGXG9GXHFGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSkzODU3NjUyNEYnRjlGW3VGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGXnNGXG9GZHdGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSkyNDY1OTMyM0YnRjlGaltsRl9xRmJxRmVxRmdxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl5zRlxvRmd4RmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFEpODQxODE2NTdGJ0Y5RmdmbEZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZec0Zcb0ZqeUZkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmdwNigtRmluNiRRKTc0MDA5MzEzRidGOS1GaW42JFEjODBGJ0Y5Rl9xRmJxRmVxRmdxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl5zRlxvRl52RmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFEpMTcxNTk1MTNGJ0Y5RmdmbEZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZec0Zcb0ZqW2xGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoLUZpbjYkUSg3ODcwMjQ3RidGOUZmYW1GX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGXnNGXG9GXV1sRmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFEnNDM4MjYzRidGOS1GaW42JFEjMjRGJ0Y5Rl9xRmJxRmVxRmdxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRl5zRlxvRmBebEZkb0Znb0Y5RmlvRltwLUYjNidGYHAtRmdwNihGZ15sRmVcbUZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZec0Zcb0ZjX2xGZG9GZ29GOUZpb0ZbcC1GIzYnRmBwLUZncDYoRltqbC1GaW42JFEjNjBGJ0Y5Rl9xRmJxRmVxRmdxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmF0RlxvRmhuRmRvRmdvRjlGaW9GW3BGX3JGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmF0RlxvRl9yRmRvRmdvRjlGaW9GW3BGaG5GZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmF0RlxvRl5zRmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KC1GaW42JFEjNDlGJ0Y5RmhjbEZfcUZicUZlcUZncUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZhdEZcb0ZhdEZkb0Znb0Y5RmlvRltwRmhuRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZhdEZcb0ZkdUZkb0Znb0Y5RmlvRltwLUZncDYoRmd4LUZpbjYkUSMxOEYnRjlGX3FGYnFGZXFGZ3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmF0RlxvRlxxRmRvRmdvRjlGaW9GW3BGaG5GZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmF0RlxvRmR3RmRvRmdvRjlGaW9GW3AtRiM2J0ZgcC1GZ3A2KEZfckZoY2xGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYXRGXG9GZ3hGZG9GZ29GOUZpb0ZbcC1GZ3A2KC1GaW42JFEmNDYxMDlGJ0Y5RmF5Rl9xRmJxRmVxRmdxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZhdEZcb0ZqeUZkb0Znb0Y5RmlvRltwLUZncDYoLUZpbjYkUSY4MTM2MUYnRjlGZ2ZsRl9xRmJxRmVxRmdxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZhdEZcb0ZedkZkb0Znb0Y5RmlvRltwLUZncDYoLUZpbjYkUSc1NDQ3MDVGJ0Y5RmF5Rl9xRmJxRmVxRmdxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZhdEZcb0ZqW2xGZG9GZ29GOUZpb0ZbcC1GZ3A2KC1GaW42JFEnNjU1MDM5RidGOUZheUZfcUZicUZlcUZncUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYXRGXG9GXV1sRmRvRmdvRjlGaW9GW3AtRmdwNigtRmluNiRRJzIyMzUzMUYnRjlGZ11sRl9xRmJxRmVxRmdxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZhdEZcb0ZgXmxGZG9GZ29GOUZpb0ZbcEZhaWxGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmF0RlxvRmNfbEZkb0Znb0Y5RmlvRltwLUZncDYoRltqbEZoY2xGX3FGYnFGZXFGZ3FGZG9GZ29GOUZkb0Znb0Y5RjkvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnRmRvRmdvRjk=">PFovJkkiY0c2IjYkIiIhRigjISpXQGliIyIiJi8mRiU2JEYoIiIiIyEqV3Q0cipGKy8mRiU2JEYoIiIjIyEsR3QnZUg6IiNYLyZGJTYkRigiIiQjIStjRSRIVyYiIzovJkYlNiRGKCIiJSMhKyd6ckRQIyIiKi8mRiU2JEYoRisjIStwdV5rP0Y/LyZGJTYkRigiIicjISsiUWFJYyoiJCE9LyZGJTYkRigiIigjIStOam01QSIkVyIvJkYlNiRGKCIiKSMhKlQwKXB6IiRTIy8mRiU2JEYoRkYjISl6XFp3RlkvJkYlNiRGKCIjNSMhKShHWVIlIiQ/KC8mRiU2JEYoIiM2IyEnQFBNIiNzLyZGJTYkRigiIzcjISYiKj4pIiRnJC8mRiU2JEYoIiM4IyEkLCpGUi8mRiU2JEYvRigiKChcMFIvJkYlNiRGL0YvIyIqWid6WVUiIz8vJkYlNiRGL0Y1IyIrbHlpQVFGXXAvJkYlNiRGL0Y8IyIrbihSW1UjIiNJLyZGJTYkRi9GQyMiKyg0ciM0SSIjTy8mRiU2JEYvRisjIipGIm8sJCpGPy8mRiU2JEYvRk8jIiolXE5iSUZGLyZGJTYkRi9GViMiK1BNSikqKipGZm8vJkYlNiRGL0ZnbiMiKk4ucy4jIiNbLyZGJTYkRi9GRiMiKmBKJXk4RlkvJkYlNiRGL0ZjbyMiKWoxSUFGWS8mRiU2JEYvRmpvIyIoJClvNydGZHAvJkYlNiRGL0ZhcCMiJiIqPilGXXAvJkYlNiRGL0ZocCMiJTJqRlIvJkYlNiRGNUYoIyEmIkhXRisvJkYlNiRGNUYvIyEoQF51IkZkcS8mRiU2JEY1RjUjISlSOHI6IiNTLyZGJTYkRjVGPCMhKXh0M0tGX3IvJkYlNiRGNUZDIyEoLjAneUZDLyZGJTYkRjVGKyMhKUNsZFFGPy8mRiU2JEY1Rk8jISlCJGZZI0Zjby8mRiU2JEY1RlYjISlkOz0lKUZqcy8mRiU2JEY1RmduIyEpOCQ0UygiIyEpLyZGJTYkRjVGRiMhKTgmZnIiRmpzLyZGJTYkRjVGY28jIShaLSh5RmJ4LyZGJTYkRjVGam8jISdqI1ElIiNDLyZGJTYkRjVGYXAjRmNwRmN2LyZGJTYkRjVGaHAjISUyaiIjZy8mRiU2JEY8RihGLy8mRiU2JEY8Ri9GKC8mRiU2JEY8RjUjISNcRmVyLyZGJTYkRjxGPEYoLyZGJTYkRjxGQyNGViIjPS8mRiU2JEY8RitGKC8mRiU2JEY8Rk8jISIiRmVyLyZGJTYkRjxGViMiJjRoJUZZLyZGJTYkRjxGZ24jIiZoOClGanMvJkYlNiRGPEZGIyInMFphRlkvJkYlNiRGPEZjbyMiJ1JdbEZZLyZGJTYkRjxGam8jIidKTkFGXXAvJkYlNiRGPEZhcEZddS8mRiU2JEY8RmhwI0ZjdUZlcg==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L752" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[LinearSolve](A, b)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYkLUYsNiVRLExpbmVhclNvbHZlRidGL0YyL0YzUSdub3JtYWxGJ0Y9LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2NiQtRiM2Jy1GLDYlUSJBRidGL0YyLUkjbW9HRiQ2LVEiLEYnRj0vJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGUi8lKnN5bW1ldHJpY0dGUi8lKGxhcmdlb3BHRlIvJS5tb3ZhYmxlbGltaXRzR0ZSLyUnYWNjZW50R0ZSLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEiYkYnRi9GMi8lK2V4ZWN1dGFibGVHRlJGPUY9RmJvRj0=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0ksTGluZWFyU29sdmVHRig2JEkiQUdGKEkiYkdGKA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUkobWFjdGlvbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkobWZlbmNlZEdGJDYmLUknbXRhYmxlR0YkNjgtSSRtdHJHRiQ2Ji1JJG10ZEdGJDYoLUklbXJvd0dGJDYmLUkjbWlHRiQ2JVEqfjF+Li5+NTZ+RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUklbXN1YkdGJDYlLUY7NiVRJ1ZlY3RvckYnRj5GQS1GODYlLUY7NiVRJ2NvbHVtbkYnRj5GQS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvRkJRJ25vcm1hbEYnLyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGT0ZSLyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZZLyUrZ3JvdXBhbGlnbkdGWS8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZqbkZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEsRGF0YX5UeXBlOn5GJ0Y+RkEtRjs2JVEpYW55dGhpbmdGJ0Y+RkFGT0ZSRldGWkZmbkZobkZbb0ZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEqU3RvcmFnZTp+RidGPkZBLUY7NiVRLHJlY3Rhbmd1bGFyRidGPkZBRk9GUkZXRlpGZm5GaG5GW29GV0ZaRmZuLUYyNiYtRjU2KC1GODYmLUY7NiVRKE9yZGVyOn5GJ0Y+RkEtRjs2JVEuRm9ydHJhbl9vcmRlckYnRj5GQUZPRlJGV0ZaRmZuRmhuRltvRldGWkZmbi8lJmFsaWduR1ElYXhpc0YnL0ZYUSliYXNlbGluZUYnL0ZlblEnY2VudGVyRicvRmduUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGQC8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRl5yLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmlyLyUmZnJhbWVHRmlyLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dRJmZhbHNlRicvJS1lcXVhbGNvbHVtbnNHRmNzLyUtZGlzcGxheXN0eWxlR0Zjcy8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0ZmckZSLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLyUrYWN0aW9udHlwZUdRLWJyb3dzZXJ0YWJsZUYnLyUpcnRhYmxlaWRHUTUxODQ0Njc0NDA3ODIxNDU5NzA3OEYn">LSZJJ1ZlY3Rvckc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkc2IjYjSSdjb2x1bW5HRig2Iy9JJCVpZEdGKCI1eXFmOSN5U3VZJT0=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L758" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[6, 6] := eval(P(x), solutions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KC1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictRiM2Ji1JI21uR0YkNiRRIjZGJ0Y6LUkjbW9HRiQ2LVEiLEYnRjovJSZmZW5jZUdGOS8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y5LyUqc3ltbWV0cmljR0Y5LyUobGFyZ2VvcEdGOS8lLm1vdmFibGVsaW1pdHNHRjkvJSdhY2NlbnRHRjkvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJ0Y/RjovJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GRDYtUSJ+RidGOkZHL0ZKRjlGTEZORlBGUkZURlYvRlpGWC1GRDYtUSomY29sb25lcTtGJ0Y6RkdGXG9GTEZORlBGUkZUL0ZXUSwwLjI3Nzc3NzhlbUYnL0ZaRmJvLUYsNiVRJWV2YWxGJy9GOEZLL0Y7USdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYnLUYsNiVRIlBGJ0Znb0Zoby1GW3A2JC1GIzYkLUYsNiVRInhGJ0Znb0Zob0Y6RjpGQy1GLDYlUSpzb2x1dGlvbnNGJ0Znb0Zob0Y6RjpGOkYrLyUrZXhlY3V0YWJsZUdGOUY6">PiZJJ0xhbWJkYUc2IjYkIiInRictSSVldmFsRyUqcHJvdGVjdGVkRzYkLUkiUEdGJTYjSSJ4R0YlSSpzb2x1dGlvbnNHRiU=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEnJiM5MjM7RicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1GIzYoLUkjbW5HRiQ2JFEiNkYnRjUtSSNtb0dGJDYtUSIsRidGNS8lJmZlbmNlR0Y0LyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjQvJSpzeW1tZXRyaWNHRjQvJShsYXJnZW9wR0Y0LyUubW92YWJsZWxpbWl0c0dGNC8lJ2FjY2VudEdGNC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnRjovJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRjRGNS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUY/Ni1RIzo9RidGNUZCL0ZFRjRGR0ZJRktGTUZPL0ZSUSwwLjI3Nzc3NzhlbUYnL0ZVRl5vLUYjNictRj82LVEifGZyRidGNS9GQ0ZGRlxvL0ZIRkZGSUZLRk1GTy9GUlEsMC4xNjY2NjY3ZW1GJy9GVUZoby1JJ210YWJsZUdGJDY+LUkkbXRyR0YkNictSSRtdGRHRiQ2KC1GOzYkRmhuRjUvJSlyb3dhbGlnbkdRIUYnLyUsY29sdW1uYWxpZ25HRmdwLyUrZ3JvdXBhbGlnbkdGZ3AvJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGXnEtRmFwNigtRiM2KC1GLzYlUSJ4RicvRjNGRi9GNlEnaXRhbGljRictRj82LVEiPEYnRjVGQkZcb0ZHRklGS0ZNRk9GXW9GX28tRiM2JS1GPzYtUSomdW1pbnVzMDtGJ0Y1RkJGXG9GR0ZJRktGTUZPL0ZSUSwwLjIyMjIyMjJlbUYnL0ZVRmRyLUY7NiRRIjRGJ0Y1RjVGV0ZaRjVGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRl5wNictRmFwNigtRiM2P0Zgci1JJm1mcmFjR0YkNigtRjs2JFEqMjU1NjIyMTQ0RidGNS1GOzYkUSI1RidGNS8lLmxpbmV0aGlja25lc3NHRl5xLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRlx0LyUpYmV2ZWxsZWRHRjQtRj82LVEoJm1pbnVzO0YnRjVGQkZcb0ZHRklGS0ZNRk9GY3JGZXItRiM2KC1GYHM2KC1GOzYkUSo5NzEwOTczNDRGJ0Y1RmVzRmhzRmpzRl10Rl90LUY/Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y1RkJGXG9GR0ZJRktGTUZPRlEvRlVGU0ZlcUZXRlpGNUZhdC1GIzYoLUZgczYoLUY7NiRRLDE1Mjk1ODY3MzI4RidGNS1GOzYkUSM0NUYnRjVGaHNGanNGXXRGX3RGW3UtSSVtc3VwR0YkNiVGZXEtRjs2JFEiMkYnRjUvJTFzdXBlcnNjcmlwdHNoaWZ0R0ZobkZXRlpGNUZhdC1GIzYoLUZgczYoLUY7NiRRKzU0NDI5MzI2NTZGJ0Y1LUY7NiRRIzE1RidGNUZoc0Zqc0ZddEZfdEZbdS1GanU2JUZlcS1GOzYkUSIzRidGNUZfdkZXRlpGNUZhdC1GIzYoLUZgczYoLUY7NiRRKzIzNzI1NzE3OTZGJ0Y1LUY7NiRRIjlGJ0Y1RmhzRmpzRl10Rl90Rlt1LUZqdTYlRmVxRmZyRl92RldGWkY1RmF0LUYjNigtRmBzNigtRjs2JFErMjA2NDUxNzQ2OUYnRjVGaHZGaHNGanNGXXRGX3RGW3UtRmp1NiVGZXFGZXNGX3ZGV0ZaRjVGYXQtRiM2KC1GYHM2KC1GOzYkUSs5NTYzMDU0MzgxRidGNS1GOzYkUSQxODBGJ0Y1RmhzRmpzRl10Rl90Rlt1LUZqdTYlRmVxRjpGX3ZGV0ZaRjVGYXQtRiM2KC1GYHM2KC1GOzYkUSsyMjEwNjY2MzM1RidGNS1GOzYkUSQxNDRGJ0Y1RmhzRmpzRl10Rl90Rlt1LUZqdTYlRmVxLUY7NiRRIjdGJ0Y1Rl92RldGWkY1RmF0LUYjNigtRmBzNigtRjs2JFEqNzk2OTgwNTQxRidGNS1GOzYkUSQyNDBGJ0Y1RmhzRmpzRl10Rl90Rlt1LUZqdTYlRmVxLUY7NiRRIjhGJ0Y1Rl92RldGWkY1RmF0LUYjNigtRmBzNigtRjs2JFEpNzY0NzQ5NzlGJ0Y1Rmh5RmhzRmpzRl10Rl90Rlt1LUZqdTYlRmVxRmd3Rl92RldGWkY1RmF0LUYjNigtRmBzNigtRjs2JFEpNDM5NDYyODdGJ0Y1LUY7NiRRJDcyMEYnRjVGaHNGanNGXXRGX3RGW3UtRmp1NiVGZXEtRjs2JFEjMTBGJ0Y1Rl92RldGWkY1RmF0LUYjNigtRmBzNigtRjs2JFEnMzQzNzIxRidGNS1GOzYkUSM3MkYnRjVGaHNGanNGXXRGX3RGW3UtRmp1NiVGZXEtRjs2JFEjMTFGJ0Y1Rl92RldGWkY1RmF0LUYjNigtRmBzNigtRjs2JFEmODE5OTFGJ0Y1LUY7NiRRJDM2MEYnRjVGaHNGanNGXXRGX3RGW3UtRmp1NiVGZXEtRjs2JFEjMTJGJ0Y1Rl92RldGWkY1RmF0LUYjNigtRmBzNigtRjs2JFEkOTAxRidGNUZceUZoc0Zqc0ZddEZfdEZbdS1GanU2JUZlcS1GOzYkUSMxM0YnRjVGX3ZGV0ZaRjVGNUZlcEZocEZqcEZccUZfcS1GYXA2KC1GIzYoRmVxRltyLUYjNiVGYHJGXXdGNUZXRlpGNUZlcEZocEZqcEZccUZfcUZlcEZocEZqcC1GXnA2Jy1GYXA2KC1GIzY+LUY7NiRRKDM5MDU0OTdGJ0Y1LUY/Ni1RIitGJ0Y1RkJGXG9GR0ZJRktGTUZPRmNyRmVyLUYjNigtRmBzNigtRjs2JFEqNDI0Njc5NjQ3RidGNS1GOzYkUSMyMEYnRjVGaHNGanNGXXRGX3RGW3VGZXFGV0ZaRjVGYGBsLUYjNigtRmBzNigtRjs2JFErMzgyMjYyNzg2NUYnRjVGXl1sRmhzRmpzRl10Rl90Rlt1Rml1RldGWkY1RmBgbC1GIzYoLUZgczYoLUY7NiRRKzI0MjQ4Mzk3NjdGJ0Y1LUY7NiRRIzMwRidGNUZoc0Zqc0ZddEZfdEZbdUZbd0ZXRlpGNUZgYGwtRiM2KC1GYHM2KC1GOzYkUSszMDA5MjcxMDk3RidGNS1GOzYkUSMzNkYnRjVGaHNGanNGXXRGX3RGW3VGandGV0ZaRjVGYGBsLUYjNigtRmBzNigtRjs2JFEqOTMwMTY4MTI3RidGNUZodkZoc0Zqc0ZddEZfdEZbdUZjeEZXRlpGNUZgYGwtRiM2KC1GYHM2KC1GOzYkUSozMDU1MzU0OTRGJ0Y1Rmd3RmhzRmpzRl10Rl90Rlt1Rl95RldGWkY1RmBgbC1GIzYoLUZgczYoLUY7NiRRKzk5OTgzMTM0MzdGJ0Y1Rl9cbEZoc0Zqc0ZddEZfdEZbdUZbekZXRlpGNUZgYGwtRiM2KC1GYHM2KC1GOzYkUSoyMDM3MjAzMzVGJ0Y1LUY7NiRRIzQ4RidGNUZoc0Zqc0ZddEZfdEZbdUZqekZXRlpGNUZgYGwtRiM2KC1GYHM2KC1GOzYkUSoxMzc4NDMxNTNGJ0Y1Rmh5RmhzRmpzRl10Rl90Rlt1RmZbbEZXRlpGNUZgYGwtRiM2KC1GYHM2KC1GOzYkUSkyMjMwMDY2M0YnRjVGaHlGaHNGanNGXXRGX3RGW3VGYlxsRldGWkY1RmBgbC1GIzYoLUZgczYoLUY7NiRRKDYxMjY4ODNGJ0Y1Rl1ebEZoc0Zqc0ZddEZfdEZbdUZhXWxGV0ZaRjVGYGBsLUYjNigtRmBzNihGal1sRl5dbEZoc0Zqc0ZddEZfdEZbdUZgXmxGV0ZaRjVGYGBsLUYjNigtRmBzNigtRjs2JFElNjMwN0YnRjVGXHlGaHNGanNGXXRGX3RGW3VGXF9sRldGWkY1RjVGZXBGaHBGanBGXHFGX3EtRmFwNigtRiM2KEZlcUZbci1GIzYlRmByRlx2RjVGV0ZaRjVGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRl5wNictRmFwNigtRiM2P0Zgci1GYHM2KC1GOzYkUSY0NDI5MUYnRjVGZXNGaHNGanNGXXRGX3RGYXQtRiM2KC1GYHM2KC1GOzYkUSgxNzQ1MTIxRidGNUZqYGxGaHNGanNGXXRGX3RGW3VGZXFGV0ZaRjVGYXQtRiM2KC1GYHM2KC1GOzYkUSkxNTcxMTMzOUYnRjUtRjs2JFEjNDBGJ0Y1RmhzRmpzRl10Rl90Rlt1Rml1RldGWkY1RmF0LUYjNigtRmBzNigtRjs2JFEpMzIwODczNzdGJ0Y1RltibEZoc0Zqc0ZddEZfdEZbdUZbd0ZXRlpGNUZhdC1GIzYoLUZgczYoLUY7NiRRKDc4NjA1MDNGJ0Y1RmZyRmhzRmpzRl10Rl90Rlt1Rmp3RldGWkY1RmF0LUYjNigtRmBzNigtRjs2JFEpMzg1NzY1MjRGJ0Y1Rmh2RmhzRmpzRl10Rl90Rlt1RmN4RldGWkY1RmF0LUYjNigtRmBzNigtRjs2JFEpMjQ2NTkzMjNGJ0Y1RmRcbEZoc0Zqc0ZddEZfdEZbdUZfeUZXRlpGNUZhdC1GIzYoLUZgczYoLUY7NiRRKTg0MTgxNjU3RidGNUZkZGxGaHNGanNGXXRGX3RGW3VGW3pGV0ZaRjVGYXQtRiM2KC1GYHM2KC1GOzYkUSk3NDAwOTMxM0YnRjUtRjs2JFEjODBGJ0Y1RmhzRmpzRl10Rl90Rlt1Rmp6RldGWkY1RmF0LUYjNigtRmBzNigtRjs2JFEpMTcxNTk1MTNGJ0Y1RmRkbEZoc0Zqc0ZddEZfdEZbdUZmW2xGV0ZaRjVGYXQtRiM2KC1GYHM2KC1GOzYkUSg3ODcwMjQ3RidGNUZjW21GaHNGanNGXXRGX3RGW3VGYlxsRldGWkY1RmF0LUYjNigtRmBzNigtRjs2JFEnNDM4MjYzRidGNS1GOzYkUSMyNEYnRjVGaHNGanNGXXRGX3RGW3VGYV1sRldGWkY1RmF0LUYjNigtRmBzNihGal1sRmZobEZoc0Zqc0ZddEZfdEZbdUZgXmxGV0ZaRjVGYXQtRiM2KC1GYHM2KEZkZmwtRjs2JFEjNjBGJ0Y1RmhzRmpzRl10Rl90Rlt1RlxfbEZXRlpGNUY1RmVwRmhwRmpwRlxxRl9xLUZhcDYoLUYjNihGZXFGW3ItRiM2JUZgci1GOzYkRl5xRjVGNUZXRlpGNUZlcEZocEZqcEZccUZfcUZlcEZocEZqcC1GXnA2Jy1GYXA2KC1GIzY4Rl9ebUZhdC1GIzYoLUZgczYoLUY7NiRRIzQ5RidGNUZlYmxGaHNGanNGXXRGX3RGW3VGaXVGV0ZaRjVGYGBsLUYjNigtRmBzNihGXXotRjs2JFEjMThGJ0Y1RmhzRmpzRl10Rl90Rlt1Rmp3RldGWkY1RmF0LUYjNigtRmBzNihGX15tRmVibEZoc0Zqc0ZddEZfdEZbdUZfeUZXRlpGNUZgYGwtRiM2KC1GYHM2KC1GOzYkUSY0NjEwOUYnRjVGaHlGaHNGanNGXXRGX3RGW3VGW3pGV0ZaRjVGYGBsLUYjNigtRmBzNigtRjs2JFEmODEzNjFGJ0Y1RmRkbEZoc0Zqc0ZddEZfdEZbdUZqekZXRlpGNUZgYGwtRiM2KC1GYHM2KC1GOzYkUSc1NDQ3MDVGJ0Y1Rmh5RmhzRmpzRl10Rl90Rlt1RmZbbEZXRlpGNUZgYGwtRiM2KC1GYHM2KC1GOzYkUSc2NTUwMzlGJ0Y1Rmh5RmhzRmpzRl10Rl90Rlt1RmJcbEZXRlpGNUZgYGwtRiM2KC1GYHM2KC1GOzYkUScyMjM1MzFGJ0Y1Rl5dbEZoc0Zqc0ZddEZfdEZbdUZhXWxGV0ZaRjVGYGBsRlxmbEZgYGwtRiM2KC1GYHM2KEZkZmxGZWJsRmhzRmpzRl10Rl90Rlt1RlxfbEZXRlpGNUY1RmVwRmhwRmpwRlxxRl9xLUZhcDYoLUYjNihGZXFGW3JGY3BGV0ZaRjVGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRl5wNictRmFwNigtRiM2OEZfXm1GYXRGZ15tRmBgbEZeX21GYXRGZV9tRmF0RmlfbUZgYGxGYGBtRmF0RmdgbUZgYGxGXmFtRmF0RmVhbUZgYGxGXGZsRmF0RlxibUY1RmVwRmhwRmpwRlxxRl9xLUZhcDYoLUYjNihGZXFGW3JGX15tRldGWkY1RmVwRmhwRmpwRlxxRl9xRmVwRmhwRmpwLUZecDYnLUZhcDYoLUYjNj9GYHJGY2dsRmBgbEZoZ2xGYXRGX2hsRmBgbEZpaGxGYXRGYGlsRmBgbEZnaWxGYXRGXmpsRmBgbEZlamxGYXRGXFttRmBgbEZmW21GYXRGXVxtRmBgbEZkXG1GYXRGXl1tRmBgbEZiXW1GNUZlcEZocEZqcEZccUZfcS1GYXA2KC1GIzYoRmVxRltyRlx2RldGWkY1RmVwRmhwRmpwRlxxRl9xRmVwRmhwRmpwLUZecDYnLUZhcDYoLUYjNj5GXWBsRmF0RmNgbEZgYGxGXWFsRmF0RmRhbEZgYGxGXmJsRmF0RmhibEZgYGxGX2NsRmF0RmZjbEZgYGxGXWRsRmF0RmdkbEZgYGxGXmVsRmF0RmVlbEZgYGxGXGZsRmF0RmBmbEY1RmVwRmhwRmpwRlxxRl9xLUZhcDYoLUYjNihGZXFGW3JGXXdGV0ZaRjVGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRl5wNictRmFwNigtRiM2P0ZgckZfc0ZgYGxGZHRGYXRGX3VGYGBsRmF2RmF0RmB3RmBgbEZceEZhdEZleEZgYGxGYXlGYXRGYHpGYGBsRl9bbEZhdEZoW2xGYGBsRmdcbEZhdEZmXWxGYGBsRmVebEY1RmVwRmhwRmpwRlxxRl9xLUZhcDYoLUYjNihGZXFGW3JGZnJGV0ZaRjVGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRl5wNidGYHAtRmFwNigtRiM2KEZmci1GPzYtUSUmbGU7RidGNUZCRlxvRkdGSUZLRk1GT0Zdb0Zfb0ZlcUZXRlpGNUZlcEZocEZqcEZccUZfcUZlcEZocEZqcC8lJmFsaWduR1ElYXhpc0YnL0ZmcFEpYmFzZWxpbmVGJy9GaXBGXHQvRltxUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGRi8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRmFmbS8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJDJlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGXGdtLyUmZnJhbWVHRlxnbS8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRjQvJS1lcXVhbGNvbHVtbnNHRjQvJS1kaXNwbGF5c3R5bGVHRjQvJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dRJjAuOGVtRidGV0ZaRjVGV0ZaRjU=">LUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzY2MkkieEc2IiEiJSIiITJGJyEiJCw+IyEqV0BpYiMiIiYiIiJGJyMhKld0NHIqRjAqJEYnIiIjIyEsR3QnZUg6IiNYKiRGJyIiJCMhK2NFJEhXJiIjOiokRiciIiUjISsnenJEUCMiIioqJEYnRjAjIStwdV5rP0Y9KiRGJyIiJyMhKyJRYUljKiIkIT0qJEYnIiIoIyErTmptNUEiJFciKiRGJyIiKSMhKlQwKXB6IiRTIyokRidGQiMhKXpcWndGTyokRiciIzUjISkoR1lSJSIkPygqJEYnIiM2IyEnQFBNIiNzKiRGJyIjNyMhJiIqPikiJGckKiRGJyIjOCMhJCwqRkoyRichIiMsPiIoKFwwUkYxRicjIipaJ3pZVSIjP0Y0IyIrbHlpQVFGW29GOSMiK24oUltVIyIjSUY+IyIrKDRyIzRJIiNPRkMjIipGIm8sJCpGPUZGIyIqJVxOYklGQkZLIyIrUE1KKSoqKkZmbkZQIyIqTi5zLiMiI1tGVSMiKmBKJXk4Rk9GWCMiKWoxSUFGT0ZnbiMiKCQpbzcnRmBvRlxvIyImIio+KUZbb0ZhbyMiJTJqRkoyRichIiIsPiMhJiJIV0YwRjFGJyMhKEBedSJGW3BGNCMhKVI4cjoiI1NGOSMhKXh0M0tGYHBGPiMhKC4wJ3lGP0ZDIyEpQ2xkUUY9RkYjISlCJGZZI0ZZRksjISlkOz0lKUZccUZQIyEpOCQ0UygiIyEpRlUjISk4JmZyIkZccUZYIyEoWi0oeUZdc0ZnbiMhJ2ojUSUiI0NGXG8jRl9vRmByRmFvIyElMmoiI2cyRidGKiw4RjFGMUY0IyEjXEZjcEY+I0ZMIiM9RkYjRmhxRmNwRksjIiY0aCVGT0ZQIyImaDgpRlxxRlUjIicwWmFGT0ZYIyInUl1sRk9GZ24jIidKTkFGW29GXG9GY3FGYW8jRmZxRmNwMkYnRjEsOEYxRjFGNEZbdEY+Rl10RkZGX3RGSyMhJjRoJUZPRlBGYnRGVSMhJzBaYUZPRlhGZnRGZ24jISdKTkFGW29GXG9GY3FGYW8jRmdzRmNwMkYnRjUsPkZqcUYxRicjIihAXnUiRltwRjRGXnJGOSMiKXh0M0tGYHBGPkZjckZDIyIpQ2xkUUY9RkZGZ3JGSyMiKWQ7PSUpRlxxRlBGW3NGVSMiKTgmZnIiRlxxRlhGYHNGZ24jIidqI1ElRmRzRlxvRmVzRmFvI0ZmcUZoczJGJ0Y6LD5GaG9GMUYnIyEqWid6WVVGW3BGNEZccEY5IyErbihSW1UjRmBwRj5GYXBGQyMhKkYibywkKkY9RkZGZnBGSyMhK1BNSikqKipGZm5GUEZqcEZVIyEqYEoleThGT0ZYRl9xRmduIyEoJClvNydGYG9GXG9GY3FGYW8jRmdzRkoyRidGPyw+Ri5GMUYnIyIqV3Q0cipGMEY0RjZGOSMiK2NFJEhXJkY9Rj5GQEZDIyIrcHVeaz9GPUZGRkhGSyMiK05qbTVBRk9GUEZSRlUjIil6XFp3Rk9GWEZaRmduIyInQFBNRltvRlxvRl5vRmFvIyIkLCpGSjFGP0YnRio=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L737" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="seq(evalb(simplify(conditions[i], solutions)), i = 1 .. numelems(conditions));" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEkc2VxRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNi0tRiw2JVEmZXZhbGJGJ0YvRjItRjY2JC1GIzYmLUYsNiVRKXNpbXBsaWZ5RidGL0YyLUY2NiQtRiM2KS1GLDYlUStjb25kaXRpb25zRidGL0YyLUY2NiYtRiM2JS1GLDYlUSJpRidGL0YyLyUrZXhlY3V0YWJsZUdRJmZhbHNlRicvRjNRJ25vcm1hbEYnRlUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictSSNtb0dGJDYtUSIsRidGVS8lJmZlbmNlR0ZULyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRlQvJSpzeW1tZXRyaWNHRlQvJShsYXJnZW9wR0ZULyUubW92YWJsZWxpbWl0c0dGVC8lJ2FjY2VudEdGVC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUZobjYtUSJ+RidGVUZbby9GXm9GVEZfb0Zhb0Zjb0Zlb0Znb0Zpby9GXXBGW3AtRiw2JVEqc29sdXRpb25zRidGL0YyRlJGVUZVRlJGVUZVRmduRk8tRmhuNi1RIj1GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yNzc3Nzc4ZW1GJy9GXXBGW3EtSSNtbkdGJDYkUSIxRidGVS1GaG42LVEjLi5GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yMjIyMjIyZW1GJ0ZjcC1GLDYlUSludW1lbGVtc0YnRi9GMi1GNjYkLUYjNiRGSEZVRlVGUkZVRlUtRmhuNi1RIjtGJ0ZVRltvRl1vRl9vRmFvRmNvRmVvRmdvRmlvRlxxRlJGVQ==">QyQtSSRzZXFHJSpwcm90ZWN0ZWRHNiQtSSZldmFsYkdGJTYjLUkpc2ltcGxpZnlHNiI2JCZJK2NvbmRpdGlvbnNHRiw2I0kiaUdGLEkqc29sdXRpb25zR0YsL0YxOyIiIi1JKW51bWVsZW1zR0YlNiNGL0Y1</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NmBzSSV0cnVlRyUqcHJvdGVjdGVkR0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiM=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L729" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="evalb(int(Lambda[6, 6], x = xrange) = 1); 1; seq(evalb(int(x^i*Lambda[6, 6], x = xrange) = 0), i = 1 .. 6)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEmZXZhbGJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2KC1GLDYlUSRpbnRGJ0YvRjItRjY2JC1GIzYqLUYsNiNRIUYnLUYjNiZGQS1GIzYkLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBRJmZhbHNlRicvRjNRJ25vcm1hbEYnLUYjNiYtSSNtbkdGJDYkUSI2RidGUC1JI21vR0YkNi1RIixGJ0ZQLyUmZmVuY2VHRk8vJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGTy8lKnN5bW1ldHJpY0dGTy8lKGxhcmdlb3BHRk8vJS5tb3ZhYmxlbGltaXRzR0ZPLyUnYWNjZW50R0ZPLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRidGVEZQLyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGUEZBRlBGQUZYLUYsNiVRInhGJ0YvRjItRlk2LVEiPUYnRlBGZm4vRmluRk9Gam5GXG9GXm9GYG9GYm8vRmVvUSwwLjI3Nzc3NzhlbUYnL0Zob0ZlcC1GLDYlUSd4cmFuZ2VGJ0YvRjJGUEZQRmBwLUZVNiRRIjFGJ0ZQLyUrZXhlY3V0YWJsZUdGT0ZQRlAtRlk2LVEiO0YnRlBGZm5GaG5Gam5GXG9GXm9GYG9GYm9GZG9GZnAtRiw2JVEkc2VxRidGL0YyLUY2NiQtRiM2LEYrLUY2NiQtRiM2KEY6LUY2NiQtRiM2Ki1JJW1zdXBHRiQ2JUZdcC1GIzYlLUYsNiVRImlGJ0YvRjJGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdGXHAtRlk2LVEnJnNkb3Q7RidGUEZmbkZjcEZqbkZcb0Zeb0Zgb0Zib0Zkby9GaG9GZm8tRkk2JS1GLDYlUScmIzkyMztGJ0ZORlBGUkZqb0ZYRl1wRmBwRmdwRlBGUEZgcC1GVTYkRlxwRlBGXXFGUEZQRlhGZnJGYHBGanAtRlk2LVEjLi5GJ0ZQRmZuRmNwRmpuRlxvRl5vRmBvRmJvL0Zlb1EsMC4yMjIyMjIyZW1GJ0Zec0ZURl1xRlBGUEZdcUZQ">QyUtSSZldmFsYkclKnByb3RlY3RlZEc2Iy8tSSRpbnRHNiRGJUkoX3N5c2xpYkc2IjYkJkknTGFtYmRhR0YsNiQiIidGMS9JInhHRixJJ3hyYW5nZUdGLCIiIkY1LUkkc2VxR0YlNiQtRiQ2Iy8tRik2JComKUYzSSJpR0YsRjVGLkY1RjIiIiEvRkA7RjVGMQ==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">SSV0cnVlRyUqcHJvdGVjdGVkRw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NihJJXRydWVHJSpwcm90ZWN0ZWRHRiNGI0YjRiNGIw==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L743" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="fac := 720:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZedS1JI21pR0YkNiVRJGZhY0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkjbW5HRiQ2JFEkNzIwRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORlotRiw2JVEjdzBGJ0YvRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYkLUkmbWZyYWNHRiQ2KC1GUDYkUSIxRidGOS1GIzYkRitGOS8lLmxpbmV0aGlja25lc3NHRmNvLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmpvLyUpYmV2ZWxsZWRHRj1GOUY5LUY2Ni1RJyZzZG90O0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuLUYsNiVRJ2hvcm5lckYnRi9GMi1Gam42JC1GIzYpRitGX3AtRiw2JVEnZXhwYW5kRidGL0YyLUZqbjYkLUYjNiUtRiw2JVElZXZhbEYnRi9GMi1Gam42JC1GIzYtRmBxLUZqbjYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEpJkxhbWJkYTtGJy9GMEY9RjktRiM2Ji1GUDYkUSI2RidGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRlkvRk5RLDAuMzMzMzMzM2VtRidGZHJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUYsNiNRIUYnRmdyLUYsNiVRKnNvbHV0aW9uc0YnRi9GMkY5RjlGZ3ItRiw2JVEieEYnRi9GMi1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYHQtRlA2JFEiM0YnRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZfdEZhdEZWLUYsNiVRInlGJ0YvRjJGOUY5RjlGOUZnckZodEY5RjlGVi1GNjYtUSlhc3N1bWluZ0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuRlZGaHQtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRlA2JEZfc0Y5RlYtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZpdUY7Rj5GQEZCRkRGRkZIRllGZW5GVkZodC1GNjYtUSI8RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZhby1GNjYtUSI7RidGOUY7RmpyRkBGQkZERkZGSEZZRk0tSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWi8lJmRlcHRoR0Zndi8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GLDYlUSN3MUYnRi9GMkY1RmluRl9wRmJwLUZqbjYkLUYjNilGK0ZfcEZpcC1Gam42JC1GIzYlRmBxLUZqbjYkLUYjNi1GYHEtRmpuNiQtRiM2J0ZbckZnckZWRmNzRjlGOUZnckZmc0Zpc0ZcdC1GUDYkUSIyRidGOUZldEZWRmh0RjlGOUY5RjlGZ3JGaHRGOUY5RlZGW3VGVkZodEZedUZhdUZWRmN1RlZGaHRGXHZGYW9GX3ZGYnYtRiw2JVEjdzJGJ0YvRjJGNUZpbkZfcEZicC1Gam42JC1GIzYqRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYtRmBxRmdxRmdyRmZzRmlzRlx0RmFvRmV0RlZGaHRGOUY5RjlGOUZnckZodC8lK2V4ZWN1dGFibGVHRj1GOUY5Rlt1RlZGaHRGXnVGYXVGVkZjdUZWRmh0Rlx2RmFvRl92RmJ2LUYsNiVRI3czRidGL0YyRjVGaW5GX3BGYnAtRmpuNiQtRiM2KUYrRl9wRmlwLUZqbjYkLUYjNiVGYHEtRmpuNiQtRiM2K0ZgcUZncUZnckZmc0Zpc0ZcdEZWRmh0RjlGOUY5RjlGZ3JGaHRGOUY5RlZGW3VGVkZodEZedUZhdUZWRmN1RlZGaHRGXHZGYW9GX3ZGYnYtRiw2JVEjdzRGJ0YvRjJGNUZpbkZfcEZicC1Gam42JC1GIzYpRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYtRmBxLUZqbjYkLUYjNiZGW3JGZ3JGY3NGOUY5RmdyRmZzRmlzRlZGYW9GXHRGVkZodEY5RjlGOUY5RmdyRmh0RjlGOUZbdUZWRmh0Rl51RmF1RlZGY3VGVkZodEZcdkZhb0ZfdkZidi1GLDYlUSN3NUYnRi9GMkY1RmluRl9wRmJwLUZqbjYkLUYjNilGK0ZfcEZpcC1Gam42JC1GIzYlRmBxLUZqbjYkLUYjNixGYHFGZ3FGZ3JGZnNGaXNGYnhGXHRGVkZodEY5RjlGOUY5RmdyRmh0RjlGOUZWRlt1RlZGaHRGXnVGYXVGVkZjdUZWRmh0Rlx2RmFvRl92RmJ2LUYsNiVRI3c2RidGL0YyRjVGaW5GX3BGYnAtRmpuNiQtRiM2KkYrRl9wRmlwLUZqbjYkLUYjNiVGYHEtRmpuNiQtRiM2LEZgcUZncUZnckZmc0Zpc0ZidEZcdEZWRmh0RjlGOUY5RjlGZ3JGaHRGZHlGOUY5Rlt1RlZGaHRGXnVGYXVGVkZjdUZWRmh0Rlx2RmFvRl92RmJ2LUYsNiVRI3c3RidGL0YyRjVGaW5GX3BGYnAtRmpuNiQtRiM2KkYrRl9wRmlwLUZqbjYkLUYjNiVGYHEtRmpuNiQtRiM2LEZgcUZncUZnckZmc0Zpcy1GUDYkUSI0RidGOUZldEZWRmh0RjlGOUY5RjlGZ3JGaHRGZHlGOUY5Rlt1RlZGaHRGXnVGYXVGVkZjdUZWRmh0Rlx2RmFvRl92RmR5Rjk=">QzQ+SSRmYWNHNiIiJD8oISIiPkkjdzBHRiUtSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjKiZGJEYnLUknaG9ybmVyR0YlNiQqJkYkIiIiLUknZXhwYW5kRyUqcHJvdGVjdGVkRzYjLUklZXZhbEdGNzYkLUY6NiQmSSdMYW1iZGFHRiU2JCIiJ0ZBSSpzb2x1dGlvbnNHRiUvSSJ4R0YlLCYhIiRGNEkieUdGJUYnRjRGR0Y0NyMtSSRhbmRHRjc2JC1JIj5HRjc2JEZHIiIhMkZHRjRGND5JI3cxR0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZELCYhIiNGNEZHRidGNEZHRjRGSEY0PkkjdzJHRiUtRis2JDcjKiZGJEYnLUYxNiQqJkYkRjQtRjY2Iy1GOjYkRjwvRkQsJkYnRjRGR0YnRjRGR0Y0RkhGND5JI3czR0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZELCRGR0YnRjRGR0Y0RkhGND5JI3c0R0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZELCZGNEY0RkdGJ0Y0RkdGNEZIRjQ+SSN3NUdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRCwmIiIjRjRGR0YnRjRGR0Y0RkhGND5JI3c2R0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZELCYiIiRGNEZHRidGNEZHRjRGSEY0PkkjdzdHRiUtRis2JDcjKiZGJEYnLUYxNiQqJkYkRjQtRjY2Iy1GOjYkRjwvRkQsJiIiJUY0RkdGJ0Y0RkdGNEZIRjQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFEjMTJGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGXnBGYHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIjRGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSMxNUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRIjVGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSIzRidGOUZkcC1GIzYmLUZnbzYkLUYjNiZGVEZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFElNjU4N0YnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJjM0ODY5RidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEmNzc4MTVGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSY5MzU3N0YnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJjYzODY2RidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEmMjM0MjZGJ0Y5RmRwLUYjNiYtRlU2JFElMzYwNEYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0Zcd0Y5RjlGOUZeb0Zcd0Y5RjlGOUZeb0Zcd0Y5RjlGOUZeb0Zcd0Y5RjlGOUZeb0Zcd0Y5RjlGOUZeb0Zcd0Y5RjlGOUZeb0Zcd0Y5RjlGOUZeb0Zcd0Y5RjlGOUZeb0Zcd0Y5RjlGOUZeb0Zcd0Y5RjlGOUZeb0Zcd0Y5RjlGOUZeb0Zcd0Y5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGX3dGYndGOQ==">LCQqJiwmISM3IiIiKiYsJiIiJUYmKiYsJiIjOkYmKiYsJiEiJkYmKiYsJiEiJEYmKiYsJkYmRiYqJiwmIiUoZSdGJiomLCYhJnBbJEYmKiYsJiImOnkoRiYqJiwmISZ4TipGJiomLCYiJm1RJ0YmKiYsJiEmRU0jRiZJInlHNiIiJS9PRiZGR0YmRiZGJkZHRiZGJkYmRkdGJkYmRiZGR0YmRiZGJkZHRiZGJkYmRkdGJkYmRiZGR0YmRiZGJkZHRiZGJkYmRkdGJkYmRiZGR0YmRiZGJkZHRiZGJkYmRkdGJiNGJiIkPyg=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Ji1GVTYkUSQxMDhGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GVTYkUSM1NEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmpwLUZVNiRRJDEyMEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIzYwRidGOUZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEjMTJGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZqcC1GVTYkUSI2RidGOUZecC1GIzYmLUZnbzYkLUYjNidGanAtRlU2JFEmNDYxMDlGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUScyNDQwODNGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZqcC1GVTYkUSc1NDQ3MDVGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSc2NTUwMzlGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZqcC1GVTYkUSc0NDcwNjJGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUScxNjM5ODJGJ0Y5LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGYXBGY3AtRiM2Ji1GVTYkUSYyNTIyOEYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0Zid0Y5RjlGOUZeb0Zid0Y5RjlGOUZeb0Zid0Y5RjlGOUZeb0Zid0Y5RjlGOUZeb0Zid0Y5RjlGOUZeb0Zid0Y5RjlGOUZeb0Zid0Y5RjlGOUZeb0Zid0Y5RjlGOUZeb0Zid0Y5RjlGOUZeb0Zid0Y5RjlGOUZeb0Zid0Y5RjlGOUZeb0Zid0Y5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGZXdGaHdGOQ==">LCQqJiwmIiQzIiIiIiomLCYhI2FGJiomLCYhJD8iRiYqJiwmIiNnRiYqJiwmIiM3RiYqJiwmISInRiYqJiwmISY0aCVGJiomLCYiJyQzVyNGJiomLCYhJzBaYUYmKiYsJiInUl1sRiYqJiwmISdpcVdGJiomLCYiJyMpUjtGJkkieUc2IiEmR18jRiZGSEYmRiZGJkZIRiZGJkYmRkhGJkYmRiZGSEYmRiZGJkZIRiZGJkYmRkhGJkYmRiZGSEYmRiZGJkZIRiZGJkYmRkhGJkYmRiZGSEYmRiZGJkZIRiZGJkYmRkhGJiNGJiIkPyg=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFEkNTQwRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2JkZhcEZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEkMTk1RidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3BGY3FGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRIzE1RidGOUZkcC1GIzYmLUZnbzYkLUYjNiZGYnJGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJzEzODMyN0YnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJzczMjI0OUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRKDE2MzQxMTVGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSgxOTY1MTE3RidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEoMTM0MTE4NkYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJzQ5MTk0NkYnRjlGZHAtRiM2Ji1GVTYkUSY3NTY4NEYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0ZmdkY5RjlGOUZeb0ZmdkY5RjlGOUZeb0ZmdkY5RjlGOUZeb0ZmdkY5RjlGOUZeb0ZmdkY5RjlGOUZeb0ZmdkY5RjlGOUZeb0ZmdkY5RjlGOUZeb0ZmdkY5RjlGOUZeb0ZmdkY5RjlGOUZeb0ZmdkY5RjlGOUZeb0ZmdkY5RjlGOUZeb0ZmdkY5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGaXZGXHdGOQ==">LCQqJiwmISRTJiIiIiomLCYiJFMmRiYqJiwmIiQmPkYmKiYsJiEkJj5GJiomLCYhIzpGJiomLCYiIzpGJiomLCYiJ0YkUSJGJiomLCYhJ1xBdEYmKiYsJiIoOlRqIkYmKiYsJiEoPF4nPkYmKiYsJiIoJz1UOEYmKiYsJiEnWT5cRiZJInlHNiIiJiVvdkYmRkhGJkYmRiZGSEYmRiZGJkZIRiZGJkYmRkhGJkYmRiZGSEYmRiZGJkZIRiZGJkYmRkhGJkYmRiZGSEYmRiZGJkZIRiZGJkYmRkhGJkYmRiZGSEYmRiZGJkZIRiYjRiYiJD8o</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtSSNtbkdGJDYkUSIxRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlktRiM2KC1JJm1mcmFjR0YkNihGUS1GUjYkUSQ3MjBGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVC8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zhby8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5Gam8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZYRlotRlI2JFEkOTgwRidGOUZVLUYjNiYtRl9wNiQtRiM2Ji1GUjYkUSQyODBGJ0Y5RlUtRiM2Ji1GX3A2JC1GIzYnRmNwLUZSNiRRIzIwRidGOUZVLUYjNiYtRl9wNiQtRiM2J0ZjcC1GUjYkUScyMzA1NDVGJ0Y5RlUtRiM2Ji1GX3A2JC1GIzYmLUZSNiRRKDEyMjA0MTVGJ0Y5RlUtRiM2Ji1GX3A2JC1GIzYnRmNwLUZSNiRRKDI3MjM1MjVGJ0Y5RlUtRiM2Ji1GX3A2JC1GIzYmLUZSNiRRKDMyNzUxOTVGJ0Y5RlUtRiM2Ji1GX3A2JC1GIzYnRmNwLUZSNiRRKDIyMzUzMTBGJ0Y5RlUtRiM2Ji1GX3A2JC1GIzYmLUZSNiRRJzgxOTkxMEYnRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZYRlotRiM2Ji1GUjYkUScxMjYxNDBGJ0Y5RmZvLUYsNiVRInlGJ0YvRjJGOUY5RjlGZm9GaXVGOUY5RjlGZm9GaXVGOUY5RjlGZm9GaXVGOUY5RjlGZm9GaXVGOUY5RjlGZm9GaXVGOUY5RjlGZm9GaXVGOUY5RjlGZm8tSSVtc3VwR0YkNiVGaXUtRlI2JFEiMkYnRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRjlGOUY5RmZvRlx2RjlGOUY5RmZvRlx2RjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUY5RmV2Rmh2Rjk=">LCYiIiJGIyomLCYhJCEpKkYjKiYsJiIkIUdGIyomLCYhIz9GIyomLCYhJ1gwQkYjKiYsJiIoOi9BIkYjKiYsJiEoRE5zI0YjKiYsJiIoJj52S0YjKiYsJiEoNWBCI0YjKiYsJiInNSo+KUYjSSJ5RzYiISdTaDdGI0Y/RiNGI0YjRj9GI0YjRiNGP0YjRiNGI0Y/RiNGI0YjRj9GI0YjRiNGP0YjRiNGI0Y/IiIjRiNGI0Y/RkJGI0YjRj9GQiNGIyIkPyg=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Ji1GVTYkUSQ1NDBGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYmRltwRl5wLUYjNiYtRmdvNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGYXBGY3AtRlU2JFEkMTk1RidGOUZecC1GIzYmLUZnbzYkLUYjNidGYHFGY3FGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIzE1RidGOUZecC1GIzYmLUZnbzYkLUYjNiZGYnJGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJzIzMDU0NUYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmBxLUZVNiRRKDEyMjA0MTVGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSgyNzIzNTI1RidGOUZecC1GIzYmLUZnbzYkLUYjNidGYHEtRlU2JFEoMzI3NTE5NUYnRjlGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRKDIyMzUzMTBGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZgcS1GVTYkUSc4MTk5MTBGJ0Y5Rl5wLUYjNiYtRlU2JFEnMTI2MTQwRidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRmZ2RjlGOUY5Rl5vRmZ2RjlGOUY5Rl5vRmZ2RjlGOUY5Rl5vRmZ2RjlGOUY5Rl5vRmZ2RjlGOUY5Rl5vRmZ2RjlGOUY5Rl5vRmZ2RjlGOUY5Rl5vRmZ2RjlGOUY5Rl5vRmZ2RjlGOUY5Rl5vRmZ2RjlGOUY5Rl5vRmZ2RjlGOUY5Rl5vRmZ2RjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZpdkZcd0Y5">LCQqJiwmIiRTJiIiIiomLCZGJUYmKiYsJiEkJj5GJiomLCZGK0YmKiYsJiIjOkYmKiYsJkYwRiYqJiwmIidYMEJGJiomLCYhKDovQSJGJiomLCYiKEROcyNGJiomLCYhKCY+dktGJiomLCYiKDVgQiNGJiomLCYhJzUqPilGJkkieUc2IiInU2g3RiZGRUYmRiZGJkZFRiZGJkYmRkVGJkYmRiZGRUYmRiZGJkZFRiZGJkYmRkVGJkYmRiZGRUYmRiZGJkZFRiZGJkYmRkVGJkYmRiZGRUYmRiZGJkZFRiZGJkYmRkVGJiNGJiIkPyg=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzVGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFEkMTA4RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSM1NEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJDEyMEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRIzYwRidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEjMTJGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSI2RidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEnMTM4MzI3RidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEnNzMyMjQ5RidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEoMTYzNDExNUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRKDE5NjUxMTdGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSgxMzQxMTg2RidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEnNDkxOTQ2RidGOS1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRlU2JFEmNzU2ODRGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GYndGOUY5RjlGXm9GYndGOUY5RjlGXm9GYndGOUY5RjlGXm9GYndGOUY5RjlGXm9GYndGOUY5RjlGXm9GYndGOUY5RjlGXm9GYndGOUY5RjlGXm9GYndGOUY5RjlGXm9GYndGOUY5RjlGXm9GYndGOUY5RjlGXm9GYndGOUY5RjlGXm9GYndGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RmV3Rmh3Rjk=">LCQqJiwmISQzIiIiIiomLCYhI2FGJiomLCYiJD8iRiYqJiwmIiNnRiYqJiwmISM3RiYqJiwmISInRiYqJiwmISdGJFEiRiYqJiwmIidcQXRGJiomLCYhKDpUaiJGJiomLCYiKDxeJz5GJiomLCYhKCc9VDhGJiomLCYiJ1k+XEYmSSJ5RzYiISYlb3ZGJkZIRiZGJkYmRkhGJkYmRiZGSEYmRiZGJkZIRiZGJkYmRkhGJkYmRiZGSEYmRiZGJkZIRiZGJkYmRkhGJkYmRiZGSEYmRiZGJkZIRiZGJkYmRkhGJkYmRiZGSEYmI0YmIiQ/KA==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzZGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Ji1GVTYkUSMxMkYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZicC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEiNEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GVTYkUSMxNUYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmNxLUZVNiRRIjVGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSIzRidGOUZecC1GIzYmLUZnbzYkLUYjNiZGVEZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEmNDYxMDlGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZjcS1GVTYkUScyNDQwODNGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSc1NDQ3MDVGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZjcS1GVTYkUSc2NTUwMzlGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSc0NDcwNjJGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZjcS1GVTYkUScxNjM5ODJGJ0Y5Rl5wLUYjNiYtRlU2JFEmMjUyMjhGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GXHdGOUY5RjlGXm9GXHdGOUY5RjlGXm9GXHdGOUY5RjlGXm9GXHdGOUY5RjlGXm9GXHdGOUY5RjlGXm9GXHdGOUY5RjlGXm9GXHdGOUY5RjlGXm9GXHdGOUY5RjlGXm9GXHdGOUY5RjlGXm9GXHdGOUY5RjlGXm9GXHdGOUY5RjlGXm9GXHdGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5Rl93RmJ3Rjk=">LCQqJiwmIiM3IiIiKiYsJiIiJUYmKiYsJiEjOkYmKiYsJiEiJkYmKiYsJiIiJEYmKiYsJkYmRiYqJiwmIiY0aCVGJiomLCYhJyQzVyNGJiomLCYiJzBaYUYmKiYsJiEnUl1sRiYqJiwmIidpcVdGJiomLCYhJyMpUjtGJkkieUc2IiImR18jRiZGR0YmRiZGJkZHRiZGJkYmRkdGJkYmRiZGR0YmRiZGJkZHRiZGJkYmRkdGJkYmRiZGR0YmRiZGJkZHRiZGJkYmRkdGJkYmRiZGR0YmRiZGJkZHRiZGJkYmRkdGJiNGJiIkPyg=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEkNzIwRidGOS8lLmxpbmV0aGlja25lc3NHRlcvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaW4vJSliZXZlbGxlZEdGPS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmJvLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GX3AtRlU2JFElNjU4N0YnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZecEZgcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEmMzQ4NjlGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSY3NzgxNUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJjkzNTc3RidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEmNjM4NjZGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSYyMzQyNkYnRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZecEZgcC1GIzYmLUZVNiRRJTM2MDRGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GXHRGOUY5RjlGXm9GXHRGOUY5RjlGXm9GXHRGOUY5RjlGXm9GXHRGOUY5RjlGXm9GXHRGOUY5RjlGXm8tSSVtc3VwR0YkNiVGXHQtRlU2JFEiN0YnRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZodEZbdUY5">LCQqJiwmISUoZSciIiIqJiwmIiZwWyRGJiomLCYhJjp5KEYmKiYsJiImeE4qRiYqJiwmISZtUSdGJiomLCYiJkVNI0YmSSJ5RzYiISUvT0YmRjZGJkYmRiZGNkYmRiZGJkY2RiZGJkYmRjZGJkYmRiZGNkYmRiZGJkY2IiIoI0YmIiQ/KA==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L761" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C([w0, w1, w2, w3, w4, w5, w6, w7], declare = [y::float], resultname = 'w', coercetypes = false)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEiQ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzY1LUY2NiYtRiM2My1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkEtRiw2JVEjdzRGJ0YvRjJGQS1GLDYlUSN3NUYnRi9GMkZBLUYsNiVRI3c2RidGL0YyRkEtRiw2JVEjdzdGJ0YvRjIvJStleGVjdXRhYmxlR0ZJRkVGRS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZBLUZCNi1RIn5GJ0ZFRkcvRktGSUZMRk5GUEZSRlRGVi9GWkZYLUYsNiVRKGRlY2xhcmVGJ0YvRjItRkI2LVEiPUYnRkVGR0ZmcEZMRk5GUEZSRlQvRldRLDAuMjc3Nzc3OGVtRicvRlpGX3EtRjY2Ji1GIzYnLUYsNiVRInlGJ0YvRjItRkI2LVEtJlByb3BvcnRpb247RidGRUZHRmZwRkxGTkZQRlJGVEZecUZgcS1GLDYlUSZmbG9hdEYnRi9GMkZbcEZFRkVGXXBGYHBGQS1GLDYlUStyZXN1bHRuYW1lRidGL0YyRltxLUZCNi1RIidGJ0ZFRkdGZnBGTEZORlBGUkZUL0ZXUSwwLjExMTExMTFlbUYnRmdwLUYsNiVRIndGJ0YvRjJGYXJGQUZjcC1GLDYlUSxjb2VyY2V0eXBlc0YnRi9GMkZbcS1GLDYlRklGL0YyRltwRkVGRUZbcEZF">LUkiQ0c2IjYmNypJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiRJI3c2R0YkSSN3N0dGJC9JKGRlY2xhcmVHRiQ3IydJInlHRiRJJmZsb2F0RyUqcHJvdGVjdGVkRy9JK3Jlc3VsdG5hbWVHRiQuSSJ3R0YkL0ksY29lcmNldHlwZXNHRiRJJmZhbHNlR0Y1</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[0] = (-12 + (4 + (15 + (-5 + (-3 + (1 + (6587 + (-34869 + (77815 + (-93577 + (63866 + (-23426 + 3604 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 720;</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[1] = (108 + (-54 + (-120 + (60 + (12 + (-6 + (-46109 + (244083 + (-544705 + (655039 + (-447062 + (163982 - 25228 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[2] = (-540 + (540 + (195 + (-195 + (-15 + (15 + (138327 + (-732249 + (1634115 + (-1965117 + (1341186 + (-491946 + 75684 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[3] = 1 + (-980 + (280 + (-20 + (-230545 + (1220415 + (-2723525 + (3275195 + (-2235310 + (819910 - 126140 * y) * y) * y) * y) * y) * y) * y) * y * y) * y * y) * y * y / 720; -w[4] = (540 + (540 + (-195 + (-195 + (15 + (15 + (230545 + (-1220415 + (2723525 + (-3275195 + (2235310 + (-819910 + 126140 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[5] = (-108 + (-54 + (120 + (60 + (-12 + (-6 + (-138327 + (732249 + (-1634115 + (1965117 + (-1341186 + (491946 - 75684 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[6] = (12 + (4 + (-15 + (-5 + (3 + (1 + (46109 + (-244083 + (544705 + (-655039 + (447062 + (-163982 + 25228 * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y) * y / 720; -w[7] = (-6587 + (34869 + (-77815 + (93577 + (-63866 + (23426 - 3604 * y) * y) * y) * y) * y) * y) * pow(y, 7) / 720;</Text-field> -</Output> -</Group> -<Group labelreference="L762" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Fortran([w0, w1, w2, w3, w4, w5, w6, w7], declare = [y::float], resultname = 'w')" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEoRm9ydHJhbkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYvLUY2NiYtRiM2Mi1GLDYlUSN3MEYnRi9GMi1JI21vR0YkNi1RIixGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSS8lKnN5bW1ldHJpY0dGSS8lKGxhcmdlb3BHRkkvJS5tb3ZhYmxlbGltaXRzR0ZJLyUnYWNjZW50R0ZJLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEjdzFGJ0YvRjJGQS1GLDYlUSN3MkYnRi9GMkZBLUYsNiVRI3czRidGL0YyRkEtRiw2JVEjdzRGJ0YvRjJGQS1GLDYlUSN3NUYnRi9GMkZBLUYsNiVRI3c2RidGL0YyRkEtRiw2JVEjdzdGJ0YvRjJGRUZFLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRkEtRkI2LVEifkYnRkVGRy9GS0ZJRkxGTkZQRlJGVEZWL0ZaRlgtRiw2JVEoZGVjbGFyZUYnRi9GMi1GQjYtUSI9RidGRUZHRmRwRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZdcS1GNjYmLUYjNiYtRiw2JVEieUYnRi9GMi1GQjYtUS0mUHJvcG9ydGlvbjtGJ0ZFRkdGZHBGTEZORlBGUkZURlxxRl5xLUYsNiVRJmZsb2F0RidGL0YyRkVGRUZbcEZecEZBLUYsNiVRK3Jlc3VsdG5hbWVGJ0YvRjJGaXAtRkI2LVEiJ0YnRkVGR0ZkcEZMRk5GUEZSRlQvRldRLDAuMTExMTExMWVtRidGZXAtRiw2JVEid0YnRi9GMkZfckZFRkUvJStleGVjdXRhYmxlR0ZJRkU=">LUkoRm9ydHJhbkc2IjYlNypJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiRJI3c2R0YkSSN3N0dGJC9JKGRlY2xhcmVHRiQ3IydJInlHRiRJJmZsb2F0RyUqcHJvdGVjdGVkRy9JK3Jlc3VsdG5hbWVHRiQuSSJ3R0Yk</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output"> w(1) = (-0.12D2 + (0.4D1 + (0.15D2 + (-0.5D1 + (-0.3D1 + (0.1D1 + </Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output"> #(0.6587D4 + (-0.34869D5 + (0.77815D5 + (-0.93577D5 + (0.63866D5 + - #(-0.23426D5 + 0.3604D4 * y) * y) * y) * y) * y) * y) * y) * y) * y - #) * y) * y) * y) * y / 0.720D3 - w(2) = (0.108D3 + (-0.54D2 + (-0.120D3 + (0.60D2 + (0.12D2 + (-0.6 - #D1 + (-0.46109D5 + (0.244083D6 + (-0.544705D6 + (0.655039D6 + (-0. - #447062D6 + (0.163982D6 - 0.25228D5 * y) * y) * y) * y) * y) * y) * - # y) * y) * y) * y) * y) * y) * y / 0.720D3 - w(3) = (-0.540D3 + (0.540D3 + (0.195D3 + (-0.195D3 + (-0.15D2 + (0 - #.15D2 + (0.138327D6 + (-0.732249D6 + (0.1634115D7 + (-0.1965117D7 - #+ (0.1341186D7 + (-0.491946D6 + 0.75684D5 * y) * y) * y) * y) * y) - # * y) * y) * y) * y) * y) * y) * y) * y / 0.720D3 - w(4) = 0.1D1 + (-0.980D3 + (0.280D3 + (-0.20D2 + (-0.230545D6 + (0 - #.1220415D7 + (-0.2723525D7 + (0.3275195D7 + (-0.2235310D7 + (0.819 - #910D6 - 0.126140D6 * y) * y) * y) * y) * y) * y) * y) * y ** 2) * - #y ** 2) * y ** 2 / 0.720D3 - w(5) = (0.540D3 + (0.540D3 + (-0.195D3 + (-0.195D3 + (0.15D2 + (0. - #15D2 + (0.230545D6 + (-0.1220415D7 + (0.2723525D7 + (-0.3275195D7 - #+ (0.2235310D7 + (-0.819910D6 + 0.126140D6 * y) * y) * y) * y) * y - #) * y) * y) * y) * y) * y) * y) * y) * y / 0.720D3 - w(6) = (-0.108D3 + (-0.54D2 + (0.120D3 + (0.60D2 + (-0.12D2 + (-0. - #6D1 + (-0.138327D6 + (0.732249D6 + (-0.1634115D7 + (0.1965117D7 + - #(-0.1341186D7 + (0.491946D6 - 0.75684D5 * y) * y) * y) * y) * y) * - # y) * y) * y) * y) * y) * y) * y) * y / 0.720D3 - w(7) = (0.12D2 + (0.4D1 + (-0.15D2 + (-0.5D1 + (0.3D1 + (0.1D1 + ( - #0.46109D5 + (-0.244083D6 + (0.544705D6 + (-0.655039D6 + (0.447062D - #6 + (-0.163982D6 + 0.25228D5 * y) * y) * y) * y) * y) * y) * y) * - #y) * y) * y) * y) * y) * y / 0.720D3 - w(8) = (-0.6587D4 + (0.34869D5 + (-0.77815D5 + (0.93577D5 + (-0.63 - #866D5 + (0.23426D5 - 0.3604D4 * y) * y) * y) * y) * y) * y) * y ** - # 7 / 0.720D3</Text-field> -</Output> -</Group> -<Group labelreference="L745" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L722" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L726" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L751" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L721" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L749" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L741" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L1" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -</Worksheet> \ No newline at end of file diff --git a/Docs/remeshing_formulas/calcul_lambda8star.mw b/Docs/remeshing_formulas/calcul_lambda8star.mw deleted file mode 100644 index f635d7ba2b94488f0e612dc8533dd4bf366378f0..0000000000000000000000000000000000000000 --- a/Docs/remeshing_formulas/calcul_lambda8star.mw +++ /dev/null @@ -1,458 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<Worksheet> -<Version major="16" minor="0"/> -<Label-Scheme value="2" prefix=""/> -<View-Properties presentation="false"><Zoom percentage="150"/></View-Properties> -<MapleNet-Properties elisiondigitsbefore="100" labelling="true" indentamount="4" elisiontermsthreshold="10000" ansi="false" errorbreak="1" useclientjvm="true" echo="1" imaginaryunit="I" labelwidth="20" contextmenusize="automatic" plotdriver="opengl" elisiondigitsafter="100" plotoutput="terminal" helpbrowser="standard" rtablesize="10" elisiontermsbefore="100" elisiondigitsthreshold="10000" typesetting="standard" plotdevice="inline" verboseproc="1" showassumed="1" errorcursor="false" longdelim="true" plotoptions="" quiet="false" elisiontermsafter="100" screenwidth="79" preplot="" prettyprint="3" displayprecision="-1" screenpixelheight="1050" warnlevel="3" screenheight="25" latexwidth="6.0" postplot="" prompt="> " ShowLabels="true"/> -<Styles><Font name="Ordered List 1" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 2" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 3" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 5" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Author" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Warning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Caption Reference" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input Placeholder" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[200,0,200]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="true"/> -<Font name="Maple Plot" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Code" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Line Printed Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Diagnostic" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[40,120,40]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Inert Output" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[144,144,144]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Normal" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,128,128]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Maple Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Dash Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Math" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Input" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkError" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Header and Footer" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="10" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Error" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 1" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Bullet Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Equation Label" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 3" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="14" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 2" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="16" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkWarning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Dictionary Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[147,0,15]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Caption Text" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="List Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Layout name="Ordered List 1" alignment="left" bullet="numeric" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 2" alignment="left" bullet="alphabetic" firstindent="0" leftmargin="36" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 3" alignment="left" bullet="roman" firstindent="0" leftmargin="72" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 4" alignment="left" bullet="ALPHABETIC" firstindent="0" leftmargin="108" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 5" alignment="left" bullet="ROMAN" firstindent="0" leftmargin="144" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Author" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="8" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Warning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Annotation Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Plot" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Line Printed Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Text Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="newline" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Diagnostic" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Normal" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Output" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.3" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Dash Item" alignment="left" bullet="dash" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkError" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Error" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 1" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="4" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Bullet Item" alignment="left" bullet="dot" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 4" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 3" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 2" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="2" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkWarning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="List Item" alignment="left" bullet="indent" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Pencil-style name="Pencil 5" pen-color="[255,0,0]" pen-height="5.0" pen-width="5.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 4" pen-color="[0,0,255]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 3" pen-color="[0,0,0]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 2" pen-color="[0,0,255]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 1" pen-color="[0,0,0]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Highlighter-style name="Highlighter 2" pen-color="[255,204,0]" pen-height="14.0" pen-width="14.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 1" pen-color="[255,153,255]" pen-height="12.0" pen-width="8.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 4" pen-color="[0,255,255]" pen-height="32.0" pen-width="32.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 3" pen-color="[51,255,0]" pen-height="24.0" pen-width="24.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 5" pen-color="[255,255,0]" pen-height="48.0" pen-width="48.0" pen-opacity="0.8"/> -</Styles> -<Task-table> - <Task-category name="<default>"> - </Task-category> -</Task-table> -<Task> -</Task> -<Group labelreference="L601" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYkLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjlGOS1GNjYtUSI6RidGOUY7L0Y/Rj1GQEZCRkRGRkZIL0ZLRk9GTS1GLDYlUSdob3JuZXJGJ0YvRjItRjY2LVEqJmNvbG9uZXE7RidGOUY7RmhuRkBGQkZERkZGSEZpbkZNLUYsNiVRKGNvZGVnZW5GJ0YvRjItRlQ2Ji1GIzYkRmpuRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zlbi8lK2V4ZWN1dGFibGVHRj1GOQ==">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRictRiw2JVEld2l0aEYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYjLUYsNiVRL0NvZGVHZW5lcmF0aW9uRidGL0YyRjktRjY2LVEiOkYnRjlGOy9GP0Y9RkBGQkZERkZGSC9GS0ZPRk0tRiw2JVEnaG9ybmVyRidGL0YyLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0ZobkZARkJGREZGRkhGaW5GTS1GLDYlUShjb2RlZ2VuRidGL0YyLUZUNiYtRiM2I0ZqbkY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmVu</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L613" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Calcul de la fomule Lambda_8^*:</Text-field> -<Text-field style="Text" layout="Normal"> - 10 points</Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8"> - degr\303\251 9</Font></Text-field> -<Text-field style="Text" layout="Normal"> - C4</Text-field> -<Text-field style="Text" layout="Normal"> - Moments d'ordre 8</Text-field> -</Input> -</Group> -<Group labelreference="L627" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="xrange := -5 .. 5; 1; d := 9" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYuLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlMtSSNtbkdGJDYkUSI1RidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZSL0ZOUSYwLjBlbUYnRlUtRjY2LVEiO0YnRjlGOy9GP0YxRkBGQkZERkZGSC9GS0ZnbkZNLUYsNiVRImRGJ0YvRjJGNS1GVjYkUSI5RidGOS8lK2V4ZWN1dGFibGVHRj1GOQ==">QyU+SSd4cmFuZ2VHNiI7ISImIiImIiIiPkkiZEdGJSIiKg==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEneHJhbmdlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYoLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlctSSNtbkdGJDYkUSI1RidGOUY5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRlYvRk5RJjAuMGVtRidGWS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RlxvRl9vRjk=">OyEiJiIiJg==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiZEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSSNtbkdGJDYkUSI5RidGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5">IiIq</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L603" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="p[0] := proc (x) options operator, arrow; sum(c[0, i]*x^i, i = 0 .. d) end proc;" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZHLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYkLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJ0Y+LyUvc3Vic2NyaXB0c2hpZnRHRj0tSSNtb0dGJDYtUSomY29sb25lcTtGJ0Y+LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZILyUpc3RyZXRjaHlHRkgvJSpzeW1tZXRyaWNHRkgvJShsYXJnZW9wR0ZILyUubW92YWJsZWxpbWl0c0dGSC8lJ2FjY2VudEdGSC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRlctRi82JVEieEYnRjJGNS1GQzYtUSgmc3JhcnI7RidGPkZGRklGS0ZNRk9GUUZTL0ZWUSYwLjBlbUYnL0ZZRltvLUYvNiVRJHN1bUYnRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYtLUYsNiUtRi82JVEiY0YnRjJGNS1GIzYmRjotRkM2LVEiLEYnRj5GRi9GSkY0RktGTUZPRlFGU0Zqbi9GWVEsMC4zMzMzMzMzZW1GJy1GLzYlUSJpRidGMkY1Rj5GQC1GQzYtUScmc2RvdDtGJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG8tSSVtc3VwR0YkNiVGWi1GIzYlLUZDNi1RIn5GJ0Y+RkZGSUZLRk1GT0ZRRlNGam5GXG9GYnBGPi8lMXN1cGVyc2NyaXB0c2hpZnRHRj1GXHBGXXFGYnAtRkM2LVEiPUYnRj5GRkZJRktGTUZPRlFGU0ZVRlhGOi1GQzYtUSMuLkYnRj5GRkZJRktGTUZPRlFGUy9GVlEsMC4yMjIyMjIyZW1GJ0Zcby1GLzYlUSJkRidGMkY1Rj5GPi1GQzYtUSI7RidGPkZGRl9wRktGTUZPRlFGU0ZqbkZYLUYsNiVGLi1GIzYkLUY7NiRRIjFGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGZHJGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLUYsNiVGLi1GIzYkLUY7NiRRIjJGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGY3NGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLUYsNiVGLi1GIzYkLUY7NiRRIjNGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGYnRGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLUYsNiVGLi1GIzYkLUY7NiRRIjRGJ0Y+Rj5GQEZCRlpGZ25GXW8tRmFvNiQtRiM2LS1GLDYlRmdvLUYjNiZGYXVGXHBGYnBGPkZARmVwRmhwRlxwRl1xRmJwRmJxRjpGZXFGanFGPkY+Rl1yLyUrZXhlY3V0YWJsZUdGSEY+">Qyw+JkkicEc2IjYjIiIhZio2I0kieEdGJkYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLUkkc3VtR0YmNiQqJiZJImNHRiY2JEYoSSJpR0YmIiIiKTkkRjZGNy9GNjtGKEkiZEdGJkYmRiZGJkY3PiZGJTYjRjdmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRjdGNkY3RjhGN0Y6RiZGJkYmRjc+JkYlNiMiIiNmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRklGNkY3RjhGN0Y6RiZGJkYmRjc+JkYlNiMiIiRmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRlNGNkY3RjhGN0Y6RiZGJkYmRjc+JkYlNiMiIiVmKkYqRiZGLEYmLUYwNiQqJiZGNDYkRmduRjZGN0Y4RjdGOkYmRiZGJkY3</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R0Y9LUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZm4tRiM2KC1GLzYlUSJ4RidGMkY1LUZJNi1RKCYjODU5NDtGJ0Y+RkxGTkZQRlJGVEZWRlgvRmVuUSYwLjBlbUYnL0ZobkZiby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZJNi1RJiZTdW07RidGPkZMRk4vRlFGNEZSL0ZVRjQvRldGNEZYRmFvL0ZoblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRkk2LVEiPUYnRj5GTEZORlBGUkZURlZGWEZaRmduRjpGQEZDRj4tRi82JVEiZEYnRjJGNUZYLyUsYWNjZW50dW5kZXJHRkUtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdRJDUuMEYnLyUmZGVwdGhHRmNxLyUqbGluZWJyZWFrR1ElYXV0b0YnLUYjNiYtRiw2JS1GLzYlUSJjRidGMkY1LUYjNihGOi1GSTYtUSIsRidGPkZML0ZPRjRGUEZSRlRGVkZYRmFvL0ZoblEsMC4zMzMzMzMzZW1GJ0ZjcEZARkNGPkZGLUZJNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y+RkxGTkZQRlJGVEZWRlhGYW9GY28tSSVtc3VwR0YkNiVGW29GY3AvJTFzdXBlcnNjcmlwdHNoaWZ0R0Y9Rj5GQEZDRj5GQEZDRj5GQEZDRj4=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIUkiaUdGJSIiIik5JEYxRjIvRjE7RjBJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiIkkiaUdGJUYwKTkkRjFGMC9GMTsiIiFJImRHRiVGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMkYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiI0kiaUdGJSIiIik5JEYxRjIvRjE7IiIhSSJkR0YlRiVGJUYl</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiM0YnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiJEkiaUdGJSIiIik5JEYxRjIvRjE7IiIhSSJkR0YlRiVGJUYl</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiNEYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GLzYlUSJkRidGMkY1RlkvJSxhY2NlbnR1bmRlckdGRS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EkNS4wRicvJSZkZXB0aEdGZnEvJSpsaW5lYnJlYWtHUSVhdXRvRictRiM2Ji1GLDYlLUYvNiVRImNGJ0YyRjUtRiM2KEY6LUZKNi1RIixGJ0Y+Rk0vRlBGNEZRRlNGVUZXRllGYm8vRmluUSwwLjMzMzMzMzNlbUYnRmRwRkBGQ0Y+RkYtRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj5GTUZPRlFGU0ZVRldGWUZib0Zkby1JJW1zdXBHRiQ2JUZcb0ZkcC8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGPkZARkNGPkZARkNGPkZARkNGPg==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtR0YlNiQqJiZJImNHRiU2JCIiJUkiaUdGJSIiIik5JEYxRjIvRjE7IiIhSSJkR0YlRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L605" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="P := proc (x) options operator, arrow; piecewise(x < -5, 0, x < -4, p[0](x), x < -3, p[1](x), x < -2, p[2](x), x < -1, p[3](x), x < 0, p[4](x), x < 1, p[4](-x), x < 2, p[3](-x), x < 3, p[2](-x), x < 4, p[1](-x), x < 5, p[0](-x), 5 <= x, 0) end proc" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KS1GLDYlUSJQRicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnRjcvJSZmZW5jZUdGNi8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0Y2LyUqc3ltbWV0cmljR0Y2LyUobGFyZ2VvcEdGNi8lLm1vdmFibGVsaW1pdHNHRjYvJSdhY2NlbnRHRjYvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZOLUYsNiVRInhGJ0Y0RjctRjs2LVEoJnNyYXJyO0YnRjdGPkZARkJGREZGRkhGSi9GTVEmMC4wZW1GJy9GUEZYLUYsNiVRKnBpZWNld2lzZUYnL0Y1USV0cnVlRicvRjhRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNl9yRistSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGWC8lJmRlcHRoR0Zlby8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GOzYtUSJ+RidGN0Y+RkBGQkZERkZGSEZKRldGWUZRLUY7Ni1RIjxGJ0Y3Rj5GQEZCRkRGRkZIRkpGTEZPLUY7Ni1RKiZ1bWludXMwO0YnRjdGPkZARkJGREZGRkhGSi9GTVEsMC4yMjIyMjIyZW1GJy9GUEZncC1JI21uR0YkNiRRIjVGJ0Y3LUY7Ni1RIixGJ0Y3Rj4vRkFGaG5GQkZERkZGSEZKRlcvRlBRLDAuMzMzMzMzM2VtRictRmpwNiRRIjBGJ0Y3Rl1xRl1wRmBvRl1wLUYsNiVGU0ZnbkZpbkZgcEZjcC1GanA2JFEiNEYnRjdGXXEtSSVtc3ViR0YkNiUtRiw2JVEicEYnRmduRmluLUYjNiVGY3FGZ25GaW4vJS9zdWJzY3JpcHRzaGlmdEdGZXEtRlxvNiQtRiM2JEZmcUY3RjdGXXFGYG9GXXBGZnFGYHBGY3AtRmpwNiRRIjNGJ0Y3Rl1xLUZccjYlRl5yLUYjNiUtRmpwNiRRIjFGJ0Y3RmduRmluRmNyRmVyRl1xRmBvRl1wRlFGYHBGY3AtRmpwNiRRIjJGJ0Y3Rl1xLUZccjYlLUYsNiVGYHJGNEY3LUYjNiRGY3NGN0ZjckZlckZdcUZgb0ZdcEZmcUZgcEZjcEZgc0ZdcS1GXHI2JUZeci1GIzYkRmlyRjdGY3JGZXJGXXFGYG9GXXBGZnFGYHBGY3FGXXFGXXAtRlxyNiVGXnItRiM2JUZocUZnbkZpbkZjckZlckZdcUZgb0ZdcEZmcUZgcEZgc0ZdcUZgdC1GXG82JC1GIzYlRmNwRmZxRjdGN0ZdcUZgb0ZdcEZmcUZgcEZjc0ZdcUZcdEZkdEZdcUZgb0ZdcEZmcUZgcEZpckZdcS1GXHI2JUZeckZqc0ZjckZkdEZdcUZgb0ZdcEZmcUZgcEZocUZdcUZcc0ZkdEZdcUZgb0ZdcEZmcUZgcEZpcEZdcUZbckZkdEZdcUZgb0ZdcEZmcS1GOzYtUS8mR3JlYXRlckVxdWFsO0YnRjdGPkZARkJGREZGRkhGSkZMRk9GaXBGXXFGXXBGY3FGN0Y3RjdGKy8lK2V4ZWN1dGFibGVHRjZGNw==">PkkiUEc2ImYqNiNJInhHRiRGJDYkSSlvcGVyYXRvckdGJEkmYXJyb3dHRiRGJC1JKnBpZWNld2lzZUclKnByb3RlY3RlZEc2OjI5JCEiJiIiITJGMCEiJS0mSSJwR0YkNiNGMjYjRjAyRjAhIiQtJkY3NiMiIiJGOTJGMCEiIy0mRjc2IyIiI0Y5MkYwISIiLSZGNzYjIiIkRjkyRjBGMi0mRjc2IyIiJUY5MkYwRj8tRk42IywkRjBGRzJGMEZFLUZJRlMyRjBGSy1GQ0ZTMkYwRlAtRj1GUzJGMCIiJi1GNkZTMUZmbkYwRjJGJEYkRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiUEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2KC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCYjODU5NDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWC1GIzYoLUYsNiVRKnBpZWNld2lzZUYnRi9GMi1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGV0ZZLUkobWZlbmNlZEdGJDYkLUYjNlQtRiM2KEZRLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlxwLUkjbW5HRiQ2JFEiNUYnRjlGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGVy9GTlEsMC4zMzMzMzMzZW1GJy1GX3A2JFEiMEYnRjlGZ3AtRiM2KEZRRmNvLUYjNiVGaG8tRl9wNiRRIjRGJ0Y5RjlGYnBGZXBGOUZncC1GIzYoLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JkZdcUZicEZlcEY5LyUvc3Vic2NyaXB0c2hpZnRHRl9xRmluLUZdbzYkLUYjNiZGUUZicEZlcEY5RjlGYnBGZXBGOUZncC1GIzYoRlFGY28tRiM2JUZoby1GX3A2JFEiM0YnRjlGOUZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2Ji1GX3A2JFEiMUYnRjlGYnBGZXBGOUZhckZpbkZjckZicEZlcEY5RmdwLUYjNihGUUZjby1GIzYlRmhvLUZfcDYkUSIyRidGOUY5RmJwRmVwRjlGZ3AtRiM2KC1GanE2JUZcci1GIzYmRlt0RmJwRmVwRjlGYXJGaW5GY3JGYnBGZXBGOUZncC1GIzYoRlFGY28tRiM2JUZob0Zkc0Y5RmJwRmVwRjlGZ3AtRiM2KC1GanE2JUZcci1GIzYmRltzRmJwRmVwRjlGYXJGaW5GY3JGYnBGZXBGOUZncC1GIzYoRlFGY29GXXFGYnBGZXBGOUZncC1GIzYoLUZqcTYlRlxyLUYjNiZGZHFGYnBGZXBGOUZhckZpbkZjckZicEZlcEY5RmdwLUYjNihGUUZjb0Zkc0ZicEZlcEY5RmdwLUYjNihGYnVGaW4tRl1vNiQtRiM2Ji1GIzYnRmhvRlFGYnBGZXBGOUZicEZlcEY5RjlGYnBGZXBGOUZncC1GIzYoRlFGY29GW3RGYnBGZXBGOUZncC1GIzYoRmp0RmluRmp1RmJwRmVwRjlGZ3AtRiM2KEZRRmNvRltzRmJwRmVwRjlGZ3AtRiM2KEZgdEZpbkZqdUZicEZlcEY5RmdwLUYjNihGUUZjb0ZkcUZicEZlcEY5RmdwLUYjNihGYHNGaW5GanVGYnBGZXBGOUZncC1GIzYoRlFGY29GXnBGYnBGZXBGOUZncC1GIzYoRmlxRmluRmp1RmJwRmVwRjlGZ3AtRiM2KEZecC1GNjYtUSUmbGU7RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZRRmJwRmVwRjlGZ3BGXXFGYnBGZXBGOUY5RmJwRmVwRjlGYnBGZXBGOUZicEZlcEY5">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzY6MjkkISImIiIhMkYuISIlLSZJInBHRiU2I0YwNiNGLjJGLiEiJC0mRjU2IyIiIkY3MkYuISIjLSZGNTYjIiIjRjcyRi4hIiItJkY1NiMiIiRGNzJGLkYwLSZGNTYjIiIlRjcyRi5GPS1GTDYjLCRGLkZFMkYuRkMtRkdGUTJGLkZJLUZBRlEyRi5GTi1GO0ZRMkYuIiImLUY0RlExRlpGLkYwRiVGJUYl</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L602" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="E := [eval(P(x), x = 0) = 1, eval(P(x), x = -1) = 0, eval(P(x), x = -2) = 0, eval(P(x), x = -3) = 0, eval(P(x), x = -4) = 0, eval(P(x), x = -5) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiRUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNkEtRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNiktRiw2JVEiUEYnRi9GMi1GUDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5RjlGOUZnby1GW3A2JFEiMUYnRjlGX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ28tRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmlwRl5wRjlGOUZnb0Zqb0Zfb0ZULUZQNiQtRiM2KkZlbkZobkZfb0Zcb0Znb0ZlcC1GW3A2JFEiMkYnRjlGOUY5RmdvRmpvRl9vRlQtRlA2JC1GIzYqRmVuRmhuRl9vRlxvRmdvRmVwLUZbcDYkUSIzRidGOUY5RjlGZ29Gam9GX29GVC1GUDYkLUYjNipGZW5GaG5GX29GXG9GZ29GZXAtRltwNiRRIjRGJ0Y5RjlGOUZnb0Zqb0Zfb0ZULUZQNiQtRiM2KkZlbkZobkZfb0Zcb0Znb0ZlcC1GW3A2JFEiNUYnRjlGOUY5RmdvRmpvLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GZ3JGOQ==">QyQ+SSJFRzYiNygvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJS9GLyIiISIiIi8tRik2JEYsL0YvISIiRjEvLUYpNiRGLC9GLyEiI0YxLy1GKTYkRiwvRi8hIiRGMS8tRik2JEYsL0YvISIlRjEvLUYpNiRGLC9GLyEiJkYxRjc=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L619" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C0 := [seq(eval(p[j](x), x = j-5+1) = eval(p[j+1](x), x = j-5+1), j = 0 .. 3)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRl5wLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmRvLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYHEtSSNtbkdGJDYkUSI1RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl9xRmFxLUZjcTYkUSIxRidGOUY5RjlGaXBGZW4tRlA2JC1GIzYtLUZdbzYlRl9vLUYjNiZGZG9GZnFGaXFGOUZnb0Zqb0ZhcEZecEZpcEZkb0ZccUZicUZmcUZpcUY5RjlGYXBGZG9GaXAtRmNxNiRGaW9GOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZfcS9GTkZmcC1GY3E2JFEiM0YnRjlGOUY5LyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GXXNGOQ==">QyQ+SSNDMEc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS9GNS1JIitHRik2JCwmRjMiIiIhIiZGO0Y7LUYtNiQtJkYxNiMsJkYzRjtGO0Y7RjRGNi9GMzsiIiEiIiQhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L608" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C1 := [seq(eval(diff(p[j](x), x), x = j-5+1) = eval(diff(p[j+1](x), x), x = j-5+1), j = 0 .. 3)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwRjlGOUZocEZlcC1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbcC1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmdxLUkjbW5HRiQ2JFEiNUYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocS1GanE2JFEiMUYnRjlGOUY5RmBxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JkZbcEZdckZgckY5Rl5wRmFwRmhwRmVwRjlGOUZocEZlcEZgcUZbcEZjcUZpcUZdckZgckY5RjlGaHBGW3BGYHEtRmpxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZmcS9GTkZdcS1GanE2JFEiM0YnRjlGOUY5LyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRiw2JVEkQzEwRidGL0YyRjUtRlA2Ji1GIzYpRmVuLUZQNiQtRiM2KUZcby1GUDYkLUYjNictRmRvNiVGZm8tRiM2JC1GanE2JFEiNEYnRjlGOUZecEZhcEZocEZlcEY5RjlGaHBGZXBGYHFGX3NGOUY5RmBxRmVuLUZQNiQtRiM2KUZcby1GUDYkLUYjNidGYnUtRlA2JC1GIzYlLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocUZlcEY5RjlGaHBGZXBGOUY5RmhwRmVwRmBxRl9zRjlGOUZoc0Y5RjlGanNGXXRGYHRGaHNGOQ==">QyY+SSNDMUc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJUY4L0Y4LUkiK0dGKTYkLCZGNiIiIiEiJkY+Rj4tRi02JC1GMDYkLSZGNDYjLCZGNkY+Rj5GPkY3RjhGOS9GNjsiIiEiIiQhIiI+SSRDMTBHRiU3Iy8tRi02JC1GMDYkLSZGNDYjIiIlRjdGOC9GOEZKLUYtNiQtRjA2JC1GVjYjLCRGOEZMRjhGWUZM</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L622" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C2 := [seq(eval(diff(p[j](x), `$`(x, 2)), x = j-5+1) = eval(diff(p[j+1](x), `$`(x, 2)), x = j-5+1), j = 0 .. 3)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIyRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiNUYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcS1GZXE2JFEiM0YnRjlGOUY5LyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GXnRGOQ==">QyQ+SSNDMkc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIjL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJkZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiEiIiQhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L597" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C3 := [seq(eval(diff(p[j](x), `$`(x, 3)), x = j-5+1) = eval(diff(p[j+1](x), `$`(x, 3)), x = j-5+1), j = 0 .. 3)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjQzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIzRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiNUYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcUZkcUY5RjlGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiVRJEMzMEYnRi9GMkY1LUZQNiYtRiM2KEZlbi1GUDYkLUYjNilGXG8tRlA2JC1GIzYpLUZkbzYlRmZvLUYjNiQtRmVxNiRRIjRGJ0Y5RjlGXnBGYXBGaHBGZXBGYHFGZHFGOUY5RmhwRmVwRmhxRmZzRjlGOUZocUZlbi1GUDYkLUYjNilGXG8tRlA2JC1GIzYpRmN1LUZQNiQtRiM2JS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGXnJGYHJGZXBGOUY5RmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZmc0Y5RjlGOUY5Rlt0Rl50RmF0LyUrZXhlY3V0YWJsZUdGPUY5">QyY+SSNDM0c2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIkL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJkZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiFGPCEiIj5JJEMzMEdGJTcjLy1GLTYkLUYwNiQtJkY0NiMiIiVGN0Y5L0Y4Rk4tRi02JC1GMDYkLUZZNiMsJEY4Rk9GOUZmbkZP</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L628" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C4 := [seq(eval(diff(p[j](x), `$`(x, 4)), x = j-5+1) = eval(diff(p[j+1](x), `$`(x, 4)), x = j-5+1), j = 0 .. 3)]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSI0RidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiNUYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcS1GZXE2JFEiM0YnRjlGOUY5RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS8lK2V4ZWN1dGFibGVHRj1GOQ==">QyQ+SSNDNEc2IjcjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIlL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJkZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiEiIiQhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L624" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="CEND := [eval(diff(p[0](x), x), x = -5) = 0, eval(diff(p[0](x), `$`(x, 2)), x = -5) = 0, eval(diff(p[0](x), `$`(x, 3)), x = -5) = 0, eval(diff(p[0](x), `$`(x, 4)), x = -5) = 0]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElQ0VOREYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GUy1JKG1mZW5jZWRHRiQ2Ji1GIzY3LUYsNiVRJWV2YWxGJ0YvRjItRlY2JC1GIzYqLUYsNiVRJWRpZmZGJ0YvRjItRlY2JC1GIzYnLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JC1JI21uR0YkNiRRIjBGJ0Y5RjkvJS9zdWJzY3JpcHRzaGlmdEdGXXAtRlY2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGSi9GTlEsMC4zMzMzMzMzZW1GJ0ZkcEY5RjlGZ3BGZHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmRxLUZbcDYkUSI1RidGOUY5RjlGXXFGam9GZ3BGWi1GVjYkLUYjNipGW28tRlY2JC1GIzYpRmJvRmBwRmdwRmRwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZbcDYkUSIyRidGOUY5RjlGZ3BGZHBGXXFGYHFGZnFGOUY5Rl1xRmpvRmdwRlotRlY2JC1GIzYqRltvLUZWNiQtRiM2KUZib0ZgcEZncEZkcEZhci1GW3A2JFEiM0YnRjlGOUY5RmdwRmRwRl1xRmBxRmZxRjlGOUZdcUZqb0ZncEZaLUZWNiQtRiM2KkZbby1GVjYkLUYjNilGYm9GYHBGZ3BGZHBGYXItRltwNiRRIjRGJ0Y5RjlGOUZncEZkcEZdcUZgcUZmcUY5RjlGXXFGam8vJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRlJGVEZddEY5">QyQ+SSVDRU5ERzYiNyYvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JJWRpZmZHRio2JC0mSSJwR0YlNiMiIiE2I0kieEdGJUY1L0Y1ISImRjMvLUYpNiQtRi02JEYvLUkiJEdGKjYkRjUiIiNGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIiRGNkYzLy1GKTYkLUYtNiRGLy1GPjYkRjUiIiVGNkYzISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L589" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM0 := `assuming`([PolynomialTools[CoefficientList](collect(sum(eval(P(x), x = s-l), l = xrange)-s^0, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0wRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyLyUrZXhlY3V0YWJsZUdGPUY5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictRlM2JC1GIzYoLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlM2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GUzYkLUYjNiktRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0ZccS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXItRiw2JVEibEYnRi9GMkY5RjlGX3FGY3JGZ3EtRiw2JVEneHJhbmdlRidGL0YyRjlGOUZdci1JJW1zdXBHRiQ2JS1GUzYkLUYjNiRGanFGOUY5LUYjNiQtSSNtbkdGJDYkUSIwRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdGZXNGX3FGanFGOUY5Rl9xRmpxRlpGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGY3EvRk5GZHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGY3FGW3RGaHNGanEtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GYnNGaHMtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZodEY7Rj5GQEZCRkRGRkZIRmNxRlt0RmhzRmpxLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZjczYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZaRjk=">QyQ+SSRETTBHNiItSSlhc3N1bWluZ0dGJTYkNyMtJkkwUG9seW5vbWlhbFRvb2xzR0YlNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGJTYkLCYtSSRzdW1HNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2JC1JJWV2YWxHRjc2JC1JIlBHRiU2I0kieEdGJS9GQCwmSSJzR0YlIiIiSSJsR0YlISIiL0ZFSSd4cmFuZ2VHRiVGRC1JIl5HRjc2JEZDIiIhRkZGQ0ZDNyMtSSRhbmRHRjc2JC1JIj5HRjdGSzJGQ0ZERkY=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L595" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM0 := [seq(DM0[j] = 0, j = 1 .. numelems(DM0))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiYtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Ly1GLDYlUSRETTBGJ0YvRjItRlA2Ji1GIzYlLUYsNiVRImpGJ0YvRjIvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGXG9GZ28tRltwNiRRIjFGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmNwLUYsNiVRKW51bWVsZW1zRidGL0YyLUZQNiQtRiM2JUZlbkZfb0Y5RjlGX29GOUY5Rl9vRjlGOUZhb0Zkby1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYjUSFGJ0Zfb0Y5">QyQ+SSVsRE0wRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0wR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L626" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM1 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l*(eval(P(x), x = s-l)), l = xrange)-s, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistRiw2JVEibEYnRi9GMi1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaHAtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZncC9GTlEsMC4zMzMzMzMzZW1GJ0ZocS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GW3NGYXBGOUY5RltyRmFwRmFyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGZ3ItSSVtc3VwR0YkNiUtRlg2JC1GIzYkRmRyRjlGOS1GIzYkLUkjbW5HRiQ2JFEiMUYnRjlGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGW3JGZHJGOUY5RltyRmRyRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqczYkRl90RjlGYHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZhdUY7Rj5GQEZCRkRGRkZIRmdwRmlwRmB0RmRyLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmlzLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmB0LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTFHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIiLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiVGPEY7ISIiRjwvRjtJJ3hyYW5nZUdGJUY8RkZGR0ZGRkY3Iy1JJGFuZEdGLzYkLUkiPkdGLzYkRkYiIiEyRkZGPEZH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L618" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM1 := [seq(DM1[j] = 0, j = 1 .. numelems(DM1))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTFGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0xRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0xR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L598" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM2 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^2*(eval(P(x), x = s-l)), l = xrange)-s^2, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY2LUkjbWlHRiQ2JVEkRE0yRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2Ji1GLDYjUSFGJy1GLDYlUTBQb2x5bm9taWFsVG9vbHNGJ0YvRjItSShtZmVuY2VkR0YkNiYtRiM2JC1GLDYlUTBDb2VmZmljaWVudExpc3RGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRjktRlg2JC1GIzYnLUYsNiVRKGNvbGxlY3RGJ0YvRjItRlg2JC1GIzYpLUYsNiVRJHN1bUYnRi9GMi1GWDYkLUYjNistSSVtc3VwR0YkNiUtRiw2JVEibEYnRi9GMi1GIzYlLUkjbW5HRiQ2JFEiMkYnRjlGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GZHEtRiw2JVElZXZhbEYnRi9GMi1GWDYkLUYjNistRiw2JVEiUEYnRi9GMi1GWDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZjcS9GTlEsMC4zMzMzMzMzZW1GJ0Zkci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GZ3NGZHBGOUY5RmdyRmRwRl1zLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGY3MtRmJwNiUtRlg2JC1GIzYkRmBzRjlGOS1GIzYkRmlwRjlGXXFGZ3JGYHNGOUY5RmdyRmBzRjlGOS1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIj5GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkRl9xRjlGZHQtRjY2L1EkYW5kRicvJSVib2xkR0YxL0YzUSVib2xkRicvJStmb250d2VpZ2h0R0ZldUY7Rj5GQEZCRkRGRkZIRmNxRmVxRmR0RmBzLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZqcDYkUSIxRidGOS1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZkdC8lK2V4ZWN1dGFibGVHRj1GOQ==">QyQ+SSRETTJHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIjLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L594" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM2 := [seq(DM2[j] = 0, j = 1 .. numelems(DM2))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVElbERNMkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTJGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0yRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0yR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L611" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM3 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^3*(eval(P(x), x = s-l)), l = xrange)-s^3, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE0zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSIzRidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTNHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIkLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L612" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM3 := [seq(DM3[j] = 0, j = 1 .. numelems(DM3))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNM0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTNGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE0zRzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE0zR0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L599" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM4 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^4*(eval(P(x), x = s-l)), l = xrange)-s^4, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE00RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI0RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTRHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIlLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L606" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM4 := [seq(DM4[j] = 0, j = 1 .. numelems(DM4))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTRGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE00RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE00R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L614" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM5 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^5*(eval(P(x), x = s-l)), l = xrange)-s^5, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE01RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI1RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTVHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiImLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L615" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM5 := [seq(DM5[j] = 0, j = 1 .. numelems(DM5))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTVGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE01RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE01R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L616" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM6 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^6*(eval(P(x), x = s-l)), l = xrange)-s^6, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE02RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI2RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTZHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiInLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L617" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM6 := [seq(DM6[j] = 0, j = 1 .. numelems(DM6))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNNkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTZGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE02RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE02R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L638" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM7 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^7*(eval(P(x), x = s-l)), l = xrange)-s^7, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE03RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI3RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTdHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIoLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L636" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM7 := [seq(DM7[j] = 0, j = 1 .. numelems(DM7))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNN0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETTdGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE03RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE03R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L637" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM8 := `assuming`([PolynomialTools[CoefficientList](collect(sum(l^8*(eval(P(x), x = s-l)), l = xrange)-s^8, s), s)], [`and`(s > 0, s < 1)]):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEkRE04RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiw2JVEwUG9seW5vbWlhbFRvb2xzRidGL0YyLUkobWZlbmNlZEdGJDYmLUYjNiQtRiw2JVEwQ29lZmZpY2llbnRMaXN0RidGL0YyRjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUzYkLUYjNictRiw2JVEoY29sbGVjdEYnRi9GMi1GUzYkLUYjNiktRiw2JVEkc3VtRidGL0YyLUZTNiQtRiM2Ky1JJW1zdXBHRiQ2JS1GLDYlUSJsRidGL0YyLUYjNiQtSSNtbkdGJDYkUSI4RidGOUY5LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GX3EtRiw2JVElZXZhbEYnRi9GMi1GUzYkLUYjNistRiw2JVEiUEYnRi9GMi1GUzYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZecS9GTlEsMC4zMzMzMzMzZW1GJ0Zfci1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GLDYlUSJzRidGL0YyLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnNGX3BGOUY5RmJyRl9wRmhyLUYsNiVRJ3hyYW5nZUYnRi9GMkY5RjlGXnMtRl1wNiUtRlM2JC1GIzYkRltzRjlGOUZicEZocEZickZbc0Y5RjlGYnJGW3NGOUY5LUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHEtRjY2LVEpYXNzdW1pbmdGJ0Y5RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRGanBGOUZddC1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl51RjtGPkZARkJGREZGRkhGXnFGYHFGXXRGW3MtRjY2LVEiPEYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRmVwNiRRIjFGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRl10LyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETThHNiItSSlhc3N1bWluZ0dJKF9zeXNsaWJHRiU2JDcjLSZJMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0YoNiNJMENvZWZmaWNpZW50TGlzdEdGJTYkLUkoY29sbGVjdEdGLjYkLCYtSSRzdW1HRi42JComSSJsR0YlIiIpLUklZXZhbEdGLzYkLUkiUEdGJTYjSSJ4R0YlL0ZDLCZJInNHRiUiIiJGOyEiIkZHL0Y7SSd4cmFuZ2VHRiVGRyokRkZGPEZIRkZGRjcjLUkkYW5kR0YvNiQtSSI+R0YvNiRGRiIiITJGRkZHRkg=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L639" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="lDM8 := [seq(DM8[j] = 0, j = 1 .. numelems(DM8))]:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVElbERNOEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWZlbmNlZEdGJDYmLUYjNiUtRiw2JVEkc2VxRidGL0YyLUZQNiQtRiM2Li1GLDYlUSRETThGJ0YvRjItRlA2Ji1GIzYkLUYsNiVRImpGJ0YvRjJGOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zcb0Zlby1GaW82JFEiMUYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYXAtRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRmVuRjlGOUY5RjlGOUY5Rl9vRmJvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSVsRE04RzYiNyMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQvJkkkRE04R0YlNiNJImpHRiUiIiEvRi87IiIiLUkpbnVtZWxlbXNHRik2I0YtISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L640" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="inconnues := [seq(seq(c[i, j], j = 0 .. d), i = 0 .. 4)]; 1; numelems(inconnues)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2Ji1GLDYlUSRzZXFGJ0YvRjItRlA2JC1GIzYrRlQtRlA2JC1GIzYqLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2Ji1GLDYlUSJpRidGL0YyLUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRictRiw2JVEiakYnRi9GMkY5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGZG9GXHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSNtbkdGJDYkRmFwRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GaW8tRiw2JVEiZEYnRi9GMkY5RjlGZG9GYW9GYnBGZXBGaHAtRmZwNiRRIjRGJ0Y5RjlGOS8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2Ni1RIjtGJ0Y5RjtGZ29GQEZCRkRGRkZIRmhvRk0tRiw2JVEpbnVtZWxlbXNGJ0YvRjItRlA2JC1GIzYkRitGOUY5RmRxRjk=">QyU+SSppbmNvbm51ZXNHNiI3Iy1JJHNlcUclKnByb3RlY3RlZEc2JC1GKDYkJkkiY0dGJTYkSSJpR0YlSSJqR0YlL0YxOyIiIUkiZEdGJS9GMDtGNCIiJSIiIi1JKW51bWVsZW1zR0YpNiNGJA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZicS1JJW1zdWJHRiQ2JS1GLDYlUSJjRidGL0YyLUYjNigtSSNtbkdGJDYkUSIwRidGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmZuLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjkvJS9zdWJzY3JpcHRzaGlmdEdGaW5Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjFGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjJGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjNGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjRGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjVGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjZGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjdGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjhGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZm5Gam4tRmduNiRRIjlGJ0Y5RmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GZm5GYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZdcEZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmRwRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GW3FGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZicUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRmlxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GYHJGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZdcEZqbkZnckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRl1wRmpuRl5zRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGXXBGam5GZXNGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZmbkZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRl1wRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GZHBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZbcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmJxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GaXFGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZgckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmRwRmpuRmdyRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGZHBGam5GXnNGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZkcEZqbkZlc0Zib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRmZuRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GXXBGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZkcEZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRltxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GYnFGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZpcUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRmByRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGW3FGam5GZ3JGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZbcUZqbkZec0Zib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRltxRmpuRmVzRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGYnFGam5GZm5GYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZicUZqbkZdcEZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmJxRmpuRmRwRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGYnFGam5GW3FGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZicUZqbkZicUZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmJxRmpuRmlxRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGYnFGam5GYHJGYm9GZW9GOUZnb0Zqbi1GVTYlRlctRiM2KEZicUZqbkZnckZib0Zlb0Y5RmdvRmpuLUZVNiVGVy1GIzYoRmJxRmpuRl5zRmJvRmVvRjlGZ29Gam4tRlU2JUZXLUYjNihGYnFGam5GZXNGYm9GZW9GOUZnb0Zib0Zlb0Y5RjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGYm9GZW9GOQ==">N1QmSSJjRzYiNiQiIiFGJyZGJDYkRiciIiImRiQ2JEYnIiIjJkYkNiRGJyIiJCZGJDYkRiciIiUmRiQ2JEYnIiImJkYkNiRGJyIiJyZGJDYkRiciIigmRiQ2JEYnIiIpJkYkNiRGJyIiKiZGJDYkRipGJyZGJDYkRipGKiZGJDYkRipGLSZGJDYkRipGMCZGJDYkRipGMyZGJDYkRipGNiZGJDYkRipGOSZGJDYkRipGPCZGJDYkRipGPyZGJDYkRipGQiZGJDYkRi1GJyZGJDYkRi1GKiZGJDYkRi1GLSZGJDYkRi1GMCZGJDYkRi1GMyZGJDYkRi1GNiZGJDYkRi1GOSZGJDYkRi1GPCZGJDYkRi1GPyZGJDYkRi1GQiZGJDYkRjBGJyZGJDYkRjBGKiZGJDYkRjBGLSZGJDYkRjBGMCZGJDYkRjBGMyZGJDYkRjBGNiZGJDYkRjBGOSZGJDYkRjBGPCZGJDYkRjBGPyZGJDYkRjBGQiZGJDYkRjNGJyZGJDYkRjNGKiZGJDYkRjNGLSZGJDYkRjNGMCZGJDYkRjNGMyZGJDYkRjNGNiZGJDYkRjNGOSZGJDYkRjNGPCZGJDYkRjNGPyZGJDYkRjNGQg==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNd</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L629" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L621" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="conditions := [E[], C0[], C1[], C10[], C2[], C3[], C30[], C4[], CEND[], lDM0[], lDM1[], lDM2[], lDM3[], lDM4[], lDM5[], lDM6[], lDM7[], lDM8[]]; -1; numelems(conditions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVErY29uZGl0aW9uc0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GU0Y1LUkobWZlbmNlZEdGJDYmLUYjNlktRiw2JVEiRUYnRi9GMi1GVjYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRiw2JVEjQzBGJ0YvRjItRlY2Ji1GIzYkRltvRjlGOUZgb0Zjb0Zmby1GLDYlUSNDMUYnRi9GMkZfcEZmby1GLDYlUSRDMTBGJ0YvRjJGX3BGZm8tRiw2JVEjQzJGJ0YvRjJGZ25GZm8tRiw2JVEjQzNGJ0YvRjJGZ25GZm8tRiw2JVEkQzMwRidGL0YyRmduRmZvLUYsNiVRI0M0RidGL0YyRmduRmZvLUYsNiVRJUNFTkRGJ0YvRjJGX3BGZm8tRiw2JVElbERNMEYnRi9GMkZfcEZmby1GLDYlUSVsRE0xRidGL0YyRl9wRmZvLUYsNiVRJWxETTJGJ0YvRjJGX3BGZm8tRiw2JVElbERNM0YnRi9GMkZnbkZmby1GLDYlUSVsRE00RidGL0YyRmduRmZvLUYsNiVRJWxETTVGJ0YvRjJGZ25GZm8tRiw2JVElbERNNkYnRi9GMkZnbkZmby1GLDYlUSVsRE03RidGL0YyRmduRmZvLUYsNiVRJWxETThGJ0YvRjJGZ25GXm9GOUY5RmBvRmNvLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGUkZULUYsNiVRKW51bWVsZW1zRidGL0YyLUZWNiQtRiM2JEYrRjlGOUZeb0Y5">QyU+SStjb25kaXRpb25zRzYiNzQmSSJFR0YlRiUmSSNDMEdGJUYlJkkjQzFHRiVGJSZJJEMxMEdGJUYlJkkjQzJHRiVGJSZJI0MzR0YlRiUmSSRDMzBHRiVGJSZJI0M0R0YlRiUmSSVDRU5ER0YlRiUmSSVsRE0wR0YlRiUmSSVsRE0xR0YlRiUmSSVsRE0yR0YlRiUmSSVsRE0zR0YlRiUmSSVsRE00R0YlRiUmSSVsRE01R0YlRiUmSSVsRE02R0YlRiUmSSVsRE03R0YlRiUmSSVsRE04R0YlRiUhIiItSSludW1lbGVtc0clKnByb3RlY3RlZEc2I0Yk</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiRAIg==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L610" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="A, b := LinearAlgebra[GenerateMatrix](conditions, inconnues);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkobWZlbmNlZEdGJDYkLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y4USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZCLyUqc3ltbWV0cmljR0ZCLyUobGFyZ2VvcEdGQi8lLm1vdmFibGVsaW1pdHNHRkIvJSdhY2NlbnRHRkIvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYtUSJ+RidGPkZAL0ZERkJGRUZHRklGS0ZNRk8vRlNGUS1GMTYlUSJiRidGNEY3LyUrZXhlY3V0YWJsZUdGQkY+Rj4tRjs2LVEqJmNvbG9uZXE7RidGPkZARlhGRUZHRklGS0ZNL0ZQUSwwLjI3Nzc3NzhlbUYnL0ZTRl1vLUYxNiVRLkxpbmVhckFsZ2VicmFGJ0Y0RjctRiw2Ji1GIzYlLUYxNiVRL0dlbmVyYXRlTWF0cml4RidGNEY3RmduRj5GPi8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GLDYkLUYjNigtRjE2JVErY29uZGl0aW9uc0YnRjRGN0Y6RlUtRjE2JVEqaW5jb25udWVzRidGNEY3RmduRj5GPi1GOzYtUSI7RidGPkZARkNGRUZHRklGS0ZNRk9GXm9GZ25GPg==">QyQ+NiRJIkFHNiJJImJHRiYtJkkuTGluZWFyQWxnZWJyYUdGJjYjSS9HZW5lcmF0ZU1hdHJpeEdGJjYkSStjb25kaXRpb25zR0YmSSppbmNvbm51ZXNHRiYiIiI=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUYjNigtSSNtaUdGJDYlUSJBRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEiLEYnL0Y1USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMy8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GLjYlUSJiRidGMUY0LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y/RjstRjg2LVEjOj1GJ0Y7Rj0vRkFGP0ZCRkRGRkZIRkovRk1RLDAuMjc3Nzc3OGVtRicvRlBGaW4tRiM2KC1JKG1hY3Rpb25HRiQ2JS1JKG1mZW5jZWRHRiQ2Ji1JJ210YWJsZUdGJDY4LUkkbXRyR0YkNiYtSSRtdGRHRiQ2KC1GIzYmLUYuNiVRK34xMjF+eH41MH5GJ0YxRjQtRi42JVEnTWF0cml4RidGMUY0RlVGOy8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGZnAvJStncm91cGFsaWduR0ZmcC8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZdcUZkcEZncEZpcC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRLERhdGF+VHlwZTp+RidGMUY0LUYuNiVRKWFueXRoaW5nRidGMUY0RlVGO0ZkcEZncEZpcEZbcUZecUZkcEZncEZpcC1GZ282Ji1Gam82KC1GIzYmLUYuNiVRKlN0b3JhZ2U6fkYnRjFGNC1GLjYlUSxyZWN0YW5ndWxhckYnRjFGNEZVRjtGZHBGZ3BGaXBGW3FGXnFGZHBGZ3BGaXAtRmdvNiYtRmpvNigtRiM2Ji1GLjYlUShPcmRlcjp+RidGMUY0LUYuNiVRLkZvcnRyYW5fb3JkZXJGJ0YxRjRGVUY7RmRwRmdwRmlwRltxRl5xRmRwRmdwRmlwLyUmYWxpZ25HUSVheGlzRicvRmVwUSliYXNlbGluZUYnL0ZocFEnY2VudGVyRicvRmpwUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGMy8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRmF0LyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRlx1LyUmZnJhbWVHRlx1LyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dGPy8lLWVxdWFsY29sdW1uc0dGPy8lLWRpc3BsYXlzdHlsZUdGPy8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0ZpdEY7LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLyUrYWN0aW9udHlwZUdRLWJyb3dzZXJ0YWJsZUYnLyUpcnRhYmxlaWRHUTUxODQ0Njc0NDA3ODIxNTE5OTA3MEYnRjctRl5vNiUtRmFvNiYtRmRvNjgtRmdvNiYtRmpvNigtRiM2Ji1GLjYlUSt+MX4uLn4xMjF+RidGMUY0LUklbXN1YkdGJDYlLUYuNiVRJ1ZlY3RvckYnRjFGNC1GIzYlLUYuNiVRJ2NvbHVtbkYnRjFGNEZVRjsvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJ0ZVRjtGZHBGZ3BGaXBGW3FGXnFGZHBGZ3BGaXBGYHFGXHJGaHJGZHNGZ3NGaXNGW3RGXXRGX3RGYnRGZHRGZ3RGanRGXXVGX3VGYXVGZHVGZnVGaHVGanVGXXZGO0ZfdkZidkZldi9GaXZRNTE4NDQ2NzQ0MDc4MjE1MTk4OTUwRidGVUZYRjtGVUZYRjs=">NiQtSSdNYXRyaXhHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2Iy9JJCVpZEdGKCI1cSEqPjojeVN1WSU9LSZJJ1ZlY3RvckdGJTYjSSdjb2x1bW5HRig2Iy9GKyI1XSopPjojeVN1WSU9</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L591" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[Rank](A)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJVJhbmtGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GNjYkLUYjNiUtRiw2JVEiQUYnRi9GMkY9RkBGQC1GLDYjUSFGJ0Y9RkA=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0klUmFua0dGKDYjSSJBR0Yo</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">IiNd</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L604" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="solutions := solve(conditions, {inconnues[]})" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yNzc3Nzc4ZW1GJy9GTkZTLUYsNiVRJnNvbHZlRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNictRiw2JVErY29uZGl0aW9uc0YnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRlk2Ji1GIzYmLUYsNiVRKmluY29ubnVlc0YnRi9GMi1GWTYmLUYjNiUtRiw2I1EhRicvJStleGVjdXRhYmxlR0Y9RjlGOS8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZecEY5RjkvRmFwUSJ8ZnJGJy9GZHBRInxockYnRl5wRjlGOUZecEY5">Pkkqc29sdXRpb25zRzYiLUkmc29sdmVHRiQ2JEkrY29uZGl0aW9uc0dGJDwjJkkqaW5jb25udWVzR0YkRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZicS1GIzYoLUklbXN1YkdGJDYlLUYsNiVRImNGJ0YvRjItRiM2KC1JI21uR0YkNiRRIjBGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGaG4vJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOS8lL3N1YnNjcmlwdHNoaWZ0R0Zbby1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1JJm1mcmFjR0YkNigtRmluNiRRJzQzOTM3NUYnRjktRmluNiRRIjdGJ0Y5LyUubGluZXRoaWNrbmVzc0dRIjFGJy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZccS8lKWJldmVsbGVkR0Y9RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JEZpcEY5RmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRKTY0MTg4MTI1RidGOS1GaW42JFEkNTA0RidGOUZncEZqcEZdcUZfcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjJGJ0Y5RmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRKjIzMTEyNTM3NUYnRjktRmluNiRRJTIwMTZGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiM0YnRjlGZG9GZ29GOUZpb0ZbcC1GX3A2KC1GaW42JFEpMTczMDY5NzVGJ0Y5LUZpbjYkUSQyODhGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiNEYnRjlGZG9GZ29GOUZpb0ZbcC1GX3A2KC1GaW42JFEoNzc2MTgwNUYnRjktRmluNiRRJDM4NEYnRjlGZ3BGanBGXXFGX3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSI1RidGOUZkb0Znb0Y5RmlvRltwLUZfcDYoLUZpbjYkUSgyODk1NTg3RidGOS1GaW42JFEkNjQwRidGOUZncEZqcEZdcUZfcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjZGJ0Y5RmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRJzEyOTM5MUYnRjktRmluNiRRJDE5MkYnRjlGZ3BGanBGXXFGX3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvRmRwRmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRJzI1OTcxNUYnRjktRmluNiRRJTQwMzJGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiOEYnRjlGZG9GZ29GOUZpb0ZbcC1GX3A2KC1GaW42JFEmMjg5MDlGJ0Y5LUZpbjYkUSU4MDY0RidGOUZncEZqcEZdcUZfcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjlGJ0Y5RmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRJTM1NjlGJ0Y5LUZpbjYkUSY0MDMyMEYnRjlGZ3BGanBGXXFGX3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdxRlxvRmhuRmRvRmdvRjlGaW9GW3AtRiM2JS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYltsLUZpbjYkUSY1NjM3NUYnRjlGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3FGXG9GZ3FGZG9GZ29GOUZpb0ZbcC1GIzYnRl5bbC1GX3A2KC1GaW42JFEoODMxNDA5MUYnRjktRmluNiRRIzU2RidGOUZncEZqcEZdcUZfcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZncUZcb0ZnckZkb0Znb0Y5RmlvRltwLUYjNidGXltsLUZfcDYoLUZpbjYkUSk0OTkwMTMwM0YnRjlGYHRGZ3BGanBGXXFGX3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3FGXG9GaHNGZG9GZ29GOUZpb0ZbcC1GIzYnRl5bbC1GX3A2KC1GaW42JFEoMzc2MzUyOUYnRjktRmluNiRRIzMyRidGOUZncEZqcEZdcUZfcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZncUZcb0ZpdEZkb0Znb0Y5RmlvRltwLUYjNidGXltsLUZfcDYoLUZpbjYkUSkxOTY0ODAyN0YnRjlGYXVGZ3BGanBGXXFGX3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3FGXG9GanVGZG9GZ29GOUZpb0ZbcC1GIzYnRl5bbC1GX3A2KC1GaW42JFEoOTQ2OTE2M0YnRjlGYnZGZ3BGanBGXXFGX3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3FGXG9GW3dGZG9GZ29GOUZpb0ZbcC1GIzYnRl5bbC1GX3A2KC1GaW42JFEnNTQ1OTc3RidGOUZjd0ZncEZqcEZdcUZfcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZncUZcb0ZkcEZkb0Znb0Y5RmlvRltwLUYjNidGXltsLUZfcDYoLUZpbjYkUScxNTY5MjdGJ0Y5LUZpbjYkUSQ0NDhGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdxRlxvRmp4RmRvRmdvRjlGaW9GW3AtRiM2J0ZeW2wtRl9wNihGX3ktRmluNiRRJTExNTJGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdxRlxvRlt6RmRvRmdvRjlGaW9GW3AtRiM2J0ZeW2wtRl9wNihGYHotRmluNiRRJTQ0ODBGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdyRlxvRmhuRmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRJjY4Nzc2RidGOUZkcEZncEZqcEZdcUZfcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3JGXG9GZ3FGZG9GZ29GOUZpb0ZbcC1GX3A2KC1GaW42JFEoMTAzODAxMUYnRjktRmluNiRRIzI4RidGOUZncEZqcEZdcUZfcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3JGXG9GZ3JGZG9GZ29GOUZpb0ZbcC1GX3A2KC1GaW42JFEpMzExNTc1MTVGJ0Y5Rl5yRmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZnckZcb0Zoc0Zkb0Znb0Y5RmlvRltwLUZfcDYoLUZpbjYkUSc5NTY2NjlGJ0Y5LUZpbjYkUSMxNkYnRjlGZ3BGanBGXXFGX3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdyRlxvRml0RmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRKDM1NDgwMDlGJ0Y5LUZpbjYkUSM5NkYnRjlGZ3BGanBGXXFGX3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdyRlxvRmp1RmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRKDI0MjIyNjNGJ0Y5LUZpbjYkUSQxNjBGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZnckZcb0Zbd0Zkb0Znb0Y5RmlvRltwLUZfcDYoLUZpbjYkUScxOTcyNTVGJ0Y5LUZpbjYkUSM0OEYnRjlGZ3BGanBGXXFGX3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdyRlxvRmRwRmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRJjE5OTU5RidGOUZbZWxGZ3BGanBGXXFGX3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdyRlxvRmp4RmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRJzE0NDU0NUYnRjlGX3NGZ3BGanBGXXFGX3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdyRlxvRlt6RmRvRmdvRjlGaW9GW3AtRl9wNihGYHotRmluNiRRJTExMjBGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZoc0Zcb0ZobkZkb0Znb0Y5RmlvRltwLUYjNiVGXltsLUZpbjYkUSQxNTRGJ0Y5RjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhzRlxvRmdxRmRvRmdvRjlGaW9GW3AtRiM2J0ZeW2wtRl9wNigtRmluNiRRJjEyNzU3RidGOS1GaW42JFEjMTJGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhzRlxvRmdyRmRvRmdvRjlGaW9GW3AtRiM2J0ZeW2wtRl9wNigtRmluNiRRJzIzMDEyM0YnRjktRmluNiRRIzcyRidGOUZncEZqcEZdcUZfcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZoc0Zcb0Zoc0Zkb0Znb0Y5RmlvRltwLUYjNidGXltsLUZfcDYoLUZpbjYkUScyNjQ0ODFGJ0Y5Rl5pbEZncEZqcEZdcUZfcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZoc0Zcb0ZpdEZkb0Znb0Y5RmlvRltwLUYjNidGXltsLUZfcDYoLUZpbjYkUSc1NzY0OTlGJ0Y5RmJnbEZncEZqcEZdcUZfcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZoc0Zcb0ZqdUZkb0Znb0Y5RmlvRltwLUYjNidGXltsLUZfcDYoLUZpbjYkUSc2ODYxNDdGJ0Y5RmBobEZncEZqcEZdcUZfcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZoc0Zcb0Zbd0Zkb0Znb0Y5RmlvRltwLUYjNidGXltsLUZfcDYoLUZpbjYkUSY5NjI3N0YnRjlGXmlsRmdwRmpwRl1xRl9xRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhzRlxvRmRwRmRvRmdvRjlGaW9GW3AtRiM2J0ZeW2wtRl9wNigtRmluNiRRJjE0MjIxRidGOS1GaW42JFEjMjRGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhzRlxvRmp4RmRvRmdvRjlGaW9GW3AtRiM2J0ZeW2wtRl9wNihGX3lGYHRGZ3BGanBGXXFGX3FGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaHNGXG9GW3pGZG9GZ29GOUZpb0ZbcC1GIzYnRl5bbC1GX3A2KEZgei1GaW42JFEkNDgwRidGOUZncEZqcEZdcUZfcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZpdEZcb0ZobkZkb0Znb0Y5RmlvRltwRmdxRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZpdEZcb0ZncUZkb0Znb0Y5RmlvRltwRmhuRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZpdEZcb0ZnckZkb0Znb0Y5RmlvRltwLUYjNidGXltsLUZfcDYoLUZpbjYkUSQyMDVGJ0Y5LUZpbjYkUSQxNDRGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRml0RlxvRmhzRmRvRmdvRjlGaW9GW3BGaG5GZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRml0RlxvRml0RmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRIzkxRidGOUZjd0ZncEZqcEZdcUZfcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaXRGXG9GanVGZG9GZ29GOUZpb0ZbcC1GX3A2KC1GaW42JFElNjE4MUYnRjktRmluNiRRJDMyMEYnRjlGZ3BGanBGXXFGX3FGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRml0RlxvRlt3RmRvRmdvRjlGaW9GW3AtRl9wNigtRmluNiRRJTYzMzdGJ0Y5RmJnbEZncEZqcEZdcUZfcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaXRGXG9GZHBGZG9GZ29GOUZpb0ZbcC1GX3A2KC1GaW42JFElMjc0NUYnRjlGYV5sRmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZpdEZcb0ZqeEZkb0Znb0Y5RmlvRltwLUZfcDYoRl95LUZpbjYkUSQ1NzZGJ0Y5RmdwRmpwRl1xRl9xRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZpdEZcb0ZbekZkb0Znb0Y5RmlvRltwLUZfcDYoRmB6RmBnbUZncEZqcEZdcUZfcUZkb0Znb0Y5RmRvRmdvRjlGOS8lJW9wZW5HUSJ8ZnJGJy8lJmNsb3NlR1EifGhyRidGZG9GZ29GOQ==">PFQvJkkiY0c2IjYkIiIhRigjIid2JFIlIiIoLyZGJTYkRigiIiIjIilEIik9ayIkLyYvJkYlNiRGKCIiIyMiKnZgN0ojIiU7Py8mRiU2JEYoIiIkIyIpdnBJPCIkKUcvJkYlNiRGKCIiJSMiKDA9dygiJCVRLyZGJTYkRigiIiYjIigoZSYqRyIkUycvJkYlNiRGKCIiJyMiJyJSSCIiJCM+LyZGJTYkRihGKyMiJzooZiMiJUtTLyZGJTYkRigiIikjIiY0KkciJWshKS8mRiU2JEYoIiIqIyIlcE4iJj8uJS8mRiU2JEYvRighJnZqJi8mRiU2JEYvRi8jISgiNDkkKSIjYy8mRiU2JEYvRjYjISkuOCEqXEZALyZGJTYkRi9GPSMhKEhOdyQiI0svJkYlNiRGL0ZEIyEpRiFbJz5GRy8mRiU2JEYvRksjIShqInAlKkZOLyZGJTYkRi9GUiMhJ3hmYUZVLyZGJTYkRi9GKyMhJ0ZwOiIkWyUvJkYlNiRGL0ZpbiMhJjQqRyIlXzYvJkYlNiRGL0ZgbyMhJXBOIiUhWyUvJkYlNiRGNkYoIyImdyhvRisvJkYlNiRGNkYvIyIoNiFRNSIjRy8mRiU2JEY2RjYjIik6djpKRjIvJkYlNiRGNkY9IyIncG0mKiIjOy8mRiU2JEY2RkQjIig0IVtOIiMnKi8mRiU2JEY2RksjIihqQVUjIiRnIi8mRiU2JEY2RlIjIidicz4iI1svJkYlNiRGNkYrIyImZio+RmRzLyZGJTYkRjZGaW4jIidYWDlGOS8mRiU2JEY2RmBvI0ZibyIlPzYvJkYlNiRGPUYoISRhIi8mRiU2JEY9Ri8jISZkRiIiIzcvJkYlNiRGPUY2IyEnQixCIiNzLyZGJTYkRj1GPSMhJyJbayNGYXUvJkYlNiRGPUZEIyEnKlx3JkZldC8mRiU2JEY9RksjISdaaG9GW3UvJkYlNiRGPUZSIyEmeGkqRmF1LyZGJTYkRj1GKyMhJkBVIiIjQy8mRiU2JEY9RmluI0ZickZALyZGJTYkRj1GYG8jRmhyIiQhWy8mRiU2JEZERihGLy8mRiU2JEZERi9GKC8mRiU2JEZERjYjISQwIyIkVyIvJkYlNiRGREY9RigvJkYlNiRGREZEIyIjIipGVS8mRiU2JEZERksjIiUiPSciJD8kLyZGJTYkRkRGUiMiJVBqRmV0LyZGJTYkRkRGKyMiJVhGRmhwLyZGJTYkRkRGaW4jRltvIiR3Ji8mRiU2JEZERmBvI0Zib0ZdW2w=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L592" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="LinearAlgebra[LinearSolve](A, b)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEuTGluZWFyQWxnZWJyYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYkLUYsNiVRLExpbmVhclNvbHZlRidGL0YyL0YzUSdub3JtYWxGJ0Y9LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY2NiQtRiM2Jy1GLDYlUSJBRidGL0YyLUkjbW9HRiQ2LVEiLEYnRj0vJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGUi8lKnN5bW1ldHJpY0dGUi8lKGxhcmdlb3BHRlIvJS5tb3ZhYmxlbGltaXRzR0ZSLyUnYWNjZW50R0ZSLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiw2JVEiYkYnRi9GMi8lK2V4ZWN1dGFibGVHRlJGPUY9RmJvRj0=">LSZJLkxpbmVhckFsZ2VicmFHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0ksTGluZWFyU29sdmVHRig2JEkiQUdGKEkiYkdGKA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUkobWFjdGlvbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkobWZlbmNlZEdGJDYmLUknbXRhYmxlR0YkNjgtSSRtdHJHRiQ2Ji1JJG10ZEdGJDYoLUklbXJvd0dGJDYmLUkjbWlHRiQ2JVEqfjF+Li5+NTB+RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUklbXN1YkdGJDYlLUY7NiVRJ1ZlY3RvckYnRj5GQS1GODYlLUY7NiVRJ2NvbHVtbkYnRj5GQS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvRkJRJ25vcm1hbEYnLyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGT0ZSLyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZZLyUrZ3JvdXBhbGlnbkdGWS8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZqbkZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEsRGF0YX5UeXBlOn5GJ0Y+RkEtRjs2JVEpYW55dGhpbmdGJ0Y+RkFGT0ZSRldGWkZmbkZobkZbb0ZXRlpGZm4tRjI2Ji1GNTYoLUY4NiYtRjs2JVEqU3RvcmFnZTp+RidGPkZBLUY7NiVRLHJlY3Rhbmd1bGFyRidGPkZBRk9GUkZXRlpGZm5GaG5GW29GV0ZaRmZuLUYyNiYtRjU2KC1GODYmLUY7NiVRKE9yZGVyOn5GJ0Y+RkEtRjs2JVEuRm9ydHJhbl9vcmRlckYnRj5GQUZPRlJGV0ZaRmZuRmhuRltvRldGWkZmbi8lJmFsaWduR1ElYXhpc0YnL0ZYUSliYXNlbGluZUYnL0ZlblEnY2VudGVyRicvRmduUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGQC8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRl5yLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmlyLyUmZnJhbWVHRmlyLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dRJmZhbHNlRicvJS1lcXVhbGNvbHVtbnNHRmNzLyUtZGlzcGxheXN0eWxlR0Zjcy8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0ZmckZSLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLyUrYWN0aW9udHlwZUdRLWJyb3dzZXJ0YWJsZUYnLyUpcnRhYmxlaWRHUTUxODQ0Njc0NDA3ODIyNDc2MjI3MEYn">LSZJJ1ZlY3Rvckc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkc2IjYjSSdjb2x1bW5HRig2Iy9JJCVpZEdGKCI1cUF3QyN5U3VZJT0=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L607" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[8, 4] := eval(P(x), solutions)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2KC1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictRiM2Ji1JI21uR0YkNiRRIjhGJ0Y6LUkjbW9HRiQ2LVEiLEYnRjovJSZmZW5jZUdGOS8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y5LyUqc3ltbWV0cmljR0Y5LyUobGFyZ2VvcEdGOS8lLm1vdmFibGVsaW1pdHNHRjkvJSdhY2NlbnRHRjkvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GQDYkUSI0RidGOkY6LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRkQ2LVEifkYnRjpGRy9GSkY5RkxGTkZQRlJGVEZWL0ZaRlgtRkQ2LVEqJmNvbG9uZXE7RidGOkZHRl9vRkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZlby1GLDYlUSVldmFsRicvRjhGSy9GO1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Jy1GLDYlUSJQRidGam9GW3AtRl5wNiQtRiM2JC1GLDYlUSJ4RidGam9GW3BGOkY6RkMtRiw2JVEqc29sdXRpb25zRidGam9GW3BGOkY6RjpGKy8lK2V4ZWN1dGFibGVHRjlGOg==">PiZJJ0xhbWJkYUc2IjYkIiIpIiIlLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiU2I0kieEdGJUkqc29sdXRpb25zR0Yl</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEnJiM5MjM7RicvJSdpdGFsaWNHUSZmYWxzZUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1GIzYoLUkjbW5HRiQ2JFEiOEYnRjUtSSNtb0dGJDYtUSIsRidGNS8lJmZlbmNlR0Y0LyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjQvJSpzeW1tZXRyaWNHRjQvJShsYXJnZW9wR0Y0LyUubW92YWJsZWxpbWl0c0dGNC8lJ2FjY2VudEdGNC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUY7NiRRIjRGJ0Y1LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y0RjUvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GPzYtUSM6PUYnRjVGQi9GRUY0RkdGSUZLRk1GTy9GUlEsMC4yNzc3Nzc4ZW1GJy9GVUZhby1GIzYnLUY/Ni1RInxmckYnRjUvRkNGRkZfby9GSEZGRklGS0ZNRk8vRlJRLDAuMTY2NjY2N2VtRicvRlVGW3AtSSdtdGFibGVHRiQ2QC1JJG10ckdGJDYnLUkkbXRkR0YkNigtRjs2JEZbb0Y1LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZqcC8lK2dyb3VwYWxpZ25HRmpwLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRmFxLUZkcDYoLUYjNigtRi82JVEieEYnL0YzRkYvRjZRJ2l0YWxpY0YnLUY/Ni1RIjxGJ0Y1RkJGX29GR0ZJRktGTUZPRmBvRmJvLUYjNiUtRj82LVEqJnVtaW51czA7RidGNUZCRl9vRkdGSUZLRk1GTy9GUlEsMC4yMjIyMjIyZW1GJy9GVUZnci1GOzYkUSI1RidGNUY1RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzY2LUkmbWZyYWNHRiQ2KC1GOzYkUSc0MzkzNzVGJ0Y1LUY7NiRRIjdGJ0Y1LyUubGluZXRoaWNrbmVzc0dGYXEvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGX3QvJSliZXZlbGxlZEdGNC1GPzYtUSIrRidGNUZCRl9vRkdGSUZLRk1GT0ZmckZoci1GIzYoLUZjczYoLUY7NiRRKTY0MTg4MTI1RidGNS1GOzYkUSQ1MDRGJ0Y1Rlt0Rl10RmB0RmJ0LUY/Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y1RkJGX29GR0ZJRktGTUZPRlEvRlVGU0ZocUZaRmduRjVGZHQtRiM2KC1GY3M2KC1GOzYkUSoyMzExMjUzNzVGJ0Y1LUY7NiRRJTIwMTZGJ0Y1Rlt0Rl10RmB0RmJ0RmF1LUklbXN1cEdGJDYlRmhxLUY7NiRRIjJGJ0Y1LyUxc3VwZXJzY3JpcHRzaGlmdEdGW29GWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFEpMTczMDY5NzVGJ0Y1LUY7NiRRJDI4OEYnRjVGW3RGXXRGYHRGYnRGYXUtRmB2NiVGaHEtRjs2JFEiM0YnRjVGZXZGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFEoNzc2MTgwNUYnRjUtRjs2JFEkMzg0RidGNUZbdEZddEZgdEZidEZhdS1GYHY2JUZocUZXRmV2RlpGZ25GNUZkdC1GIzYoLUZjczYoLUY7NiRRKDI4OTU1ODdGJ0Y1LUY7NiRRJDY0MEYnRjVGW3RGXXRGYHRGYnRGYXUtRmB2NiVGaHFGaXJGZXZGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFEnMTI5MzkxRidGNS1GOzYkUSQxOTJGJ0Y1Rlt0Rl10RmB0RmJ0RmF1LUZgdjYlRmhxLUY7NiRRIjZGJ0Y1RmV2RlpGZ25GNUZkdC1GIzYoLUZjczYoLUY7NiRRJzI1OTcxNUYnRjUtRjs2JFElNDAzMkYnRjVGW3RGXXRGYHRGYnRGYXUtRmB2NiVGaHFGaHNGZXZGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFEmMjg5MDlGJ0Y1LUY7NiRRJTgwNjRGJ0Y1Rlt0Rl10RmB0RmJ0RmF1LUZgdjYlRmhxRjpGZXZGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFElMzU2OUYnRjUtRjs2JFEmNDAzMjBGJ0Y1Rlt0Rl10RmB0RmJ0RmF1LUZgdjYlRmhxLUY7NiRRIjlGJ0Y1RmV2RlpGZ25GNUY1RmhwRltxRl1xRl9xRmJxLUZkcDYoLUYjNihGaHFGXnItRiM2JUZjckZXRjVGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjdGY3ItRjs2JFEmNTYzNzVGJ0Y1LUY/Ni1RKCZtaW51cztGJ0Y1RkJGX29GR0ZJRktGTUZPRmZyRmhyLUYjNigtRmNzNigtRjs2JFEoODMxNDA5MUYnRjUtRjs2JFEjNTZGJ0Y1Rlt0Rl10RmB0RmJ0RmF1RmhxRlpGZ25GNUZjXWwtRiM2KC1GY3M2KC1GOzYkUSk0OTkwMTMwM0YnRjVGXndGW3RGXXRGYHRGYnRGYXVGX3ZGWkZnbkY1RmNdbC1GIzYoLUZjczYoLUY7NiRRKDM3NjM1MjlGJ0Y1LUY7NiRRIzMyRidGNUZbdEZddEZgdEZidEZhdUZhd0ZaRmduRjVGY11sLUYjNigtRmNzNigtRjs2JFEpMTk2NDgwMjdGJ0Y1Rl14Rlt0Rl10RmB0RmJ0RmF1RmB4RlpGZ25GNUZjXWwtRiM2KC1GY3M2KC1GOzYkUSg5NDY5MTYzRidGNUZpeEZbdEZddEZgdEZidEZhdUZceUZaRmduRjVGY11sLUYjNigtRmNzNigtRjs2JFEnNTQ1OTc3RidGNUZleUZbdEZddEZgdEZidEZhdUZoeUZaRmduRjVGY11sLUYjNigtRmNzNigtRjs2JFEnMTU2OTI3RidGNS1GOzYkUSQ0NDhGJ0Y1Rlt0Rl10RmB0RmJ0RmF1Rmd6RlpGZ25GNUZjXWwtRiM2KC1GY3M2KEZdW2wtRjs2JFElMTE1MkYnRjVGW3RGXXRGYHRGYnRGYXVGY1tsRlpGZ25GNUZjXWwtRiM2KC1GY3M2KEZpW2wtRjs2JFElNDQ4MEYnRjVGW3RGXXRGYHRGYnRGYXVGX1xsRlpGZ25GNUY1RmhwRltxRl1xRl9xRmJxLUZkcDYoLUYjNihGaHFGXnItRiM2JUZjckZjd0Y1RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzY2LUZjczYoLUY7NiRRJjY4Nzc2RidGNUZoc0ZbdEZddEZgdEZidEZkdC1GIzYoLUZjczYoLUY7NiRRKDEwMzgwMTFGJ0Y1LUY7NiRRIzI4RidGNUZbdEZddEZgdEZidEZhdUZocUZaRmduRjVGZHQtRiM2KC1GY3M2KC1GOzYkUSkzMTE1NzUxNUYnRjVGXnVGW3RGXXRGYHRGYnRGYXVGX3ZGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFEnOTU2NjY5RidGNS1GOzYkUSMxNkYnRjVGW3RGXXRGYHRGYnRGYXVGYXdGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFEoMzU0ODAwOUYnRjUtRjs2JFEjOTZGJ0Y1Rlt0Rl10RmB0RmJ0RmF1RmB4RlpGZ25GNUZkdC1GIzYoLUZjczYoLUY7NiRRKDI0MjIyNjNGJ0Y1LUY7NiRRJDE2MEYnRjVGW3RGXXRGYHRGYnRGYXVGXHlGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFEnMTk3MjU1RidGNS1GOzYkUSM0OEYnRjVGW3RGXXRGYHRGYnRGYXVGaHlGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFEmMTk5NTlGJ0Y1RmZjbEZbdEZddEZgdEZidEZhdUZnekZaRmduRjVGZHQtRiM2KC1GY3M2KC1GOzYkUScxNDQ1NDVGJ0Y1Rlx2Rlt0Rl10RmB0RmJ0RmF1RmNbbEZaRmduRjVGZHQtRiM2KC1GY3M2KEZpW2wtRjs2JFElMTEyMEYnRjVGW3RGXXRGYHRGYnRGYXVGX1xsRlpGZ25GNUY1RmhwRltxRl1xRl9xRmJxLUZkcDYoLUYjNihGaHFGXnItRiM2JUZjckZidkY1RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzY3RmNyLUY7NiRRJDE1NEYnRjVGY11sLUYjNigtRmNzNigtRjs2JFEmMTI3NTdGJ0Y1LUY7NiRRIzEyRidGNUZbdEZddEZgdEZidEZhdUZocUZaRmduRjVGY11sLUYjNigtRmNzNigtRjs2JFEnMjMwMTIzRidGNS1GOzYkUSM3MkYnRjVGW3RGXXRGYHRGYnRGYXVGX3ZGWkZnbkY1RmNdbC1GIzYoLUZjczYoLUY7NiRRJzI2NDQ4MUYnRjVGZWZsRlt0Rl10RmB0RmJ0RmF1RmF3RlpGZ25GNUZjXWwtRiM2KC1GY3M2KC1GOzYkUSc1NzY0OTlGJ0Y1RmFlbEZbdEZddEZgdEZidEZhdUZgeEZaRmduRjVGY11sLUYjNigtRmNzNigtRjs2JFEnNjg2MTQ3RidGNUZbZmxGW3RGXXRGYHRGYnRGYXVGXHlGWkZnbkY1RmNdbC1GIzYoLUZjczYoLUY7NiRRJjk2Mjc3RidGNUZlZmxGW3RGXXRGYHRGYnRGYXVGaHlGWkZnbkY1RmNdbC1GIzYoLUZjczYoLUY7NiRRJjE0MjIxRidGNS1GOzYkUSMyNEYnRjVGW3RGXXRGYHRGYnRGYXVGZ3pGWkZnbkY1RmNdbC1GIzYoLUZjczYoRl1bbEZed0ZbdEZddEZgdEZidEZhdUZjW2xGWkZnbkY1RmNdbC1GIzYoLUZjczYoRmlbbC1GOzYkUSQ0ODBGJ0Y1Rlt0Rl10RmB0RmJ0RmF1Rl9cbEZaRmduRjVGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yLUYjNiVGY3ItRjs2JEZhcUY1RjVGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjJGZ11tRmNdbC1GIzYoLUZjczYoLUY7NiRRJDIwNUYnRjUtRjs2JFEkMTQ0RidGNUZbdEZddEZgdEZidEZhdUZfdkZaRmduRjVGZHQtRiM2KC1GY3M2KC1GOzYkUSM5MUYnRjVGZXlGW3RGXXRGYHRGYnRGYXVGYHhGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFElNjE4MUYnRjUtRjs2JFEkMzIwRidGNUZbdEZddEZgdEZidEZhdUZceUZaRmduRjVGZHQtRiM2KC1GY3M2KC1GOzYkUSU2MzM3RidGNUZhZWxGW3RGXXRGYHRGYnRGYXVGaHlGWkZnbkY1RmR0LUYjNigtRmNzNigtRjs2JFElMjc0NUYnRjVGXl9sRlt0Rl10RmB0RmJ0RmF1Rmd6RlpGZ25GNUZkdC1GIzYoLUZjczYoRl1bbC1GOzYkUSQ1NzZGJ0Y1Rlt0Rl10RmB0RmJ0RmF1RmNbbEZaRmduRjVGZHQtRiM2KC1GY3M2KEZpW2xGZ19tRlt0Rl10RmB0RmJ0RmF1Rl9cbEZaRmduRjVGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRmZwRlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzYyRmddbUZjXWxGX15tRmR0RmlebUZjXWxGYF9tRmR0RmpfbUZjXWxGYWBtRmR0RmhgbUZjXWxGX2FtRjVGaHBGW3FGXXFGX3FGYnEtRmRwNigtRiM2KEZocUZeckZnXW1GWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjdGY3JGaWhsRmR0RlxpbEZjXWxGZmlsRmR0RmBqbEZjXWxGZ2psRmR0Rl5bbUZjXWxGZVttRmR0RlxcbUZjXWxGZlxtRmR0RmpcbUY1RmhwRltxRl1xRl9xRmJxLUZkcDYoLUYjNihGaHFGXnJGYnZGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjZGamJsRmNdbEZfY2xGZHRGaWNsRmNdbEZgZGxGZHRGamRsRmNdbEZkZWxGZHRGXmZsRmNdbEZoZmxGZHRGX2dsRmNdbEZmZ2xGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRmN3RlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzY3RmNyRmBdbEZkdEZmXWxGY11sRmBebEZkdEZnXmxGY11sRmFfbEZkdEZoX2xGY11sRl9gbEZkdEZmYGxGY11sRmBhbEZkdEZnYWxGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRldGWkZnbkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjZGYnNGY11sRmd0RmR0RmV1RmNdbEZndkZkdEZmd0ZjXWxGYnhGZHRGXnlGY11sRl16RmR0Rml6RmNdbEZlW2xGNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYoRmhxRl5yRmlyRlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2J0ZjcC1GZHA2KC1GIzYoRmlyLUY/Ni1RJSZsZTtGJ0Y1RkJGX29GR0ZJRktGTUZPRmBvRmJvRmhxRlpGZ25GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS8lJmFsaWduR1ElYXhpc0YnL0ZpcFEpYmFzZWxpbmVGJy9GXHFGX3QvRl5xUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGRi8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRl5mbS8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJDJlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGaWZtLyUmZnJhbWVHRmlmbS8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRjQvJS1lcXVhbGNvbHVtbnNHRjQvJS1kaXNwbGF5c3R5bGVHRjQvJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dRJjAuOGVtRidGWkZnbkY1RlpGZ25GNQ==">LUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzY6MkkieEc2IiEiJiIiITJGJyEiJSw2IyIndiRSJSIiKCIiIkYnIyIpRCIpPWsiJC8mKiRGJyIiIyMiKnZgN0ojIiU7PyokRiciIiQjIil2cEk8IiQpRyokRiciIiUjIigwPXcoIiQlUSokRiciIiYjIigoZSYqRyIkUycqJEYnIiInIyInIlJIIiIkIz4qJEYnRjAjIic6KGYjIiVLUyokRiciIikjIiY0KkciJWshKSokRiciIiojIiVwTiImPy4lMkYnISIkLDYhJnZqJkYxRicjISgiNDkkKSIjY0Y1IyEpLjghKlxGPkY6IyEoSE53JCIjS0Y/IyEpRiFbJz5GQ0ZEIyEoaiJwJSpGSEZJIyEneGZhRk1GTiMhJ0ZwOiIkWyVGUiMhJjQqRyIlXzZGVyMhJXBOIiUhWyUyRichIiMsNiMiJncob0YwRjFGJyMiKDYhUTUiI0dGNSMiKTp2OkpGNEY6IyIncG0mKiIjO0Y/IyIoNCFbTiIjJypGRCMiKGpBVSMiJGciRkkjIidicz4iI1tGTiMiJmYqPkZocEZSIyInWFg5RjlGVyNGWiIlPzYyRichIiIsNiEkYSJGMUYnIyEmZEYiIiM3RjUjISdCLEIiI3NGOiMhJyJbayNGZnFGPyMhJypcdyZGYHFGRCMhJ1pob0ZjcUZJIyEmeGkqRmZxRk4jISZAVSIiI0NGUiNGXHBGPkZXI0ZfcCIkIVsyRidGKiwyRjFGMUY1IyEkMCMiJFciRj8jIiMiKkZNRkQjIiUiPSciJD8kRkkjIiVQakZgcUZOIyIlWEZGYW9GUiNGVSIkdyZGVyNGWkZedDJGJ0YxLDJGMUYxRjVGZ3NGP0Zqc0ZEIyElIj0nRl50RklGX3RGTiMhJVhGRmFvRlJGY3RGVyNGX3BGXnQyRidGNiw2RmByRjFGJyMiJmRGIkZjckY1RmRyRjojIiciW2sjRmZxRj9GaXJGRCMiJ1pob0ZjcUZJRl1zRk4jIiZAVSJGYXNGUkZic0ZXI0ZaRmRzMkYnRjssNkZkcEYxRicjISg2IVE1RmhwRjVGaXBGOiMhJ3BtJipGXXFGP0ZecUZEIyEoakFVI0ZjcUZJRmRxRk4jISZmKj5GaHBGUkZpcUZXI0ZfcEZccjJGJ0ZALDZGaW5GMUYnIyIoIjQ5JClGXG9GNUZdb0Y6IyIoSE53JEZhb0Y/RmJvRkQjIihqInAlKkZIRklGZm9GTiMiJ0ZwOkZqb0ZSRltwRlcjRlpGYHAyRidGRSw2Ri5GMUYnIyEpRCIpPWtGNEY1RjdGOiMhKXZwSTxGPkY/RkFGRCMhKChlJipHRkhGSUZLRk4jISc6KGYjRlFGUkZURlcjRl9wRmVuMUZFRidGKg==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L625" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="seq(evalb(simplify(conditions[i], solutions)), i = 1 .. numelems(conditions));" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEkc2VxRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNi0tRiw2JVEmZXZhbGJGJ0YvRjItRjY2JC1GIzYmLUYsNiVRKXNpbXBsaWZ5RidGL0YyLUY2NiQtRiM2KS1GLDYlUStjb25kaXRpb25zRidGL0YyLUY2NiYtRiM2JS1GLDYlUSJpRidGL0YyLyUrZXhlY3V0YWJsZUdRJmZhbHNlRicvRjNRJ25vcm1hbEYnRlUvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRictSSNtb0dGJDYtUSIsRidGVS8lJmZlbmNlR0ZULyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRlQvJSpzeW1tZXRyaWNHRlQvJShsYXJnZW9wR0ZULyUubW92YWJsZWxpbWl0c0dGVC8lJ2FjY2VudEdGVC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUZobjYtUSJ+RidGVUZbby9GXm9GVEZfb0Zhb0Zjb0Zlb0Znb0Zpby9GXXBGW3AtRiw2JVEqc29sdXRpb25zRidGL0YyRlJGVUZVRlJGVUZVRmduRk8tRmhuNi1RIj1GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yNzc3Nzc4ZW1GJy9GXXBGW3EtSSNtbkdGJDYkUSIxRidGVS1GaG42LVEjLi5GJ0ZVRltvRmJwRl9vRmFvRmNvRmVvRmdvL0Zqb1EsMC4yMjIyMjIyZW1GJ0ZjcC1GLDYlUSludW1lbGVtc0YnRi9GMi1GNjYkLUYjNiRGSEZVRlVGUkZVRlUtRmhuNi1RIjtGJ0ZVRltvRl1vRl9vRmFvRmNvRmVvRmdvRmlvRlxxRlJGVQ==">QyQtSSRzZXFHJSpwcm90ZWN0ZWRHNiQtSSZldmFsYkdGJTYjLUkpc2ltcGxpZnlHNiI2JCZJK2NvbmRpdGlvbnNHRiw2I0kiaUdGLEkqc29sdXRpb25zR0YsL0YxOyIiIi1JKW51bWVsZW1zR0YlNiNGL0Y1</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NmVySSV0cnVlRyUqcHJvdGVjdGVkR0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGI0YjRiNGIw==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L623" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="evalb(int(Lambda[8, 4], x = xrange) = 1); 1; seq(evalb(int(x^i*Lambda[8, 4], x = xrange) = 0), i = 1 .. 8)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEmZXZhbGJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2KC1GLDYlUSRpbnRGJ0YvRjItRjY2JC1GIzYoLUklbXN1YkdGJDYlLUYsNiVRKSZMYW1iZGE7RicvRjBRJmZhbHNlRicvRjNRJ25vcm1hbEYnLUYjNiYtSSNtbkdGJDYkUSI4RidGSS1JI21vR0YkNi1RIixGJ0ZJLyUmZmVuY2VHRkgvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGSC8lKnN5bW1ldHJpY0dGSC8lKGxhcmdlb3BHRkgvJS5tb3ZhYmxlbGltaXRzR0ZILyUnYWNjZW50R0ZILyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRk42JFEiNEYnRklGSS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnRlEtRiw2JVEieEYnRi9GMi1GUjYtUSI9RidGSUZVL0ZYRkhGWUZlbkZnbkZpbkZbby9GXm9RLDAuMjc3Nzc3OGVtRicvRmFvRmFwLUYsNiVRJ3hyYW5nZUYnRi9GMkZJRklGXHAtRk42JFEiMUYnRkkvJStleGVjdXRhYmxlR0ZIRklGSS1GUjYtUSI7RidGSUZVRldGWUZlbkZnbkZpbkZbb0Zdb0ZicC1GLDYlUSRzZXFGJ0YvRjItRjY2JC1GIzYsRistRjY2JC1GIzYoRjotRjY2JC1GIzYqLUklbXN1cEdGJDYlRmlvLUYjNiUtRiw2JVEiaUYnRi9GMkYvRjIvJTFzdXBlcnNjcmlwdHNoaWZ0R0Zoby1GUjYtUScmc2RvdDtGJ0ZJRlVGX3BGWUZlbkZnbkZpbkZbb0Zdby9GYW9GX28tRkI2JS1GLDYlUScmIzkyMztGJ0ZHRklGS0Zmb0ZRRmlvRlxwRmNwRklGSUZccC1GTjYkRmhvRklGaXBGSUZJRlFGYnJGXHBGZnAtRlI2LVEjLi5GJ0ZJRlVGX3BGWUZlbkZnbkZpbkZbby9GXm9RLDAuMjIyMjIyMmVtRidGanJGTUZpcEZJRklGaXBGSQ==">QyUtSSZldmFsYkclKnByb3RlY3RlZEc2Iy8tSSRpbnRHNiRGJUkoX3N5c2xpYkc2IjYkJkknTGFtYmRhR0YsNiQiIikiIiUvSSJ4R0YsSSd4cmFuZ2VHRiwiIiJGNi1JJHNlcUdGJTYkLUYkNiMvLUYpNiQqJilGNEkiaUdGLEY2Ri5GNkYzIiIhL0ZBO0Y2RjE=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">SSV0cnVlRyUqcHJvdGVjdGVkRw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output">NipJJXRydWVHJSpwcm90ZWN0ZWRHRiNGI0YjRiNGI0YjRiM=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L590" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="fac := 40320:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZkdy1JI21pR0YkNiVRJGZhY0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkjbW5HRiQ2JFEmNDAzMjBGJ0Y5LUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUY2Ni1RIn5GJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWi1GLDYlUSN3MEYnRi9GMkY1LUkobWZlbmNlZEdGJDYkLUYjNiQtSSZtZnJhY0dGJDYoLUZQNiRRIjFGJ0Y5LUYjNiRGK0Y5LyUubGluZXRoaWNrbmVzc0dGY28vJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGam8vJSliZXZlbGxlZEdGPUY5RjktRjY2LVEnJnNkb3Q7RidGOUY7Rj5GQEZCRkRGRkZIRllGZW4tRiw2JVEnaG9ybmVyRidGL0YyLUZqbjYkLUYjNilGK0ZfcC1GLDYlUSdleHBhbmRGJ0YvRjItRmpuNiQtRiM2JS1GLDYlUSVldmFsRidGL0YyLUZqbjYkLUYjNi1GYHEtRmpuNiQtRiM2Jy1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnL0YwRj1GOS1GIzYmLUZQNiRRIjhGJ0Y5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGWS9GTlEsMC4zMzMzMzMzZW1GJy1GUDYkUSI0RidGOUY5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRiw2I1EhRidGZ3ItRiw2JVEqc29sdXRpb25zRidGL0YyRjlGOUZnci1GLDYlUSJ4RidGL0YyLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZjdEZdcy1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRmJ0RmR0RlYtRiw2JVEieUYnRi9GMkY5RjlGOUY5RmdyRmh0RjlGOUZWLUY2Ni1RKWFzc3VtaW5nRidGOUY7Rj5GQEZCRkRGRkZIRllGZW5GVkZodC1GNjYtUSI+RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GUDYkRmJzRjlGVi1GNjYvUSRhbmRGJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRml1RjtGPkZARkJGREZGRkhGWUZlbkZWRmh0LUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmFvLUY2Ni1RIjtGJ0Y5RjtGanJGQEZCRkRGRkZIRllGTS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0ZaLyUmZGVwdGhHRmd2LyUqbGluZWJyZWFrR1EobmV3bGluZUYnLUYsNiVRI3cxRidGL0YyRjVGaW5GX3BGYnAtRmpuNiQtRiM2KUYrRl9wRmlwLUZqbjYkLUYjNiVGYHEtRmpuNiQtRiM2LUZgcS1Gam42JC1GIzYnRltyRmdyRlZGZnNGOUY5RmdyRmlzRlx0Rl90LUZQNiRRIjNGJ0Y5RmV0RlZGaHRGOUY5RjlGOUZnckZodEY5RjlGVkZbdUZWRmh0Rl51RmF1RlZGY3VGVkZodEZcdkZhb0ZfdkZidi1GLDYlUSN3MkYnRi9GMkY1RmluRl9wRmJwLUZqbjYkLUYjNilGK0ZfcEZpcC1Gam42JC1GIzYlRmBxLUZqbjYkLUYjNi1GYHFGZ3FGZ3JGaXNGXHRGX3QtRlA2JFEiMkYnRjlGZXRGVkZodEY5RjlGOUY5RmdyRmh0RjlGOUZbdUZWRmh0Rl51RmF1RlZGY3VGVkZodEZcdkZhb0ZfdkZidi1GLDYlUSN3M0YnRi9GMkY1RmluRl9wRmJwLUZqbjYkLUYjNilGK0ZfcEZpcC1Gam42JC1GIzYlRmBxLUZqbjYkLUYjNi1GYHFGZ3FGZ3JGaXNGXHRGX3RGYW9GX3RGVkZodEY5RjlGOUY5RmdyRmh0RjlGOUZWRlt1RlZGaHRGXnVGYXVGVkZjdUZWRmh0Rlx2RmFvRl92RmJ2LUYsNiVRI3c0RidGL0YyRjVGaW5GX3BGYnAtRmpuNiQtRiM2KUYrRl9wRmlwLUZqbjYkLUYjNiVGYHEtRmpuNiQtRiM2LEZgcS1Gam42JC1GIzYmRltyRmdyRmZzRjlGOUZnckZpc0ZcdEZWRl90RlZGaHRGOUY5RjlGOUZnckZodEY5RjlGW3VGVkZodEZedUZhdUZWRmN1RlZGaHRGXHZGYW9GX3ZGYnYtRiw2JVEjdzVGJ0YvRjJGNUZpbkZfcEZicC1Gam42JC1GIzYpRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYsRmBxRmdxRmdyRmlzRlx0RmFvRmV0RlZGaHRGOUY5RjlGOUZnckZodEY5RjlGVkZbdUZWRmh0Rl51RmF1RlZGY3VGVkZodEZcdkZhb0ZfdkZidi1GLDYlUSN3NkYnRi9GMkY1RmluRl9wRmJwLUZqbjYkLUYjNilGK0ZfcEZpcC1Gam42JC1GIzYlRmBxLUZqbjYkLUYjNixGYHFGZVtsRmdyRmlzRlx0RmR5RmV0RlZGaHRGOUY5RjlGOUZnckZodEY5RjlGW3VGVkZodEZedUZhdUZWRmN1RlZGaHRGXHZGYW9GX3ZGYnYtRiw2JVEjdzdGJ0YvRjJGNUZpbkZfcEZicC1Gam42JC1GIzYpRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYsRmBxRmdxRmdyRmlzRlx0RmJ4RmV0RlZGaHRGOUY5RjlGOUZnckZodEY5RjlGW3VGVkZodEZedUZhdUZWRmN1RlZGaHRGXHZGYW9GX3ZGYnYtRiw2JVEjdzhGJ0YvRjJGNUZpbkZfcEZicC1Gam42JC1GIzYpRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYsRmBxRmdxRmdyRmlzRlx0Rl1zRmV0RlZGaHRGOUY5RjlGOUZnckZodEY5RjlGW3VGVkZodEZedUZhdUZWRmN1RlZGaHRGXHZGYW9GX3ZGYnYtRiw2JVEjdzlGJ0YvRjJGNUZpbkZfcEZicC1Gam42JC1GIzYpRitGX3BGaXAtRmpuNiQtRiM2JUZgcS1Gam42JC1GIzYsRmBxRmdxRmdyRmlzRlx0LUZQNiRRIjVGJ0Y5RmV0RlZGaHRGOUY5RjlGOUZnckZodEY5RjlGW3VGVkZodEZedUZhdUZWRmN1RlZGaHRGXHZGYW9GX3YvJStleGVjdXRhYmxlR0Y9Rjk=">Qzg+SSRmYWNHNiIiJj8uJSEiIj5JI3cwR0YlLUkpYXNzdW1pbmdHSShfc3lzbGliR0YlNiQ3IyomRiRGJy1JJ2hvcm5lckdGJTYkKiZGJCIiIi1JJ2V4cGFuZEclKnByb3RlY3RlZEc2Iy1JJWV2YWxHRjc2JC1GOjYkJkknTGFtYmRhR0YlNiQiIikiIiVJKnNvbHV0aW9uc0dGJS9JInhHRiUsJiEiJUY0SSJ5R0YlRidGNEZIRjQ3Iy1JJGFuZEdGNzYkLUkiPkdGNzYkRkgiIiEyRkhGNEY0PkkjdzFHRiUtRis2JDcjKiZGJEYnLUYxNiQqJkYkRjQtRjY2Iy1GOjYkRjwvRkUsJiEiJEY0RkhGJ0Y0RkhGNEZJRjQ+SSN3MkdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmISIjRjRGSEYnRjRGSEY0RklGND5JI3czR0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZFLCZGJ0Y0RkhGJ0Y0RkhGNEZJRjQ+SSN3NEdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwkRkhGJ0Y0RkhGNEZJRjQ+SSN3NUdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmRjRGNEZIRidGNEZIRjRGSUY0PkkjdzZHRiUtRis2JDcjKiZGJEYnLUYxNiQqJkYkRjQtRjY2Iy1GOjYkRjwvRkUsJiIiI0Y0RkhGJ0Y0RkhGNEZJRjQ+SSN3N0dGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmIiIkRjRGSEYnRjRGSEY0RklGND5JI3c4R0YlLUYrNiQ3IyomRiRGJy1GMTYkKiZGJEY0LUY2NiMtRjo2JEY8L0ZFLCZGQkY0RkhGJ0Y0RkhGNEZJRjQ+SSN3OUdGJS1GKzYkNyMqJkYkRictRjE2JComRiRGNC1GNjYjLUY6NiRGPC9GRSwmIiImRjRGSEYnRjRGSEY0RklGNA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEmNDAzMjBGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZVNiRRJDE0NEYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZicC1GIzYmLUZnbzYkLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmFwRmNwLUZVNiRRIzM2RidGOUZecC1GIzYmLUZnbzYkLUYjNidGanAtRlU2JFEkMTk2RidGOUZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEjNDlGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZqcC1GVTYkUSU2MTI1RidGOUZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEmMjExMjZGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZqcC1GVTYkUSYyNzQ1NEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJjE2MDYxRidGOS1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRmFwRmNwLUYjNiYtRlU2JFElMzU2OUYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0ZedUY5RjlGOUZeb0ZedUY5RjlGOUZeb0ZedUY5RjlGOUZeb0ZedUY5RjlGOUZeb0ZedUY5RjlGOUZeb0ZedUY5RjlGOUZeb0ZedUY5RjlGOUZeb0ZedUY5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGYXVGZHVGOQ==">LCQqJiwmIiRXIiIiIiomLCYhI09GJiomLCYhJCc+RiYqJiwmIiNcRiYqJiwmISVEaEYmKiYsJiImRTYjRiYqJiwmISZhdSNGJiomLCYiJmhnIkYmSSJ5RzYiISVwTkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmI0YmIiY/LiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEmNDAzMjBGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfcC1GVTYkUSUxNTM2RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSQ1MTJGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSUyMDE2RidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEkNjcyRidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEmNTUxMjVGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUScxOTAwOTJGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUScyNDcwNzRGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUScxNDQ1NDhGJ0Y5RmRwLUYjNiYtRlU2JFEmMzIxMjFGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GW3VGOUY5RjlGXm9GW3VGOUY5RjlGXm9GW3VGOUY5RjlGXm9GW3VGOUY5RjlGXm9GW3VGOUY5RjlGXm9GW3VGOUY5RjlGXm9GW3VGOUY5RjlGXm9GW3VGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5Rl51RmF1Rjk=">LCQqJiwmISVPOiIiIiomLCYiJDcmRiYqJiwmIiU7P0YmKiYsJiEkcydGJiomLCYiJkReJkYmKiYsJiEnIzQhPkYmKiYsJiIndXFDRiYqJiwmISdbWDlGJkkieUc2IiImQEAkRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiYjRiYiJj8uJQ==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEmNDAzMjBGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZVNiRRJTgwNjRGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GVTYkUSU0MDMyRidGOUZecC1GIzYmLUZnbzYkLUYjNidGanAtRlU2JFElOTQ2NEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJTQ3MzJGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZqcC1GVTYkUScyMjEwNjBGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSc3NjAzMTJGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2J0ZqcC1GVTYkUSc5ODgyNTZGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSc1NzgxODhGJ0Y5LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGYXBGY3AtRiM2Ji1GVTYkUScxMjg0ODRGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GXnVGOUY5RjlGXm9GXnVGOUY5RjlGXm9GXnVGOUY5RjlGXm9GXnVGOUY5RjlGXm9GXnVGOUY5RjlGXm9GXnVGOUY5RjlGXm9GXnVGOUY5RjlGXm9GXnVGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RmF1RmR1Rjk=">LCQqJiwmIiVrISkiIiIqJiwmISVLU0YmKiYsJiElayUqRiYqJiwmIiVLWkYmKiYsJiEnZzVBRiYqJiwmIic3LndGJiomLCYhJ2MjKSkqRiYqJiwmIicpPXkmRiZJInlHNiIhJyVbRyJGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJiNGJiImPy4l</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEmNDAzMjBGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfcC1GVTYkUSYzMjI1NkYnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZecEZgcC1GIzYmLUZnbzYkLUYjNiZGYXBGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJjEzNjY0RidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3BGY3FGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJzUxNzU4MEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRKDE3NzQxMzZGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSgyMzA1ODU2RidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEoMTM0OTA5NkYnRjlGZHAtRiM2Ji1GVTYkUScyOTk3OTZGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5Rmh0Rlt1Rjk=">LCQqJiwmISZjQSQiIiIqJiwmIiZjQSRGJiomLCYiJmtPIkYmKiYsJiEma08iRiYqJiwmIichZTwmRiYqJiwmIShPVHgiRiYqJiwmIihjZUkjRiYqJiwmISgnNFw4RiZJInlHNiIiJyd6KkhGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJiNGJiImPy4l</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiYtSSNtbkdGJDYkUSIxRidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlktRiM2KC1JJm1mcmFjR0YkNihGUS1GUjYkUSY0MDMyMEYnRjkvJS5saW5ldGhpY2tuZXNzR0ZULyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmFvLyUpYmV2ZWxsZWRHRj0tRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZqby1GIzYmLUkobWZlbmNlZEdGJDYkLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRlhGWi1GUjYkUSY1NzQwMEYnRjlGVS1GIzYmLUZfcDYkLUYjNiYtRlI2JFEmMTkxMTBGJ0Y5RlUtRiM2Ji1GX3A2JC1GIzYnRmNwLUZSNiRRJzc3ODgwNkYnRjlGVS1GIzYmLUZfcDYkLUYjNiYtRlI2JFEoMjY2MTU0MEYnRjlGVS1GIzYmLUZfcDYkLUYjNidGY3AtRlI2JFEoMzQ1ODcwMEYnRjlGVS1GIzYmLUZfcDYkLUYjNiYtRlI2JFEoMjAyMzYzMEYnRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZYRlotRiM2Ji1GUjYkUSc0NDk2OTRGJ0Y5RmZvLUYsNiVRInlGJ0YvRjJGOUY5RjlGZm9GXnRGOUY5RjlGZm9GXnRGOUY5RjlGZm9GXnRGOUY5RjlGZm9GXnRGOUY5RjlGZm8tSSVtc3VwR0YkNiVGXnQtRlI2JFEiMkYnRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRjlGOUY5RmZvRmF0RjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUY5Rmp0Rl11Rjk=">LCYiIiJGIyomLCYhJit1JkYjKiYsJiImNSI+RiMqJiwmIScxKXkoRiMqJiwmIihTOm0jRiMqJiwmISgrKGVNRiMqJiwmIihJTy0jRiNJInlHNiIhJyVwXCVGI0Y2RiNGI0YjRjZGI0YjRiNGNkYjRiNGI0Y2RiNGI0YjRjYiIiNGI0YjRjZGOSNGIyImPy4l</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzVGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEmNDAzMjBGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZVNiRRJjMyMjU2RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmJwLUYjNiYtRmdvNiQtRiM2JkZbcEZecC1GIzYmLUZnbzYkLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmFwRmNwLUZVNiRRJjEzNjY0RidGOUZecC1GIzYmLUZnbzYkLUYjNidGYHFGY3FGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJzc4MDQzMEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnRmBxLUZVNiRRKDI2NjIwMTZGJ0Y5Rl5wLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSgzNDU4NjQ0RidGOUZecC1GIzYmLUZnbzYkLUYjNidGYHEtRlU2JFEoMjAyMzYxNkYnRjlGXnAtRiM2Ji1GVTYkUSc0NDk2OTRGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOUY5RjlGXm9GZXRGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5Rmh0Rlt1Rjk=">LCQqJiwmIiZjQSQiIiIqJiwmRiVGJiomLCYhJmtPIkYmKiYsJkYrRiYqJiwmIidJL3lGJiomLCYhKDs/bSNGJiomLCYiKFcnZU1GJiomLCYhKDtPLSNGJkkieUc2IiInJXBcJUYmRjpGJkYmRiZGOkYmRiZGJkY6RiZGJkYmRjpGJkYmRiZGOkYmRiZGJkY6RiZGJkYmRjpGJkYmRiZGOkYmI0YmIiY/LiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzZGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEmNDAzMjBGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfcC1GVTYkUSU4MDY0RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRl5wRmBwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSU0MDMyRidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFElOTQ2NEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJTQ3MzJGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSc1MjA2NjBGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2Ji1GVTYkUSgxNzc1MDMyRidGOUZkcC1GIzYmLUZnbzYkLUYjNidGW3AtRlU2JFEoMjMwNTc0NEYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRKDEzNDkwNjhGJ0Y5LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGXnBGYHAtRiM2Ji1GVTYkUScyOTk3OTZGJ0Y5Rl5vLUYsNiVRInlGJ0YvRjJGOUY5RjlGXm9GXnVGOUY5RjlGXm9GXnVGOUY5RjlGXm9GXnVGOUY5RjlGXm9GXnVGOUY5RjlGXm9GXnVGOUY5RjlGXm9GXnVGOUY5RjlGXm9GXnVGOUY5RjlGXm9GXnVGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RmF1RmR1Rjk=">LCQqJiwmISVrISkiIiIqJiwmISVLU0YmKiYsJiIlayUqRiYqJiwmIiVLWkYmKiYsJiEnZzFfRiYqJiwmIihLXXgiRiYqJiwmIShXZEkjRiYqJiwmIihvIVw4RiZJInlHNiIhJyd6KkhGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJiNGJiImPy4l</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEmNDAzMjBGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZVNiRRJTE1MzZGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJDUxMkYnRjlGXnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GVTYkUSUyMDE2RidGOUZecC1GIzYmLUZnbzYkLUYjNidGY3EtRlU2JFEkNjcyRidGOUZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEnMjIzMDIwRidGOUZecC1GIzYmLUZnbzYkLUYjNidGY3EtRlU2JFEnNzYwODcyRidGOUZecC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEnOTg4MTc2RidGOUZecC1GIzYmLUZnbzYkLUYjNidGY3EtRlU2JFEnNTc4MTY4RidGOUZecC1GIzYmLUZVNiRRJzEyODQ4NEYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0ZbdUY5RjlGOUZeb0ZbdUY5RjlGOUZeb0ZbdUY5RjlGOUZeb0ZbdUY5RjlGOUZeb0ZbdUY5RjlGOUZeb0ZbdUY5RjlGOUZeb0ZbdUY5RjlGOUZeb0ZbdUY5LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9RjlGXnVGYXVGOQ==">LCQqJiwmIiVPOiIiIiomLCYiJDcmRiYqJiwmISU7P0YmKiYsJiEkcydGJiomLCYiJz9JQUYmKiYsJiEnczN3RiYqJiwmIid3IikpKkYmKiYsJiEnbyJ5JkYmSSJ5RzYiIiclW0ciRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiYjRiYiJj8uJQ==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzhGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEmNDAzMjBGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfcC1GVTYkUSQxNDRGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGXnBGYHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRIzM2RidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEkMTk2RidGOUZkcC1GIzYmLUZnbzYkLUYjNiYtRlU2JFEjNDlGJ0Y5RmRwLUYjNiYtRmdvNiQtRiM2J0ZbcC1GVTYkUSY1NTY4NUYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJzE5MDI0NkYnRjlGZHAtRiM2Ji1GZ282JC1GIzYnRltwLUZVNiRRJzI0NzA0NkYnRjlGZHAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJzE0NDU0MUYnRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSEZecEZgcC1GIzYmLUZVNiRRJjMyMTIxRidGOUZeby1GLDYlUSJ5RidGL0YyRjlGOUY5Rl5vRl51RjlGOUY5Rl5vRl51RjlGOUY5Rl5vRl51RjlGOUY5Rl5vRl51RjlGOUY5Rl5vRl51RjlGOUY5Rl5vRl51RjlGOUY5Rl5vRl51RjlGOUY5Rl5vRl51RjkvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUZhdUZkdUY5">LCQqJiwmISRXIiIiIiomLCYhI09GJiomLCYiJCc+RiYqJiwmIiNcRiYqJiwmISYmb2JGJiomLCYiJ1ktPkYmKiYsJiEnWXFDRiYqJiwmIidUWDlGJkkieUc2IiEmQEAkRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiZGJkYmRjxGJkYmRiZGPEYmRiZGJkY8RiYjRiYiJj8uJQ==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjdzlGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRlU2JFEmNDAzMjBGJ0Y5LyUubGluZXRoaWNrbmVzc0dGVy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zpbi8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GYm8tRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZVNiRRJTYxODFGJ0Y5LUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYnAtRiM2Ji1GZ282JC1GIzYnLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZhcEZjcC1GVTYkUSYyMTE0MEYnRjlGXnAtRiM2Ji1GZ282JC1GIzYmLUZVNiRRJjI3NDUwRidGOUZecC1GIzYmLUZnbzYkLUYjNidGanAtRlU2JFEmMTYwNjBGJ0Y5Rl5wLUYjNiYtRlU2JFElMzU2OUYnRjlGXm8tRiw2JVEieUYnRi9GMkY5RjlGOUZeb0ZnckY5RjlGOUZeb0ZnckY5RjlGOUZeb0ZnckY5RjlGOUZeby1JJW1zdXBHRiQ2JUZnci1GVTYkUSI1RidGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5RmNzRmZzRjk=">LCQqJiwmIiUiPSciIiIqJiwmISZTNiNGJiomLCYiJl11I0YmKiYsJiEmZ2ciRiZJInlHNiIiJXBORiZGMEYmRiZGJkYwRiZGJkYmRjBGJkYmRiZGMCIiJiNGJiImPy4l</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L588" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C([w0, w1, w2, w3, w4, w5, w6, w7, w8, w9], declare = [y::float], resultname = 'w', coercetypes = false)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2JS1GLDYlUSJDRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNjQtRjs2Ji1GIzY2LUYsNiVRI3cwRidGNEY3LUkjbW9HRiQ2LVEiLEYnL0Y4USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZOLyUqc3ltbWV0cmljR0ZOLyUobGFyZ2VvcEdGTi8lLm1vdmFibGVsaW1pdHNHRk4vJSdhY2NlbnRHRk4vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GLDYlUSN3MUYnRjRGN0ZGLUYsNiVRI3cyRidGNEY3RkYtRiw2JVEjdzNGJ0Y0RjdGRi1GLDYlUSN3NEYnRjRGN0ZGLUYsNiVRI3c1RidGNEY3RkYtRiw2JVEjdzZGJ0Y0RjdGRi1GLDYlUSN3N0YnRjRGN0ZGLUYsNiVRI3c4RidGNEY3RkYtRiw2JVEjdzlGJ0Y0RjdGSkZKLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRkYtRkc2LVEifkYnRkpGTC9GUEZORlFGU0ZVRldGWUZlbi9GaW5GZ24tRiw2JVEoZGVjbGFyZUYnRjRGNy1GRzYtUSI9RidGSkZMRl9xRlFGU0ZVRldGWS9GZm5RLDAuMjc3Nzc3OGVtRicvRmluRmhxLUY7NiYtRiM2Ji1GLDYlUSJ5RidGNEY3LUZHNi1RLSZQcm9wb3J0aW9uO0YnRkpGTEZfcUZRRlNGVUZXRllGZ3FGaXEtRiw2JVEmZmxvYXRGJ0Y0RjdGSkZKRmZwRmlwRkYtRiw2JVErcmVzdWx0bmFtZUYnRjRGN0ZkcS1GRzYtUSInRidGSkZMRl9xRlFGU0ZVRldGWS9GZm5RLDAuMTExMTExMWVtRidGYHEtRiw2JVEid0YnRjRGN0ZqckZGRlxxLUYsNiVRLGNvZXJjZXR5cGVzRidGNEY3RmRxLUYsNiVGTkY0RjdGSkZKRkpGKy8lK2V4ZWN1dGFibGVHRk5GSg==">LUkiQ0c2IjYmNyxJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiRJI3c2R0YkSSN3N0dGJEkjdzhHRiRJI3c5R0YkL0koZGVjbGFyZUdGJDcjJ0kieUdGJEkmZmxvYXRHJSpwcm90ZWN0ZWRHL0krcmVzdWx0bmFtZUdGJC5JIndHRiQvSSxjb2VyY2V0eXBlc0dGJEkmZmFsc2VHRjc=</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[0] = (144 + (-36 + (-196 + (49 + (-6125 + (21126 + (-27454 + (16061 - 3569 * y) * y) * y) * y) * y) * y) * y) * y) * y / 40320;</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output">w[1] = (-1536 + (512 + (2016 + (-672 + (55125 + (-190092 + (247074 + (-144548 + 32121 * y) * y) * y) * y) * y) * y) * y) * y) * y / 40320; -w[2] = (8064 + (-4032 + (-9464 + (4732 + (-221060 + (760312 + (-988256 + (578188 - 128484 * y) * y) * y) * y) * y) * y) * y) * y) * y / 40320; -w[3] = (-32256 + (32256 + (13664 + (-13664 + (517580 + (-1774136 + (2305856 + (-1349096 + 299796 * y) * y) * y) * y) * y) * y) * y) * y) * y / 40320; -w[4] = 1 + (-57400 + (19110 + (-778806 + (2661540 + (-3458700 + (2023630 - 449694 * y) * y) * y) * y) * y) * y * y) * y * y / 40320; -w[5] = (32256 + (32256 + (-13664 + (-13664 + (780430 + (-2662016 + (3458644 + (-2023616 + 449694 * y) * y) * y) * y) * y) * y) * y) * y) * y / 40320; -w[6] = (-8064 + (-4032 + (9464 + (4732 + (-520660 + (1775032 + (-2305744 + (1349068 - 299796 * y) * y) * y) * y) * y) * y) * y) * y) * y / 40320; -w[7] = (1536 + (512 + (-2016 + (-672 + (223020 + (-760872 + (988176 + (-578168 + 128484 * y) * y) * y) * y) * y) * y) * y) * y) * y / 40320; -w[8] = (-144 + (-36 + (196 + (49 + (-55685 + (190246 + (-247046 + (144541 - 32121 * y) * y) * y) * y) * y) * y) * y) * y) * y / 40320; -w[9] = (6181 + (-21140 + (27450 + (-16060 + 3569 * y) * y) * y) * y) * pow(y, 5) / 40320;</Text-field> -</Output> -</Group> -<Group labelreference="L593" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Fortran([w0, w1, w2, w3, w4, w5, w6, w7, w8, w9], declare = [y::float], resultname = 'w')" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2JS1GLDYlUShGb3J0cmFuRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYkLUYjNi8tRjs2Ji1GIzY2LUYsNiVRI3cwRidGNEY3LUkjbW9HRiQ2LVEiLEYnL0Y4USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZOLyUqc3ltbWV0cmljR0ZOLyUobGFyZ2VvcEdGTi8lLm1vdmFibGVsaW1pdHNHRk4vJSdhY2NlbnRHRk4vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GLDYlUSN3MUYnRjRGN0ZGLUYsNiVRI3cyRidGNEY3RkYtRiw2JVEjdzNGJ0Y0RjdGRi1GLDYlUSN3NEYnRjRGN0ZGLUYsNiVRI3c1RidGNEY3RkYtRiw2JVEjdzZGJ0Y0RjdGRi1GLDYlUSN3N0YnRjRGN0ZGLUYsNiVRI3c4RidGNEY3RkYtRiw2JVEjdzlGJ0Y0RjdGSkZKLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRkYtRkc2LVEifkYnRkpGTC9GUEZORlFGU0ZVRldGWUZlbi9GaW5GZ24tRiw2JVEoZGVjbGFyZUYnRjRGNy1GRzYtUSI9RidGSkZMRl9xRlFGU0ZVRldGWS9GZm5RLDAuMjc3Nzc3OGVtRicvRmluRmhxLUY7NiYtRiM2Ji1GLDYlUSJ5RidGNEY3LUZHNi1RLSZQcm9wb3J0aW9uO0YnRkpGTEZfcUZRRlNGVUZXRllGZ3FGaXEtRiw2JVEmZmxvYXRGJ0Y0RjdGSkZKRmZwRmlwRkYtRiw2JVErcmVzdWx0bmFtZUYnRjRGN0ZkcS1GRzYtUSInRidGSkZMRl9xRlFGU0ZVRldGWS9GZm5RLDAuMTExMTExMWVtRidGYHEtRiw2JVEid0YnRjRGN0ZqckZKRkpGSkYrLyUrZXhlY3V0YWJsZUdGTkZK">LUkoRm9ydHJhbkc2IjYlNyxJI3cwR0YkSSN3MUdGJEkjdzJHRiRJI3czR0YkSSN3NEdGJEkjdzVHRiRJI3c2R0YkSSN3N0dGJEkjdzhHRiRJI3c5R0YkL0koZGVjbGFyZUdGJDcjJ0kieUdGJEkmZmxvYXRHJSpwcm90ZWN0ZWRHL0krcmVzdWx0bmFtZUdGJC5JIndHRiQ=</Equation></Text-field> -</Input> -<Output> -<Text-field style="Line Printed Output" layout="Line Printed Output"> w(1) = (0.144D3 + (-0.36D2 + (-0.196D3 + (0.49D2 + (-0.6125D4 + (0 - #.21126D5 + (-0.27454D5 + (0.16061D5 - 0.3569D4 * y) * y) * y) * y)</Text-field> -<Text-field style="Line Printed Output" layout="Line Printed Output"> # * y) * y) * y) * y) * y / 0.40320D5 - w(2) = (-0.1536D4 + (0.512D3 + (0.2016D4 + (-0.672D3 + (0.55125D5 - #+ (-0.190092D6 + (0.247074D6 + (-0.144548D6 + 0.32121D5 * y) * y) - #* y) * y) * y) * y) * y) * y) * y / 0.40320D5 - w(3) = (0.8064D4 + (-0.4032D4 + (-0.9464D4 + (0.4732D4 + (-0.22106 - #0D6 + (0.760312D6 + (-0.988256D6 + (0.578188D6 - 0.128484D6 * y) * - # y) * y) * y) * y) * y) * y) * y) * y / 0.40320D5 - w(4) = (-0.32256D5 + (0.32256D5 + (0.13664D5 + (-0.13664D5 + (0.51 - #7580D6 + (-0.1774136D7 + (0.2305856D7 + (-0.1349096D7 + 0.299796D6 - # * y) * y) * y) * y) * y) * y) * y) * y) * y / 0.40320D5 - w(5) = 0.1D1 + (-0.57400D5 + (0.19110D5 + (-0.778806D6 + (0.266154 - #0D7 + (-0.3458700D7 + (0.2023630D7 - 0.449694D6 * y) * y) * y) * y - #) * y) * y ** 2) * y ** 2 / 0.40320D5 - w(6) = (0.32256D5 + (0.32256D5 + (-0.13664D5 + (-0.13664D5 + (0.78 - #0430D6 + (-0.2662016D7 + (0.3458644D7 + (-0.2023616D7 + 0.449694D6 - # * y) * y) * y) * y) * y) * y) * y) * y) * y / 0.40320D5 - w(7) = (-0.8064D4 + (-0.4032D4 + (0.9464D4 + (0.4732D4 + (-0.52066 - #0D6 + (0.1775032D7 + (-0.2305744D7 + (0.1349068D7 - 0.299796D6 * y - #) * y) * y) * y) * y) * y) * y) * y) * y / 0.40320D5 - w(8) = (0.1536D4 + (0.512D3 + (-0.2016D4 + (-0.672D3 + (0.223020D6 - # + (-0.760872D6 + (0.988176D6 + (-0.578168D6 + 0.128484D6 * y) * y - #) * y) * y) * y) * y) * y) * y) * y / 0.40320D5 - w(9) = (-0.144D3 + (-0.36D2 + (0.196D3 + (0.49D2 + (-0.55685D5 + ( - #0.190246D6 + (-0.247046D6 + (0.144541D6 - 0.32121D5 * y) * y) * y) - # * y) * y) * y) * y) * y) * y / 0.40320D5 - w(10) = (0.6181D4 + (-0.21140D5 + (0.27450D5 + (-0.16060D5 + 0.356 - #9D4 * y) * y) * y) * y) * y ** 5 / 0.40320D5</Text-field> -</Output> -</Group> -<Group labelreference="L620" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L609" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L596" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L465" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -</Worksheet> \ No newline at end of file diff --git a/Docs/remeshing_formulas/calcul_lambdastar_summary.mw b/Docs/remeshing_formulas/calcul_lambdastar_summary.mw deleted file mode 100644 index 8f44f77d5cb81a8b57d65d25c56d6ed13ce22119..0000000000000000000000000000000000000000 --- a/Docs/remeshing_formulas/calcul_lambdastar_summary.mw +++ /dev/null @@ -1,185 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<Worksheet> -<Version major="16" minor="0"/> -<Label-Scheme value="2" prefix=""/> -<View-Properties presentation="false"><Zoom percentage="150"/></View-Properties> -<MapleNet-Properties elisiondigitsbefore="100" labelling="true" indentamount="4" elisiontermsthreshold="10000" ansi="false" errorbreak="1" useclientjvm="true" echo="1" imaginaryunit="I" labelwidth="20" contextmenusize="automatic" plotdriver="opengl" elisiondigitsafter="100" plotoutput="terminal" helpbrowser="standard" rtablesize="10" elisiontermsbefore="100" elisiondigitsthreshold="10000" typesetting="standard" plotdevice="inline" verboseproc="1" showassumed="1" errorcursor="false" longdelim="true" plotoptions="" quiet="false" elisiontermsafter="100" screenwidth="79" preplot="" prettyprint="3" displayprecision="-1" screenpixelheight="1050" warnlevel="3" screenheight="25" latexwidth="6.0" postplot="" prompt="> " ShowLabels="true"/> -<Styles><Font name="Ordered List 1" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 2" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 3" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 5" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Author" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Warning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Caption Reference" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input Placeholder" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[200,0,200]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="true"/> -<Font name="Maple Plot" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Code" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Line Printed Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Diagnostic" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[40,120,40]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Inert Output" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[144,144,144]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Normal" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,128,128]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Maple Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Dash Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Math" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Input" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkError" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Header and Footer" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="10" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Error" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 1" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Bullet Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Equation Label" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 3" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="14" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 2" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="16" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkWarning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Dictionary Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[147,0,15]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Caption Text" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="List Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Layout name="Ordered List 1" alignment="left" bullet="numeric" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 2" alignment="left" bullet="alphabetic" firstindent="0" leftmargin="36" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 3" alignment="left" bullet="roman" firstindent="0" leftmargin="72" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 4" alignment="left" bullet="ALPHABETIC" firstindent="0" leftmargin="108" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 5" alignment="left" bullet="ROMAN" firstindent="0" leftmargin="144" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Author" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="8" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Warning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Annotation Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Plot" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Line Printed Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Text Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="newline" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Diagnostic" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Normal" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Output" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.3" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Dash Item" alignment="left" bullet="dash" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkError" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Error" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 1" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="4" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Bullet Item" alignment="left" bullet="dot" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 4" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 3" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 2" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="2" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkWarning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="List Item" alignment="left" bullet="indent" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Pencil-style name="Pencil 5" pen-color="[255,0,0]" pen-height="5.0" pen-width="5.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 4" pen-color="[0,0,255]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 3" pen-color="[0,0,0]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 2" pen-color="[0,0,255]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 1" pen-color="[0,0,0]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Highlighter-style name="Highlighter 2" pen-color="[255,204,0]" pen-height="14.0" pen-width="14.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 1" pen-color="[255,153,255]" pen-height="12.0" pen-width="8.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 4" pen-color="[0,255,255]" pen-height="32.0" pen-width="32.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 3" pen-color="[51,255,0]" pen-height="24.0" pen-width="24.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 5" pen-color="[255,255,0]" pen-height="48.0" pen-width="48.0" pen-opacity="0.8"/> -</Styles> -<Task-table> - <Task-category name="<default>"> - </Task-category> -</Task-table> -<Task> -</Task> -<Group labelreference="L527" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"></Text-field> -</Input> -</Group> -<Group labelreference="L532" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Summay remeshing formula Lambda_{k,l}^*</Text-field> -<Text-field style="Text" layout="Normal"></Text-field> -</Input> -</Group> -<Group labelreference="L533" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[2, 1] := piecewise(x < -2, 0, x < -1, 2+4*x+(5/2)*x^2+(1/2)*x^3, x < 0, 1-(5/2)*x^2-(3/2)*x^3, x < 1, 1-(5/2)*x^2+(3/2)*x^3, x < 2, 2-4*x+(5/2)*x^2-(1/2)*x^3, 2 <= x, 0):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEpJkxhbWJkYTtGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLUYjNiotSSNtbkdGJDYkUSIyRidGNS1JI21vR0YkNi1RIixGJ0Y1LyUmZmVuY2VHRjQvJSpzZXBhcmF0b3JHUSV0cnVlRicvJSlzdHJldGNoeUdGNC8lKnN5bW1ldHJpY0dGNC8lKGxhcmdlb3BHRjQvJS5tb3ZhYmxlbGltaXRzR0Y0LyUnYWNjZW50R0Y0LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRjs2JFEiMUYnRjUvJStmb3JlZ3JvdW5kR1EqWzAsMCwyNTVdRicvJStleGVjdXRhYmxlR0Y0LyUpcmVhZG9ubHlHRkYvJTBmb250X3N0eWxlX25hbWVHUSoyRH5PdXRwdXRGJ0Y1LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRj82LVEjOj1GJ0Y1RkIvRkVGNEZHRklGS0ZNRk8vRlJRLDAuMjc3Nzc3OGVtRicvRlVGZm8tRiM2KS1GPzYtUSJ8ZnJGJ0Y1L0ZDRkZGZG8vRkhGRkZJRktGTUZPL0ZSUSwwLjE2NjY2NjdlbUYnL0ZVRmBwLUknbXRhYmxlR0YkNjotSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUY7NiRGYG9GNS8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGX3EvJStncm91cGFsaWduR0ZfcS8lKHJvd3NwYW5HRlkvJStjb2x1bW5zcGFuR0ZZLUZpcDYoLUYjNiotRi82JVEieEYnL0YzRkYvRjZRJ2l0YWxpY0YnLUY/Ni1RIjxGJ0Y1RkJGZG9GR0ZJRktGTUZPRmVvRmdvLUYjNiktRj82LVEqJnVtaW51czA7RidGNUZCRmRvRkdGSUZLRk1GTy9GUlEsMC4yMjIyMjIyZW1GJy9GVUZbc0Y6RlpGZ25GaW5GW29GNUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZnFGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2LkY6LUY/Ni1RIitGJ0Y1RkJGZG9GR0ZJRktGTUZPRmpyRlxzLUYjNiotRjs2JFEiNEYnRjUtRj82LVExJkludmlzaWJsZVRpbWVzO0YnRjVGQkZkb0ZHRklGS0ZNRk9GUS9GVUZTRlxyRlpGZ25GaW5GW29GNUZjcy1GIzYqLUkmbWZyYWNHRiQ2KC1GOzYkUSI1RidGNUY6LyUubGluZXRoaWNrbmVzc0dGWS8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZbdS8lKWJldmVsbGVkR0Y0Rlt0LUklbXN1cEdGJDYlRlxyRjovJTFzdXBlcnNjcmlwdHNoaWZ0R0Zgb0ZaRmduRmluRltvRjVGY3MtRiM2Ki1GYnQ2KEZXRjpGZ3RGaXRGXHVGXnVGW3QtRmF1NiVGXHItRjs2JFEiM0YnRjVGY3VGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZmcS1GaXA2KC1GIzYqRlxyRmJyLUYjNilGZ3JGV0ZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmZxRl1xRmBxRmJxLUZmcDYnLUZpcDYoLUYjNixGVy1GPzYtUSgmbWludXM7RidGNUZCRmRvRkdGSUZLRk1GT0ZqckZcc0ZfdEZqdi1GIzYqLUZidDYoRlt2RjpGZ3RGaXRGXHVGXnVGW3RGaXVGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZmcS1GaXA2KC1GIzYqRlxyRmJyRltxRlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZmcUZdcUZgcUZicS1GZnA2Jy1GaXA2KC1GIzYsRldGanZGX3RGY3NGXXdGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmZxLUZpcDYoLUYjNipGXHJGYnJGV0ZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZnFGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2LkY6Rmp2RmZzRmNzRl90Rmp2RmV1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZmcS1GaXA2KC1GIzYqRlxyRmJyRjpGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmZxRl1xRmBxRmJxLUZmcDYnRmhwLUZpcDYoLUYjNipGOi1GPzYtUSUmbGU7RidGNUZCRmRvRkdGSUZLRk1GT0Zlb0Znb0ZcckZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZnFGXXFGYHFGYnEvJSZhbGlnbkdRJWF4aXNGJy9GXnFRKWJhc2VsaW5lRicvRmFxRlt1L0ZjcVEnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRkYvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0Zeei8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJDJlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGaXovJSZmcmFtZUdGaXovJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y0LyUtZXF1YWxjb2x1bW5zR0Y0LyUtZGlzcGxheXN0eWxlR0Y0LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHUSYwLjhlbUYnRlpGZ25GaW5GW29GNS1GPzYtUSI6RidGNUZCRmRvRkdGSUZLRk1GT0Zlb0Znb0ZnbkY1">QyQ+JkknTGFtYmRhRzYiNiQiIiMiIiItSSpwaWVjZXdpc2VHJSpwcm90ZWN0ZWRHNi4ySSJ4R0YmISIjIiIhMkYvISIiLCpGKEYpRi8iIiUqJEYvRigjIiImRigqJEYvIiIkI0YpRigyRi9GMSwoRilGKUY2IyEiJkYoRjkjISIkRigyRi9GKSwoRilGKUY2Rj5GOSNGOkYoMkYvRigsKkYoRilGLyEiJUY2RjdGOSNGM0YoMUYoRi9GMUYz</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L778" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[2, 2] := piecewise(x < -2, 0, x < -1, -4-18*x-29*x^2-(43/2)*x^3-(15/2)*x^4-x^5, x < 0, 1-x^2+(9/2)*x^3+(15/2)*x^4+3*x^5, x < 1, 1-x^2-(9/2)*x^3+(15/2)*x^4-3*x^5, x < 2, -4+18*x-29*x^2+(43/2)*x^3-(15/2)*x^4+x^5, 2 <= x, 0):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEpJkxhbWJkYTtGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLUYjNiotSSNtbkdGJDYkUSIyRidGNS1JI21vR0YkNi1RIixGJ0Y1LyUmZmVuY2VHRjQvJSpzZXBhcmF0b3JHUSV0cnVlRicvJSlzdHJldGNoeUdGNC8lKnN5bW1ldHJpY0dGNC8lKGxhcmdlb3BHRjQvJS5tb3ZhYmxlbGltaXRzR0Y0LyUnYWNjZW50R0Y0LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRidGOi8lK2ZvcmVncm91bmRHUSpbMCwwLDI1NV1GJy8lK2V4ZWN1dGFibGVHRjQvJSlyZWFkb25seUdGRi8lMGZvbnRfc3R5bGVfbmFtZUdRKjJEfk91dHB1dEYnRjUvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GPzYtUSM6PUYnRjVGQi9GRUY0RkdGSUZLRk1GTy9GUlEsMC4yNzc3Nzc4ZW1GJy9GVUZjby1GIzYpLUY/Ni1RInxmckYnRjUvRkNGRkZhby9GSEZGRklGS0ZNRk8vRlJRLDAuMTY2NjY2N2VtRicvRlVGXXAtSSdtdGFibGVHRiQ2Oi1JJG10ckdGJDYnLUkkbXRkR0YkNigtRjs2JEZdb0Y1LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZccS8lK2dyb3VwYWxpZ25HRlxxLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRmNxLUZmcDYoLUYjNiotRi82JVEieEYnL0YzRkYvRjZRJ2l0YWxpY0YnLUY/Ni1RIjxGJ0Y1RkJGYW9GR0ZJRktGTUZPRmJvRmRvLUYjNiktRj82LVEqJnVtaW51czA7RidGNUZCRmFvRkdGSUZLRk1GTy9GUlEsMC4yMjIyMjIyZW1GJy9GVUZpckY6RldGWkZmbkZobkY1RldGWkZmbkZobkY1RmpwRl1xRl9xRmFxRmRxRmpwRl1xRl9xLUZjcDYnLUZmcDYoLUYjNjNGZXItRjs2JFEiNEYnRjUtRj82LVEoJm1pbnVzO0YnRjVGQkZhb0ZHRklGS0ZNRk9GaHJGanItRiM2Ki1GOzYkUSMxOEYnRjUtRj82LVExJkludmlzaWJsZVRpbWVzO0YnRjVGQkZhb0ZHRklGS0ZNRk9GUS9GVUZTRmpxRldGWkZmbkZobkY1RmRzLUYjNiotRjs2JFEjMjlGJ0Y1Rlx0LUklbXN1cEdGJDYlRmpxRjovJTFzdXBlcnNjcmlwdHNoaWZ0R0Zdb0ZXRlpGZm5GaG5GNUZkcy1GIzYqLUkmbWZyYWNHRiQ2KC1GOzYkUSM0M0YnRjVGOi8lLmxpbmV0aGlja25lc3NHRmNxLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmZ1LyUpYmV2ZWxsZWRHRjRGXHQtRmZ0NiVGanEtRjs2JFEiM0YnRjVGaHRGV0ZaRmZuRmhuRjVGZHMtRiM2Ki1GXXU2KC1GOzYkUSMxNUYnRjVGOkZidUZkdUZndUZpdUZcdC1GZnQ2JUZqcUZhc0ZodEZXRlpGZm5GaG5GNUZkcy1GZnQ2JUZqcS1GOzYkUSI1RidGNUZodEZXRlpGZm5GaG5GNUZqcEZdcUZfcUZhcUZkcS1GZnA2KC1GIzYqRmpxRmByLUYjNilGZXItRjs2JEZjcUY1RldGWkZmbkZobkY1RldGWkZmbkZobkY1RmpwRl1xRl9xRmFxRmRxRmpwRl1xRl9xLUZjcDYnLUZmcDYoLUYjNjBGZHdGZHNGZXQtRj82LVEiK0YnRjVGQkZhb0ZHRklGS0ZNRk9GaHJGanItRiM2Ki1GXXU2KC1GOzYkUSI5RidGNUY6RmJ1RmR1Rmd1Rml1Rlx0Rlt2RldGWkZmbkZobkY1Rlx4RmB2Rlx4LUYjNipGXXZGXHRGaXZGV0ZaRmZuRmhuRjVGV0ZaRmZuRmhuRjVGanBGXXFGX3FGYXFGZHEtRmZwNigtRiM2KkZqcUZgckZocEZXRlpGZm5GaG5GNUZqcEZdcUZfcUZhcUZkcUZqcEZdcUZfcS1GY3A2Jy1GZnA2KC1GIzYwRmR3RmRzRmV0RmRzRl94Rlx4RmB2RmRzRmZ4RldGWkZmbkZobkY1RmpwRl1xRl9xRmFxRmRxLUZmcDYoLUYjNipGanFGYHJGZHdGV0ZaRmZuRmhuRjVGanBGXXFGX3FGYXFGZHFGanBGXXFGX3EtRmNwNictRmZwNigtRiM2M0ZlckZhc0ZceEZnc0Zkc0ZgdEZceEZqdEZkc0ZgdkZceEZpdkZXRlpGZm5GaG5GNUZqcEZdcUZfcUZhcUZkcS1GZnA2KC1GIzYqRmpxRmByRjpGV0ZaRmZuRmhuRjVGanBGXXFGX3FGYXFGZHFGanBGXXFGX3EtRmNwNidGZXAtRmZwNigtRiM2KkY6LUY/Ni1RJSZsZTtGJ0Y1RkJGYW9GR0ZJRktGTUZPRmJvRmRvRmpxRldGWkZmbkZobkY1RmpwRl1xRl9xRmFxRmRxRmpwRl1xRl9xLyUmYWxpZ25HUSVheGlzRicvRltxUSliYXNlbGluZUYnL0ZecUZmdS9GYHFRJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0ZGLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGZVtsLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EkMmVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0ZgXGwvJSZmcmFtZUdGYFxsLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dGNC8lLWVxdWFsY29sdW1uc0dGNC8lLWRpc3BsYXlzdHlsZUdGNC8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR1EmMC44ZW1GJ0ZXRlpGZm5GaG5GNS1GPzYtUSI6RidGNUZCRmFvRkdGSUZLRk1GT0Zib0Zkb0ZaRjU=">QyQ+JkknTGFtYmRhRzYiNiQiIiNGKC1JKnBpZWNld2lzZUclKnByb3RlY3RlZEc2LjJJInhHRiYhIiMiIiEyRi4hIiIsLiEiJSIiIkYuISM9KiRGLkYoISNIKiRGLiIiJCMhI1ZGKCokRi4iIiUjISM6RigqJEYuIiImRjIyRi5GMCwsRjVGNUY3RjJGOSMiIipGKEY9IyIjOkYoRkFGOjJGLkY1LCxGNUY1RjdGMkY5IyEiKkYoRj1GR0ZBISIkMkYuRigsLkY0RjVGLiIjPUY3RjhGOSMiI1ZGKEY9Rj9GQUY1MUYoRi5GMEYy</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L534" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[4, 2] := piecewise(x < -3, 0, x < -2, 18+(153/4)*x+(255/8)*x^2+(313/24)*x^3+(21/8)*x^4+(5/24)*x^5, x < -1, -4-(75/4)*x-(245/8)*x^2-(545/24)*x^3-(63/8)*x^4-(25/24)*x^5, x < 0, 1-(5/4)*x^2+(35/12)*x^3+(21/4)*x^4+(25/12)*x^5, x < 1, 1-(5/4)*x^2-(35/12)*x^3+(21/4)*x^4-(25/12)*x^5, x < 2, -4+(75/4)*x-(245/8)*x^2+(545/24)*x^3-(63/8)*x^4+(25/24)*x^5, x < 3, 18-(153/4)*x+(255/8)*x^2-(313/24)*x^3+(21/8)*x^4-(5/24)*x^5, 3 <= x, 0):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEpJkxhbWJkYTtGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLUYjNiotSSNtbkdGJDYkUSI0RidGNS1JI21vR0YkNi1RIixGJ0Y1LyUmZmVuY2VHRjQvJSpzZXBhcmF0b3JHUSV0cnVlRicvJSlzdHJldGNoeUdGNC8lKnN5bW1ldHJpY0dGNC8lKGxhcmdlb3BHRjQvJS5tb3ZhYmxlbGltaXRzR0Y0LyUnYWNjZW50R0Y0LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRjs2JFEiMkYnRjUvJStmb3JlZ3JvdW5kR1EqWzAsMCwyNTVdRicvJStleGVjdXRhYmxlR0Y0LyUpcmVhZG9ubHlHRkYvJTBmb250X3N0eWxlX25hbWVHUSoyRH5PdXRwdXRGJ0Y1LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRj82LVEjOj1GJ0Y1RkIvRkVGNEZHRklGS0ZNRk8vRlJRLDAuMjc3Nzc3OGVtRicvRlVGZm8tRiM2KS1GPzYtUSJ8ZnJGJ0Y1L0ZDRkZGZG8vRkhGRkZJRktGTUZPL0ZSUSwwLjE2NjY2NjdlbUYnL0ZVRmBwLUknbXRhYmxlR0YkNjwtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUY7NiRGYG9GNS8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGX3EvJStncm91cGFsaWduR0ZfcS8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZmcS1GaXA2KC1GIzYqLUYvNiVRInhGJy9GM0ZGL0Y2USdpdGFsaWNGJy1GPzYtUSI8RidGNUZCRmRvRkdGSUZLRk1GT0Zlb0Znby1GIzYpLUY/Ni1RKiZ1bWludXMwO0YnRjVGQkZkb0ZHRklGS0ZNRk8vRlJRLDAuMjIyMjIyMmVtRicvRlVGXHMtRjs2JFEiM0YnRjVGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncUZdcUZgcUZicS1GZnA2Jy1GaXA2KC1GIzYyLUY7NiRRIzE4RidGNS1GPzYtUSIrRidGNUZCRmRvRkdGSUZLRk1GT0Zbc0Zdcy1GIzYqLUkmbWZyYWNHRiQ2KC1GOzYkUSQxNTNGJ0Y1RjovJS5saW5ldGhpY2tuZXNzR0ZmcS8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZpdC8lKWJldmVsbGVkR0Y0LUY/Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y1RkJGZG9GR0ZJRktGTUZPRlEvRlVGU0ZdckZaRmduRmluRltvRjVGanMtRiM2Ki1GYHQ2KC1GOzYkUSQyNTVGJ0Y1LUY7NiRRIjhGJ0Y1RmV0Rmd0Rmp0Rlx1Rl51LUklbXN1cEdGJDYlRl1yRlcvJTFzdXBlcnNjcmlwdHNoaWZ0R0Zgb0ZaRmduRmluRltvRjVGanMtRiM2Ki1GYHQ2KC1GOzYkUSQzMTNGJ0Y1LUY7NiRRIzI0RidGNUZldEZndEZqdEZcdUZedS1GXXY2JUZdckZec0ZfdkZaRmduRmluRltvRjVGanMtRiM2Ki1GYHQ2KC1GOzYkUSMyMUYnRjVGaXVGZXRGZ3RGanRGXHVGXnUtRl12NiVGXXJGOkZfdkZaRmduRmluRltvRjVGanMtRiM2Ki1GYHQ2KC1GOzYkUSI1RidGNUZodkZldEZndEZqdEZcdUZedS1GXXY2JUZdckZqd0ZfdkZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxLUZpcDYoLUYjNipGXXJGY3ItRiM2KUZockZXRlpGZ25GaW5GW29GNUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2M0ZockY6LUY/Ni1RKCZtaW51cztGJ0Y1RkJGZG9GR0ZJRktGTUZPRltzRl1zLUYjNiotRmB0NigtRjs2JFEjNzVGJ0Y1RjpGZXRGZ3RGanRGXHVGXnVGXXJGWkZnbkZpbkZbb0Y1Rlt5LUYjNiotRmB0NigtRjs2JFEkMjQ1RidGNUZpdUZldEZndEZqdEZcdUZedUZcdkZaRmduRmluRltvRjVGW3ktRiM2Ki1GYHQ2KC1GOzYkUSQ1NDVGJ0Y1Rmh2RmV0Rmd0Rmp0Rlx1Rl51Rlt3RlpGZ25GaW5GW29GNUZbeS1GIzYqLUZgdDYoLUY7NiRRIzYzRidGNUZpdUZldEZndEZqdEZcdUZedUZkd0ZaRmduRmluRltvRjVGW3ktRiM2Ki1GYHQ2KC1GOzYkUSMyNUYnRjVGaHZGZXRGZ3RGanRGXHVGXnVGXXhGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyLUYjNilGaHItRjs2JEZmcUY1RlpGZ25GaW5GW29GNUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2MEZnW2xGW3ktRiM2Ki1GYHQ2KEZqd0Y6RmV0Rmd0Rmp0Rlx1Rl51Rlx2RlpGZ25GaW5GW29GNUZqcy1GIzYqLUZgdDYoLUY7NiRRIzM1RidGNS1GOzYkUSMxMkYnRjVGZXRGZ3RGanRGXHVGXnVGW3dGWkZnbkZpbkZbb0Y1RmpzLUYjNiotRmB0NihGYXdGOkZldEZndEZqdEZcdUZedUZkd0ZaRmduRmluRltvRjVGanMtRiM2Ki1GYHQ2KEZeW2xGalxsRmV0Rmd0Rmp0Rlx1Rl51Rl14RlpGZ25GaW5GW29GNUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3EtRmlwNigtRiM2KkZdckZjckZbcUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2MEZnW2xGW3lGX1xsRlt5RmNcbEZqc0ZdXWxGW3lGYV1sRlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyRmdbbEZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2M0ZockY6RmpzRl55Rlt5RmV5RmpzRlx6Rlt5RmN6RmpzRmp6RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyRldGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnLUZpcDYoLUYjNjJGZ3NGW3lGXXRGanNGYnVGW3lGYXZGanNGXXdGW3lGZndGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxLUZpcDYoLUYjNipGXXJGY3JGXnNGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnRmhwLUZpcDYoLUYjNipGXnMtRj82LVElJmxlO0YnRjVGQkZkb0ZHRklGS0ZNRk9GZW9GZ29GXXJGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLyUmYWxpZ25HUSVheGlzRicvRl5xUSliYXNlbGluZUYnL0ZhcUZpdC9GY3FRJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0ZGLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGXGFsLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EkMmVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0ZnYWwvJSZmcmFtZUdGZ2FsLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dGNC8lLWVxdWFsY29sdW1uc0dGNC8lLWRpc3BsYXlzdHlsZUdGNC8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR1EmMC44ZW1GJ0ZaRmduRmluRltvRjUtRj82LVEiOkYnRjVGQkZkb0ZHRklGS0ZNRk9GZW9GZ29GZ25GNQ==">QyQ+JkknTGFtYmRhRzYiNiQiIiUiIiMtSSpwaWVjZXdpc2VHJSpwcm90ZWN0ZWRHNjIySSJ4R0YmISIkIiIhMkYvISIjLC4iIz0iIiJGLyMiJGAiRigqJEYvRikjIiRiIyIiKSokRi8iIiQjIiQ4JCIjQyokRi9GKCMiI0BGPCokRi8iIiYjRkZGQTJGLyEiIiwuISIlRjZGLyMhI3ZGKEY5IyEkWCNGPEY9IyEkWCZGQUZCIyEjakY8RkUjISNERkEyRi9GMSwsRjZGNkY5IyEiJkYoRj0jIiNOIiM3RkIjRkRGKEZFIyIjREZmbjJGL0Y2LCxGNkY2RjlGWEY9IyEjTkZmbkZCRmduRkUjRlVGZm4yRi9GKSwuRktGNkYvIyIjdkYoRjlGTkY9IyIkWCZGQUZCRlJGRSNGaW5GQTJGL0Y+LC5GNUY2Ri8jISRgIkYoRjlGOkY9IyEkOCRGQUZCRkNGRSNGWUZBMUY+Ri9GMUZJ</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L684" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[4, 3] := piecewise(x < -3, 0, x < -2, -297-(3501/4)*x-(8775/8)*x^2-(3029/4)*x^3-(3731/12)*x^4-(911/12)*x^5-(245/24)*x^6-(7/12)*x^7, x < -1, 31+(1945/12)*x+(2905/8)*x^2+(5345/12)*x^3+(1281/4)*x^4+(1615/12)*x^5+(245/8)*x^6+(35/12)*x^7, x < 0, 1-(5/4)*x^2-(28/3)*x^4-(145/6)*x^5-(245/12)*x^6-(35/6)*x^7, x < 1, 1-(5/4)*x^2-(28/3)*x^4+(145/6)*x^5-(245/12)*x^6+(35/6)*x^7, x < 2, 31-(1945/12)*x+(2905/8)*x^2-(5345/12)*x^3+(1281/4)*x^4-(1615/12)*x^5+(245/8)*x^6-(35/12)*x^7, x < 3, -297+(3501/4)*x-(8775/8)*x^2+(3029/4)*x^3-(3731/12)*x^4+(911/12)*x^5-(245/24)*x^6+(7/12)*x^7, 3 <= x, 0):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEpJkxhbWJkYTtGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLUYjNiotSSNtbkdGJDYkUSI0RidGNS1JI21vR0YkNi1RIixGJ0Y1LyUmZmVuY2VHRjQvJSpzZXBhcmF0b3JHUSV0cnVlRicvJSlzdHJldGNoeUdGNC8lKnN5bW1ldHJpY0dGNC8lKGxhcmdlb3BHRjQvJS5tb3ZhYmxlbGltaXRzR0Y0LyUnYWNjZW50R0Y0LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRjs2JFEiM0YnRjUvJStmb3JlZ3JvdW5kR1EqWzAsMCwyNTVdRicvJStleGVjdXRhYmxlR0Y0LyUpcmVhZG9ubHlHRkYvJTBmb250X3N0eWxlX25hbWVHUSoyRH5PdXRwdXRGJ0Y1LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRj82LVEjOj1GJ0Y1RkIvRkVGNEZHRklGS0ZNRk8vRlJRLDAuMjc3Nzc3OGVtRicvRlVGZm8tRiM2KS1GPzYtUSJ8ZnJGJ0Y1L0ZDRkZGZG8vRkhGRkZJRktGTUZPL0ZSUSwwLjE2NjY2NjdlbUYnL0ZVRmBwLUknbXRhYmxlR0YkNjwtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUY7NiRGYG9GNS8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGX3EvJStncm91cGFsaWduR0ZfcS8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZmcS1GaXA2KC1GIzYqLUYvNiVRInhGJy9GM0ZGL0Y2USdpdGFsaWNGJy1GPzYtUSI8RidGNUZCRmRvRkdGSUZLRk1GT0Zlb0Znby1GIzYpLUY/Ni1RKiZ1bWludXMwO0YnRjVGQkZkb0ZHRklGS0ZNRk8vRlJRLDAuMjIyMjIyMmVtRicvRlVGXHNGV0ZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnLUZpcDYoLUYjNjdGaHItRjs2JFEkMjk3RidGNS1GPzYtUSgmbWludXM7RidGNUZCRmRvRkdGSUZLRk1GT0Zbc0Zdcy1GIzYqLUkmbWZyYWNHRiQ2KC1GOzYkUSUzNTAxRidGNUY6LyUubGluZXRoaWNrbmVzc0dGZnEvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGZnQvJSliZXZlbGxlZEdGNC1GPzYtUTEmSW52aXNpYmxlVGltZXM7RidGNUZCRmRvRkdGSUZLRk1GT0ZRL0ZVRlNGXXJGWkZnbkZpbkZbb0Y1RmdzLUYjNiotRl10NigtRjs2JFElODc3NUYnRjUtRjs2JFEiOEYnRjVGYnRGZHRGZ3RGaXRGW3UtSSVtc3VwR0YkNiVGXXItRjs2JFEiMkYnRjUvJTFzdXBlcnNjcmlwdHNoaWZ0R0Zgb0ZaRmduRmluRltvRjVGZ3MtRiM2Ki1GXXQ2KC1GOzYkUSUzMDI5RidGNUY6RmJ0RmR0Rmd0Rml0Rlt1LUZqdTYlRl1yRldGX3ZGWkZnbkZpbkZbb0Y1RmdzLUYjNiotRl10NigtRjs2JFElMzczMUYnRjUtRjs2JFEjMTJGJ0Y1RmJ0RmR0Rmd0Rml0Rlt1LUZqdTYlRl1yRjpGX3ZGWkZnbkZpbkZbb0Y1RmdzLUYjNiotRl10NigtRjs2JFEkOTExRidGNUZhd0ZidEZkdEZndEZpdEZbdS1GanU2JUZdci1GOzYkUSI1RidGNUZfdkZaRmduRmluRltvRjVGZ3MtRiM2Ki1GXXQ2KC1GOzYkUSQyNDVGJ0Y1LUY7NiRRIzI0RidGNUZidEZkdEZndEZpdEZbdS1GanU2JUZdci1GOzYkUSI2RidGNUZfdkZaRmduRmluRltvRjVGZ3MtRiM2Ki1GXXQ2KC1GOzYkUSI3RidGNUZhd0ZidEZkdEZndEZpdEZbdS1GanU2JUZdckZleUZfdkZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxLUZpcDYoLUYjNipGXXJGY3ItRiM2KUZockZcdkZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnLUZpcDYoLUYjNjYtRjs2JFEjMzFGJ0Y1LUY/Ni1RIitGJ0Y1RkJGZG9GR0ZJRktGTUZPRltzRl1zLUYjNiotRl10NigtRjs2JFElMTk0NUYnRjVGYXdGYnRGZHRGZ3RGaXRGW3VGXXJGWkZnbkZpbkZbb0Y1Rml6LUYjNiotRl10NigtRjs2JFElMjkwNUYnRjVGZnVGYnRGZHRGZ3RGaXRGW3VGaXVGWkZnbkZpbkZbb0Y1Rml6LUYjNiotRl10NigtRjs2JFElNTM0NUYnRjVGYXdGYnRGZHRGZ3RGaXRGW3VGaHZGWkZnbkZpbkZbb0Y1Rml6LUYjNiotRl10NigtRjs2JFElMTI4MUYnRjVGOkZidEZkdEZndEZpdEZbdUZkd0ZaRmduRmluRltvRjVGaXotRiM2Ki1GXXQ2KC1GOzYkUSUxNjE1RidGNUZhd0ZidEZkdEZndEZpdEZbdUZdeEZaRmduRmluRltvRjVGaXotRiM2Ki1GXXQ2KEZmeEZmdUZidEZkdEZndEZpdEZbdUZceUZaRmduRmluRltvRjVGaXotRiM2Ki1GXXQ2KC1GOzYkUSMzNUYnRjVGYXdGYnRGZHRGZ3RGaXRGW3VGaHlGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyLUYjNilGaHItRjs2JEZmcUY1RlpGZ25GaW5GW29GNUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2MkZgXmxGZ3MtRiM2Ki1GXXQ2KEZfeEY6RmJ0RmR0Rmd0Rml0Rlt1Rml1RlpGZ25GaW5GW29GNUZncy1GIzYqLUZddDYoLUY7NiRRIzI4RidGNUZXRmJ0RmR0Rmd0Rml0Rlt1RmR3RlpGZ25GaW5GW29GNUZncy1GIzYqLUZddDYoLUY7NiRRJDE0NUYnRjVGXnlGYnRGZHRGZ3RGaXRGW3VGXXhGWkZnbkZpbkZbb0Y1RmdzLUYjNiotRl10NihGZnhGYXdGYnRGZHRGZ3RGaXRGW3VGXHlGWkZnbkZpbkZbb0Y1RmdzLUYjNiotRl10NihGZ11sRl55RmJ0RmR0Rmd0Rml0Rlt1Rmh5RlpGZ25GaW5GW29GNUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3EtRmlwNigtRiM2KkZdckZjckZbcUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2MkZgXmxGZ3NGaF5sRmdzRlxfbEZpekZjX2xGZ3NGal9sRml6Rl5gbEZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3EtRmlwNigtRiM2KkZdckZjckZgXmxGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnLUZpcDYoLUYjNjZGZnpGZ3NGXFtsRml6RmNbbEZnc0ZqW2xGaXpGYVxsRmdzRmhcbEZpekZfXWxGZ3NGY11sRlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyRlx2RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncUZdcUZgcUZicS1GZnA2Jy1GaXA2KC1GIzY3RmhyRmRzRml6RmpzRmdzRl91Rml6RmF2RmdzRmp2Rml6RmZ3RmdzRmJ4Rml6RmF5RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyRldGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnRmhwLUZpcDYoLUYjNipGVy1GPzYtUSUmbGU7RidGNUZCRmRvRkdGSUZLRk1GT0Zlb0Znb0ZdckZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEvJSZhbGlnbkdRJWF4aXNGJy9GXnFRKWJhc2VsaW5lRicvRmFxRmZ0L0ZjcVEnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRkYvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZpY2wvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSQyZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmRkbC8lJmZyYW1lR0ZkZGwvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y0LyUtZXF1YWxjb2x1bW5zR0Y0LyUtZGlzcGxheXN0eWxlR0Y0LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHUSYwLjhlbUYnRlpGZ25GaW5GW29GNS1GPzYtUSI6RidGNUZCRmRvRkdGSUZLRk1GT0Zlb0Znb0ZnbkY1">QyQ+JkknTGFtYmRhRzYiNiQiIiUiIiQtSSpwaWVjZXdpc2VHJSpwcm90ZWN0ZWRHNjIySSJ4R0YmISIkIiIhMkYvISIjLDIhJChIIiIiRi8jISUsTkYoKiRGLyIiIyMhJXYoKSIiKSokRi9GKSMhJUhJRigqJEYvRigjISVKUCIjNyokRi8iIiYjISQ2KkZEKiRGLyIiJyMhJFgjIiNDKiRGLyIiKCMhIihGRDJGLyEiIiwyIiNKRjZGLyMiJVg+RkRGOSMiJTBIRj1GPiMiJVhgRkRGQSMiJSJHIkYoRkUjIiU6O0ZERkkjIiRYI0Y9Rk4jIiNORkQyRi9GMSwuRjZGNkY5IyEiJkYoRkEjISNHRilGRSMhJFgiRkpGSSNGTEZERk4jISNORkoyRi9GNiwuRjZGNkY5RmBvRkFGYm9GRSMiJFgiRkpGSUZmb0ZOI0Zdb0ZKMkYvRjosMkZVRjZGLyMhJVg+RkRGOUZYRj4jISVYYEZERkFGZm5GRSMhJTo7RkRGSUZqbkZOI0Zob0ZEMkYvRiksMkY1RjZGLyMiJSxORihGOUY7Rj4jIiVISUYoRkFGQkZFIyIkNipGREZJRktGTiNGT0ZEMUYpRi9GMUZT</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L685" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[4, 4] := piecewise(x < -3, 0, x < -2, 5913+(89235/4)*x+(297585/8)*x^2+(143895/4)*x^3+(177871/8)*x^4+(54641/6)*x^5+(19775/8)*x^6+(1715/4)*x^7+(345/8)*x^8+(23/12)*x^9, x < -1, -199-(5485/4)*x-(32975/8)*x^2-(28425/4)*x^3-(61953/8)*x^4-(33175/6)*x^5-(20685/8)*x^6-(3055/4)*x^7-(1035/8)*x^8-(115/12)*x^9, x < 0, 1-(5/4)*x^2+(1/4)*x^4+(100/3)*x^5+(455/4)*x^6+(295/2)*x^7+(345/4)*x^8+(115/6)*x^9, x < 1, 1-(5/4)*x^2+(1/4)*x^4-(100/3)*x^5+(455/4)*x^6-(295/2)*x^7+(345/4)*x^8-(115/6)*x^9, x < 2, -199+(5485/4)*x-(32975/8)*x^2+(28425/4)*x^3-(61953/8)*x^4+(33175/6)*x^5-(20685/8)*x^6+(3055/4)*x^7-(1035/8)*x^8+(115/12)*x^9, x < 3, 5913-(89235/4)*x+(297585/8)*x^2-(143895/4)*x^3+(177871/8)*x^4-(54641/6)*x^5+(19775/8)*x^6-(1715/4)*x^7+(345/8)*x^8-(23/12)*x^9, 3 <= x, 0):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEpJkxhbWJkYTtGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLUYjNiotSSNtbkdGJDYkUSI0RidGNS1JI21vR0YkNi1RIixGJ0Y1LyUmZmVuY2VHRjQvJSpzZXBhcmF0b3JHUSV0cnVlRicvJSlzdHJldGNoeUdGNC8lKnN5bW1ldHJpY0dGNC8lKGxhcmdlb3BHRjQvJS5tb3ZhYmxlbGltaXRzR0Y0LyUnYWNjZW50R0Y0LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRidGOi8lK2ZvcmVncm91bmRHUSpbMCwwLDI1NV1GJy8lK2V4ZWN1dGFibGVHRjQvJSlyZWFkb25seUdGRi8lMGZvbnRfc3R5bGVfbmFtZUdRKjJEfk91dHB1dEYnRjUvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GPzYtUSM6PUYnRjVGQi9GRUY0RkdGSUZLRk1GTy9GUlEsMC4yNzc3Nzc4ZW1GJy9GVUZjby1GPzYtUSJ8ZnJGJ0Y1L0ZDRkZGYW8vRkhGRkZJRktGTUZPL0ZSUSwwLjE2NjY2NjdlbUYnL0ZVRltwLUknbXRhYmxlR0YkNjwtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUY7NiRGXW9GNS8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGanAvJStncm91cGFsaWduR0ZqcC8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZhcS1GZHA2KC1GIzYqLUYvNiVRInhGJy9GM0ZGL0Y2USdpdGFsaWNGJy1GPzYtUSI8RidGNUZCRmFvRkdGSUZLRk1GT0Zib0Zkby1GIzYpLUY/Ni1RKiZ1bWludXMwO0YnRjVGQkZhb0ZHRklGS0ZNRk8vRlJRLDAuMjIyMjIyMmVtRicvRlVGZ3ItRjs2JFEiM0YnRjVGV0ZaRmZuRmhuRjVGV0ZaRmZuRmhuRjVGaHBGW3FGXXFGX3FGYnFGaHBGW3FGXXEtRmFwNictRmRwNigtRiM2Oi1GOzYkUSU1OTEzRidGNS1GPzYtUSIrRidGNUZCRmFvRkdGSUZLRk1GT0ZmckZoci1GIzYqLUkmbWZyYWNHRiQ2KC1GOzYkUSY4OTIzNUYnRjVGOi8lLmxpbmV0aGlja25lc3NHRmFxLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmR0LyUpYmV2ZWxsZWRHRjQtRj82LVExJkludmlzaWJsZVRpbWVzO0YnRjVGQkZhb0ZHRklGS0ZNRk9GUS9GVUZTRmhxRldGWkZmbkZobkY1RmVzLUYjNiotRlt0NigtRjs2JFEnMjk3NTg1RidGNS1GOzYkUSI4RidGNUZgdEZidEZldEZndEZpdC1JJW1zdXBHRiQ2JUZocS1GOzYkUSIyRidGNS8lMXN1cGVyc2NyaXB0c2hpZnRHRl1vRldGWkZmbkZobkY1RmVzLUYjNiotRlt0NigtRjs2JFEnMTQzODk1RidGNUY6RmB0RmJ0RmV0Rmd0Rml0LUZodTYlRmhxRmlyRl12RldGWkZmbkZobkY1RmVzLUYjNiotRlt0NigtRjs2JFEnMTc3ODcxRidGNUZkdUZgdEZidEZldEZndEZpdC1GaHU2JUZocUY6Rl12RldGWkZmbkZobkY1RmVzLUYjNiotRlt0NigtRjs2JFEmNTQ2NDFGJ0Y1LUY7NiRRIjZGJ0Y1RmB0RmJ0RmV0Rmd0Rml0LUZodTYlRmhxLUY7NiRRIjVGJ0Y1Rl12RldGWkZmbkZobkY1RmVzLUYjNiotRlt0NigtRjs2JFEmMTk3NzVGJ0Y1RmR1RmB0RmJ0RmV0Rmd0Rml0LUZodTYlRmhxRmh3Rl12RldGWkZmbkZobkY1RmVzLUYjNiotRlt0NigtRjs2JFElMTcxNUYnRjVGOkZgdEZidEZldEZndEZpdC1GaHU2JUZocS1GOzYkUSI3RidGNUZddkZXRlpGZm5GaG5GNUZlcy1GIzYqLUZbdDYoLUY7NiRRJDM0NUYnRjVGZHVGYHRGYnRGZXRGZ3RGaXQtRmh1NiVGaHFGZHVGXXZGV0ZaRmZuRmhuRjVGZXMtRiM2Ki1GW3Q2KC1GOzYkUSMyM0YnRjUtRjs2JFEjMTJGJ0Y1RmB0RmJ0RmV0Rmd0Rml0LUZodTYlRmhxLUY7NiRRIjlGJ0Y1Rl12RldGWkZmbkZobkY1RldGWkZmbkZobkY1RmhwRltxRl1xRl9xRmJxLUZkcDYoLUYjNipGaHFGXnItRiM2KUZjckZqdUZXRlpGZm5GaG5GNUZXRlpGZm5GaG5GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzY7RmNyLUY7NiRRJDE5OUYnRjUtRj82LVEoJm1pbnVzO0YnRjVGQkZhb0ZHRklGS0ZNRk9GZnJGaHItRiM2Ki1GW3Q2KC1GOzYkUSU1NDg1RidGNUY6RmB0RmJ0RmV0Rmd0Rml0RmhxRldGWkZmbkZobkY1RlxcbC1GIzYqLUZbdDYoLUY7NiRRJjMyOTc1RidGNUZkdUZgdEZidEZldEZndEZpdEZndUZXRlpGZm5GaG5GNUZcXGwtRiM2Ki1GW3Q2KC1GOzYkUSYyODQyNUYnRjVGOkZgdEZidEZldEZndEZpdEZmdkZXRlpGZm5GaG5GNUZcXGwtRiM2Ki1GW3Q2KC1GOzYkUSY2MTk1M0YnRjVGZHVGYHRGYnRGZXRGZ3RGaXRGX3dGV0ZaRmZuRmhuRjVGXFxsLUYjNiotRlt0NigtRjs2JFEmMzMxNzVGJ0Y1Rmh3RmB0RmJ0RmV0Rmd0Rml0Rlt4RldGWkZmbkZobkY1RlxcbC1GIzYqLUZbdDYoLUY7NiRRJjIwNjg1RidGNUZkdUZgdEZidEZldEZndEZpdEZneEZXRlpGZm5GaG5GNUZcXGwtRiM2Ki1GW3Q2KC1GOzYkUSUzMDU1RidGNUY6RmB0RmJ0RmV0Rmd0Rml0RmB5RldGWkZmbkZobkY1RlxcbC1GIzYqLUZbdDYoLUY7NiRRJTEwMzVGJ0Y1RmR1RmB0RmJ0RmV0Rmd0Rml0Rlx6RldGWkZmbkZobkY1RlxcbC1GIzYqLUZbdDYoLUY7NiRRJDExNUYnRjVGZXpGYHRGYnRGZXRGZ3RGaXRGaHpGV0ZaRmZuRmhuRjVGV0ZaRmZuRmhuRjVGaHBGW3FGXXFGX3FGYnEtRmRwNigtRiM2KkZocUZeci1GIzYpRmNyLUY7NiRGYXFGNUZXRlpGZm5GaG5GNUZXRlpGZm5GaG5GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzY2RmRgbEZcXGwtRiM2Ki1GW3Q2KEZdeEY6RmB0RmJ0RmV0Rmd0Rml0Rmd1RldGWkZmbkZobkY1RmVzLUYjNiotRlt0NihGZGBsRjpGYHRGYnRGZXRGZ3RGaXRGX3dGV0ZaRmZuRmhuRjVGZXMtRiM2Ki1GW3Q2KC1GOzYkUSQxMDBGJ0Y1RmlyRmB0RmJ0RmV0Rmd0Rml0Rlt4RldGWkZmbkZobkY1RmVzLUYjNiotRlt0NigtRjs2JFEkNDU1RidGNUY6RmB0RmJ0RmV0Rmd0Rml0Rmd4RldGWkZmbkZobkY1RmVzLUYjNiotRlt0NigtRjs2JFEkMjk1RidGNUZqdUZgdEZidEZldEZndEZpdEZgeUZXRlpGZm5GaG5GNUZlcy1GIzYqLUZbdDYoRml5RjpGYHRGYnRGZXRGZ3RGaXRGXHpGV0ZaRmZuRmhuRjVGZXMtRiM2Ki1GW3Q2KEZbYGxGaHdGYHRGYnRGZXRGZ3RGaXRGaHpGV0ZaRmZuRmhuRjVGV0ZaRmZuRmhuRjVGaHBGW3FGXXFGX3FGYnEtRmRwNigtRiM2KkZocUZeckZmcEZXRlpGZm5GaG5GNUZocEZbcUZdcUZfcUZicUZocEZbcUZdcS1GYXA2Jy1GZHA2KC1GIzY2RmRgbEZcXGxGXGFsRmVzRmBhbEZcXGxGZGFsRmVzRltibEZcXGxGYmJsRmVzRmlibEZcXGxGXWNsRldGWkZmbkZobkY1RmhwRltxRl1xRl9xRmJxLUZkcDYoLUYjNipGaHFGXnJGZGBsRldGWkZmbkZobkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjtGY3JGaVtsRmVzRl9cbEZcXGxGZlxsRmVzRl1dbEZcXGxGZF1sRmVzRltebEZcXGxGYl5sRmVzRmlebEZcXGxGYF9sRmVzRmdfbEZXRlpGZm5GaG5GNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYqRmhxRl5yRmp1RldGWkZmbkZobkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnLUZkcDYoLUYjNjpGYnNGXFxsRmhzRmVzRl11RlxcbEZfdkZlc0ZodkZcXGxGYXdGZXNGYHhGXFxsRml4RmVzRmV5RlxcbEZeekZXRlpGZm5GaG5GNUZocEZbcUZdcUZfcUZicS1GZHA2KC1GIzYqRmhxRl5yRmlyRldGWkZmbkZobkY1RmhwRltxRl1xRl9xRmJxRmhwRltxRl1xLUZhcDYnRmNwLUZkcDYoLUYjNipGaXItRj82LVElJmxlO0YnRjVGQkZhb0ZHRklGS0ZNRk9GYm9GZG9GaHFGV0ZaRmZuRmhuRjVGaHBGW3FGXXFGX3FGYnFGaHBGW3FGXXEvJSZhbGlnbkdRJWF4aXNGJy9GaXBRKWJhc2VsaW5lRicvRlxxRmR0L0ZecVEnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRkYvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZoZmwvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSQyZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmNnbC8lJmZyYW1lR0ZjZ2wvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y0LyUtZXF1YWxjb2x1bW5zR0Y0LyUtZGlzcGxheXN0eWxlR0Y0LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHUSYwLjhlbUYnLUY/Ni1RIjpGJ0Y1RkJGYW9GR0ZJRktGTUZPRmJvRmRvRlpGNQ==">QyQ+JkknTGFtYmRhRzYiNiQiIiVGKC1JKnBpZWNld2lzZUclKnByb3RlY3RlZEc2MjJJInhHRiYhIiQiIiEyRi4hIiMsNiIlOGYiIiJGLiMiJk4jKilGKCokRi4iIiMjIicmZShIIiIpKiRGLiIiJCMiJyYqUTlGKCokRi5GKCMiJ3J5PEY8KiRGLiIiJiMiJlRZJiIiJyokRi5GSCMiJnYoPkY8KiRGLiIiKCMiJTo8RigqJEYuRjwjIiRYJEY8KiRGLiIiKiMiI0IiIzcyRi4hIiIsNiEkKj5GNUYuIyElJlsmRihGOCMhJnZIJEY8Rj0jISZEJUdGKEZBIyEmYD4nRjxGRCMhJnZKJEZIRkkjISYmbz9GPEZMIyElYklGKEZQIyElTjVGPEZTIyEkOiJGVzJGLkYwLDJGNUY1RjgjISImRihGQSNGNUYoRkQjIiQrIkY+RkkjIiRiJUYoRkwjIiQmSEY5RlAjRlJGKEZTIyIkOiJGSDJGLkY1LDJGNUY1RjhGam9GQUZccEZEIyEkKyJGPkZJRl9wRkwjISQmSEY5RlBGY3BGUyNGZ29GSDJGLkY5LDZGZW5GNUYuIyIlJlsmRihGOEZobkY9IyImRCVHRihGQUZcb0ZEIyImdkokRkhGSUZgb0ZMIyIlYklGKEZQRmRvRlMjRmVwRlcyRi5GPiw2RjRGNUYuIyEmTiMqKUYoRjhGOkY9IyEnJipROUYoRkFGQkZEIyEmVFkmRkhGSUZKRkwjISU6PEYoRlBGUUZTIyEjQkZXMUY+Ri5GMEZZ</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L535" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[6, 3] := piecewise(x < -4, 0, x < -3, 3632/5+(7456/5)*x+(58786/45)*x^2+633*x^3+(26383/144)*x^4+(22807/720)*x^5+(727/240)*x^6+(89/720)*x^7, x < -2, -440-(25949/20)*x-(117131/72)*x^2-(2247/2)*x^3-(66437/144)*x^4-(81109/720)*x^5-(727/48)*x^6-(623/720)*x^7, x < -1, 138/5+(8617/60)*x+(12873/40)*x^2+(791/2)*x^3+(4557/16)*x^4+(9583/80)*x^5+(2181/80)*x^6+(623/240)*x^7, x < 0, 1-(49/36)*x^2-(959/144)*x^4-(2569/144)*x^5-(727/48)*x^6-(623/144)*x^7, x < 1, 1-(49/36)*x^2-(959/144)*x^4+(2569/144)*x^5-(727/48)*x^6+(623/144)*x^7, x < 2, 138/5-(8617/60)*x+(12873/40)*x^2-(791/2)*x^3+(4557/16)*x^4-(9583/80)*x^5+(2181/80)*x^6-(623/240)*x^7, x < 3, -440+(25949/20)*x-(117131/72)*x^2+(2247/2)*x^3-(66437/144)*x^4+(81109/720)*x^5-(727/48)*x^6+(623/720)*x^7, x < 4, 3632/5-(7456/5)*x+(58786/45)*x^2-633*x^3+(26383/144)*x^4-(22807/720)*x^5+(727/240)*x^6-(89/720)*x^7, 4 <= x, 0):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2I1EhRictRiM2Ki1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictRiM2Ki1JI21uR0YkNiRRIjZGJ0Y6LUkjbW9HRiQ2LVEiLEYnRjovJSZmZW5jZUdGOS8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y5LyUqc3ltbWV0cmljR0Y5LyUobGFyZ2VvcEdGOS8lLm1vdmFibGVsaW1pdHNHRjkvJSdhY2NlbnRHRjkvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GQDYkUSIzRidGOi8lK2ZvcmVncm91bmRHUSpbMCwwLDI1NV1GJy8lK2V4ZWN1dGFibGVHRjkvJSlyZWFkb25seUdGSy8lMGZvbnRfc3R5bGVfbmFtZUdRKjJEfk91dHB1dEYnRjovJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GRDYtUSM6PUYnRjpGRy9GSkY5RkxGTkZQRlJGVC9GV1EsMC4yNzc3Nzc4ZW1GJy9GWkZbcC1GIzYpLUZENi1RInxmckYnRjovRkhGS0Zpby9GTUZLRk5GUEZSRlQvRldRLDAuMTY2NjY2N2VtRicvRlpGZXAtSSdtdGFibGVHRiQ2Pi1JJG10ckdGJDYnLUkkbXRkR0YkNigtRkA2JEZlb0Y6LyUpcm93YWxpZ25HRi4vJSxjb2x1bW5hbGlnbkdGLi8lK2dyb3VwYWxpZ25HRi4vJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGanEtRl5xNigtRiM2Ki1GLDYlUSJ4RicvRjhGSy9GO1EnaXRhbGljRictRkQ2LVEiPEYnRjpGR0Zpb0ZMRk5GUEZSRlRGam9GXHAtRiM2KS1GRDYtUSomdW1pbnVzMDtGJ0Y6RkdGaW9GTEZORlBGUkZUL0ZXUSwwLjIyMjIyMjJlbUYnL0ZaRmBzLUZANiRRIjRGJ0Y6RmluRlxvRl5vRmBvRjpGaW5GXG9GXm9GYG9GOkZicUZkcUZmcUZocUZbckZicUZkcUZmcS1GW3E2Jy1GXnE2KC1GIzY2LUkmbWZyYWNHRiQ2KC1GQDYkUSUzNjMyRidGOi1GQDYkUSI1RidGOi8lLmxpbmV0aGlja25lc3NHRmpxLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmh0LyUpYmV2ZWxsZWRHRjktRkQ2LVEiK0YnRjpGR0Zpb0ZMRk5GUEZSRlRGX3NGYXMtRiM2Ki1GXHQ2KC1GQDYkUSU3NDU2RidGOkZhdEZkdEZmdEZpdEZbdS1GRDYtUTEmSW52aXNpYmxlVGltZXM7RidGOkZHRmlvRkxGTkZQRlJGVEZWL0ZaRlhGYXJGaW5GXG9GXm9GYG9GOkZddS1GIzYqLUZcdDYoLUZANiRRJjU4Nzg2RidGOi1GQDYkUSM0NUYnRjpGZHRGZnRGaXRGW3VGZ3UtSSVtc3VwR0YkNiVGYXItRkA2JFEiMkYnRjovJTFzdXBlcnNjcmlwdHNoaWZ0R0Zlb0ZpbkZcb0Zeb0Zgb0Y6Rl11LUYjNiotRkA2JFEkNjMzRidGOkZndS1GZnY2JUZhckZmbkZbd0ZpbkZcb0Zeb0Zgb0Y6Rl11LUYjNiotRlx0NigtRkA2JFEmMjYzODNGJ0Y6LUZANiRRJDE0NEYnRjpGZHRGZnRGaXRGW3VGZ3UtRmZ2NiVGYXJGYnNGW3dGaW5GXG9GXm9GYG9GOkZddS1GIzYqLUZcdDYoLUZANiRRJjIyODA3RidGOi1GQDYkUSQ3MjBGJ0Y6RmR0RmZ0Rml0Rlt1Rmd1LUZmdjYlRmFyRmF0Rlt3RmluRlxvRl5vRmBvRjpGXXUtRiM2Ki1GXHQ2KC1GQDYkUSQ3MjdGJ0Y6LUZANiRRJDI0MEYnRjpGZHRGZnRGaXRGW3VGZ3UtRmZ2NiVGYXJGP0Zbd0ZpbkZcb0Zeb0Zgb0Y6Rl11LUYjNiotRlx0NigtRkA2JFEjODlGJ0Y6Rmd4RmR0RmZ0Rml0Rlt1Rmd1LUZmdjYlRmFyLUZANiRRIjdGJ0Y6Rlt3RmluRlxvRl5vRmBvRjpGaW5GXG9GXm9GYG9GOkZicUZkcUZmcUZocUZbci1GXnE2KC1GIzYqRmFyRmdyLUYjNilGXHNGZm5GaW5GXG9GXm9GYG9GOkZpbkZcb0Zeb0Zgb0Y6RmJxRmRxRmZxRmhxRltyRmJxRmRxRmZxLUZbcTYnLUZecTYoLUYjNjdGXHMtRkA2JFEkNDQwRidGOi1GRDYtUSgmbWludXM7RidGOkZHRmlvRkxGTkZQRlJGVEZfc0Zhcy1GIzYqLUZcdDYoLUZANiRRJjI1OTQ5RidGOi1GQDYkUSMyMEYnRjpGZHRGZnRGaXRGW3VGZ3VGYXJGaW5GXG9GXm9GYG9GOkZjW2wtRiM2Ki1GXHQ2KC1GQDYkUScxMTcxMzFGJ0Y6LUZANiRRIzcyRidGOkZkdEZmdEZpdEZbdUZndUZldkZpbkZcb0Zeb0Zgb0Y6RmNbbC1GIzYqLUZcdDYoLUZANiRRJTIyNDdGJ0Y6Rmh2RmR0RmZ0Rml0Rlt1Rmd1RmJ3RmluRlxvRl5vRmBvRjpGY1tsLUYjNiotRlx0NigtRkA2JFEmNjY0MzdGJ0Y6Rlt4RmR0RmZ0Rml0Rlt1Rmd1Rl54RmluRlxvRl5vRmBvRjpGY1tsLUYjNiotRlx0NigtRkA2JFEmODExMDlGJ0Y6Rmd4RmR0RmZ0Rml0Rlt1Rmd1Rmp4RmluRlxvRl5vRmBvRjpGY1tsLUYjNiotRlx0NihGYHktRkA2JFEjNDhGJ0Y6RmR0RmZ0Rml0Rlt1Rmd1RmZ5RmluRlxvRl5vRmBvRjpGY1tsLUYjNiotRlx0NigtRkA2JFEkNjIzRidGOkZneEZkdEZmdEZpdEZbdUZndUZfekZpbkZcb0Zeb0Zgb0Y6RmluRlxvRl5vRmBvRjpGYnFGZHFGZnFGaHFGW3ItRl5xNigtRiM2KkZhckZnci1GIzYpRlxzRmh2RmluRlxvRl5vRmBvRjpGaW5GXG9GXm9GYG9GOkZicUZkcUZmcUZocUZbckZicUZkcUZmcS1GW3E2Jy1GXnE2KC1GIzY2LUZcdDYoLUZANiRRJDEzOEYnRjpGYXRGZHRGZnRGaXRGW3VGXXUtRiM2Ki1GXHQ2KC1GQDYkUSU4NjE3RidGOi1GQDYkUSM2MEYnRjpGZHRGZnRGaXRGW3VGZ3VGYXJGaW5GXG9GXm9GYG9GOkZddS1GIzYqLUZcdDYoLUZANiRRJjEyODczRidGOi1GQDYkUSM0MEYnRjpGZHRGZnRGaXRGW3VGZ3VGZXZGaW5GXG9GXm9GYG9GOkZddS1GIzYqLUZcdDYoLUZANiRRJDc5MUYnRjpGaHZGZHRGZnRGaXRGW3VGZ3VGYndGaW5GXG9GXm9GYG9GOkZddS1GIzYqLUZcdDYoLUZANiRRJTQ1NTdGJ0Y6LUZANiRRIzE2RidGOkZkdEZmdEZpdEZbdUZndUZeeEZpbkZcb0Zeb0Zgb0Y6Rl11LUYjNiotRlx0NigtRkA2JFElOTU4M0YnRjotRkA2JFEjODBGJ0Y6RmR0RmZ0Rml0Rlt1Rmd1Rmp4RmluRlxvRl5vRmBvRjpGXXUtRiM2Ki1GXHQ2KC1GQDYkUSUyMTgxRidGOkZqYmxGZHRGZnRGaXRGW3VGZ3VGZnlGaW5GXG9GXm9GYG9GOkZddS1GIzYqLUZcdDYoRmpebEZjeUZkdEZmdEZpdEZbdUZndUZfekZpbkZcb0Zeb0Zgb0Y6RmluRlxvRl5vRmBvRjpGYnFGZHFGZnFGaHFGW3ItRl5xNigtRiM2KkZhckZnci1GIzYpRlxzLUZANiRGanFGOkZpbkZcb0Zeb0Zgb0Y6RmluRlxvRl5vRmBvRjpGYnFGZHFGZnFGaHFGW3JGYnFGZHFGZnEtRltxNictRl5xNigtRiM2MkZeZGxGY1tsLUYjNiotRlx0NigtRkA2JFEjNDlGJ0Y6LUZANiRRIzM2RidGOkZkdEZmdEZpdEZbdUZndUZldkZpbkZcb0Zeb0Zgb0Y6RmNbbC1GIzYqLUZcdDYoLUZANiRRJDk1OUYnRjpGW3hGZHRGZnRGaXRGW3VGZ3VGXnhGaW5GXG9GXm9GYG9GOkZjW2wtRiM2Ki1GXHQ2KC1GQDYkUSUyNTY5RidGOkZbeEZkdEZmdEZpdEZbdUZndUZqeEZpbkZcb0Zeb0Zgb0Y6RmNbbEZfXmxGY1tsLUYjNiotRlx0NihGal5sRlt4RmR0RmZ0Rml0Rlt1Rmd1Rl96RmluRlxvRl5vRmBvRjpGaW5GXG9GXm9GYG9GOkZicUZkcUZmcUZocUZbci1GXnE2KC1GIzYqRmFyRmdyRmBxRmluRlxvRl5vRmBvRjpGYnFGZHFGZnFGaHFGW3JGYnFGZHFGZnEtRltxNictRl5xNigtRiM2MkZeZGxGY1tsRmZkbEZjW2xGYGVsRl11RmdlbEZjW2xGX15sRl11Rl5mbEZpbkZcb0Zeb0Zgb0Y6RmJxRmRxRmZxRmhxRltyLUZecTYoLUYjNipGYXJGZ3JGXmRsRmluRlxvRl5vRmBvRjpGYnFGZHFGZnFGaHFGW3JGYnFGZHFGZnEtRltxNictRl5xNigtRiM2NkZpX2xGY1tsRl5gbEZddUZoYGxGY1tsRmJhbEZddUZpYWxGY1tsRmNibEZddUZdY2xGY1tsRmRjbEZpbkZcb0Zeb0Zgb0Y6RmJxRmRxRmZxRmhxRltyLUZecTYoLUYjNipGYXJGZ3JGaHZGaW5GXG9GXm9GYG9GOkZicUZkcUZmcUZocUZbckZicUZkcUZmcS1GW3E2Jy1GXnE2KC1GIzY3RlxzRmBbbEZddUZmW2xGY1tsRmBcbEZddUZqXGxGY1tsRmFdbEZddUZoXWxGY1tsRl9ebEZddUZmXmxGaW5GXG9GXm9GYG9GOkZicUZkcUZmcUZocUZbci1GXnE2KC1GIzYqRmFyRmdyRmZuRmluRlxvRl5vRmBvRjpGYnFGZHFGZnFGaHFGW3JGYnFGZHFGZnEtRltxNictRl5xNigtRiM2NkZbdEZjW2xGYHVGXXVGW3ZGY1tsRl13Rl11RmR3RmNbbEZgeEZddUZceUZjW2xGaHlGaW5GXG9GXm9GYG9GOkZicUZkcUZmcUZocUZbci1GXnE2KC1GIzYqRmFyRmdyRmJzRmluRlxvRl5vRmBvRjpGYnFGZHFGZnFGaHFGW3JGYnFGZHFGZnEtRltxNidGXXEtRl5xNigtRiM2KkZicy1GRDYtUSUmbGU7RidGOkZHRmlvRkxGTkZQRlJGVEZqb0ZccEZhckZpbkZcb0Zeb0Zgb0Y6RmJxRmRxRmZxRmhxRltyRmJxRmRxRmZxLyUmYWxpZ25HUSVheGlzRicvRmNxUSliYXNlbGluZUYnL0ZlcUZodC9GZ3FRJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0ZLLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGY2psLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EkMmVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0ZeW20vJSZmcmFtZUdGXlttLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dGOS8lLWVxdWFsY29sdW1uc0dGOS8lLWRpc3BsYXlzdHlsZUdGOS8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR1EmMC44ZW1GJ0ZpbkZcb0Zeb0Zgb0Y6RmluRlxvRl5vRmBvRjpGKy1GRDYtUSI6RidGOkZHRmlvRkxGTkZQRlJGVEZqb0ZccEZcb0Y6">QyQ+JkknTGFtYmRhRzYiNiQiIiciIiQtSSpwaWVjZXdpc2VHJSpwcm90ZWN0ZWRHNjYySSJ4R0YmISIlIiIhMkYvISIkLDIjIiVLTyIiJiIiIkYvIyIlY3VGNyokRi8iIiMjIiYneWUiI1gqJEYvRikiJEwnKiRGLyIiJSMiJiRRRSIkVyIqJEYvRjcjIiYyRyMiJD8oKiRGL0YoIyIkRigiJFMjKiRGLyIiKCMiIyopRkoyRi8hIiMsMiEkUyVGOEYvIyEmXGYjIiM/RjsjISdKcjYiI3NGQCMhJVpBRjxGQiMhJlBrJ0ZGRkcjISY0NilGSkZLIyEkRigiI1tGTyMhJEInRkoyRi8hIiIsMiMiJFEiRjdGOEYvIyIlPCcpIiNnRjsjIiZ0RyIiI1NGQCMiJCJ6RjxGQiMiJWRYIiM7RkcjIiUkZSoiIyEpRksjIiUiPSNGZHBGTyMiJEInRk4yRi9GMSwuRjhGOEY7IyEjXCIjT0ZCIyEkZipGRkZHIyElcERGRkZLRl1vRk8jRmFvRkYyRi9GOCwuRjhGOEY7RltxRkJGXnFGRyMiJXBERkZGS0Zdb0ZPI0ZocEZGMkYvRjwsMkZlb0Y4Ri8jISU8JylGaW9GO0Zqb0ZAIyEkInpGPEZCRl9wRkcjISUkZSpGZHBGS0ZlcEZPI0Zhb0ZOMkYvRiksMkZWRjhGLyMiJlxmI0ZZRjtGWkZAIyIlWkFGPEZCRmluRkcjIiY0NilGSkZLRl1vRk8jRmhwRkoyRi9GQywyRjVGOEYvIyElY3VGN0Y7Rj1GQCEkTCdGQkZERkcjISYyRyNGSkZLRkxGTyMhIyopRkoxRkNGL0YxRmNv</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L686" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[6, 4] := piecewise(x < -4, 0, x < -3, -142528/5-(375344/5)*x-(3942344/45)*x^2-(178394/3)*x^3-(931315/36)*x^4-(5385983/720)*x^5-(1035149/720)*x^6-(127511/720)*x^7-(203/16)*x^8-(29/72)*x^9, x < -2, 8695+(656131/20)*x+(3938809/72)*x^2+(158725/3)*x^3+(2354569/72)*x^4+(9644621/720)*x^5+(523589/144)*x^6+(454097/720)*x^7+(1015/16)*x^8+(203/72)*x^9, x < -1, -877/5-(72583/60)*x-(145467/40)*x^2-(18809/3)*x^3-(54663/8)*x^4-(390327/80)*x^5-(182549/80)*x^6-(161777/240)*x^7-(1827/16)*x^8-(203/24)*x^9, x < 0, 1-(49/36)*x^2+(7/18)*x^4+(3521/144)*x^5+(12029/144)*x^6+(15617/144)*x^7+(1015/16)*x^8+(1015/72)*x^9, x < 1, 1-(49/36)*x^2+(7/18)*x^4-(3521/144)*x^5+(12029/144)*x^6-(15617/144)*x^7+(1015/16)*x^8-(1015/72)*x^9, x < 2, -877/5+(72583/60)*x-(145467/40)*x^2+(18809/3)*x^3-(54663/8)*x^4+(390327/80)*x^5-(182549/80)*x^6+(161777/240)*x^7-(1827/16)*x^8+(203/24)*x^9, x < 3, 8695-(656131/20)*x+(3938809/72)*x^2-(158725/3)*x^3+(2354569/72)*x^4-(9644621/720)*x^5+(523589/144)*x^6-(454097/720)*x^7+(1015/16)*x^8-(203/72)*x^9, x < 4, -142528/5+(375344/5)*x-(3942344/45)*x^2+(178394/3)*x^3-(931315/36)*x^4+(5385983/720)*x^5-(1035149/720)*x^6+(127511/720)*x^7-(203/16)*x^8+(29/72)*x^9, 4 <= x, 0):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEpJkxhbWJkYTtGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLUYjNiotSSNtbkdGJDYkUSI2RidGNS1JI21vR0YkNi1RIixGJ0Y1LyUmZmVuY2VHRjQvJSpzZXBhcmF0b3JHUSV0cnVlRicvJSlzdHJldGNoeUdGNC8lKnN5bW1ldHJpY0dGNC8lKGxhcmdlb3BHRjQvJS5tb3ZhYmxlbGltaXRzR0Y0LyUnYWNjZW50R0Y0LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRjs2JFEiNEYnRjUvJStmb3JlZ3JvdW5kR1EqWzAsMCwyNTVdRicvJStleGVjdXRhYmxlR0Y0LyUpcmVhZG9ubHlHRkYvJTBmb250X3N0eWxlX25hbWVHUSoyRH5PdXRwdXRGJ0Y1LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRj82LVEjOj1GJ0Y1RkIvRkVGNEZHRklGS0ZNRk8vRlJRLDAuMjc3Nzc3OGVtRicvRlVGZm8tRiM2KS1GPzYtUSJ8ZnJGJ0Y1L0ZDRkZGZG8vRkhGRkZJRktGTUZPL0ZSUSwwLjE2NjY2NjdlbUYnL0ZVRmBwLUknbXRhYmxlR0YkNj4tSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUY7NiRGYG9GNS8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGX3EvJStncm91cGFsaWduR0ZfcS8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZmcS1GaXA2KC1GIzYqLUYvNiVRInhGJy9GM0ZGL0Y2USdpdGFsaWNGJy1GPzYtUSI8RidGNUZCRmRvRkdGSUZLRk1GT0Zlb0Znby1GIzYpLUY/Ni1RKiZ1bWludXMwO0YnRjVGQkZkb0ZHRklGS0ZNRk8vRlJRLDAuMjIyMjIyMmVtRicvRlVGXHNGV0ZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnLUZpcDYoLUYjNjtGaHItSSZtZnJhY0dGJDYoLUY7NiRRJzE0MjUyOEYnRjUtRjs2JFEiNUYnRjUvJS5saW5ldGhpY2tuZXNzR0ZmcS8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZhdC8lKWJldmVsbGVkR0Y0LUY/Ni1RKCZtaW51cztGJ0Y1RkJGZG9GR0ZJRktGTUZPRltzRl1zLUYjNiotRmVzNigtRjs2JFEnMzc1MzQ0RidGNUZqc0ZddEZfdEZidEZkdC1GPzYtUTEmSW52aXNpYmxlVGltZXM7RidGNUZCRmRvRkdGSUZLRk1GT0ZRL0ZVRlNGXXJGWkZnbkZpbkZbb0Y1RmZ0LUYjNiotRmVzNigtRjs2JFEoMzk0MjM0NEYnRjUtRjs2JFEjNDVGJ0Y1Rl10Rl90RmJ0RmR0RmB1LUklbXN1cEdGJDYlRl1yLUY7NiRRIjJGJ0Y1LyUxc3VwZXJzY3JpcHRzaGlmdEdGYG9GWkZnbkZpbkZbb0Y1RmZ0LUYjNiotRmVzNigtRjs2JFEnMTc4Mzk0RidGNS1GOzYkUSIzRidGNUZddEZfdEZidEZkdEZgdS1GX3Y2JUZdckZdd0ZkdkZaRmduRmluRltvRjVGZnQtRiM2Ki1GZXM2KC1GOzYkUSc5MzEzMTVGJ0Y1LUY7NiRRIzM2RidGNUZddEZfdEZidEZkdEZgdS1GX3Y2JUZdckZXRmR2RlpGZ25GaW5GW29GNUZmdC1GIzYqLUZlczYoLUY7NiRRKDUzODU5ODNGJ0Y1LUY7NiRRJDcyMEYnRjVGXXRGX3RGYnRGZHRGYHUtRl92NiVGXXJGanNGZHZGWkZnbkZpbkZbb0Y1RmZ0LUYjNiotRmVzNigtRjs2JFEoMTAzNTE0OUYnRjVGZXhGXXRGX3RGYnRGZHRGYHUtRl92NiVGXXJGOkZkdkZaRmduRmluRltvRjVGZnQtRiM2Ki1GZXM2KC1GOzYkUScxMjc1MTFGJ0Y1RmV4Rl10Rl90RmJ0RmR0RmB1LUZfdjYlRl1yLUY7NiRRIjdGJ0Y1RmR2RlpGZ25GaW5GW29GNUZmdC1GIzYqLUZlczYoLUY7NiRRJDIwM0YnRjUtRjs2JFEjMTZGJ0Y1Rl10Rl90RmJ0RmR0RmB1LUZfdjYlRl1yLUY7NiRRIjhGJ0Y1RmR2RlpGZ25GaW5GW29GNUZmdC1GIzYqLUZlczYoLUY7NiRRIzI5RidGNS1GOzYkUSM3MkYnRjVGXXRGX3RGYnRGZHRGYHUtRl92NiVGXXItRjs2JFEiOUYnRjVGZHZGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyLUYjNilGaHJGXXdGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncUZdcUZgcUZicS1GZnA2Jy1GaXA2KC1GIzY6LUY7NiRRJTg2OTVGJ0Y1LUY/Ni1RIitGJ0Y1RkJGZG9GR0ZJRktGTUZPRltzRl1zLUYjNiotRmVzNigtRjs2JFEnNjU2MTMxRidGNS1GOzYkUSMyMEYnRjVGXXRGX3RGYnRGZHRGYHVGXXJGWkZnbkZpbkZbb0Y1RlxdbC1GIzYqLUZlczYoLUY7NiRRKDM5Mzg4MDlGJ0Y1RmVbbEZddEZfdEZidEZkdEZgdUZedkZaRmduRmluRltvRjVGXF1sLUYjNiotRmVzNigtRjs2JFEnMTU4NzI1RidGNUZdd0ZddEZfdEZidEZkdEZgdUZgd0ZaRmduRmluRltvRjVGXF1sLUYjNiotRmVzNigtRjs2JFEoMjM1NDU2OUYnRjVGZVtsRl10Rl90RmJ0RmR0RmB1Rlx4RlpGZ25GaW5GW29GNUZcXWwtRiM2Ki1GZXM2KC1GOzYkUSg5NjQ0NjIxRidGNUZleEZddEZfdEZidEZkdEZgdUZoeEZaRmduRmluRltvRjVGXF1sLUYjNiotRmVzNigtRjs2JFEnNTIzNTg5RidGNS1GOzYkUSQxNDRGJ0Y1Rl10Rl90RmJ0RmR0RmB1RmF5RlpGZ25GaW5GW29GNUZcXWwtRiM2Ki1GZXM2KC1GOzYkUSc0NTQwOTdGJ0Y1RmV4Rl10Rl90RmJ0RmR0RmB1Rmp5RlpGZ25GaW5GW29GNUZcXWwtRiM2Ki1GZXM2KC1GOzYkUSUxMDE1RidGNUZmekZddEZfdEZidEZkdEZgdUZpekZaRmduRmluRltvRjVGXF1sLUYjNiotRmVzNihGY3pGZVtsRl10Rl90RmJ0RmR0RmB1RmhbbEZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxLUZpcDYoLUYjNipGXXJGY3ItRiM2KUZockZhdkZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnLUZpcDYoLUYjNjtGaHItRmVzNigtRjs2JFEkODc3RidGNUZqc0ZddEZfdEZidEZkdEZmdC1GIzYqLUZlczYoLUY7NiRRJjcyNTgzRidGNS1GOzYkUSM2MEYnRjVGXXRGX3RGYnRGZHRGYHVGXXJGWkZnbkZpbkZbb0Y1RmZ0LUYjNiotRmVzNigtRjs2JFEnMTQ1NDY3RidGNS1GOzYkUSM0MEYnRjVGXXRGX3RGYnRGZHRGYHVGXnZGWkZnbkZpbkZbb0Y1RmZ0LUYjNiotRmVzNigtRjs2JFEmMTg4MDlGJ0Y1Rl13Rl10Rl90RmJ0RmR0RmB1RmB3RlpGZ25GaW5GW29GNUZmdC1GIzYqLUZlczYoLUY7NiRRJjU0NjYzRidGNUZbW2xGXXRGX3RGYnRGZHRGYHVGXHhGWkZnbkZpbkZbb0Y1RmZ0LUYjNiotRmVzNigtRjs2JFEnMzkwMzI3RidGNS1GOzYkUSM4MEYnRjVGXXRGX3RGYnRGZHRGYHVGaHhGWkZnbkZpbkZbb0Y1RmZ0LUYjNiotRmVzNigtRjs2JFEnMTgyNTQ5RidGNUZbZWxGXXRGX3RGYnRGZHRGYHVGYXlGWkZnbkZpbkZbb0Y1RmZ0LUYjNiotRmVzNigtRjs2JFEnMTYxNzc3RidGNS1GOzYkUSQyNDBGJ0Y1Rl10Rl90RmJ0RmR0RmB1Rmp5RlpGZ25GaW5GW29GNUZmdC1GIzYqLUZlczYoLUY7NiRRJTE4MjdGJ0Y1RmZ6Rl10Rl90RmJ0RmR0RmB1Rml6RlpGZ25GaW5GW29GNUZmdC1GIzYqLUZlczYoRmN6LUY7NiRRIzI0RidGNUZddEZfdEZidEZkdEZgdUZoW2xGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyLUYjNilGaHItRjs2JEZmcUY1RlpGZ25GaW5GW29GNUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2NkZjZ2xGZnQtRiM2Ki1GZXM2KC1GOzYkUSM0OUYnRjVGaXdGXXRGX3RGYnRGZHRGYHVGXnZGWkZnbkZpbkZbb0Y1RlxdbC1GIzYqLUZlczYoRlx6LUY7NiRRIzE4RidGNUZddEZfdEZidEZkdEZgdUZceEZaRmduRmluRltvRjVGXF1sLUYjNiotRmVzNigtRjs2JFElMzUyMUYnRjVGXGBsRl10Rl90RmJ0RmR0RmB1Rmh4RlpGZ25GaW5GW29GNUZcXWwtRiM2Ki1GZXM2KC1GOzYkUSYxMjAyOUYnRjVGXGBsRl10Rl90RmJ0RmR0RmB1RmF5RlpGZ25GaW5GW29GNUZcXWwtRiM2Ki1GZXM2KC1GOzYkUSYxNTYxN0YnRjVGXGBsRl10Rl90RmJ0RmR0RmB1Rmp5RlpGZ25GaW5GW29GNUZcXWxGZmBsRlxdbC1GIzYqLUZlczYoRmpgbEZlW2xGXXRGX3RGYnRGZHRGYHVGaFtsRlpGZ25GaW5GW29GNUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3EtRmlwNigtRiM2KkZdckZjckZbcUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2NkZjZ2xGZnRGW2hsRlxdbEZiaGxGZnRGaWhsRlxdbEZgaWxGZnRGZ2lsRlxdbEZmYGxGZnRGXmpsRlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyRmNnbEZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2O0ZockZdYmxGXF1sRmJibEZmdEZcY2xGXF1sRmZjbEZmdEZdZGxGXF1sRmRkbEZmdEZeZWxGXF1sRmVlbEZmdEZfZmxGXF1sRmZmbEZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3EtRmlwNigtRiM2KkZdckZjckZhdkZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2OkZpXGxGZnRGX11sRlxdbEZpXWxGZnRGYF5sRlxdbEZnXmxGZnRGXl9sRlxdbEZlX2xGZnRGX2BsRlxdbEZmYGxGZnRGXWFsRlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyRl13RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncUZdcUZgcUZicS1GZnA2Jy1GaXA2KC1GIzY7RmhyRmRzRlxdbEZpdEZmdEZkdUZcXWxGZnZGZnRGYndGXF1sRl54RmZ0Rmp4RlxdbEZjeUZmdEZfekZcXWxGXltsRlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyRldGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnRmhwLUZpcDYoLUYjNipGVy1GPzYtUSUmbGU7RidGNUZCRmRvRkdGSUZLRk1GT0Zlb0Znb0ZdckZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEvJSZhbGlnbkdRJWF4aXNGJy9GXnFRKWJhc2VsaW5lRicvRmFxRmF0L0ZjcVEnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRkYvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZjXm0vJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSQyZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRl5fbS8lJmZyYW1lR0ZeX20vJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y0LyUtZXF1YWxjb2x1bW5zR0Y0LyUtZGlzcGxheXN0eWxlR0Y0LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHUSYwLjhlbUYnRlpGZ25GaW5GW29GNS1GPzYtUSI6RidGNUZCRmRvRkdGSUZLRk1GT0Zlb0Znb0ZnbkY1">QyQ+JkknTGFtYmRhRzYiNiQiIiciIiUtSSpwaWVjZXdpc2VHJSpwcm90ZWN0ZWRHNjYySSJ4R0YmISIlIiIhMkYvISIkLDYjISdHRDkiIiYiIiJGLyMhJ1dgUEY3KiRGLyIiIyMhKFdCJVIiI1gqJEYvIiIkIyEnJVJ5IkZBKiRGL0YpIyEnOjgkKiIjTyokRi9GNyMhKCQpZlEmIiQ/KCokRi9GKCMhKFxeLiJGSyokRi8iIigjISc2djdGSyokRi8iIikjISQuIyIjOyokRi8iIiojISNIIiNzMkYvISIjLDYiJSZwKUY4Ri8jIidKaGwiIz9GOyMiKDQpUVJGZm5GQCMiJ0QoZSJGQUZEIyIocFhOI0ZmbkZIIyIoQFlrKkZLRkwjIicqZUImIiRXIkZPIyInKDRhJUZLRlMjIiU6NUZXRlgjIiQuI0ZmbjJGLyEiIiw2IyEkeClGN0Y4Ri8jISYkZXMiI2dGOyMhJ25hOSIjU0ZAIyEmNCk9RkFGRCMhJmpZJkZURkgjISdGLlIiIyEpRkwjISdcRD1GYHFGTyMhJ3g8OyIkUyNGUyMhJUY9RldGWCNGViIjQzJGL0YxLDJGOEY4RjsjISNcRkdGRCNGUCIjPUZIIyIlQE5GaG9GTCMiJkg/IkZob0ZPIyImPGMiRmhvRlNGW3BGWCNGXHBGZm4yRi9GOCwyRjhGOEY7RlxyRkRGXnJGSCMhJUBORmhvRkxGYnJGTyMhJjxjIkZob0ZTRltwRlgjISU6NUZmbjJGL0Y8LDZGYnBGOEYvIyImJGVzRmZwRjtGZ3BGQCMiJjQpPUZBRkRGXHFGSCMiJ0YuUkZgcUZMRmFxRk8jIid4PDtGZXFGU0ZmcUZYI0ZecEZpcTJGL0ZBLDZGam5GOEYvIyEnSmhsRl1vRjtGXm9GQCMhJ0QoZSJGQUZERmJvRkgjIShAWWsqRktGTEZmb0ZPIyEnKDRhJUZLRlNGW3BGWCNGVkZmbjJGL0YpLDZGNUY4Ri8jIidXYFBGN0Y7Rj1GQCMiJyVSeSJGQUZERkVGSCMiKCQpZlEmRktGTEZNRk8jIic2djdGS0ZTRlVGWCMiI0hGZm4xRilGL0YxRmBw</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L687" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[6, 5] := piecewise(x < -4, 0, x < -3, 1188352+(19108864/5)*x+(250837216/45)*x^2+(14600752/3)*x^3+(25437902/9)*x^4+(17195278/15)*x^5+(13253241/40)*x^6+(49136309/720)*x^7+(471205/48)*x^8+(45083/48)*x^9+(38731/720)*x^10+(503/360)*x^11, x < -2, -181439-(16709441/20)*x-(125352311/72)*x^2-(13002493/6)*x^3-(64445353/36)*x^4-(30912301/30)*x^5-(3373567/8)*x^6-(88345523/720)*x^7-(1194095/48)*x^8-(160657/48)*x^9-(38731/144)*x^10-(3521/360)*x^11, x < -1, 1233+(617533/60)*x+(1544613/40)*x^2+(515179/6)*x^3+(502579/4)*x^4+(3809911/30)*x^5+(3618099/40)*x^6+(10894163/240)*x^7+(251685/16)*x^8+(172123/48)*x^9+(38731/80)*x^10+(3521/120)*x^11, x < 0, 1-(49/36)*x^2+(7/18)*x^4-(701/8)*x^6-(54803/144)*x^7-(32165/48)*x^8-(9555/16)*x^9-(38731/144)*x^10-(3521/72)*x^11, x < 1, 1-(49/36)*x^2+(7/18)*x^4-(701/8)*x^6+(54803/144)*x^7-(32165/48)*x^8+(9555/16)*x^9-(38731/144)*x^10+(3521/72)*x^11, x < 2, 1233-(617533/60)*x+(1544613/40)*x^2-(515179/6)*x^3+(502579/4)*x^4-(3809911/30)*x^5+(3618099/40)*x^6-(10894163/240)*x^7+(251685/16)*x^8-(172123/48)*x^9+(38731/80)*x^10-(3521/120)*x^11, x < 3, -181439+(16709441/20)*x-(125352311/72)*x^2+(13002493/6)*x^3-(64445353/36)*x^4+(30912301/30)*x^5-(3373567/8)*x^6+(88345523/720)*x^7-(1194095/48)*x^8+(160657/48)*x^9-(38731/144)*x^10+(3521/360)*x^11, x < 4, 1188352-(19108864/5)*x+(250837216/45)*x^2-(14600752/3)*x^3+(25437902/9)*x^4-(17195278/15)*x^5+(13253241/40)*x^6-(49136309/720)*x^7+(471205/48)*x^8-(45083/48)*x^9+(38731/720)*x^10-(503/360)*x^11, 4 <= x, 0):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEpJkxhbWJkYTtGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLUYjNiotSSNtbkdGJDYkUSI2RidGNS1JI21vR0YkNi1RIixGJ0Y1LyUmZmVuY2VHRjQvJSpzZXBhcmF0b3JHUSV0cnVlRicvJSlzdHJldGNoeUdGNC8lKnN5bW1ldHJpY0dGNC8lKGxhcmdlb3BHRjQvJS5tb3ZhYmxlbGltaXRzR0Y0LyUnYWNjZW50R0Y0LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRjs2JFEiNUYnRjUvJStmb3JlZ3JvdW5kR1EqWzAsMCwyNTVdRicvJStleGVjdXRhYmxlR0Y0LyUpcmVhZG9ubHlHRkYvJTBmb250X3N0eWxlX25hbWVHUSoyRH5PdXRwdXRGJ0Y1LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRj82LVEjOj1GJ0Y1RkIvRkVGNEZHRklGS0ZNRk8vRlJRLDAuMjc3Nzc3OGVtRicvRlVGZm8tRiM2KS1GPzYtUSJ8ZnJGJ0Y1L0ZDRkZGZG8vRkhGRkZJRktGTUZPL0ZSUSwwLjE2NjY2NjdlbUYnL0ZVRmBwLUknbXRhYmxlR0YkNj4tSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUY7NiRGYG9GNS8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGX3EvJStncm91cGFsaWduR0ZfcS8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZmcS1GaXA2KC1GIzYqLUYvNiVRInhGJy9GM0ZGL0Y2USdpdGFsaWNGJy1GPzYtUSI8RidGNUZCRmRvRkdGSUZLRk1GT0Zlb0Znby1GIzYpLUY/Ni1RKiZ1bWludXMwO0YnRjVGQkZkb0ZHRklGS0ZNRk8vRlJRLDAuMjIyMjIyMmVtRicvRlVGXHMtRjs2JFEiNEYnRjVGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncUZdcUZgcUZicS1GZnA2Jy1GaXA2KC1GIzY+LUY7NiRRKDExODgzNTJGJ0Y1LUY/Ni1RIitGJ0Y1RkJGZG9GR0ZJRktGTUZPRltzRl1zLUYjNiotSSZtZnJhY0dGJDYoLUY7NiRRKTE5MTA4ODY0RidGNUZXLyUubGluZXRoaWNrbmVzc0dGZnEvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGaXQvJSliZXZlbGxlZEdGNC1GPzYtUTEmSW52aXNpYmxlVGltZXM7RidGNUZCRmRvRkdGSUZLRk1GT0ZRL0ZVRlNGXXJGWkZnbkZpbkZbb0Y1RmpzLUYjNiotRmB0NigtRjs2JFEqMjUwODM3MjE2RidGNS1GOzYkUSM0NUYnRjVGZXRGZ3RGanRGXHVGXnUtSSVtc3VwR0YkNiVGXXItRjs2JFEiMkYnRjUvJTFzdXBlcnNjcmlwdHNoaWZ0R0Zgb0ZaRmduRmluRltvRjVGanMtRiM2Ki1GYHQ2KC1GOzYkUSkxNDYwMDc1MkYnRjUtRjs2JFEiM0YnRjVGZXRGZ3RGanRGXHVGXnUtRl12NiVGXXJGW3dGYnZGWkZnbkZpbkZbb0Y1RmpzLUYjNiotRmB0NigtRjs2JFEpMjU0Mzc5MDJGJ0Y1LUY7NiRRIjlGJ0Y1RmV0Rmd0Rmp0Rlx1Rl51LUZddjYlRl1yRl5zRmJ2RlpGZ25GaW5GW29GNUZqcy1GIzYqLUZgdDYoLUY7NiRRKTE3MTk1Mjc4RidGNS1GOzYkUSMxNUYnRjVGZXRGZ3RGanRGXHVGXnUtRl12NiVGXXJGV0ZidkZaRmduRmluRltvRjVGanMtRiM2Ki1GYHQ2KC1GOzYkUSkxMzI1MzI0MUYnRjUtRjs2JFEjNDBGJ0Y1RmV0Rmd0Rmp0Rlx1Rl51LUZddjYlRl1yRjpGYnZGWkZnbkZpbkZbb0Y1RmpzLUYjNiotRmB0NigtRjs2JFEpNDkxMzYzMDlGJ0Y1LUY7NiRRJDcyMEYnRjVGZXRGZ3RGanRGXHVGXnUtRl12NiVGXXItRjs2JFEiN0YnRjVGYnZGWkZnbkZpbkZbb0Y1RmpzLUYjNiotRmB0NigtRjs2JFEnNDcxMjA1RidGNS1GOzYkUSM0OEYnRjVGZXRGZ3RGanRGXHVGXnUtRl12NiVGXXItRjs2JFEiOEYnRjVGYnZGWkZnbkZpbkZbb0Y1RmpzLUYjNiotRmB0NigtRjs2JFEmNDUwODNGJ0Y1Rmp6RmV0Rmd0Rmp0Rlx1Rl51LUZddjYlRl1yRmd3RmJ2RlpGZ25GaW5GW29GNUZqcy1GIzYqLUZgdDYoLUY7NiRRJjM4NzMxRidGNUZbekZldEZndEZqdEZcdUZedS1GXXY2JUZdci1GOzYkUSMxMEYnRjVGYnZGWkZnbkZpbkZbb0Y1RmpzLUYjNiotRmB0NigtRjs2JFEkNTAzRidGNS1GOzYkUSQzNjBGJ0Y1RmV0Rmd0Rmp0Rlx1Rl51LUZddjYlRl1yLUY7NiRRIzExRidGNUZidkZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxLUZpcDYoLUYjNipGXXJGY3ItRiM2KUZockZbd0ZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnLUZpcDYoLUYjNj9GaHItRjs2JFEnMTgxNDM5RidGNS1GPzYtUSgmbWludXM7RidGNUZCRmRvRkdGSUZLRk1GT0Zbc0Zdcy1GIzYqLUZgdDYoLUY7NiRRKTE2NzA5NDQxRidGNS1GOzYkUSMyMEYnRjVGZXRGZ3RGanRGXHVGXnVGXXJGWkZnbkZpbkZbb0Y1RmVebC1GIzYqLUZgdDYoLUY7NiRRKjEyNTM1MjMxMUYnRjUtRjs2JFEjNzJGJ0Y1RmV0Rmd0Rmp0Rlx1Rl51Rlx2RlpGZ25GaW5GW29GNUZlXmwtRiM2Ki1GYHQ2KC1GOzYkUSkxMzAwMjQ5M0YnRjVGOkZldEZndEZqdEZcdUZedUZed0ZaRmduRmluRltvRjVGZV5sLUYjNiotRmB0NigtRjs2JFEpNjQ0NDUzNTNGJ0Y1LUY7NiRRIzM2RidGNUZldEZndEZqdEZcdUZedUZqd0ZaRmduRmluRltvRjVGZV5sLUYjNiotRmB0NigtRjs2JFEpMzA5MTIzMDFGJ0Y1LUY7NiRRIzMwRidGNUZldEZndEZqdEZcdUZedUZmeEZaRmduRmluRltvRjVGZV5sLUYjNiotRmB0NigtRjs2JFEoMzM3MzU2N0YnRjVGX1tsRmV0Rmd0Rmp0Rlx1Rl51RmJ5RlpGZ25GaW5GW29GNUZlXmwtRiM2Ki1GYHQ2KC1GOzYkUSk4ODM0NTUyM0YnRjVGW3pGZXRGZ3RGanRGXHVGXnVGXnpGWkZnbkZpbkZbb0Y1RmVebC1GIzYqLUZgdDYoLUY7NiRRKDExOTQwOTVGJ0Y1Rmp6RmV0Rmd0Rmp0Rlx1Rl51Rl1bbEZaRmduRmluRltvRjVGZV5sLUYjNiotRmB0NigtRjs2JFEnMTYwNjU3RidGNUZqekZldEZndEZqdEZcdUZedUZpW2xGWkZnbkZpbkZbb0Y1RmVebC1GIzYqLUZgdDYoRl9cbC1GOzYkUSQxNDRGJ0Y1RmV0Rmd0Rmp0Rlx1Rl51RmJcbEZaRmduRmluRltvRjVGZV5sLUYjNiotRmB0NigtRjs2JFElMzUyMUYnRjVGXl1sRmV0Rmd0Rmp0Rlx1Rl51RmFdbEZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxLUZpcDYoLUYjNipGXXJGY3ItRiM2KUZockZfdkZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnLUZpcDYoLUYjNj4tRjs2JFElMTIzM0YnRjVGanMtRiM2Ki1GYHQ2KC1GOzYkUSc2MTc1MzNGJ0Y1LUY7NiRRIzYwRidGNUZldEZndEZqdEZcdUZedUZdckZaRmduRmluRltvRjVGanMtRiM2Ki1GYHQ2KC1GOzYkUSgxNTQ0NjEzRidGNUZfeUZldEZndEZqdEZcdUZedUZcdkZaRmduRmluRltvRjVGanMtRiM2Ki1GYHQ2KC1GOzYkUSc1MTUxNzlGJ0Y1RjpGZXRGZ3RGanRGXHVGXnVGXndGWkZnbkZpbkZbb0Y1RmpzLUYjNiotRmB0NigtRjs2JFEnNTAyNTc5RidGNUZec0ZldEZndEZqdEZcdUZedUZqd0ZaRmduRmluRltvRjVGanMtRiM2Ki1GYHQ2KC1GOzYkUSgzODA5OTExRidGNUZkYWxGZXRGZ3RGanRGXHVGXnVGZnhGWkZnbkZpbkZbb0Y1RmpzLUYjNiotRmB0NigtRjs2JFEoMzYxODA5OUYnRjVGX3lGZXRGZ3RGanRGXHVGXnVGYnlGWkZnbkZpbkZbb0Y1RmpzLUYjNiotRmB0NigtRjs2JFEpMTA4OTQxNjNGJ0Y1LUY7NiRRJDI0MEYnRjVGZXRGZ3RGanRGXHVGXnVGXnpGWkZnbkZpbkZbb0Y1RmpzLUYjNiotRmB0NigtRjs2JFEnMjUxNjg1RidGNS1GOzYkUSMxNkYnRjVGZXRGZ3RGanRGXHVGXnVGXVtsRlpGZ25GaW5GW29GNUZqcy1GIzYqLUZgdDYoLUY7NiRRJzE3MjEyM0YnRjVGanpGZXRGZ3RGanRGXHVGXnVGaVtsRlpGZ25GaW5GW29GNUZqcy1GIzYqLUZgdDYoRl9cbC1GOzYkUSM4MEYnRjVGZXRGZ3RGanRGXHVGXnVGYlxsRlpGZ25GaW5GW29GNUZqcy1GIzYqLUZgdDYoRl5kbC1GOzYkUSQxMjBGJ0Y1RmV0Rmd0Rmp0Rlx1Rl51RmFdbEZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxLUZpcDYoLUYjNipGXXJGY3ItRiM2KUZoci1GOzYkRmZxRjVGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncUZdcUZgcUZicS1GZnA2Jy1GaXA2KC1GIzY4RlxbbUZlXmwtRiM2Ki1GYHQ2KC1GOzYkUSM0OUYnRjVGamBsRmV0Rmd0Rmp0Rlx1Rl51Rlx2RlpGZ25GaW5GW29GNUZqcy1GIzYqLUZgdDYoRmB6LUY7NiRRIzE4RidGNUZldEZndEZqdEZcdUZedUZqd0ZaRmduRmluRltvRjVGZV5sLUYjNiotRmB0NigtRjs2JFEkNzAxRidGNUZfW2xGZXRGZ3RGanRGXHVGXnVGYnlGWkZnbkZpbkZbb0Y1RmVebC1GIzYqLUZgdDYoLUY7NiRRJjU0ODAzRidGNUZnY2xGZXRGZ3RGanRGXHVGXnVGXnpGWkZnbkZpbkZbb0Y1RmVebC1GIzYqLUZgdDYoLUY7NiRRJjMyMTY1RidGNUZqekZldEZndEZqdEZcdUZedUZdW2xGWkZnbkZpbkZbb0Y1RmVebC1GIzYqLUZgdDYoLUY7NiRRJTk1NTVGJ0Y1Rl5pbEZldEZndEZqdEZcdUZedUZpW2xGWkZnbkZpbkZbb0Y1RmVebEZjY2xGZV5sLUYjNiotRmB0NihGXmRsRmlfbEZldEZndEZqdEZcdUZedUZhXWxGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyRltxRlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncUZdcUZgcUZicS1GZnA2Jy1GaXA2KC1GIzY4RlxbbUZlXmxGZFttRmpzRltcbUZlXmxGYlxtRmpzRmlcbUZlXmxGYF1tRmpzRmddbUZlXmxGY2NsRmpzRl5ebUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3EtRmlwNigtRiM2KkZdckZjckZcW21GWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnLUZpcDYoLUYjNj5GXWVsRmVebEZgZWxGanNGamVsRmVebEZhZmxGanNGaGZsRmVebEZfZ2xGanNGZmdsRmVebEZdaGxGanNGZ2hsRmVebEZhaWxGanNGaGlsRmVebEZfamxGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxLUZpcDYoLUYjNipGXXJGY3JGX3ZGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnLUZpcDYoLUYjNj9GaHJGYl5sRmpzRmhebEZlXmxGYl9sRmpzRlxgbEZlXmxGY2BsRmpzRl1hbEZlXmxGZ2FsRmpzRl5ibEZlXmxGZWJsRmpzRlxjbEZlXmxGY2NsRmpzRmpjbEZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3EtRmlwNigtRiM2KkZdckZjckZbd0ZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2PkZnc0ZlXmxGXXRGanNGYnVGZV5sRmR2RmpzRmB3RmVebEZceEZqc0ZoeEZlXmxGZHlGanNGY3pGZV5sRmJbbEZqc0ZbXGxGZV5sRmdcbEZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3EtRmlwNigtRiM2KkZdckZjckZec0ZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNidGaHAtRmlwNigtRiM2KkZecy1GPzYtUSUmbGU7RidGNUZCRmRvRkdGSUZLRk1GT0Zlb0Znb0ZdckZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEvJSZhbGlnbkdRJWF4aXNGJy9GXnFRKWJhc2VsaW5lRicvRmFxRml0L0ZjcVEnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRkYvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZjYm0vJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSQyZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRl5jbS8lJmZyYW1lR0ZeY20vJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y0LyUtZXF1YWxjb2x1bW5zR0Y0LyUtZGlzcGxheXN0eWxlR0Y0LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHUSYwLjhlbUYnRlpGZ25GaW5GW29GNS1GPzYtUSI6RidGNUZCRmRvRkdGSUZLRk1GT0Zlb0Znb0ZnbkY1">QyQ+JkknTGFtYmRhRzYiNiQiIiciIiYtSSpwaWVjZXdpc2VHJSpwcm90ZWN0ZWRHNjYySSJ4R0YmISIlIiIhMkYvISIkLDoiKF8kKT0iIiIiRi8jIilrKTMiPkYpKiRGLyIiIyMiKjtzJDNEIiNYKiRGLyIiJCMiKV8yZzlGPyokRi8iIiUjIiktelZEIiIqKiRGL0YpIyIpeV8+PCIjOiokRi9GKCMiKVRLRDgiI1MqJEYvIiIoIyIpNGo4XCIkPygqJEYvIiIpIyInMDdaIiNbKiRGL0ZGIyImJDNYRlgqJEYvIiM1IyImSihRRlMqJEYvIiM2IyIkLiYiJGckMkYvISIjLDohJ1I5PUY2Ri8jISlUJTRuIiIjP0Y5IyEqNkJORCIiI3NGPiMhKSRcLUkiRihGQiMhKWBgV2siI09GRyMhKSxCIjQkIiNJRksjIShuTlAkRlVGTyMhKUJiTSkpRlNGVCMhKCY0JT4iRlhGWSMhJ2QxO0ZYRmZuIyEmSihRIiRXIkZqbiMhJUBORl5vMkYvISIiLDoiJUw3RjZGLyMiJ0x2aCIjZ0Y5IyIoOFlhIkZORj4jIid6Xl5GKEZCIyInekRdRkNGRyMiKDYqNFFGYHBGSyMiKCo0PU9GTkZPIyIpalQqMyIiJFMjRlQjIicmb14jIiM7RlkjIidCQDxGWEZmbiNGaW4iIyEpRmpuIyIlQE4iJD8iMkYvRjEsNEY2RjZGOSMhI1xGXXBGQiNGUCIjPUZLIyEkLChGVUZPIyEmLlsmRltxRlQjISZsQCRGWEZZIyElYiYqRmRyRmZuRmlwRmpuI0ZdcUZobzJGL0Y2LDRGNkY2RjlGXnNGQkZgc0ZLRmJzRk8jIiYuWyZGW3FGVEZmc0ZZIyIlYiYqRmRyRmZuRmlwRmpuI0ZqckZobzJGL0Y6LDpGYXFGNkYvIyEnTHZoRmRxRjlGZXFGPiMhJ3peXkYoRkJGaXFGRyMhKDYqNFFGYHBGS0ZdckZPIyEpalQqMyJGYXJGVEZickZZIyEnQkA8RlhGZm5GZ3JGam4jRl1xRltzMkYvRj8sOkZib0Y2Ri8jIilUJTRuIkZlb0Y5RmZvRj4jIikkXC1JIkYoRkJGW3BGRyMiKSxCIjQkRmBwRktGYXBGTyMiKUJiTSkpRlNGVEZlcEZZIyInZDE7RlhGZm5GaXBGam4jRmpyRl5vMkYvRkMsOkY1RjZGLyMhKWspMyI+RilGOUY7Rj4jISlfMmc5Rj9GQkZERkcjISl5Xz48RkpGS0ZMRk8jISk0ajhcRlNGVEZWRlkjISYkM1hGWEZmbkZobkZqbiMhJC4mRl5vMUZDRi9GMUZfcQ==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L688" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[6, 6] := piecewise(x < -4, 0, x < -3, -255622144/5-(971097344/5)*x-(15295867328/45)*x^2-(5442932656/15)*x^3-(2372571796/9)*x^4-(2064517469/15)*x^5-(9563054381/180)*x^6-(2210666335/144)*x^7-(796980541/240)*x^8-(76474979/144)*x^9-(43946287/720)*x^10-(343721/72)*x^11-(81991/360)*x^12-(901/180)*x^13, x < -2, 3905497+(424679647/20)*x+(3822627865/72)*x^2+(2424839767/30)*x^3+(3009271097/36)*x^4+(930168127/15)*x^5+(305535494/9)*x^6+(9998313437/720)*x^7+(203720335/48)*x^8+(137843153/144)*x^9+(22300663/144)*x^10+(6126883/360)*x^11+(81991/72)*x^12+(6307/180)*x^13, x < -1, -44291/5-(1745121/20)*x-(15711339/40)*x^2-(32087377/30)*x^3-(7860503/4)*x^4-(38576524/15)*x^5-(24659323/10)*x^6-(84181657/48)*x^7-(74009313/80)*x^8-(17159513/48)*x^9-(7870247/80)*x^10-(438263/24)*x^11-(81991/40)*x^12-(6307/60)*x^13, x < 0, 1-(49/36)*x^2+(7/18)*x^4-(1/36)*x^6+(46109/144)*x^7+(81361/48)*x^8+(544705/144)*x^9+(655039/144)*x^10+(223531/72)*x^11+(81991/72)*x^12+(6307/36)*x^13, x < 1, 1-(49/36)*x^2+(7/18)*x^4-(1/36)*x^6-(46109/144)*x^7+(81361/48)*x^8-(544705/144)*x^9+(655039/144)*x^10-(223531/72)*x^11+(81991/72)*x^12-(6307/36)*x^13, x < 2, -44291/5+(1745121/20)*x-(15711339/40)*x^2+(32087377/30)*x^3-(7860503/4)*x^4+(38576524/15)*x^5-(24659323/10)*x^6+(84181657/48)*x^7-(74009313/80)*x^8+(17159513/48)*x^9-(7870247/80)*x^10+(438263/24)*x^11-(81991/40)*x^12+(6307/60)*x^13, x < 3, 3905497-(424679647/20)*x+(3822627865/72)*x^2-(2424839767/30)*x^3+(3009271097/36)*x^4-(930168127/15)*x^5+(305535494/9)*x^6-(9998313437/720)*x^7+(203720335/48)*x^8-(137843153/144)*x^9+(22300663/144)*x^10-(6126883/360)*x^11+(81991/72)*x^12-(6307/180)*x^13, x < 4, -255622144/5+(971097344/5)*x-(15295867328/45)*x^2+(5442932656/15)*x^3-(2372571796/9)*x^4+(2064517469/15)*x^5-(9563054381/180)*x^6+(2210666335/144)*x^7-(796980541/240)*x^8+(76474979/144)*x^9-(43946287/720)*x^10+(343721/72)*x^11-(81991/360)*x^12+(901/180)*x^13, 4 <= x, 0):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2I1EhRictRiM2Ki1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictRiM2Ki1JI21uR0YkNiRRIjZGJ0Y6LUkjbW9HRiQ2LVEiLEYnRjovJSZmZW5jZUdGOS8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y5LyUqc3ltbWV0cmljR0Y5LyUobGFyZ2VvcEdGOS8lLm1vdmFibGVsaW1pdHNHRjkvJSdhY2NlbnRHRjkvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJ0Y/LyUrZm9yZWdyb3VuZEdRKlswLDAsMjU1XUYnLyUrZXhlY3V0YWJsZUdGOS8lKXJlYWRvbmx5R0ZLLyUwZm9udF9zdHlsZV9uYW1lR1EqMkR+T3V0cHV0RidGOi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZENi1RIzo9RidGOkZHL0ZKRjlGTEZORlBGUkZUL0ZXUSwwLjI3Nzc3NzhlbUYnL0ZaRmhvLUYjNiktRkQ2LVEifGZyRidGOi9GSEZLRmZvL0ZNRktGTkZQRlJGVC9GV1EsMC4xNjY2NjY3ZW1GJy9GWkZicC1JJ210YWJsZUdGJDY+LUkkbXRyR0YkNictSSRtdGRHRiQ2KC1GQDYkRmJvRjovJSlyb3dhbGlnbkdGLi8lLGNvbHVtbmFsaWduR0YuLyUrZ3JvdXBhbGlnbkdGLi8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZncS1GW3E2KC1GIzYqLUYsNiVRInhGJy9GOEZLL0Y7USdpdGFsaWNGJy1GRDYtUSI8RidGOkZHRmZvRkxGTkZQRlJGVEZnb0Zpby1GIzYpLUZENi1RKiZ1bWludXMwO0YnRjpGR0Zmb0ZMRk5GUEZSRlQvRldRLDAuMjIyMjIyMmVtRicvRlpGXXMtRkA2JFEiNEYnRjpGZm5GaW5GW29GXW9GOkZmbkZpbkZbb0Zdb0Y6Rl9xRmFxRmNxRmVxRmhxRl9xRmFxRmNxLUZocDYnLUZbcTYoLUYjNkNGaXItSSZtZnJhY0dGJDYoLUZANiRRKjI1NTYyMjE0NEYnRjotRkA2JFEiNUYnRjovJS5saW5ldGhpY2tuZXNzR0ZncS8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZldC8lKWJldmVsbGVkR0Y5LUZENi1RKCZtaW51cztGJ0Y6RkdGZm9GTEZORlBGUkZURlxzRl5zLUYjNiotRmlzNigtRkA2JFEqOTcxMDk3MzQ0RidGOkZedEZhdEZjdEZmdEZodC1GRDYtUTEmSW52aXNpYmxlVGltZXM7RidGOkZHRmZvRkxGTkZQRlJGVEZWL0ZaRlhGXnJGZm5GaW5GW29GXW9GOkZqdC1GIzYqLUZpczYoLUZANiRRLDE1Mjk1ODY3MzI4RidGOi1GQDYkUSM0NUYnRjpGYXRGY3RGZnRGaHRGZHUtSSVtc3VwR0YkNiVGXnItRkA2JFEiMkYnRjovJTFzdXBlcnNjcmlwdHNoaWZ0R0Zib0ZmbkZpbkZbb0Zdb0Y6Rmp0LUYjNiotRmlzNigtRkA2JFErNTQ0MjkzMjY1NkYnRjotRkA2JFEjMTVGJ0Y6RmF0RmN0RmZ0Rmh0RmR1LUZjdjYlRl5yLUZANiRRIjNGJ0Y6Rmh2RmZuRmluRltvRl1vRjpGanQtRiM2Ki1GaXM2KC1GQDYkUSsyMzcyNTcxNzk2RidGOi1GQDYkUSI5RidGOkZhdEZjdEZmdEZodEZkdS1GY3Y2JUZeckZfc0ZodkZmbkZpbkZbb0Zdb0Y6Rmp0LUYjNiotRmlzNigtRkA2JFErMjA2NDUxNzQ2OUYnRjpGYXdGYXRGY3RGZnRGaHRGZHUtRmN2NiVGXnJGXnRGaHZGZm5GaW5GW29GXW9GOkZqdC1GIzYqLUZpczYoLUZANiRRKzk1NjMwNTQzODFGJ0Y6LUZANiRRJDE4MEYnRjpGYXRGY3RGZnRGaHRGZHUtRmN2NiVGXnJGP0ZodkZmbkZpbkZbb0Zdb0Y6Rmp0LUYjNiotRmlzNigtRkA2JFErMjIxMDY2NjMzNUYnRjotRkA2JFEkMTQ0RidGOkZhdEZjdEZmdEZodEZkdS1GY3Y2JUZeci1GQDYkUSI3RidGOkZodkZmbkZpbkZbb0Zdb0Y6Rmp0LUYjNiotRmlzNigtRkA2JFEqNzk2OTgwNTQxRidGOi1GQDYkUSQyNDBGJ0Y6RmF0RmN0RmZ0Rmh0RmR1LUZjdjYlRl5yLUZANiRRIjhGJ0Y6Rmh2RmZuRmluRltvRl1vRjpGanQtRiM2Ki1GaXM2KC1GQDYkUSk3NjQ3NDk3OUYnRjpGYXpGYXRGY3RGZnRGaHRGZHUtRmN2NiVGXnJGYHhGaHZGZm5GaW5GW29GXW9GOkZqdC1GIzYqLUZpczYoLUZANiRRKTQzOTQ2Mjg3RidGOi1GQDYkUSQ3MjBGJ0Y6RmF0RmN0RmZ0Rmh0RmR1LUZjdjYlRl5yLUZANiRRIzEwRidGOkZodkZmbkZpbkZbb0Zdb0Y6Rmp0LUYjNiotRmlzNigtRkA2JFEnMzQzNzIxRidGOi1GQDYkUSM3MkYnRjpGYXRGY3RGZnRGaHRGZHUtRmN2NiVGXnItRkA2JFEjMTFGJ0Y6Rmh2RmZuRmluRltvRl1vRjpGanQtRiM2Ki1GaXM2KC1GQDYkUSY4MTk5MUYnRjotRkA2JFEkMzYwRidGOkZhdEZjdEZmdEZodEZkdS1GY3Y2JUZeci1GQDYkUSMxMkYnRjpGaHZGZm5GaW5GW29GXW9GOkZqdC1GIzYqLUZpczYoLUZANiRRJDkwMUYnRjpGZXlGYXRGY3RGZnRGaHRGZHUtRmN2NiVGXnItRkA2JFEjMTNGJ0Y6Rmh2RmZuRmluRltvRl1vRjpGZm5GaW5GW29GXW9GOkZfcUZhcUZjcUZlcUZocS1GW3E2KC1GIzYqRl5yRmRyLUYjNilGaXJGZndGZm5GaW5GW29GXW9GOkZmbkZpbkZbb0Zdb0Y6Rl9xRmFxRmNxRmVxRmhxRl9xRmFxRmNxLUZocDYnLUZbcTYoLUYjNkItRkA2JFEoMzkwNTQ5N0YnRjotRkQ2LVEiK0YnRjpGR0Zmb0ZMRk5GUEZSRlRGXHNGXnMtRiM2Ki1GaXM2KC1GQDYkUSo0MjQ2Nzk2NDdGJ0Y6LUZANiRRIzIwRidGOkZhdEZjdEZmdEZodEZkdUZeckZmbkZpbkZbb0Zdb0Y6RmlgbC1GIzYqLUZpczYoLUZANiRRKzM4MjI2Mjc4NjVGJ0Y6RmddbEZhdEZjdEZmdEZodEZkdUZidkZmbkZpbkZbb0Zdb0Y6RmlgbC1GIzYqLUZpczYoLUZANiRRKzI0MjQ4Mzk3NjdGJ0Y6LUZANiRRIzMwRidGOkZhdEZjdEZmdEZodEZkdUZkd0ZmbkZpbkZbb0Zdb0Y6RmlgbC1GIzYqLUZpczYoLUZANiRRKzMwMDkyNzEwOTdGJ0Y6LUZANiRRIzM2RidGOkZhdEZjdEZmdEZodEZkdUZjeEZmbkZpbkZbb0Zdb0Y6RmlgbC1GIzYqLUZpczYoLUZANiRRKjkzMDE2ODEyN0YnRjpGYXdGYXRGY3RGZnRGaHRGZHVGXHlGZm5GaW5GW29GXW9GOkZpYGwtRiM2Ki1GaXM2KC1GQDYkUSozMDU1MzU0OTRGJ0Y6RmB4RmF0RmN0RmZ0Rmh0RmR1Rmh5RmZuRmluRltvRl1vRjpGaWBsLUYjNiotRmlzNigtRkA2JFErOTk5ODMxMzQzN0YnRjpGaFxsRmF0RmN0RmZ0Rmh0RmR1RmR6RmZuRmluRltvRl1vRjpGaWBsLUYjNiotRmlzNigtRkA2JFEqMjAzNzIwMzM1RidGOi1GQDYkUSM0OEYnRjpGYXRGY3RGZnRGaHRGZHVGY1tsRmZuRmluRltvRl1vRjpGaWBsLUYjNiotRmlzNigtRkA2JFEqMTM3ODQzMTUzRidGOkZhekZhdEZjdEZmdEZodEZkdUZfXGxGZm5GaW5GW29GXW9GOkZpYGwtRiM2Ki1GaXM2KC1GQDYkUSkyMjMwMDY2M0YnRjpGYXpGYXRGY3RGZnRGaHRGZHVGW11sRmZuRmluRltvRl1vRjpGaWBsLUYjNiotRmlzNigtRkA2JFEoNjEyNjg4M0YnRjpGZl5sRmF0RmN0RmZ0Rmh0RmR1RmpdbEZmbkZpbkZbb0Zdb0Y6RmlgbC1GIzYqLUZpczYoRmNebEZnXWxGYXRGY3RGZnRGaHRGZHVGaV5sRmZuRmluRltvRl1vRjpGaWBsLUYjNiotRmlzNigtRkA2JFElNjMwN0YnRjpGZXlGYXRGY3RGZnRGaHRGZHVGZV9sRmZuRmluRltvRl1vRjpGZm5GaW5GW29GXW9GOkZfcUZhcUZjcUZlcUZocS1GW3E2KC1GIzYqRl5yRmRyLUYjNilGaXJGZXZGZm5GaW5GW29GXW9GOkZmbkZpbkZbb0Zdb0Y6Rl9xRmFxRmNxRmVxRmhxRl9xRmFxRmNxLUZocDYnLUZbcTYoLUYjNkNGaXItRmlzNigtRkA2JFEmNDQyOTFGJ0Y6Rl50RmF0RmN0RmZ0Rmh0Rmp0LUYjNiotRmlzNigtRkA2JFEoMTc0NTEyMUYnRjpGY2FsRmF0RmN0RmZ0Rmh0RmR1Rl5yRmZuRmluRltvRl1vRjpGanQtRiM2Ki1GaXM2KC1GQDYkUSkxNTcxMTMzOUYnRjotRkA2JFEjNDBGJ0Y6RmF0RmN0RmZ0Rmh0RmR1RmJ2RmZuRmluRltvRl1vRjpGanQtRiM2Ki1GaXM2KC1GQDYkUSkzMjA4NzM3N0YnRjpGZGJsRmF0RmN0RmZ0Rmh0RmR1RmR3RmZuRmluRltvRl1vRjpGanQtRiM2Ki1GaXM2KC1GQDYkUSg3ODYwNTAzRidGOkZfc0ZhdEZjdEZmdEZodEZkdUZjeEZmbkZpbkZbb0Zdb0Y6Rmp0LUYjNiotRmlzNigtRkA2JFEpMzg1NzY1MjRGJ0Y6RmF3RmF0RmN0RmZ0Rmh0RmR1Rlx5RmZuRmluRltvRl1vRjpGanQtRiM2Ki1GaXM2KC1GQDYkUSkyNDY1OTMyM0YnRjpGXV1sRmF0RmN0RmZ0Rmh0RmR1Rmh5RmZuRmluRltvRl1vRjpGanQtRiM2Ki1GaXM2KC1GQDYkUSk4NDE4MTY1N0YnRjpGXWVsRmF0RmN0RmZ0Rmh0RmR1RmR6RmZuRmluRltvRl1vRjpGanQtRiM2Ki1GaXM2KC1GQDYkUSk3NDAwOTMxM0YnRjotRkA2JFEjODBGJ0Y6RmF0RmN0RmZ0Rmh0RmR1RmNbbEZmbkZpbkZbb0Zdb0Y6Rmp0LUYjNiotRmlzNigtRkA2JFEpMTcxNTk1MTNGJ0Y6Rl1lbEZhdEZjdEZmdEZodEZkdUZfXGxGZm5GaW5GW29GXW9GOkZqdC1GIzYqLUZpczYoLUZANiRRKDc4NzAyNDdGJ0Y6RlxcbUZhdEZjdEZmdEZodEZkdUZbXWxGZm5GaW5GW29GXW9GOkZqdC1GIzYqLUZpczYoLUZANiRRJzQzODI2M0YnRjotRkA2JFEjMjRGJ0Y6RmF0RmN0RmZ0Rmh0RmR1RmpdbEZmbkZpbkZbb0Zdb0Y6Rmp0LUYjNiotRmlzNihGY15sRl9pbEZhdEZjdEZmdEZodEZkdUZpXmxGZm5GaW5GW29GXW9GOkZqdC1GIzYqLUZpczYoRl1nbC1GQDYkUSM2MEYnRjpGYXRGY3RGZnRGaHRGZHVGZV9sRmZuRmluRltvRl1vRjpGZm5GaW5GW29GXW9GOkZfcUZhcUZjcUZlcUZocS1GW3E2KC1GIzYqRl5yRmRyLUYjNilGaXItRkA2JEZncUY6RmZuRmluRltvRl1vRjpGZm5GaW5GW29GXW9GOkZfcUZhcUZjcUZlcUZocUZfcUZhcUZjcS1GaHA2Jy1GW3E2KC1GIzY8RmhebUZqdC1GIzYqLUZpczYoLUZANiRRIzQ5RidGOkZeY2xGYXRGY3RGZnRGaHRGZHVGYnZGZm5GaW5GW29GXW9GOkZpYGwtRiM2Ki1GaXM2KEZmei1GQDYkUSMxOEYnRjpGYXRGY3RGZnRGaHRGZHVGY3hGZm5GaW5GW29GXW9GOkZqdC1GIzYqLUZpczYoRmhebUZeY2xGYXRGY3RGZnRGaHRGZHVGaHlGZm5GaW5GW29GXW9GOkZpYGwtRiM2Ki1GaXM2KC1GQDYkUSY0NjEwOUYnRjpGYXpGYXRGY3RGZnRGaHRGZHVGZHpGZm5GaW5GW29GXW9GOkZpYGwtRiM2Ki1GaXM2KC1GQDYkUSY4MTM2MUYnRjpGXWVsRmF0RmN0RmZ0Rmh0RmR1RmNbbEZmbkZpbkZbb0Zdb0Y6RmlgbC1GIzYqLUZpczYoLUZANiRRJzU0NDcwNUYnRjpGYXpGYXRGY3RGZnRGaHRGZHVGX1xsRmZuRmluRltvRl1vRjpGaWBsLUYjNiotRmlzNigtRkA2JFEnNjU1MDM5RidGOkZhekZhdEZjdEZmdEZodEZkdUZbXWxGZm5GaW5GW29GXW9GOkZpYGwtRiM2Ki1GaXM2KC1GQDYkUScyMjM1MzFGJ0Y6RmddbEZhdEZjdEZmdEZodEZkdUZqXWxGZm5GaW5GW29GXW9GOkZpYGxGZWZsRmlgbC1GIzYqLUZpczYoRl1nbEZeY2xGYXRGY3RGZnRGaHRGZHVGZV9sRmZuRmluRltvRl1vRjpGZm5GaW5GW29GXW9GOkZfcUZhcUZjcUZlcUZocS1GW3E2KC1GIzYqRl5yRmRyRl1xRmZuRmluRltvRl1vRjpGX3FGYXFGY3FGZXFGaHFGX3FGYXFGY3EtRmhwNictRltxNigtRiM2PEZoXm1GanRGYF9tRmlgbEZnX21GanRGXmBtRmp0RmJgbUZpYGxGaWBtRmp0RmBhbUZpYGxGZ2FtRmp0Rl5ibUZpYGxGZWZsRmp0RmVibUZmbkZpbkZbb0Zdb0Y6Rl9xRmFxRmNxRmVxRmhxLUZbcTYoLUYjNipGXnJGZHJGaF5tRmZuRmluRltvRl1vRjpGX3FGYXFGY3FGZXFGaHFGX3FGYXFGY3EtRmhwNictRltxNigtRiM2Q0ZpckZcaGxGaWBsRmFobEZqdEZoaGxGaWBsRmJpbEZqdEZpaWxGaWBsRmBqbEZqdEZnamxGaWBsRl5bbUZqdEZlW21GaWBsRl9cbUZqdEZmXG1GaWBsRl1dbUZqdEZnXW1GaWBsRltebUZmbkZpbkZbb0Zdb0Y6Rl9xRmFxRmNxRmVxRmhxLUZbcTYoLUYjNipGXnJGZHJGZXZGZm5GaW5GW29GXW9GOkZfcUZhcUZjcUZlcUZocUZfcUZhcUZjcS1GaHA2Jy1GW3E2KC1GIzZCRmZgbEZqdEZcYWxGaWBsRmZhbEZqdEZdYmxGaWBsRmdibEZqdEZhY2xGaWBsRmhjbEZqdEZfZGxGaWBsRmZkbEZqdEZgZWxGaWBsRmdlbEZqdEZeZmxGaWBsRmVmbEZqdEZpZmxGZm5GaW5GW29GXW9GOkZfcUZhcUZjcUZlcUZocS1GW3E2KC1GIzYqRl5yRmRyRmZ3RmZuRmluRltvRl1vRjpGX3FGYXFGY3FGZXFGaHFGX3FGYXFGY3EtRmhwNictRltxNigtRiM2Q0ZpckZoc0ZpYGxGXXVGanRGaHVGaWBsRmp2Rmp0Rml3RmlgbEZleEZqdEZeeUZpYGxGanlGanRGaXpGaWBsRmhbbEZqdEZhXGxGaWBsRmBdbEZqdEZfXmxGaWBsRl5fbEZmbkZpbkZbb0Zdb0Y6Rl9xRmFxRmNxRmVxRmhxLUZbcTYoLUYjNipGXnJGZHJGX3NGZm5GaW5GW29GXW9GOkZfcUZhcUZjcUZlcUZocUZfcUZhcUZjcS1GaHA2J0ZqcC1GW3E2KC1GIzYqRl9zLUZENi1RJSZsZTtGJ0Y6RkdGZm9GTEZORlBGUkZURmdvRmlvRl5yRmZuRmluRltvRl1vRjpGX3FGYXFGY3FGZXFGaHFGX3FGYXFGY3EvJSZhbGlnbkdRJWF4aXNGJy9GYHFRKWJhc2VsaW5lRicvRmJxRmV0L0ZkcVEnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRksvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZqZm0vJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSQyZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmVnbS8lJmZyYW1lR0ZlZ20vJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y5LyUtZXF1YWxjb2x1bW5zR0Y5LyUtZGlzcGxheXN0eWxlR0Y5LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHUSYwLjhlbUYnRmZuRmluRltvRl1vRjpGZm5GaW5GW29GXW9GOkYrLUZENi1RIjpGJ0Y6RkdGZm9GTEZORlBGUkZURmdvRmlvRmluRjo=">QyQ+JkknTGFtYmRhRzYiNiQiIidGKC1JKnBpZWNld2lzZUclKnByb3RlY3RlZEc2NjJJInhHRiYhIiUiIiEyRi4hIiQsPiMhKldAaWIjIiImIiIiRi4jISpXdDRyKkY2KiRGLiIiIyMhLEd0J2VIOiIjWCokRi4iIiQjIStjRSRIVyYiIzoqJEYuIiIlIyErJ3pyRFAjIiIqKiRGLkY2IyErcHVeaz9GQyokRi5GKCMhKyJRYUljKiIkIT0qJEYuIiIoIyErTmptNUEiJFciKiRGLiIiKSMhKlQwKXB6IiRTIyokRi5GSCMhKXpcWndGVCokRi4iIzUjISkoR1lSJSIkPygqJEYuIiM2IyEnQFBNIiNzKiRGLiIjNyMhJiIqPikiJGckKiRGLiIjOCMhJCwqRk8yRi4hIiMsPiIoKFwwUkY3Ri4jIipaJ3pZVSIjP0Y6IyIrbHlpQVFGYG9GPyMiK24oUltVIyIjSUZEIyIrKDRyIzRJIiNPRkkjIipGIm8sJCpGQ0ZMIyIqJVxOYklGSEZQIyIrUE1KKSoqKkZbb0ZVIyIqTi5zLiMiI1tGWiMiKmBKJXk4RlRGZ24jIilqMUlBRlRGXG8jIigkKW83J0Zlb0ZhbyMiJiIqPilGYG9GZm8jIiUyakZPMkYuISIiLD4jISYiSFdGNkY3Ri4jIShAXnUiRmBwRjojISlSOHI6IiNTRj8jISl4dDNLRmVwRkQjISguMCd5RkVGSSMhKUNsZFFGQ0ZMIyEpQiRmWSNGaG5GUCMhKWQ7PSUpRmFxRlUjISk4JDRTKCIjISlGWiMhKTgmZnIiRmFxRmduIyEoWi0oeUZic0ZcbyMhJ2ojUSUiI0NGYW8jRmRvRmVyRmZvIyElMmoiI2cyRi5GMCw4RjdGN0Y6IyEjXEZocEZEI0ZRIiM9RkwjRl1yRmhwRlAjIiY0aCVGVEZVIyImaDgpRmFxRlojIicwWmFGVEZnbiMiJ1JdbEZURlxvIyInSk5BRmBvRmFvRmhxRmZvI0ZbckZocDJGLkY3LDhGN0Y3RjpGYHRGREZidEZMRmR0RlAjISY0aCVGVEZVRmd0RlojIScwWmFGVEZnbkZbdUZcbyMhJ0pOQUZgb0Zhb0ZocUZmbyNGXHRGaHAyRi5GOyw+Rl9yRjdGLiMiKEBedSJGYHBGOkZjckY/IyIpeHQzS0ZlcEZERmhyRkkjIilDbGRRRkNGTEZcc0ZQIyIpZDs9JSlGYXFGVUZgc0ZaIyIpOCZmciJGYXFGZ25GZXNGXG8jIidqI1ElRmlzRmFvRmpzRmZvI0ZbckZddDJGLkZALD5GXXBGN0YuIyEqWid6WVVGYHBGOkZhcEY/IyErbihSW1UjRmVwRkRGZnBGSSMhKkYibywkKkZDRkxGW3FGUCMhK1BNSikqKipGW29GVUZfcUZaIyEqYEoleThGVEZnbkZkcUZcbyMhKCQpbzcnRmVvRmFvRmhxRmZvI0ZcdEZPMkYuRkUsPkY0RjdGLiMiKld0NHIqRjZGOkY8Rj8jIitjRSRIVyZGQ0ZERkZGSSMiK3B1Xms/RkNGTEZNRlAjIitOam01QUZURlVGV0ZaIyIpelxad0ZURmduRmluRlxvIyInQFBNRmBvRmFvRmNvRmZvIyIkLCpGTzFGRUYuRjBGXXI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L634" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="Lambda[8, 4] := piecewise(x < -5, 0, x < -4, 439375/7+(64188125/504)*x+(231125375/2016)*x^2+(17306975/288)*x^3+(7761805/384)*x^4+(2895587/640)*x^5+(129391/192)*x^6+(259715/4032)*x^7+(28909/8064)*x^8+(3569/40320)*x^9, x < -3, -56375-(8314091/56)*x-(49901303/288)*x^2-(3763529/32)*x^3-(19648027/384)*x^4-(9469163/640)*x^5-(545977/192)*x^6-(156927/448)*x^7-(28909/1152)*x^8-(3569/4480)*x^9, x < -2, 68776/7+(1038011/28)*x+(31157515/504)*x^2+(956669/16)*x^3+(3548009/96)*x^4+(2422263/160)*x^5+(197255/48)*x^6+(19959/28)*x^7+(144545/2016)*x^8+(3569/1120)*x^9, x < -1, -154-(12757/12)*x-(230123/72)*x^2-(264481/48)*x^3-(576499/96)*x^4-(686147/160)*x^5-(96277/48)*x^6-(14221/24)*x^7-(28909/288)*x^8-(3569/480)*x^9, x < 0, 1-(205/144)*x^2+(91/192)*x^4+(6181/320)*x^5+(6337/96)*x^6+(2745/32)*x^7+(28909/576)*x^8+(3569/320)*x^9, x < 1, 1-(205/144)*x^2+(91/192)*x^4-(6181/320)*x^5+(6337/96)*x^6-(2745/32)*x^7+(28909/576)*x^8-(3569/320)*x^9, x < 2, -154+(12757/12)*x-(230123/72)*x^2+(264481/48)*x^3-(576499/96)*x^4+(686147/160)*x^5-(96277/48)*x^6+(14221/24)*x^7-(28909/288)*x^8+(3569/480)*x^9, x < 3, 68776/7-(1038011/28)*x+(31157515/504)*x^2-(956669/16)*x^3+(3548009/96)*x^4-(2422263/160)*x^5+(197255/48)*x^6-(19959/28)*x^7+(144545/2016)*x^8-(3569/1120)*x^9, x < 4, -56375+(8314091/56)*x-(49901303/288)*x^2+(3763529/32)*x^3-(19648027/384)*x^4+(9469163/640)*x^5-(545977/192)*x^6+(156927/448)*x^7-(28909/1152)*x^8+(3569/4480)*x^9, x < 5, 439375/7-(64188125/504)*x+(231125375/2016)*x^2-(17306975/288)*x^3+(7761805/384)*x^4-(2895587/640)*x^5+(129391/192)*x^6-(259715/4032)*x^7+(28909/8064)*x^8-(3569/40320)*x^9, 5 <= x, 0):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEpJkxhbWJkYTtGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLUYjNiotSSNtbkdGJDYkUSI4RidGNS1JI21vR0YkNi1RIixGJ0Y1LyUmZmVuY2VHRjQvJSpzZXBhcmF0b3JHUSV0cnVlRicvJSlzdHJldGNoeUdGNC8lKnN5bW1ldHJpY0dGNC8lKGxhcmdlb3BHRjQvJS5tb3ZhYmxlbGltaXRzR0Y0LyUnYWNjZW50R0Y0LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRjs2JFEiNEYnRjUvJStmb3JlZ3JvdW5kR1EqWzAsMCwyNTVdRicvJStleGVjdXRhYmxlR0Y0LyUpcmVhZG9ubHlHRkYvJTBmb250X3N0eWxlX25hbWVHUSoyRH5PdXRwdXRGJ0Y1LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRj82LVEjOj1GJ0Y1RkIvRkVGNEZHRklGS0ZNRk8vRlJRLDAuMjc3Nzc3OGVtRicvRlVGZm8tRiM2KS1GPzYtUSJ8ZnJGJ0Y1L0ZDRkZGZG8vRkhGRkZJRktGTUZPL0ZSUSwwLjE2NjY2NjdlbUYnL0ZVRmBwLUknbXRhYmxlR0YkNkAtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUY7NiRGYG9GNS8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGX3EvJStncm91cGFsaWduR0ZfcS8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0ZmcS1GaXA2KC1GIzYqLUYvNiVRInhGJy9GM0ZGL0Y2USdpdGFsaWNGJy1GPzYtUSI8RidGNUZCRmRvRkdGSUZLRk1GT0Zlb0Znby1GIzYpLUY/Ni1RKiZ1bWludXMwO0YnRjVGQkZkb0ZHRklGS0ZNRk8vRlJRLDAuMjIyMjIyMmVtRicvRlVGXHMtRjs2JFEiNUYnRjVGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncUZdcUZgcUZicS1GZnA2Jy1GaXA2KC1GIzY6LUkmbWZyYWNHRiQ2KC1GOzYkUSc0MzkzNzVGJ0Y1LUY7NiRRIjdGJ0Y1LyUubGluZXRoaWNrbmVzc0dGZnEvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGZHQvJSliZXZlbGxlZEdGNC1GPzYtUSIrRidGNUZCRmRvRkdGSUZLRk1GT0Zbc0Zdcy1GIzYqLUZoczYoLUY7NiRRKTY0MTg4MTI1RidGNS1GOzYkUSQ1MDRGJ0Y1RmB0RmJ0RmV0Rmd0LUY/Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y1RkJGZG9GR0ZJRktGTUZPRlEvRlVGU0ZdckZaRmduRmluRltvRjVGaXQtRiM2Ki1GaHM2KC1GOzYkUSoyMzExMjUzNzVGJ0Y1LUY7NiRRJTIwMTZGJ0Y1RmB0RmJ0RmV0Rmd0RmZ1LUklbXN1cEdGJDYlRl1yLUY7NiRRIjJGJ0Y1LyUxc3VwZXJzY3JpcHRzaGlmdEdGYG9GWkZnbkZpbkZbb0Y1Rml0LUYjNiotRmhzNigtRjs2JFEpMTczMDY5NzVGJ0Y1LUY7NiRRJDI4OEYnRjVGYHRGYnRGZXRGZ3RGZnUtRmV2NiVGXXItRjs2JFEiM0YnRjVGanZGWkZnbkZpbkZbb0Y1Rml0LUYjNiotRmhzNigtRjs2JFEoNzc2MTgwNUYnRjUtRjs2JFEkMzg0RidGNUZgdEZidEZldEZndEZmdS1GZXY2JUZdckZXRmp2RlpGZ25GaW5GW29GNUZpdC1GIzYqLUZoczYoLUY7NiRRKDI4OTU1ODdGJ0Y1LUY7NiRRJDY0MEYnRjVGYHRGYnRGZXRGZ3RGZnUtRmV2NiVGXXJGXnNGanZGWkZnbkZpbkZbb0Y1Rml0LUYjNiotRmhzNigtRjs2JFEnMTI5MzkxRidGNS1GOzYkUSQxOTJGJ0Y1RmB0RmJ0RmV0Rmd0RmZ1LUZldjYlRl1yLUY7NiRRIjZGJ0Y1Rmp2RlpGZ25GaW5GW29GNUZpdC1GIzYqLUZoczYoLUY7NiRRJzI1OTcxNUYnRjUtRjs2JFElNDAzMkYnRjVGYHRGYnRGZXRGZ3RGZnUtRmV2NiVGXXJGXXRGanZGWkZnbkZpbkZbb0Y1Rml0LUYjNiotRmhzNigtRjs2JFEmMjg5MDlGJ0Y1LUY7NiRRJTgwNjRGJ0Y1RmB0RmJ0RmV0Rmd0RmZ1LUZldjYlRl1yRjpGanZGWkZnbkZpbkZbb0Y1Rml0LUYjNiotRmhzNigtRjs2JFElMzU2OUYnRjUtRjs2JFEmNDAzMjBGJ0Y1RmB0RmJ0RmV0Rmd0RmZ1LUZldjYlRl1yLUY7NiRRIjlGJ0Y1Rmp2RlpGZ25GaW5GW29GNUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3EtRmlwNigtRiM2KkZdckZjci1GIzYpRmhyRldGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncUZdcUZgcUZicS1GZnA2Jy1GaXA2KC1GIzY7RmhyLUY7NiRRJjU2Mzc1RidGNS1GPzYtUSgmbWludXM7RidGNUZCRmRvRkdGSUZLRk1GT0Zbc0Zdcy1GIzYqLUZoczYoLUY7NiRRKDgzMTQwOTFGJ0Y1LUY7NiRRIzU2RidGNUZgdEZidEZldEZndEZmdUZdckZaRmduRmluRltvRjVGaF1sLUYjNiotRmhzNigtRjs2JFEpNDk5MDEzMDNGJ0Y1RmN3RmB0RmJ0RmV0Rmd0RmZ1RmR2RlpGZ25GaW5GW29GNUZoXWwtRiM2Ki1GaHM2KC1GOzYkUSgzNzYzNTI5RidGNS1GOzYkUSMzMkYnRjVGYHRGYnRGZXRGZ3RGZnVGZndGWkZnbkZpbkZbb0Y1RmhdbC1GIzYqLUZoczYoLUY7NiRRKTE5NjQ4MDI3RidGNUZieEZgdEZidEZldEZndEZmdUZleEZaRmduRmluRltvRjVGaF1sLUYjNiotRmhzNigtRjs2JFEoOTQ2OTE2M0YnRjVGXnlGYHRGYnRGZXRGZ3RGZnVGYXlGWkZnbkZpbkZbb0Y1RmhdbC1GIzYqLUZoczYoLUY7NiRRJzU0NTk3N0YnRjVGanlGYHRGYnRGZXRGZ3RGZnVGXXpGWkZnbkZpbkZbb0Y1RmhdbC1GIzYqLUZoczYoLUY7NiRRJzE1NjkyN0YnRjUtRjs2JFEkNDQ4RidGNUZgdEZidEZldEZndEZmdUZcW2xGWkZnbkZpbkZbb0Y1RmhdbC1GIzYqLUZoczYoRmJbbC1GOzYkUSUxMTUyRidGNUZgdEZidEZldEZndEZmdUZoW2xGWkZnbkZpbkZbb0Y1RmhdbC1GIzYqLUZoczYoRl5cbC1GOzYkUSU0NDgwRidGNUZgdEZidEZldEZndEZmdUZkXGxGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyLUYjNilGaHJGaHdGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncUZdcUZgcUZicS1GZnA2Jy1GaXA2KC1GIzY6LUZoczYoLUY7NiRRJjY4Nzc2RidGNUZddEZgdEZidEZldEZndEZpdC1GIzYqLUZoczYoLUY7NiRRKDEwMzgwMTFGJ0Y1LUY7NiRRIzI4RidGNUZgdEZidEZldEZndEZmdUZdckZaRmduRmluRltvRjVGaXQtRiM2Ki1GaHM2KC1GOzYkUSkzMTE1NzUxNUYnRjVGY3VGYHRGYnRGZXRGZ3RGZnVGZHZGWkZnbkZpbkZbb0Y1Rml0LUYjNiotRmhzNigtRjs2JFEnOTU2NjY5RidGNS1GOzYkUSMxNkYnRjVGYHRGYnRGZXRGZ3RGZnVGZndGWkZnbkZpbkZbb0Y1Rml0LUYjNiotRmhzNigtRjs2JFEoMzU0ODAwOUYnRjUtRjs2JFEjOTZGJ0Y1RmB0RmJ0RmV0Rmd0RmZ1RmV4RlpGZ25GaW5GW29GNUZpdC1GIzYqLUZoczYoLUY7NiRRKDI0MjIyNjNGJ0Y1LUY7NiRRJDE2MEYnRjVGYHRGYnRGZXRGZ3RGZnVGYXlGWkZnbkZpbkZbb0Y1Rml0LUYjNiotRmhzNigtRjs2JFEnMTk3MjU1RidGNS1GOzYkUSM0OEYnRjVGYHRGYnRGZXRGZ3RGZnVGXXpGWkZnbkZpbkZbb0Y1Rml0LUYjNiotRmhzNigtRjs2JFEmMTk5NTlGJ0Y1RltkbEZgdEZidEZldEZndEZmdUZcW2xGWkZnbkZpbkZbb0Y1Rml0LUYjNiotRmhzNigtRjs2JFEnMTQ0NTQ1RidGNUZhdkZgdEZidEZldEZndEZmdUZoW2xGWkZnbkZpbkZbb0Y1Rml0LUYjNiotRmhzNihGXlxsLUY7NiRRJTExMjBGJ0Y1RmB0RmJ0RmV0Rmd0RmZ1RmRcbEZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxLUZpcDYoLUYjNipGXXJGY3ItRiM2KUZockZndkZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnLUZpcDYoLUYjNjtGaHItRjs2JFEkMTU0RidGNUZoXWwtRiM2Ki1GaHM2KC1GOzYkUSYxMjc1N0YnRjUtRjs2JFEjMTJGJ0Y1RmB0RmJ0RmV0Rmd0RmZ1Rl1yRlpGZ25GaW5GW29GNUZoXWwtRiM2Ki1GaHM2KC1GOzYkUScyMzAxMjNGJ0Y1LUY7NiRRIzcyRidGNUZgdEZidEZldEZndEZmdUZkdkZaRmduRmluRltvRjVGaF1sLUYjNiotRmhzNigtRjs2JFEnMjY0NDgxRidGNUZqZmxGYHRGYnRGZXRGZ3RGZnVGZndGWkZnbkZpbkZbb0Y1RmhdbC1GIzYqLUZoczYoLUY7NiRRJzU3NjQ5OUYnRjVGZmVsRmB0RmJ0RmV0Rmd0RmZ1RmV4RlpGZ25GaW5GW29GNUZoXWwtRiM2Ki1GaHM2KC1GOzYkUSc2ODYxNDdGJ0Y1RmBmbEZgdEZidEZldEZndEZmdUZheUZaRmduRmluRltvRjVGaF1sLUYjNiotRmhzNigtRjs2JFEmOTYyNzdGJ0Y1RmpmbEZgdEZidEZldEZndEZmdUZdekZaRmduRmluRltvRjVGaF1sLUYjNiotRmhzNigtRjs2JFEmMTQyMjFGJ0Y1LUY7NiRRIzI0RidGNUZgdEZidEZldEZndEZmdUZcW2xGWkZnbkZpbkZbb0Y1RmhdbC1GIzYqLUZoczYoRmJbbEZjd0ZgdEZidEZldEZndEZmdUZoW2xGWkZnbkZpbkZbb0Y1RmhdbC1GIzYqLUZoczYoRl5cbC1GOzYkUSQ0ODBGJ0Y1RmB0RmJ0RmV0Rmd0RmZ1RmRcbEZaRmduRmluRltvRjVGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxLUZpcDYoLUYjNipGXXJGY3ItRiM2KUZoci1GOzYkRmZxRjVGWkZnbkZpbkZbb0Y1RlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncUZdcUZgcUZicS1GZnA2Jy1GaXA2KC1GIzY2RlxebUZoXWwtRiM2Ki1GaHM2KC1GOzYkUSQyMDVGJ0Y1LUY7NiRRJDE0NEYnRjVGYHRGYnRGZXRGZ3RGZnVGZHZGWkZnbkZpbkZbb0Y1Rml0LUYjNiotRmhzNigtRjs2JFEjOTFGJ0Y1Rmp5RmB0RmJ0RmV0Rmd0RmZ1RmV4RlpGZ25GaW5GW29GNUZpdC1GIzYqLUZoczYoLUY7NiRRJTYxODFGJ0Y1LUY7NiRRJDMyMEYnRjVGYHRGYnRGZXRGZ3RGZnVGYXlGWkZnbkZpbkZbb0Y1Rml0LUYjNiotRmhzNigtRjs2JFElNjMzN0YnRjVGZmVsRmB0RmJ0RmV0Rmd0RmZ1Rl16RlpGZ25GaW5GW29GNUZpdC1GIzYqLUZoczYoLUY7NiRRJTI3NDVGJ0Y1RmNfbEZgdEZidEZldEZndEZmdUZcW2xGWkZnbkZpbkZbb0Y1Rml0LUYjNiotRmhzNihGYltsLUY7NiRRJDU3NkYnRjVGYHRGYnRGZXRGZ3RGZnVGaFtsRlpGZ25GaW5GW29GNUZpdC1GIzYqLUZoczYoRl5cbEZcYG1GYHRGYnRGZXRGZ3RGZnVGZFxsRlpGZ25GaW5GW29GNUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3EtRmlwNigtRiM2KkZdckZjckZbcUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2NkZcXm1GaF1sRmRebUZpdEZeX21GaF1sRmVfbUZpdEZfYG1GaF1sRmZgbUZpdEZdYW1GaF1sRmRhbUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3EtRmlwNigtRiM2KkZdckZjckZcXm1GWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnLUZpcDYoLUYjNjtGaHJGXmlsRml0RmFpbEZoXWxGW2psRml0RmVqbEZoXWxGXFttRml0RmNbbUZoXWxGalttRml0RmFcbUZoXWxGW11tRml0Rl9dbUZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3EtRmlwNigtRiM2KkZdckZjckZndkZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2OkZfY2xGaF1sRmRjbEZpdEZeZGxGaF1sRmVkbEZpdEZfZWxGaF1sRmllbEZpdEZjZmxGaF1sRl1nbEZpdEZkZ2xGaF1sRltobEZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3EtRmlwNigtRiM2KkZdckZjckZod0ZaRmduRmluRltvRjVGXXFGYHFGYnFGZHFGZ3FGXXFGYHFGYnEtRmZwNictRmlwNigtRiM2O0ZockZlXWxGaXRGW15sRmhdbEZlXmxGaXRGXF9sRmhdbEZmX2xGaXRGXWBsRmhdbEZkYGxGaXRGW2FsRmhdbEZlYWxGaXRGXGJsRlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyRldGWkZnbkZpbkZbb0Y1Rl1xRmBxRmJxRmRxRmdxRl1xRmBxRmJxLUZmcDYnLUZpcDYoLUYjNjpGZ3NGaF1sRlx1Rml0Rmp1RmhdbEZcd0ZpdEZbeEZoXWxGZ3hGaXRGY3lGaF1sRmJ6Rml0Rl5bbEZoXWxGaltsRlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncS1GaXA2KC1GIzYqRl1yRmNyRl5zRlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncUZdcUZgcUZicS1GZnA2J0ZocC1GaXA2KC1GIzYqRl5zLUY/Ni1RJSZsZTtGJ0Y1RkJGZG9GR0ZJRktGTUZPRmVvRmdvRl1yRlpGZ25GaW5GW29GNUZdcUZgcUZicUZkcUZncUZdcUZgcUZicS8lJmFsaWduR1ElYXhpc0YnL0ZecVEpYmFzZWxpbmVGJy9GYXFGZHQvRmNxUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGRi8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRmNmbS8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJDJlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGXmdtLyUmZnJhbWVHRl5nbS8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRjQvJS1lcXVhbGNvbHVtbnNHRjQvJS1kaXNwbGF5c3R5bGVHRjQvJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dRJjAuOGVtRidGWkZnbkZpbkZbb0Y1LUY/Ni1RIjpGJ0Y1RkJGZG9GR0ZJRktGTUZPRmVvRmdvRmduRjU=">QyQ+JkknTGFtYmRhRzYiNiQiIikiIiUtSSpwaWVjZXdpc2VHJSpwcm90ZWN0ZWRHNjoySSJ4R0YmISImIiIhMkYvISIlLDYjIid2JFIlIiIoIiIiRi8jIilEIik9ayIkLyYqJEYvIiIjIyIqdmA3SiMiJTs/KiRGLyIiJCMiKXZwSTwiJClHKiRGL0YpIyIoMD13KCIkJVEqJEYvIiImIyIoKGUmKkciJFMnKiRGLyIiJyMiJyJSSCIiJCM+KiRGL0Y3IyInOihmIyIlS1MqJEYvRigjIiY0KkciJWshKSokRi8iIiojIiVwTiImPy4lMkYvISIkLDYhJnZqJkY4Ri8jISgiNDkkKSIjY0Y8IyEpLjghKlxGRUZBIyEoSE53JCIjS0ZGIyEpRiFbJz5GSUZKIyEoaiJwJSpGTkZPIyEneGZhRlNGVCMhJ0ZwOiIkWyVGWCMhJjQqRyIlXzZGZm4jISVwTiIlIVslMkYvISIjLDYjIiZ3KG9GN0Y4Ri8jIig2IVE1IiNHRjwjIik6djpKRjtGQSMiJ3BtJioiIztGRiMiKDQhW04iIycqRkojIihqQVUjIiRnIkZPIyInYnM+IiNbRlQjIiZmKj5GXXFGWCMiJ1hYOUZARmZuI0ZpbiIlPzYyRi8hIiIsNiEkYSJGOEYvIyEmZEYiIiM3RjwjISdCLEIiI3NGQSMhJyJbayNGW3JGRiMhJypcdyZGZXFGSiMhJ1pob0ZocUZPIyEmeGkqRltyRlQjISZAVSIiI0NGWCNGYXBGRUZmbiNGZHAiJCFbMkYvRjEsMkY4RjhGPCMhJDAjIiRXIkZGIyIjIipGU0ZKIyIlIj0nIiQ/JEZPIyIlUGpGZXFGVCMiJVhGRmZvRlgjRloiJHcmRmZuI0ZpbkZjdDJGL0Y4LDJGOEY4RjxGXHRGRkZfdEZKIyElIj0nRmN0Rk9GZHRGVCMhJVhGRmZvRlhGaHRGZm4jRmRwRmN0MkYvRj0sNkZlckY4Ri8jIiZkRiJGaHJGPEZpckZBIyInIltrI0ZbckZGRl5zRkojIidaaG9GaHFGT0Zic0ZUIyImQFUiRmZzRlhGZ3NGZm4jRmluRmlzMkYvRkIsNkZpcEY4Ri8jISg2IVE1Rl1xRjxGXnFGQSMhJ3BtJipGYnFGRkZjcUZKIyEoakFVI0ZocUZPRmlxRlQjISZmKj5GXXFGWEZeckZmbiNGZHBGYXIyRi9GKSw2Rl5vRjhGLyMiKCI0OSQpRmFvRjxGYm9GQSMiKEhOdyRGZm9GRkZnb0ZKIyIoaiJwJSpGTkZPRltwRlQjIidGcDpGX3BGWEZgcEZmbiNGaW5GZXAyRi9GSyw2RjVGOEYvIyEpRCIpPWtGO0Y8Rj5GQSMhKXZwSTxGRUZGRkdGSiMhKChlJipHRk5GT0ZRRlQjISc6KGYjRldGWEZZRmZuI0ZkcEZqbjFGS0YvRjFGY3I=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L635" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L661" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="plot([Lambda[2, 1], Lambda[2, 2]], x = -5 .. 5, legend = [typeset('Lambda[2, 1]'), typeset('Lambda[4, 2]')]); 1; plot([Lambda[4, 2], Lambda[4, 3], Lambda[4, 4]], x = -5 .. 5, legend = [typeset('Lambda[4, 2]'), typeset('Lambda[4, 3]'), typeset('Lambda[4, 4]')]); 1; plot([Lambda[6, 3], Lambda[6, 4], Lambda[6, 5], Lambda[6, 6]], x = -5 .. 5, legend = [typeset('Lambda[6, 3]'), typeset('Lambda[6, 4]'), typeset('Lambda[6, 5]'), typeset('Lambda[6, 6]')])" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYwLUkjbWlHRiQ2JVElcGxvdEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYwLUY2NiYtRiM2Jy1JJW1zdWJHRiQ2JS1GLDYlUScmIzkyMztGJy9GMFEmZmFsc2VGJy9GM1Enbm9ybWFsRictRiM2Jy1JI21uR0YkNiRRIjJGJ0ZGLUkjbW9HRiQ2LVEiLEYnRkYvJSZmZW5jZUdGRS8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0ZFLyUqc3ltbWV0cmljR0ZFLyUobGFyZ2VvcEdGRS8lLm1vdmFibGVsaW1pdHNHRkUvJSdhY2NlbnRHRkUvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GSzYkUSIxRidGRkYvRjIvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJ0ZOLUY/NiVGQS1GIzYnRkpGTkZKRi9GMkZjby8lK2V4ZWN1dGFibGVHRkVGRkZGLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRk4tRiw2JVEieEYnRi9GMi1GTzYtUSI9RidGRkZSL0ZVRkVGVkZYRlpGZm5GaG4vRltvUSwwLjI3Nzc3NzhlbUYnL0Zeb0ZqcC1GTzYtUSomdW1pbnVzMDtGJ0ZGRlJGaHBGVkZYRlpGZm5GaG4vRltvUSwwLjIyMjIyMjJlbUYnL0Zeb0ZgcS1GSzYkUSI1RidGRi1GTzYtUSMuLkYnRkZGUkZocEZWRlhGWkZmbkZobkZfcS9GXm9GXG9GYnFGTi1GLDYlUSdsZWdlbmRGJ0YvRjJGZXAtRjY2Ji1GIzYpLUYsNiVRKHR5cGVzZXRGJ0YvRjItRjY2JC1GIzYmLUZPNi1RIidGJ0ZGRlJGaHBGVkZYRlpGZm5GaG4vRltvUSwwLjExMTExMTFlbUYnRmhxLUY/NiUtRiw2JVEpJkxhbWJkYTtGJ0ZERkYtRiM2JkZKRk5GYG9GRkZjb0ZnckZGRkZGTkZgci1GNjYkLUYjNiZGZ3ItRj82JUZecy1GIzYmLUZLNiRRIjRGJ0ZGRk5GSkZGRmNvRmdyRkZGRi1GLDYjUSFGJ0ZGRkZGXHBGX3BGam9GRkZGLUZPNi1RIjtGJ0ZGRlJGVEZWRlhGWkZmbkZobkZqbkZbcS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0Zcby8lJmRlcHRoR0ZpdC8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GZXQ2JkZndEZqdEZcdS9GX3VRJWF1dG9GJ0YrLUY2NiQtRiM2Ly1GNjYmLUYjNihGZ3NGTi1GPzYlRl5zLUYjNiZGW3RGTi1GSzYkUSIzRidGRkZGRmNvRk4tRj82JUZecy1GIzYmRlt0Rk5GW3RGRkZjb0ZGRkZGXHBGX3BGTkZicEZlcEZccUZicUZlcUZicUZOLUYjNiZGaXFGZXAtRjY2Ji1GIzYsRmByRmNzRk5GYHItRjY2JC1GIzYmRmdyRl12RmdyRkZGRkZORmByLUY2NiQtRiM2JkZnckZkdkZnckZGRkZGXnRGRkZGRlxwRl9wRkZGXnRGam9GRkZGRmF0RmR0RmF1RistRjY2JC1GIzYuLUY2NiYtRiM2Ki1GPzYlRl5zLUYjNiYtRks2JFEiNkYnRkZGTkZhdkZGRmNvRk4tRj82JUZecy1GIzYmRmJ4Rk5GW3RGRkZjb0ZOLUY/NiVGXnMtRiM2JkZieEZORmJxRkZGY29GTi1GPzYlRkEtRiM2J0ZieEZORmJ4Ri9GMkZjb0ZGRkZGXHBGX3BGTkZicEZlcEZccUZicUZlcUZicUZOLUYjNiZGaXFGZXAtRjY2Ji1GIzYvRmByLUY2NiQtRiM2JkZnckZeeEZnckZGRkZGTkZgci1GNjYkLUYjNiZGZ3JGZXhGZ3JGRkZGRk5GYHItRjY2JC1GIzYmRmdyRml4RmdyRkZGRkZORmByLUY2NiQtRiM2JkZnci1GPzYlRl5zLUYjNiZGYnhGTkZieEZGRmNvRmdyRkZGRkZedEZGRkZGXHBGX3BGRkZedEZGRkZGam9GRg==">QyctSSVwbG90RzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliRzYiNiU3JCZJJ0xhbWJkYUdGKDYkIiIjIiIiJkYsNiRGLkYuL0kieEdGKDshIiYiIiYvSSdsZWdlbmRHRig3JC1JKHR5cGVzZXRHRig2Iy5GKy1GOzYjLiZGLDYkIiIlRi5GLy1GJDYlNyVGQSZGLDYkRkMiIiQmRiw2JEZDRkNGMi9GODclRj4tRjs2Iy5GRy1GOzYjLkZKRi8tRiQ2JTcmJkYsNiQiIidGSSZGLDYkRllGQyZGLDYkRllGNiZGLDYkRllGWUYyL0Y4NyYtRjs2Iy5GVy1GOzYjLkZaLUY7NiMuRmZuLUY7NiMuRmhu</Equation></Text-field> -</Input> -<Output> -<Text-field style="Maple Plot" layout="Maple Plot"><Plot height="735" type="two-dimensional" width="1296" plot-scale="1.0" plot-xtrans="0.0" plot-ytrans="0.0" gridlinevisibility="1" legendvisibility="true">LSUlUExPVEc2KS0lJ0NVUlZFU0c2JTdpeDckJCEjXSEiIiQiIiEhIiI3JCQhMVYoWyhcUlVaXCEjOiQiIiEhIiI3JCQhMiZReGE0eW4sXCEjOyQiIiEhIiI3JCQhMWhBWCFcSi0mWyEjOiQiIiEhIiI3JCQhMSV6ZTw6VyUpeiUhIzokIiIhISIiNyQkITFKaUNcSCFwdSUhIzokIiIhISIiNyQkITAjUnljdzYqcCUhIzkkIiIhISIiNyQkITFkOEZhKFEnXFkhIzokIiIhISIiNyQkITFqRF4td1kpZiUhIzokIiIhISIiNyQkITFLa0dkMFlaWCEjOiQiIiEhIiI3JCQhMVYmMzxhJCpcXCUhIzokIiIhISIiNyQkITJiOUhlYyF5W1chIzskIiIhISIiNyQkITE4RF0rZHYnUiUhIzokIiIhISIiNyQkITEtLzM7c15XViEjOiQiIiEhIiI3JCQhMT5SeWNkPCVIJSEjOiQiIiEhIiI3JCQhMUNaJSopKTNZW1UhIzokIiIhISIiNyQkITFPc1cqWyxUPiUhIzokIiIhISIiNyQkITJOcFF4JT4wW1QhIzskIiIhISIiNyQkITEmMzxNUSZbJTQlISM6JCIiISEiIjckJCExUHVbKCopcHEvJSEjOiQiIiEhIiI3JCQhMjtPc1dmWl0qUiEjOyQiIiEhIiI3JCQhMloqKil6ZiteWFIhIzskIiIhISIiNyQkITImemY+UkcjUSpRISM7JCIiISEiIjckJCEyO1J5YyR5TllRISM7JCIiISEiIjckJCExRmEzPC87JnokISM6JCIiISEiIjckJCEyJSlwUnpvISk+dSQhIzskIiIhISIiNyQkITJaJHBReHZvJnAkISM7JCIiISEiIjckJCEyTnVbKFwoKm9YTyEjOyQiIiEhIiI3JCQhMndgMjo1UFNmJCEjOyQiIiEhIiI3JCQhMWU6SmldXVZOISM6JCIiISEiIjckJCExLS8zO0ZoJVwkISM6JCIiISEiIjckJCEyeGAyOjVFLlckISM7JCIiISEiIjckJCEyYDQ+UTtaOlIkISM7JCIiISEiIjckJCEyViE0PU9fWVJMISM7JCIiISEiIjckJCExQFUlKW83RiNIJCEjOiQiIiEhIiI3JCQhMlojXClwenYxQyQhIzskIiIhISIiNyQkITJDWiUqKXklR0A+JCEjOyQiIiEhIiI3JCQhMi0zO0thI1FUSiEjOyQiIiEhIiI3JCQhMigqKXlkOiJwPDQkISM7JCIiISEiIjckJCExcFF4YSVHKVJJISM6JCIiISEiIjckJCExR2M3RE0hKSopSCEjOiQiIiEhIiI3JCQhMmM8TnFnWCdRSCEjOyQiIiEhIiI3JCQhMnRgMjpTNnopRyEjOyQiIiEhIiI3JCQhMjxSeWMkPkhURyEjOyQiIiEhIiI3JCQhMjE8TW93Z3l5IyEjOyQiIiEhIiI3JCQhMjtKaUNIcit1IyEjOyQiIiEhIiI3JCQhMjE4RV91PCIqbyMhIzskIiIhISIiNyQkITJaKFwqKilwWy5rIyEjOyQiIiEhIiI3JCQhMnZeLjIlcD4nZSMhIzskIiIhISIiNyQkITJYI1wpcFwwJFJEISM7JCIiISEiIjckJCEyTnNXKilHJDMnWyMhIzskIiIhISIiNyQkITEuMTdDcWRQQyEjOiQiIiEhIiI3JCQhMm1Mbk16PVhRIyEjOyQiIiEhIiI3JCQhMVJ5YzgmUShRQiEjOiQiIiEhIiI3JCQhMlonSGY9LGcnRyMhIzskIiIhISIiNyQkITJgMjpJK1BpQiMhIzskIiIhISIiNyQkITIzQFUlKXkxZj0jISM7JCIiISEiIjckJCExVCNbJ0g8d05AISM6JCIiISEiIjckJCEyZDtMbS0pZSgzIyEjOyQiIiEhIiI3JCQhMVolKil5KDReTj8hIzokIiIhISIiNyQkITFgMTh3VnA1PyEjOiQiIiEhIiI3JCQhMWY9UHV4KGUpPiEjOiQhMCIpenckei5KKSohIz43JCQhMicqKXpmcCVmKGY+ISM7JCExIylbLEJScHF4ISM+NyQkITIuN0NbO1RPJD4hIzskITFlOkkuQGtiPyEjPTckJCEyb05yVVhhaik9ISM7JCExJ1JXPElyUHMmISM9NyQkITJLbk1weSQ0TT0hIzskITJZcj9tQDt6OSIhIz03JCQhMiRmPVB1ci4leSIhIzskITIzVDshPkNQRz0hIz03JCQhMl8tMDVTLVR0IiEjOyQhMjkrYj9FM15mIyEjPTckJCEybFQkb09gJT5vIiEjOyQhMXJ5TU12QlxNISM8NyQkITImND5Rd24hUmoiISM7JCExdyhcQidSJXpDJSEjPDckJCEyJyopemY+KDNaZSIhIzskITFYKj41W1ZALyYhIzw3JCQhMnNaJjQ+IylRSTohIzskITIxTUdiRGslW2UhIz03JCQhMSNRd19YMDdbIiEjOiQhMTFTeiIqKm9kWichIzw3JCQhMjA8TW8nbyE0ViIhIzskITEpb1R1ZUR5KHAhIzw3JCQhMDE3Q29JYFMiISM5JCExOSgzQyRvKW87KCEjPDckJCEyJVwqKil6XGEoejghIzskITE3MUsnKUdtL3QhIzw3JCQhMiMpb1B2K1hpTiIhIzskITE7UCpbYGg8USghIzw3JCQhMUZhMzxidEs4ISM6JCExbDpeRiYqUTJ1ISM8NyQkITInKXlkOjt2d0kiISM7JCExazw5RWRrdHQhIzw3JCQhMi46SWchW2gjRyIhIzskITElSD4lPWNFc3MhIzw3JCQhMigpeWQ6QFh4RCIhIzskITEjM3owS04sNSghIzw3JCQhMnJVJjM8YyhHQiIhIzskITE3Nyp6L0lAJm8hIzw3JCQhMkZrR2Q5cSd6NiEjOyQhMk9TblIrcmAvJyEjPTckJCExYDA2QSc9RjgiISM6JCExeCtUdVlSIipcISM8NyQkITJQd18wSlkmeTUhIzskITInKjMjZStIZk1MISM9NyQkITEoUnplKCpmJ0g1ISM6JCEyYTYwQCo+TCdSIiEjPTckJCExXzI6SV0qRyIpKiEjOyQiMmJpVWImKWVYKyIhIz03JCQhMSdRd18wZEZIKiEjOyQiMXVmMFFpYCRbJSEjPDckJCExdmAyOl1ecSgpISM7JCIxJWUiKSozPyI+KikpISM8NyQkITFQclUmM19gSCkhIzskIjJ2cSRRV3g9ZjghIzw3JCQhMTtTITM7XTJ6KCEjOyQiMU9XdiN6USE+PiEjOzckJCExJCoqKioqKip6SSlIKCEjOyQiMkw8aVNfdFteIyEjPDckJCEwYzdEXSZca24hIzokIjInZS5qYHVRLkshIzw3JCQhMTM+UXcjKmYtaiEjOyQiMid6aWRWKmZZI1EhIzw3JCQhMS48TW9ZNHNkISM7JCIxUGlkNTFQYlghIzs3JCQhMXloQlpDUnRfISM7JCIxI2ZNT0pCdkMmISM7NyQkITIoUSdHZDkyJnpaISM8JCIxVS5KXjkhbyNmISM7NyQkITJgJ1F4YSpHX0clISM8JCIxVS5MQixjKmUnISM7NyQkITJiPVB1Wyc0InkkISM8JCIxTC4rU1tvT3MhIzs3JCQhMlclemU8WHNZSyEjPCQiMU1xYVU6MXl5ISM7NyQkITJYclYoW3h2Y0YhIzwkIjF4ZSpmP0lWVCkhIzs3JCQhMkUkZTtMdzR0QSEjPCQiMTQtJ1FIS1cpKSkhIzs3JCQhMkRDWydISDJjPCEjPCQiMWxLdkNDRzUkKiEjOzckJCEyNmY9UHV0LEMiISM8JCIxT3dxYU81VycqISM7NyQkITFscFJ6ZUJyeCEjPCQiMWohND5iZmcmKSohIzs3JCQhMWwjZj1QYSdHXSEjPCQiMU1PRzQhKm9RKiohIzs3JCQhMldjQFYnRzInRyMhIz0kIjFfeCNvKVE2KCkqKiEjOzckJCEyaztTITNtTjc8ISM9JCIwKkchMyFcdSMqKiohIzo3JCQhMiVvKGU8TlMnUTYhIz0kIjE7SzYqKTN5JyoqKiEjOzckJCExL1B4YTRDXGMhIz0kIjE7dkRjWz8qKioqISM7NyQkIjBjRlMhMzsjeikhIz4kIjFuXHYxKSoqKioqKiohIzs3JCQiMmNEYTM8JTNEZSEjPiQiMVRwbnVZOioqKiohIzs3JCQiMk8jb090WUFjNiEjPSQiMFBUby8ibycqKiohIzo3JCQiMjpBWydINCUqSDwhIz0kIjFuJVwoPWZmIyoqKiEjOzckJCIyJj4nSGY9ZE9JIyEjPSQiMVhDIWZHO3ApKiohIzs3JCQiMTsqKil6ZmZ4KVwhIzwkIjFgSXIpKm9tUioqISM7NyQkIjE3LTA1Pyc9bighIzwkIjFvKClvRyZIJ2YpKiEjOzckJCIyeG1Mbk1IJno3ISM8JCIwW1hedkJAaSohIzo3JCQiMmtyVihbMipwdCIhIzwkIjBASHAnb0tDJCohIzo3JCQiLyYpcFJSWF5BISM5JCIxJD11U2dIUiEqKSEjOzckJCIxckpqRXRLcEYhIzskIjEvRCopSExHLCUpISM7NyQkIjJremU8TlJaRyQhIzwkIjFZd2EoKkdCTXkhIzs3JCQiMTY+UXdBZmlQISM7JCIvOz4uZXRmcyEjOTckJCIxVHZdLDhRZFUhIzskIjFzI1smRzA8RW0hIzs3JCQiMXRhND5HNHBaISM7JCIxUWReWih6NCVmISM7NyQkIjEpeWM4Rmoiel8hIzskIjFkbFROJkcmUl8hIzs3JCQiMSJvTnJVTFEhZSEjOyQiMThqemxpTzZYISM7NyQkIjFZJ0hmPWpmRSchIzskIjIwKD4pNHRuWShRISM8NyQkIjElKWY+Uj1AJ3knISM7JCIxUkB3Wyp6WTwkISM7NyQkIjEpMzxNbydmM3QhIzskIjJtZjNKPikqPl0jISM8NyQkIjE9PlF3Nyw3eSEjOyQiMlsnKUc+NE5WKj0hIzw3JCQiMXRReGEqZiJwIykhIzskIjEnKnlRRkQhb1EiISM7NyQkIjFZKFsoXFJ2NykpISM7JCIxQTdUXk9KLyYpISM8NyQkIjFtVCRvT1xLRiohIzskIjFKTmRLJDREaiUhIzw3JCQiMWMtMDVdIiozKSohIzskIjI0dDcrSzB1LSIhIz03JCQiMkxuTXApcElHNSEjOyQhMk4jUXMlKltOTzghIz03JCQiMiZbKFwqKkdILjMiISM7JCEyTXpCa1YtclIkISM9NyQkIjJhNkJZI28nKUg2ISM7JCExOFJgalpKO1whIzw3JCQiMjE4RV8vYTo9IiEjOyQhMjooNFwiPUwyMychIz03JCQiMiU+UHVbIT4hSDchIzskITFQejxyI3psIW8hIzw3JCQiMj0/UyFleGhhNyEjOyQhMTprVXVPQHRxISM8NyQkIjJWb090WTstRyIhIzskITF3aWZNVCUpZXMhIzw3JCQiMiNbJjQ+TDFvSSIhIzskITEjKipvKCkpKipHcnQhIzw3JCQiMkBUI1snPidSTDghIzskITEmM0opNHNTMnUhIzw3JCQiMlh6ZTx2VWxOIiEjOyQhMWYoUjhuKTQiUSghIzw3JCQiMm88TnFJKm96OCEjOyQhMT1GPGJVJVxJKCEjPDckJCIxc1UmM0Epby85ISM6JCExJHkrMGwnKjQ8KCEjPDckJCIxbkxuTXJvSDkhIzokITAyJ1tiQiR6KXAhIzs3JCQiMkRkOUh5UjhbIiEjOyQhMS5HPlZGQXVrISM8NyQkIjJPYjVAIz0oPWAiISM7JCEyTnJNIilvRHkjZSEjPTckJCIyKjM8TW9UdyFlIiEjOyQhMjBYKilbRDxQNSYhIz03JCQiMlBkOUh5XV1qIiEjOyQhMjspUVclKlwwSFUhIz03JCQiMlssLjFzSFFvIiEjOyQhMXJeOyJmMHpUJCEjPDckJCIyaj9UI1s7ImZ0IiEjOyQhMWBMJkhxQGljIyEjPDckJCIwKnlkOmM1JHkiISM5JCEyUFtma28pKT4lPSEjPTckJCIyYT1QdTMsWiQ9ISM7JCEyayJ6I3lQZC45IiEjPTckJCIxUndfMCVbSyk9ISM6JCExbE0/PjJ2PmchIz03JCQiMjMuMTdNJSpSJD4hIzskITJhbCRvPSYpZU0/ISM+NyQkIjFFXi1iNSEpZT4hIzokITFSQTpkJj5yOCkhIz43JCQiMjhBVylveGckKT4hIzskITJYcS0iPkddQDghIz83JCQiMjpCWSMqNHkmND8hIzskIiIhISIiNyQkIjFVI1snSCVbYi4jISM6JCIiISEiIjckJCIyRlsnSGZNZCYzIyEjOyQiIiEhIiI3JCQiMU1wUXg3dE9AISM6JCIiISEiIjckJCIyUGQ5SFtsdT0jISM7JCIiISEiIjckJCIyJT1QdVtcM01BISM7JCIiISEiIjckJCIyJlJ6ZTxoXihHIyEjOyQiIiEhIiI3JCQiMi4hKWY+ZjBgTCMhIzskIiIhISIiNyQkIjApZj5SImZpUSMhIzkkIiIhISIiNyQkIjJuOEZhPUddViMhIzskIiIhISIiNyQkIjEkZj1QJSp6IipbIyEjOiQiIiEhIiI3JCQiMSc9UHVRcmdgIyEjOiQiIiEhIiI3JCQiMShReGFmJEgqZSMhIzokIiIhISIiNyQkIjJ3XSwuJykqelBFISM7JCIiISEiIjckJCIxdVomNDRlM3AjISM6JCIiISEiIjckJCIxc1UmM1BRbXQjISM6JCIiISEiIjckJCIyaTlIZXd3KCl5IyEjOyQiIiEhIiI3JCQiMmQuMjkpKVIiUkchIzskIiIhISIiNyQkIi8qemY0cSUqKUchIzgkIiIhISIiNyQkIjFwUXhhXmhSSCEjOiQiIiEhIiI3JCQiMmUlKil5ZCkpeSgpSCEjOyQiIiEhIiI3JCQiMlttS2whZicpUkkhIzskIiIhISIiNyQkIjI7RF0rNipcKjMkISM7JCIiISEiIjckJCIyMip6Zj5kdFRKISM7JCIiISEiIjckJCIyUHZdLFZBISo9JCEjOyQiIiEhIiI3JCQiMVF1Wyg0JEdUSyEjOiQiIiEhIiI3JCQiMV8tMDUoUjhIJCEjOiQiIiEhIiI3JCQiMSczPE1bdTdNJCEjOiQiIiEhIiI3JCQiMSRwUXhhSk1SJCEjOiQiIiEhIiI3JCQiMjo/UyEzLFpUTSEjOyQiIiEhIiI3JCQiMUFUI1s7bzFcJCEjOiQiIiEhIiI3JCQiMUxtS2wnKSlcYSQhIzokIiIhISIiNyQkIjB0WCJIOTwlZiQhIzkkIiIhISIiNyQkIjAlemU8K1pXTyEjOSQiIiEhIiI3JCQiMWhAVidRQWNwJCEjOiQiIiEhIiI3JCQiMlhvT3RPVEV1JCEjOyQiIiEhIiI3JCQiMWg+Unk/dyN6JCEjOiQiIiEhIiI3JCQiMlpvT3RFLEQlUSEjOyQiIiEhIiI3JCQiMW9NcFFucSYqUSEjOiQiIiEhIiI3JCQiMWQ6SmkjZUUlUiEjOiQiIiEhIiI3JCQiMnhNcFFkSW8qUiEjOyQiIiEhIiI3JCQiMTlGYTNwclhTISM6JCIiISEiIjckJCIxT3FTIlEoMyU0JSEjOiQiIiEhIiI3JCQiMXVXKil5NjVZVCEjOiQiIiEhIiI3JCQiMk5kOUhRRCQpPiUhIzskIiIhISIiNyQkIjEoUnplblRlQyUhIzokIiIhISIiNyQkIjE0PE1vPUknSCUhIzokIiIhISIiNyQkIjE2QFUlM1liTSUhIzokIiIhISIiNyQkIjFiMzxNdCMqKVIlISM6JCIiISEiIjckJCIwI1J5Y3A2WFchIzkkIiIhISIiNyQkIjAlemU8dTspXCUhIzkkIiIhISIiNyQkIjElXClwUncuW1ghIzokIiIhISIiNyQkIjFbI1wpcGhVKGYlISM6JCIiISEiIjckJCIxQ1olKikpUiZvayUhIzokIiIhISIiNyQkIjEjUnljQm5zcCUhIzokIiIhISIiNyQkIjE8TG1LV3FdWiEjOiQiIiEhIiI3JCQiMVJ4YTQ2cSp6JSEjOiQiIiEhIiI3JCQiMUdiNUByMVtbISM6JCIiISEiIjckJCIxKUdkOWZwKCoqWyEjOiQiIiEhIiI3JCQiMV4tMDUmZjgmXCEjOiQiIiEhIiI3JCQiI10hIiIkIiIhISIiLSUnTEVHRU5ERzYjLSUpX1RZUEVTRVRHNiMtSSVtc3ViRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiYtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1UScmIzkyMzs2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjctSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USIyNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLUkjbW9HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2PlEiLDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJmZlbmNlR1EmZmFsc2U2Ii8lKnNlcGFyYXRvckdRJXRydWU2Ii8lKXN0cmV0Y2h5R1EmZmFsc2U2Ii8lKnN5bW1ldHJpY0dRJmZhbHNlNiIvJShsYXJnZW9wR1EmZmFsc2U2Ii8lLm1vdmFibGVsaW1pdHNHUSZmYWxzZTYiLyUnYWNjZW50R1EmZmFsc2U2Ii8lJ2xzcGFjZUdRJjAuMGVtNiIvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbTYiLUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEiMTYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJS9zdWJzY3JpcHRzaGlmdEdRIjA2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii0lJkNPTE9SRzYnJSRSR0JHJCIpQyllcSUhIikkIiIhISIiJCIoJz4hXCYhIiktJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUnQ1VSVkVTRzYlN1x5NyQkISNdISIiJCIiISEiIjckJCExVihbKFxSVVpcISM6JCIiISEiIjckJCEyJlF4YTR5bixcISM7JCIiISEiIjckJCExaEFYIVxKLSZbISM6JCIiISEiIjckJCExJXplPDpXJSl6JSEjOiQiIiEhIiI3JCQhMUppQ1xIIXB1JSEjOiQiIiEhIiI3JCQhMCNSeWN3NipwJSEjOSQiIiEhIiI3JCQhMWQ4RmEoUSdcWSEjOiQiIiEhIiI3JCQhMWpEXi13WSlmJSEjOiQiIiEhIiI3JCQhMUtrR2QwWVpYISM6JCIiISEiIjckJCExViYzPGEkKlxcJSEjOiQiIiEhIiI3JCQhMmI5SGVjIXlbVyEjOyQiIiEhIiI3JCQhMThEXStkdidSJSEjOiQiIiEhIiI3JCQhMS0vMztzXldWISM6JCIiISEiIjckJCExPlJ5Y2Q8JUglISM6JCIiISEiIjckJCExQ1olKikpM1lbVSEjOiQiIiEhIiI3JCQhMU9zVypbLFQ+JSEjOiQiIiEhIiI3JCQhMk5wUXglPjBbVCEjOyQiIiEhIiI3JCQhMSYzPE1RJlslNCUhIzokIiIhISIiNyQkITFQdVsoKilwcS8lISM6JCIiISEiIjckJCEyO09zV2ZaXSpSISM7JCIiISEiIjckJCEyWioqKXpmK15YUiEjOyQiIiEhIiI3JCQhMiZ6Zj5SRyNRKlEhIzskIiIhISIiNyQkITI7UnljJHlOWVEhIzskIiIhISIiNyQkITFGYTM8LzsmeiQhIzokIiIhISIiNyQkITIlKXBSem8hKT51JCEjOyQiIiEhIiI3JCQhMlokcFF4dm8mcCQhIzskIiIhISIiNyQkITJOdVsoXCgqb1hPISM7JCIiISEiIjckJCEyd2AyOjVQU2YkISM7JCIiISEiIjckJCExZTpKaV1dVk4hIzokIiIhISIiNyQkITEtLzM7RmglXCQhIzokIiIhISIiNyQkITJ4YDI6NUUuVyQhIzskIiIhISIiNyQkITJgND5RO1o6UiQhIzskIiIhISIiNyQkITJWITQ9T19ZUkwhIzskIiIhISIiNyQkITFAVSUpbzdGI0gkISM6JCIiISEiIjckJCEyWiNcKXB6djFDJCEjOyQiIiEhIiI3JCQhMkNaJSopeSVHQD4kISM7JCIiISEiIjckJCEyLTM7S2EjUVRKISM7JCIiISEiIjckJCEyKCopeWQ6InA8NCQhIzskIiIhISIiNyQkITFwUXhhJUcpUkkhIzokIiIhISIiNyQkITFHYzdETSEpKilIISM6JCIiISEiIjckJCEyYzxOcWdYJ1FIISM7JCIiISEiIjckJCEydGAyOlM2eilHISM7JCIiISEiIjckJCEyPFJ5YyQ+SFRHISM7JCIiISEiIjckJCEyMTxNb3dneXkjISM7JCIiISEiIjckJCEyO0ppQ0hyK3UjISM7JCIiISEiIjckJCEyMThFX3U8IipvIyEjOyQiIiEhIiI3JCQhMlooXCoqKXBbLmsjISM7JCIiISEiIjckJCEydl4uMiVwPidlIyEjOyQiIiEhIiI3JCQhMlgjXClwXDAkUkQhIzskIiIhISIiNyQkITJOc1cqKUckMydbIyEjOyQiIiEhIiI3JCQhMS4xN0NxZFBDISM6JCIiISEiIjckJCEybUxuTXo9WFEjISM7JCIiISEiIjckJCExUnljOCZRKFFCISM6JCIiISEiIjckJCEyWidIZj0sZydHIyEjOyQiIiEhIiI3JCQhMmAyOkkrUGlCIyEjOyQiIiEhIiI3JCQhMjNAVSUpeTFmPSMhIzskIiIhISIiNyQkITFUI1snSDx3TkAhIzokIiIhISIiNyQkITJkO0xtLSllKDMjISM7JCIiISEiIjckJCExWiUqKXkoNF5OPyEjOiQiIiEhIiI3JCQhMWY9UHV4KGUpPiEjOiQhMkVsPiZ5MChlNyUhI0E3JCQhMi43Q1s7VE8kPiEjOyQhMmBJaDNGZzciUiEjPzckJCEyb05yVVhhaik9ISM7JCEyLTNOdXglZi49ISM+NyQkITJLbk1weSQ0TT0hIzskITE0LmZXIW85MyYhIz03JCQhMiRmPVB1ci4leSIhIzskITJhayVRYTUuOTUhIz03JCQhMl8tMDVTLVR0IiEjOyQhMUZiUi1IOS48ISM8NyQkITJsVCRvT2AlPm8iISM7JCExOVk2LnFIJGYjISM8NyQkITImND5Rd24hUmoiISM7JCEyJ1JeTi5ieEVOISM9NyQkITInKil6Zj4oM1plIiEjOyQhMVFrPiVbcEVhJSEjPDckJCEyc1omND4jKVFJOiEjOyQhMTlzYSZRUSpmYyEjPDckJCExI1F3X1gwN1siISM6JCExYyFmaj0uSGYnISM8NyQkITIwPE1vJ28hNFYiISM7JCExVTpRITNCTFIoISM8NyQkITAxN0NvSWBTIiEjOSQhMXcqRyVIeSFwcighIzw3JCQhMiVcKiopelxhKHo4ISM7JCExNipIPnl6PCh6ISM8NyQkITIjKW9QditYaU4iISM7JCEwRUdWMEp5OCkhIzs3JCQhMUZhMzxidEs4ISM6JCExaWFyKmYuPkIpISM8NyQkITJ5Z0AkUmA/PzghIzskITFiI0hvbHkwRCkhIzw3JCQhMicpeWQ6O3Z3SSIhIzskITFLQSVRcCZIWSMpISM8NyQkITImcFJ6JClcOSZIIiEjOyQhMEx1KD1NRz0jKSEjOzckJCEyLjpJZyFbaCNHIiEjOyQhMSI+MjRWRmU7KSEjPDckJCEyKCl5ZDpAWHhEIiEjOyQhMSR6RWJRK28peiEjPDckJCEyclUmMzxjKEdCIiEjOyQhMUJcQTB3aS94ISM8NyQkITFOcVMiKUdGMTchIzokIS9QKnBJelxHKCEjOjckJCEyRmtHZDlxJ3o2ISM7JCExNyoqXCMzUTd1JyEjPDckJCExYDA2QSc9RjgiISM6JCExT0QoUV8xIXlhISM8NyQkITJQd18wSlkmeTUhIzskITJZdCRldnJPYk4hIz03JCQhMShSemUoKmYnSDUhIzokITJZckwjPi9ITjkhIz03JCQhMV8yOkldKkciKSohIzskIjFeUic+YGApZSYqISM9NyQkITEnUXdfMGRGSCohIzskIjEwRklqJG9zI1IhIzw3JCQhMXZgMjpdXnEoKSEjOyQiMVgsXDA0and2ISM8NyQkITFQclUmM19gSCkhIzskIjJURk4mRyEzOjsiISM8NyQkITE7UyEzO10yeighIzskIjIjXE9Kam0scjshIzw3JCQhMSQqKioqKioqekkpSCghIzskIjIzPUAqel4hb0MjISM8NyQkITBjN0RdJlxrbiEjOiQiMmF5MGU7PSlcSCEjPDckJCExMz5RdyMqZi1qISM7JCIxVHVUIWZdQ2gkISM7NyQkITEuPE1vWTRzZCEjOyQiMXQvPCFlQ3VUJSEjOzckJCExeWhCWkNSdF8hIzskIjFHJz1mR29sPiYhIzs3JCQhMihRJ0dkOTImelohIzwkIjEzOyo+QSQpeidmISM7NyQkITJgJ1F4YSpHX0clISM8JCIxX0ZzVCFlIj1uISM7NyQkITJiPVB1Wyc0InkkISM8JCIxdyY9Jnk/KClRdSEjOzckJCEyVyV6ZTxYc1lLISM8JCIxKEhGPitHNDgpISM7NyQkITJYclYoW3h2Y0YhIzwkIjEpXHkwIlxsI28pISM7NyQkITJFJGU7THc0dEEhIzwkIjF3cTJ5QiFvOCohIzs3JCQhMkRDWydISDJjPCEjPCQiMEo+ImZGQzkmKiEjOjckJCEyNmY9UHV0LEMiISM8JCIxL1YjeT5Dc3gqISM7NyQkITJROUhlbVsnMzUhIzwkIjFwVS1PWmBmKSohIzs3JCQhMWxwUnplQnJ4ISM8JCIxMjktNClRNiMqKiEjOzckJCExOiJHYzdYKipSJyEjPCQiMSNbIipIY3ElWyoqISM7NyQkITFsI2Y9UGEnR10hIzwkIjFiQyFHSmclcCoqISM7NyQkITJYVCE0PU9PZE8hIz0kIjFNbkhKV2IlKSoqISM7NyQkITJXY0BWJ0cyJ0cjISM9JCIxO0ojKVFsRCUqKiohIzs3JCQhMiVvKGU8TlMnUTYhIz0kIjEwZCg9S1EnKSoqKiEjOzckJCIwY0ZTITM7I3opISM+JCIxSHRtQSoqKioqKioqISM7NyQkIjJPI29PdFlBYzYhIz0kIjFITyY+I1xmKSoqKiEjOzckJCIyJj4nSGY9ZE9JIyEjPSQiMSplKikpZlI7JSoqKiEjOzckJCIxbyhmPlIzZGskISM8JCIxKFtHKmUpZVkpKiohIzs3JCQiMTsqKil6ZmZ4KVwhIzwkIjF6IXAuUSQqKnAqKiEjOzckJCIxaystLzMiKUhqISM8JCIxR3AhPVMlcFwqKiEjOzckJCIxNy0wNT8nPW4oISM8JCIxKCl5UW44TUIqKiEjOzckJCIyWE1wUXhkTC0iISM8JCIxWGhvO2AkXCYpKiEjOzckJCIyeG1Mbk1IJno3ISM8JCIxPlkjUiZvM2goKiEjOzckJCIya3JWKFsyKnB0IiEjPCQiMVg2Zj9HKWZfKiEjOzckJCIvJilwUlJYXkEhIzkkIjElKUhQNTwpWzoqISM7NyQkIjFySmpFdEtwRiEjOyQiMWlPW00mNCdwJykhIzs3JCQiMmt6ZTxOUlpHJCEjPCQiMVxLd3U0ZyUzKSEjOzckJCIxNj5Rd0FmaVAhIzskIjFFMUc5KCo+a3UhIzs3JCQiMVR2XSw4UWRVISM7JCIxeEJQc2hMZm4hIzs3JCQiMXRhND5HNHBaISM7JCIxRDF6bi40JSlmISM7NyQkIjEpeWM4Rmoiel8hIzskIjFmJ0ctRDZ2PSYhIzs3JCQiMSJvTnJVTFEhZSEjOyQiMVRIJSlbeExvViEjOzckJCIxWSdIZj1qZkUnISM7JCIxKClvUTt5dm1PISM7NyQkIjElKWY+Uj1AJ3knISM7JCIxZFwpUlEmej5IISM7NyQkIjEpMzxNbydmM3QhIzskIjFHZmpARy1NQSEjOzckJCIxPT5RdzcsN3khIzskIjJ3Vj5PcHF5ayIhIzw3JCQiMXRReGEqZiJwIykhIzskIjJUPXdaKWYqZT0iISM8NyQkIjFZKFsoXFJ2NykpISM7JCIxZSslb0xSQEQoISM8NyQkIjFtVCRvT1xLRiohIzskIjJPQEohPklEXVMhIz03JCQiMWMtMDVdIiozKSohIzskIjFUImVxKD1BbigqISM9NyQkIjJMbk1wKXBJRzUhIzskITJDcFY7WlQ/UCIhIz03JCQiMiZbKFwqKkdILjMiISM7JCEyQ0YkKkhsWmhpJCEjPTckJCIyYTZCWSNvJylINiEjOyQhMiZSTSspelwqKVEmISM9NyQkIjIxOEVfL2E6PSIhIzskITFOSyoqKT5dUXknISM8NyQkIjIlPlB1WyE+IUg3ISM7JCExYyIqUWoiNDlsKCEjPDckJCIyPT9TIWV4aGE3ISM7JCExZSMzKEhQMWR6ISM8NyQkIjJWb090WTstRyIhIzskITEjKXlRJlxXSDopISM8NyQkIjJpNkInKlI2TkgiISM7JCEwelV2J1slR0ApISM7NyQkIjIjWyY0Pkwxb0kiISM7JCExd2o4SnY3WCMpISM8NyQkIjItKWY+azc1PzghIzskITB6J0hTKFExRCkhIzs3JCQiMkBUI1snPidSTDghIzskITFzWzx6ckhJIykhIzw3JCQiMlh6ZTx2VWxOIiEjOyQhMHVjIT5dO08iKSEjOzckJCIybzxOcUkqb3o4ISM7JCExKD5SLSZSTHN6ISM8NyQkIjFzVSYzQSlvLzkhIzokITEmKWVIQycqPUN4ISM8NyQkIjFuTG5Ncm9IOSEjOiQhMWlZNlEneSxUKCEjPDckJCIyRGQ5SHlSOFsiISM7JCEwQCJSW1dfIWYnISM7NyQkIjJPYjVAIz0oPWAiISM7JCEyRFMsPUlVLWomISM9NyQkIjIqMzxNb1R3IWUiISM7JCExVkU0LSNRXGklISM8NyQkIjJQZDlIeV1daiIhIzskITFucG5kRmwuTiEjPDckJCIyWywuMXNIUW8iISM7JCExJFEjKjMqeWVlRCEjPDckJCIyaj9UI1s7ImZ0IiEjOyQhMnhnbWxgeF5uIiEjPTckJCIwKnlkOmM1JHkiISM5JCEyPj5XIz1dQ0Q1ISM9NyQkIjJhPVB1MyxaJD0hIzskITBWTTlvPT0uJiEjPDckJCIxUndfMCVbSyk9ISM6JCEyJiozLF4jb0xXPiEjPjckJCIyMy4xN00lKlIkPiEjOyQhMmEqSFs9cGFeUSEjPzckJCIyOEFXKW94ZyQpPiEjOyQhMTBWXW1ccEZrISNANyQkIjFVI1snSCVbYi4jISM6JCIiISEiIjckJCIyRlsnSGZNZCYzIyEjOyQiIiEhIiI3JCQiMU1wUXg3dE9AISM6JCIiISEiIjckJCIyUGQ5SFtsdT0jISM7JCIiISEiIjckJCIyJT1QdVtcM01BISM7JCIiISEiIjckJCIyJlJ6ZTxoXihHIyEjOyQiIiEhIiI3JCQiMi4hKWY+ZjBgTCMhIzskIiIhISIiNyQkIjApZj5SImZpUSMhIzkkIiIhISIiNyQkIjJuOEZhPUddViMhIzskIiIhISIiNyQkIjEkZj1QJSp6IipbIyEjOiQiIiEhIiI3JCQiMSc9UHVRcmdgIyEjOiQiIiEhIiI3JCQiMShReGFmJEgqZSMhIzokIiIhISIiNyQkIjJ3XSwuJykqelBFISM7JCIiISEiIjckJCIxdVomNDRlM3AjISM6JCIiISEiIjckJCIxc1UmM1BRbXQjISM6JCIiISEiIjckJCIyaTlIZXd3KCl5IyEjOyQiIiEhIiI3JCQiMmQuMjkpKVIiUkchIzskIiIhISIiNyQkIi8qemY0cSUqKUchIzgkIiIhISIiNyQkIjFwUXhhXmhSSCEjOiQiIiEhIiI3JCQiMmUlKil5ZCkpeSgpSCEjOyQiIiEhIiI3JCQiMlttS2whZicpUkkhIzskIiIhISIiNyQkIjI7RF0rNipcKjMkISM7JCIiISEiIjckJCIyMip6Zj5kdFRKISM7JCIiISEiIjckJCIyUHZdLFZBISo9JCEjOyQiIiEhIiI3JCQiMVF1Wyg0JEdUSyEjOiQiIiEhIiI3JCQiMV8tMDUoUjhIJCEjOiQiIiEhIiI3JCQiMSczPE1bdTdNJCEjOiQiIiEhIiI3JCQiMSRwUXhhSk1SJCEjOiQiIiEhIiI3JCQiMjo/UyEzLFpUTSEjOyQiIiEhIiI3JCQiMUFUI1s7bzFcJCEjOiQiIiEhIiI3JCQiMUxtS2wnKSlcYSQhIzokIiIhISIiNyQkIjB0WCJIOTwlZiQhIzkkIiIhISIiNyQkIjAlemU8K1pXTyEjOSQiIiEhIiI3JCQiMWhAVidRQWNwJCEjOiQiIiEhIiI3JCQiMlhvT3RPVEV1JCEjOyQiIiEhIiI3JCQiMWg+Unk/dyN6JCEjOiQiIiEhIiI3JCQiMlpvT3RFLEQlUSEjOyQiIiEhIiI3JCQiMW9NcFFucSYqUSEjOiQiIiEhIiI3JCQiMWQ6SmkjZUUlUiEjOiQiIiEhIiI3JCQiMnhNcFFkSW8qUiEjOyQiIiEhIiI3JCQiMTlGYTNwclhTISM6JCIiISEiIjckJCIxT3FTIlEoMyU0JSEjOiQiIiEhIiI3JCQiMXVXKil5NjVZVCEjOiQiIiEhIiI3JCQiMk5kOUhRRCQpPiUhIzskIiIhISIiNyQkIjEoUnplblRlQyUhIzokIiIhISIiNyQkIjE0PE1vPUknSCUhIzokIiIhISIiNyQkIjE2QFUlM1liTSUhIzokIiIhISIiNyQkIjFiMzxNdCMqKVIlISM6JCIiISEiIjckJCIwI1J5Y3A2WFchIzkkIiIhISIiNyQkIjAlemU8dTspXCUhIzkkIiIhISIiNyQkIjElXClwUncuW1ghIzokIiIhISIiNyQkIjFbI1wpcGhVKGYlISM6JCIiISEiIjckJCIxQ1olKikpUiZvayUhIzokIiIhISIiNyQkIjEjUnljQm5zcCUhIzokIiIhISIiNyQkIjE8TG1LV3FdWiEjOiQiIiEhIiI3JCQiMVJ4YTQ2cSp6JSEjOiQiIiEhIiI3JCQiMUdiNUByMVtbISM6JCIiISEiIjckJCIxKUdkOWZwKCoqWyEjOiQiIiEhIiI3JCQiMV4tMDUmZjgmXCEjOiQiIiEhIiI3JCQiI10hIiIkIiIhISIiLSUnTEVHRU5ERzYjLSUpX1RZUEVTRVRHNiMtSSVtc3ViRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiYtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1UScmIzkyMzs2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjctSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USI0NiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLUkjbW9HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2PlEiLDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJmZlbmNlR1EmZmFsc2U2Ii8lKnNlcGFyYXRvckdRJXRydWU2Ii8lKXN0cmV0Y2h5R1EmZmFsc2U2Ii8lKnN5bW1ldHJpY0dRJmZhbHNlNiIvJShsYXJnZW9wR1EmZmFsc2U2Ii8lLm1vdmFibGVsaW1pdHNHUSZmYWxzZTYiLyUnYWNjZW50R1EmZmFsc2U2Ii8lJ2xzcGFjZUdRJjAuMGVtNiIvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbTYiLUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEiMjYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJS9zdWJzY3JpcHRzaGlmdEdRIjA2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii0lJkNPTE9SRzYnJSRSR0JHJCIiISEiIiQiKCc+IVwmISIpJCIpQyllcSUhIiktJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUlVklFV0c2JDskISNdISIiJCIjXSEiIiUoREVGQVVMVEctJiUmX0FYSVNHNiMiIiI2Jy0lK19HUklETElORVNHNiYtJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJiUmX0FYSVNHNiMiIiM2Jy0lK19HUklETElORVNHNiYtJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJStBWEVTTEFCRUxTRzYkLUkjbWlHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEieDYiLyUnZmFtaWx5R1EhNiIvJSVzaXplR1EjMTA2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EldHJ1ZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ2l0YWxpYzYiUSE2Ii0lJVJPT1RHNictJSlCT1VORFNfWEc2IyQiI3EhIiItJSlCT1VORFNfWUc2IyQiJD8iISIiLSUtQk9VTkRTX1dJRFRIRzYjJCImU0ciISIiLSUuQk9VTkRTX0hFSUdIVEc2IyQiJStvISIiLSUpQ0hJTERSRU5HNiI=</Plot></Text-field> -</Output> -<Output> -<Text-field style="Maple Plot" layout="Maple Plot"><Plot height="755" type="two-dimensional" width="1276" plot-scale="1.0" plot-xtrans="0.0" plot-ytrans="0.0" gridlinevisibility="1" legendvisibility="true">LSUlUExPVEc2Ki0lJ0NVUlZFU0c2JTdbeTckJCEjXSEiIiQiIiEhIiI3JCQhMVYoWyhcUlVaXCEjOiQiIiEhIiI3JCQhMiZReGE0eW4sXCEjOyQiIiEhIiI3JCQhMWhBWCFcSi0mWyEjOiQiIiEhIiI3JCQhMSV6ZTw6VyUpeiUhIzokIiIhISIiNyQkITFKaUNcSCFwdSUhIzokIiIhISIiNyQkITAjUnljdzYqcCUhIzkkIiIhISIiNyQkITFkOEZhKFEnXFkhIzokIiIhISIiNyQkITFqRF4td1kpZiUhIzokIiIhISIiNyQkITFLa0dkMFlaWCEjOiQiIiEhIiI3JCQhMVYmMzxhJCpcXCUhIzokIiIhISIiNyQkITJiOUhlYyF5W1chIzskIiIhISIiNyQkITE4RF0rZHYnUiUhIzokIiIhISIiNyQkITEtLzM7c15XViEjOiQiIiEhIiI3JCQhMT5SeWNkPCVIJSEjOiQiIiEhIiI3JCQhMUNaJSopKTNZW1UhIzokIiIhISIiNyQkITFPc1cqWyxUPiUhIzokIiIhISIiNyQkITJOcFF4JT4wW1QhIzskIiIhISIiNyQkITEmMzxNUSZbJTQlISM6JCIiISEiIjckJCExUHVbKCopcHEvJSEjOiQiIiEhIiI3JCQhMjtPc1dmWl0qUiEjOyQiIiEhIiI3JCQhMloqKil6ZiteWFIhIzskIiIhISIiNyQkITImemY+UkcjUSpRISM7JCIiISEiIjckJCEyO1J5YyR5TllRISM7JCIiISEiIjckJCExRmEzPC87JnokISM6JCIiISEiIjckJCEyJSlwUnpvISk+dSQhIzskIiIhISIiNyQkITJaJHBReHZvJnAkISM7JCIiISEiIjckJCEyTnVbKFwoKm9YTyEjOyQiIiEhIiI3JCQhMndgMjo1UFNmJCEjOyQiIiEhIiI3JCQhMWU6SmldXVZOISM6JCIiISEiIjckJCExLS8zO0ZoJVwkISM6JCIiISEiIjckJCEyeGAyOjVFLlckISM7JCIiISEiIjckJCEyYDQ+UTtaOlIkISM7JCIiISEiIjckJCEyViE0PU9fWVJMISM7JCIiISEiIjckJCExQFUlKW83RiNIJCEjOiQiIiEhIiI3JCQhMlojXClwenYxQyQhIzskIiIhISIiNyQkITJDWiUqKXklR0A+JCEjOyQiIiEhIiI3JCQhMi0zO0thI1FUSiEjOyQiIiEhIiI3JCQhMigqKXlkOiJwPDQkISM7JCIiISEiIjckJCExcFF4YSVHKVJJISM6JCIiISEiIjckJCExR2M3RE0hKSopSCEjOiQiMiZIaVtQUERRSSEjQjckJCEyYzxOcWdYJ1FIISM7JCIwJ3kmcHJHZi8nISM+NyQkITJ0YDI6UzZ6KUchIzskIjIxOCNRM3gvYkwhIz83JCQhMjxSeWMkPkhURyEjOyQiMWtSLjsqUXJwKSEjPjckJCEyMTxNb3dneXkjISM7JCIxJmYhKWVOKFFoPSEjPTckJCEyO0ppQ0hyK3UjISM7JCIxaUk7cj8kcDMkISM9NyQkITIxOEVfdTwiKm8jISM7JCIyWFspNGQnPiEpcCUhIz43JCQhMlooXCoqKXBbLmsjISM7JCIxWEEmKlskSGxYJyEjPTckJCEydl4uMiVwPidlIyEjOyQiMVZqP04tKlFgKSEjPTckJCEyWCNcKXBcMCRSRCEjOyQiMjo2Iyp5ai8+LiIhIz03JCQhMk5zVyopRyQzJ1sjISM7JCIxVjJBJXBIekAiISM8NyQkITEuMTdDcWRQQyEjOiQiMmx2WjhcKVJlOCEjPTckJCEybUxuTXo9WFEjISM7JCIyJEdbclw7SGw5ISM9NyQkITFSeWM4JlEoUUIhIzokIjEjKlw3WyM9dV0iISM8NyQkITJaJ0hmPSxnJ0cjISM7JCIyTiRSJG8+aiUpWyIhIz03JCQhMmAyOkkrUGlCIyEjOyQiMiRmRUE5djMmUiIhIz03JCQhMjNAVSUpeTFmPSMhIzskIjJjXUxFPVtWQSIhIz03JCQhMVQjWydIPHdOQCEjOiQiMSRbXEgnUWMieSohIz03JCQhMmQ7TG0tKWUoMyMhIzskIjFDPWd4YTxlbiEjPTckJCExWiUqKXkoNF5OPyEjOiQiMU1xeS5BdyEqRyEjPTckJCExZj1QdXgoZSk+ISM6JCEyY2M0ZT5NKik9IiEjPjckJCEyLjdDWztUTyQ+ISM7JCExUEYkSEJGczEnISM9NyQkITJvTnJVWGFqKT0hIzskITJMelxeTmNBOyIhIz03JCQhMktuTXB5JDRNPSEjOyQhMVtsPCVvcWMlPiEjPDckJCEyJGY9UHVyLiV5IiEjOyQhMnVvRE8jPi92RyEjPTckJCEyXy0wNVMtVHQiISM7JCExOClSYitrSydSISM8NyQkITJsVCRvT2AlPm8iISM7JCExUi9LYmEqUkImISM8NyQkITImND5Rd24hUmoiISM7JCExJFt3R21EX1onISM8NyQkITInKil6Zj4oM1plIiEjOyQhMVA0MDdhRmF4ISM8NyQkITJzWiY0PiMpUUk6ISM7JCExUV4rPig0LTQqISM8NyQkITEjUXdfWDA3WyIhIzokITJ3SWVSLSpwOTUhIzw3JCQhMjA8TW8nbyE0ViIhIzskITFYQV9vMUkqNCIhIzs3JCQhMDE3Q29JYFMiISM5JCEyTlFEcVMyMTgiISM8NyQkITIlXCoqKXpcYSh6OCEjOyQhMmQoNFRHNG1fNiEjPDckJCEyKT1Rd18oKip6TyIhIzskITJGPlEwJG9VZjYhIzw3JCQhMiMpb1B2K1hpTiIhIzskITImSDZJJkdZUjsiISM8NyQkITJ2YjZCRSFcVzghIzskITJERWw4UU1oOyIhIzw3JCQhMUZhMzxidEs4ISM6JCEyM0gtWCMqNGY7IiEjPDckJCEyeWdAJFJgPz84ISM7JCEyW0MjKSlRdCNIOyIhIzw3JCQhMicpeWQ6O3Z3SSIhIzskITJOR14qKWZGcToiISM8NyQkITImcFJ6JClcOSZIIiEjOyQhMi4/WFxaRyJbNiEjPDckJCEyLjpJZyFbaCNHIiEjOyQhMDJMSS5haDgiISM6NyQkITIoKXlkOkBYeEQiISM7JCEyKjRTdHBELC42ISM8NyQkITJyVSYzPGMoR0IiISM7JCEweWBqa0xxMCIhIzo3JCQhMkZrR2Q5cSd6NiEjOyQhMFl6WiRlIT05KiEjOzckJCExYDA2QSc9RjgiISM6JCExYF5UYDI+c3QhIzw3JCQhMlB3XzBKWSZ5NSEjOyQhMUBfVSFbNml2JSEjPDckJCExKFJ6ZSgqZidINSEjOiQhMUx1aCc0W1kiPiEjPDckJCExXzI6SV0qRyIpKiEjOyQiMilIYzp6UFdzNyEjPTckJCExJ1F3XzBkRkgqISM7JCIxKipSQm8rOUxeISM8NyQkITF2YDI6XV5xKCkhIzskIjFFPUskejVLZyohIzw3JCQhMVByVSYzX2BIKSEjOyQiMjo6ZyxnV2RVIiEjPDckJCExO1MhMztdMnooISM7JCIxMCFRISlmSkUpPiEjOzckJCExJCoqKioqKip6SSlIKCEjOyQiMWVmZkYnZVplIyEjOzckJCEwYzdEXSZca24hIzokIjE7JVJQUzRTSCQhIzs3JCQhMTM+UXcjKmYtaiEjOyQiMVkpW3MmUnFXUiEjOzckJCExLjxNb1k0c2QhIzskIjFiT0BxJGUiPlohIzs3JCQhMXloQlpDUnRfISM7JCIxdmkieiM9NGRhISM7NyQkITIoUSdHZDkyJnpaISM8JCIxVnhbUCMqNCE9JyEjOzckJCEyYCdReGEqR19HJSEjPCQiMSRwdmp2YSh5byEjOzckJCEyYj1QdVsnNCJ5JCEjPCQiMV5BJkcjUkpbdiEjOzckJCEyVyV6ZTxYc1lLISM8JCIxMEhZJ3pTQj4pISM7NyQkITJYclYoW3h2Y0YhIzwkIjEpcHYuQkMhNCgpISM7NyQkITJFJGU7THc0dEEhIzwkIjAob1ghUSUzUiIqISM6NyQkITJEQ1snSEgyYzwhIzwkIjEjW2xoL0RJXSohIzs3JCQhMjZmPVB1dCxDIiEjPCQiMW9JRih5P1J3KiEjOzckJCEyUTlIZW1bJzM1ISM8JCIxa041KClcNlspKiEjOzckJCExbHBSemVCcnghIzwkIjFLdiZHMXhFIioqISM7NyQkITFsI2Y9UGEnR10hIzwkIjF1TSo9JDQsbCoqISM7NyQkITJXY0BWJ0cyJ0cjISM9JCIxVjFEJTNMSioqKiEjOzckJCEyJW8oZTxOUydRNiEjPSQiMSh5M1I+UCQpKioqISM7NyQkIjBjRlMhMzsjeikhIz4kIjFtRE4uKioqKioqKiohIzs3JCQiMk8jb090WUFjNiEjPSQiMSRHRDp5JUcpKioqISM7NyQkIjImPidIZj1kT0kjISM9JCIxW11GUVgtJCoqKiEjOzckJCIxOyoqKXpmZngpXCEjPCQiMVQjXHQ9LWMnKiohIzs3JCQiMTctMDU/Jz1uKCEjPCQiL09oLDktOioqISM5NyQkIjJYTXBReGRMLSIhIzwkIjFuVWI7ek5WKSohIzs3JCQiMnhtTG5NSCZ6NyEjPCQiMTckcCVHKDN3dSohIzs3JCQiMmtyVihbMipwdCIhIzwkIjFcTio0PitYXiohIzs3JCQiLyYpcFJSWF5BISM5JCIxR0dgS2VNYyIqISM7NyQkIjFySmpFdEtwRiEjOyQiMCk0VXIqXG5wKSEjOjckJCIya3plPE5SWkckISM8JCIxJnlAWyYpSCJcIikhIzs3JCQiMTY+UXdBZmlQISM7JCIwRHhBclk9ZCghIzo3JCQiMVR2XSw4UWRVISM7JCIxKjNoYiYpSHEicCEjOzckJCIxdGE0Pkc0cFohIzskIjFVekQneU9ePichIzs3JCQiMSl5YzhGaiJ6XyEjOyQiMUFWL0NXY1thISM7NyQkIjEib05yVUxRIWUhIzskIjFyNi8kKipIQm4lISM7NyQkIjFZJ0hmPWpmRSchIzskIjJrb04oNC9XKCpSISM8NyQkIjElKWY+Uj1AJ3knISM7JCIyJipSRy87b1RFJCEjPDckJCIxKTM8TW8nZjN0ISM7JCIyWCMpXDQjM2pyRCEjPDckJCIxPT5RdzcsN3khIzskIjJNQkxKTCkqeSY+ISM8NyQkIjF0UXhhKmYicCMpISM7JCIxPkJGSFoyYDkhIzs3JCQiMVkoWyhcUnY3KSkhIzskIjFKJVJUWVhyQCohIzw3JCQiMW1UJG9PXEtGKiEjOyQiMjlwJVw3QG8pRyYhIz03JCQiMWMtMDVdIiozKSohIzskIjFhdj0+RTQrOCEjPDckJCIyTG5NcClwSUc1ISM7JCExXiZbI0hwPkk9ISM8NyQkIjImWyhcKipHSC4zIiEjOyQhMW5lemJLaV5bISM8NyQkIjJhNkJZI28nKUg2ISM7JCExeWYhZWY6JlxzISM8NyQkIjIxOEVfL2E6PSIhIzskITFbQHYrIm9HPyohIzw3JCQiMiU+UHVbIT4hSDchIzskITJZXScqZmVJKFs1ISM8NyQkIjI9P1MhZXhoYTchIzskITImZmoiW01XejQiISM8NyQkIjJWb090WTstRyIhIzskITJPLls4YDBOOCIhIzw3JCQiMmk2QicqUjZOSCIhIzskITJ0c3RIQVZuOSIhIzw3JCQiMiNbJjQ+TDFvSSIhIzskITIkPjJ0RyMzbDoiISM8NyQkIjItKWY+azc1PzghIzskITIjKik+Om8vKkc7IiEjPDckJCIyQFQjWyc+J1JMOCEjOyQhMkElND91eSlmOyIhIzw3JCQiMkxnP1RacFxNIiEjOyQhMiM+REw3PTRtNiEjPDckJCIyWHplPHZVbE4iISM7JCEyclRTbEJnUTsiISM8NyQkIjJjKXBSSGc2bzghIzskITJHOXA0d3EkZjYhIzw3JCQiMm88TnFJKm96OCEjOyQhMWZhImZbL0Y6IiEjOzckJCIxc1UmM0Epby85ISM6JCExJHk2OSMpeTc4IiEjOzckJCIxbkxuTXJvSDkhIzokITFGVSV6KSopKTQ1IiEjOzckJCIyRGQ5SHlSOFsiISM7JCEySCN5T3R3Vjk1ISM8NyQkIjJPYjVAIz0oPWAiISM7JCExLCNcLD9SYzAqISM8NyQkIjIqMzxNb1R3IWUiISM7JCExJzRcTCg9NGJ5ISM8NyQkIjJQZDlIeV1daiIhIzskITBeKVsqSEFgVychIzs3JCQiMlssLjFzSFFvIiEjOyQhMjoqR0dYU0onPSYhIz03JCQiMmo/VCNbOyJmdCIhIzskITFLWHM/ZU9AUiEjPDckJCIwKnlkOmM1JHkiISM5JCEyXydHZGd5JVIqRyEjPTckJCIyYT1QdTMsWiQ9ISM7JCEyLSJwT0d5WU4+ISM9NyQkIjFSd18wJVtLKT0hIzokITInKj1bMlwjZS43ISM9NyQkIjIzLjE3TSUqUiQ+ISM7JCExPk0qZlhzLy4nISM9NyQkIjI4QVcpb3hnJCk+ISM7JCEyV2QkemwlKjMkUSIhIz43JCQiMVUjWydIJVtiLiMhIzokIjJDcnlob0FQKkchIz43JCQiMkZbJ0hmTWQmMyMhIzskIjFbQjBYWzU+bSEjPTckJCIxTXBReDd0T0AhIzokIjElPVxBd29nJCkqISM9NyQkIjJQZDlIW2x1PSMhIzskIjJ4YVUhUjYhM0IiISM9NyQkIjIlPVB1W1wzTUEhIzskIjJEMSNvI1wiUSpRIiEjPTckJCIyJlJ6ZTxoXihHIyEjOyQiMkxjYG9XZyUqWyIhIz03JCQiMi4hKWY+ZjBgTCMhIzskIjJEYlVWKCplJTM6ISM9NyQkIjApZj5SImZpUSMhIzkkIjJceEgnMy9yaTkhIz03JCQiMm44RmE9R11WIyEjOyQiMSVbPm9Ea1pPIiEjPDckJCIxJGY9UCUqeiIqWyMhIzokIjJlLF4xIz4oeT8iISM9NyQkIjEnPVB1UXJnYCMhIzokIjJNVTFpempRLyIhIz03JCQiMShReGFmJEgqZSMhIzokIjFUPik9QlpUVCkhIz03JCQiMnddLC4nKSp6UEUhIzskIi8ybEpPVl9sISM7NyQkIjF1WiY0NGUzcCMhIzokIjEmPUhudUYnUVkhIz03JCQiMXNVJjNQUW10IyEjOiQiMmRaSi0mZU0nPSQhIz43JCQiMmk5SGV3dygpeSMhIzskIjEmRzwyNk00JT0hIz03JCQiMmQuMjkpKVIiUkchIzskIjFANm9OI0dwLCohIz43JCQiLyp6ZjRxJSopRyEjOCQiMVtYXSZmbmxBJCEjPjckJCIxcFF4YV5oUkghIzokIjInW0EmZndYUngmISNANyQkIjJlJSopeWQpKXkoKUghIzskIjFkLCMpZjc5K18hI0E3JCQiMlttS2whZicpUkkhIzskIiIhISIiNyQkIjI7RF0rNipcKjMkISM7JCIiISEiIjckJCIyMip6Zj5kdFRKISM7JCIiISEiIjckJCIyUHZdLFZBISo9JCEjOyQiIiEhIiI3JCQiMVF1Wyg0JEdUSyEjOiQiIiEhIiI3JCQiMV8tMDUoUjhIJCEjOiQiIiEhIiI3JCQiMSczPE1bdTdNJCEjOiQiIiEhIiI3JCQiMSRwUXhhSk1SJCEjOiQiIiEhIiI3JCQiMjo/UyEzLFpUTSEjOyQiIiEhIiI3JCQiMUFUI1s7bzFcJCEjOiQiIiEhIiI3JCQiMUxtS2wnKSlcYSQhIzokIiIhISIiNyQkIjB0WCJIOTwlZiQhIzkkIiIhISIiNyQkIjAlemU8K1pXTyEjOSQiIiEhIiI3JCQiMWhAVidRQWNwJCEjOiQiIiEhIiI3JCQiMlhvT3RPVEV1JCEjOyQiIiEhIiI3JCQiMWg+Unk/dyN6JCEjOiQiIiEhIiI3JCQiMlpvT3RFLEQlUSEjOyQiIiEhIiI3JCQiMW9NcFFucSYqUSEjOiQiIiEhIiI3JCQiMWQ6SmkjZUUlUiEjOiQiIiEhIiI3JCQiMnhNcFFkSW8qUiEjOyQiIiEhIiI3JCQiMTlGYTNwclhTISM6JCIiISEiIjckJCIxT3FTIlEoMyU0JSEjOiQiIiEhIiI3JCQiMXVXKil5NjVZVCEjOiQiIiEhIiI3JCQiMk5kOUhRRCQpPiUhIzskIiIhISIiNyQkIjEoUnplblRlQyUhIzokIiIhISIiNyQkIjE0PE1vPUknSCUhIzokIiIhISIiNyQkIjE2QFUlM1liTSUhIzokIiIhISIiNyQkIjFiMzxNdCMqKVIlISM6JCIiISEiIjckJCIwI1J5Y3A2WFchIzkkIiIhISIiNyQkIjAlemU8dTspXCUhIzkkIiIhISIiNyQkIjElXClwUncuW1ghIzokIiIhISIiNyQkIjFbI1wpcGhVKGYlISM6JCIiISEiIjckJCIxQ1olKikpUiZvayUhIzokIiIhISIiNyQkIjEjUnljQm5zcCUhIzokIiIhISIiNyQkIjE8TG1LV3FdWiEjOiQiIiEhIiI3JCQiMVJ4YTQ2cSp6JSEjOiQiIiEhIiI3JCQiMUdiNUByMVtbISM6JCIiISEiIjckJCIxKUdkOWZwKCoqWyEjOiQiIiEhIiI3JCQiMV4tMDUmZjgmXCEjOiQiIiEhIiI3JCQiI10hIiIkIiIhISIiLSUnTEVHRU5ERzYjLSUpX1RZUEVTRVRHNiMtSSVtc3ViRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiYtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1UScmIzkyMzs2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjctSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USI0NiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLUkjbW9HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2PlEiLDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJmZlbmNlR1EmZmFsc2U2Ii8lKnNlcGFyYXRvckdRJXRydWU2Ii8lKXN0cmV0Y2h5R1EmZmFsc2U2Ii8lKnN5bW1ldHJpY0dRJmZhbHNlNiIvJShsYXJnZW9wR1EmZmFsc2U2Ii8lLm1vdmFibGVsaW1pdHNHUSZmYWxzZTYiLyUnYWNjZW50R1EmZmFsc2U2Ii8lJ2xzcGFjZUdRJjAuMGVtNiIvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbTYiLUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEiMjYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJS9zdWJzY3JpcHRzaGlmdEdRIjA2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii0lJkNPTE9SRzYnJSRSR0JHJCIpQyllcSUhIikkIiIhISIiJCIoJz4hXCYhIiktJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUnQ1VSVkVTRzYlN1t5NyQkISNdISIiJCIiISEiIjckJCExVihbKFxSVVpcISM6JCIiISEiIjckJCEyJlF4YTR5bixcISM7JCIiISEiIjckJCExaEFYIVxKLSZbISM6JCIiISEiIjckJCExJXplPDpXJSl6JSEjOiQiIiEhIiI3JCQhMUppQ1xIIXB1JSEjOiQiIiEhIiI3JCQhMCNSeWN3NipwJSEjOSQiIiEhIiI3JCQhMWQ4RmEoUSdcWSEjOiQiIiEhIiI3JCQhMWpEXi13WSlmJSEjOiQiIiEhIiI3JCQhMUtrR2QwWVpYISM6JCIiISEiIjckJCExViYzPGEkKlxcJSEjOiQiIiEhIiI3JCQhMmI5SGVjIXlbVyEjOyQiIiEhIiI3JCQhMThEXStkdidSJSEjOiQiIiEhIiI3JCQhMS0vMztzXldWISM6JCIiISEiIjckJCExPlJ5Y2Q8JUglISM6JCIiISEiIjckJCExQ1olKikpM1lbVSEjOiQiIiEhIiI3JCQhMU9zVypbLFQ+JSEjOiQiIiEhIiI3JCQhMk5wUXglPjBbVCEjOyQiIiEhIiI3JCQhMSYzPE1RJlslNCUhIzokIiIhISIiNyQkITFQdVsoKilwcS8lISM6JCIiISEiIjckJCEyO09zV2ZaXSpSISM7JCIiISEiIjckJCEyWioqKXpmK15YUiEjOyQiIiEhIiI3JCQhMiZ6Zj5SRyNRKlEhIzskIiIhISIiNyQkITI7UnljJHlOWVEhIzskIiIhISIiNyQkITFGYTM8LzsmeiQhIzokIiIhISIiNyQkITIlKXBSem8hKT51JCEjOyQiIiEhIiI3JCQhMlokcFF4dm8mcCQhIzskIiIhISIiNyQkITJOdVsoXCgqb1hPISM7JCIiISEiIjckJCEyd2AyOjVQU2YkISM7JCIiISEiIjckJCExZTpKaV1dVk4hIzokIiIhISIiNyQkITEtLzM7RmglXCQhIzokIiIhISIiNyQkITJ4YDI6NUUuVyQhIzskIiIhISIiNyQkITJgND5RO1o6UiQhIzskIiIhISIiNyQkITJWITQ9T19ZUkwhIzskIiIhISIiNyQkITFAVSUpbzdGI0gkISM6JCIiISEiIjckJCEyWiNcKXB6djFDJCEjOyQiIiEhIiI3JCQhMkNaJSopeSVHQD4kISM7JCIiISEiIjckJCEyLTM7S2EjUVRKISM7JCIiISEiIjckJCEyKCopeWQ6InA8NCQhIzskIiIhISIiNyQkITFwUXhhJUcpUkkhIzokIiIhISIiNyQkITFHYzdETSEpKilIISM6JCIyOTBnRVtNJDQ1ISNDNyQkITJjPE5xZ1gnUUghIzskIjJRYFlwISopZWU2ISNANyQkITJ0YDI6UzZ6KUchIzskIjJrdWkkZTBNQzYhIz83JCQhMjxSeWMkPkhURyEjOyQiMSh5endJNyNlUiEjPjckJCEyMTxNb3dneXkjISM7JCIyN2FHbDIoUng1ISM+NyQkITI7SmlDSHIrdSMhIzskIjIkNCpHJ3l3MCE0IyEjPjckJCEyMThFX3U8IipvIyEjOyQiMVxdZ08zSThPISM9NyQkITJaKFwqKilwWy5rIyEjOyQiMT1pWzxTW2NhISM9NyQkITJ2Xi4yJXA+J2UjISM7JCIxPVY6RHZBO3khIz03JCQhMlgjXClwXDAkUkQhIzskIjE7JVJLKFFSbioqISM9NyQkITJOc1cqKUckMydbIyEjOyQiMmUyaCNSWmVJNyEjPTckJCExLjE3Q3FkUEMhIzokIjJzTVxrRHZFVCIhIz03JCQhMm1Mbk16PVhRIyEjOyQiMjdJIkhfaWVhOiEjPTckJCExUnljOCZRKFFCISM6JCIxWSJ6STpSSmgiISM8NyQkITJaJ0hmPSxnJ0cjISM7JCIyJjRHKkdmaVtmIiEjPTckJCEyYDI6SStQaUIjISM7JCIyKipbTkwjSFkmWyIhIz03JCQhMjNAVSUpeTFmPSMhIzskIjJ3UWRPQmt5RyIhIz03JCQhMVQjWydIPHdOQCEjOiQiMnlOJDM2YVo3NSEjPTckJCEyZDtMbS0pZSgzIyEjOyQiMiYzKlJYRmo0KW8hIz43JCQhMVolKil5KDReTj8hIzokIjJrKXk9J0hbOyFIISM+NyQkITFmPVB1eChlKT4hIzokITIpKWU+J1ImNF49IiEjPjckJCEyLjdDWztUTyQ+ISM7JCExYkFpZVNXbWQhIz03JCQhMm9OclVYYWopPSEjOyQhMiY+bihHJEgzWjUhIz03JCQhMktuTXB5JDRNPSEjOyQhMiU0SyJbIj5YKG8iISM9NyQkITIkZj1QdXIuJXkiISM7JCExWSRlPGZzR1ojISM8NyQkITJfLTA1Uy1UdCIhIzskITF2RzVIJ1thWCQhIzw3JCQhMmxUJG9PYCU+byIhIzskITBtNmlLO0RwJSEjOzckJCEyJjQ+UXduIVJqIiEjOyQhMVBWY0EqKjMoKWYhIzw3JCQhMicqKXpmPigzWmUiISM7JCExSCdbSCkqRzBTKCEjPDckJCEyc1omND4jKVFJOiEjOyQhMXRTQjUyRGAqKSEjPDckJCExI1F3X1gwN1siISM6JCEyVykzLCIqekFCNSEjPDckJCEyMDxNbydvITRWIiEjOyQhMigqR0I+JCk9IUg2ISM8NyQkITAxN0NvSWBTIiEjOSQhMm84MDNOdiNwNiEjPDckJCEyJVwqKil6XGEoejghIzskITE3MGAsOlwpPiIhIzs3JCQhMik9UXdfKCoqek8iISM7JCEyMDdadFdoeT8iISM8NyQkITIjKW9QditYaU4iISM7JCEyN3FDSj4+WEAiISM8NyQkITJ2YjZCRSFcVzghIzskITJ0SC0hKVxqJD03ISM8NyQkITFGYTM8YnRLOCEjOiQhMihbJGVRay0kPjchIzw3JCQhMnlnQCRSYD8/OCEjOyQhMkE4RSswOHFAIiEjPDckJCEyJyl5ZDo7dndJIiEjOyQhMic+Wnk8UUM2NyEjPDckJCEyJnBSeiQpXDkmSCIhIzskITIlcCN5WzZCPj8iISM8NyQkITIuOklnIVtoI0ciISM7JCEyS1dLYGAkKiopPSIhIzw3JCQhMigpeWQ6QFh4RCIhIzskITJ4I1skKlshKVtfNiEjPDckJCEyclUmMzxjKEdCIiEjOyQhMiwnXGRYRlgsNiEjPDckJCEyRmtHZDlxJ3o2ISM7JCExMWJWRXolNFcqISM8NyQkITFgMDZBJz1GOCIhIzokITE4KXBpamNiYCghIzw3JCQhMlB3XzBKWSZ5NSEjOyQhMS9HOyxuIkchWyEjPDckJCExKFJ6ZSgqZidINSEjOiQhMkxQajtPPXoiPiEjPTckJCExXzI6SV0qRyIpKiEjOyQiMlxiN2Y0MTJGIiEjPTckJCExJ1F3XzBkRkgqISM7JCIyTyhRZl9FMGldISM9NyQkITF2YDI6XV5xKCkhIzskIjE9cWIoKjRWRiQqISM8NyQkITFQclUmM19gSCkhIzskIjJ4JHlDVzZScjghIzw3JCQhMTtTITM7XTJ6KCEjOyQiMnBBOVdbRCcqKj0hIzw3JCQhMSQqKioqKioqekkpSCghIzskIjJFQWosKTMpPlsjISM8NyQkITBjN0RdJlxrbiEjOiQiMmsucGpWKDQnPSQhIzw3JCQhMTM+UXcjKmYtaiEjOyQiMTleeSIpemFbUSEjOzckJCExLjxNb1k0c2QhIzskIjFPLFxpLXFgWSEjOzckJCExeWhCWkNSdF8hIzskIjFQWSl6MidSS2EhIzs3JCQhMihRJ0dkOTImelohIzwkIjF4ZUtCI3orPychIzs3JCQhMmAnUXhhKkdfRyUhIzwkIjElPSxoNyEqKlJwISM7NyQkITJiPVB1Wyc0InkkISM8JCIxYDk+dyRlMmsoISM7NyQkITJXJXplPFhzWUshIzwkIjBgP15zWixJKSEjOjckJCEyWHJWKFt4dmNGISM8JCIxKVEkXGddPzgpKSEjOzckJCEyRSRlO0x3NHRBISM8JCIxdW1fKlF1X0EqISM7NyQkITJEQ1snSEgyYzwhIzwkIjFhXV9rIVIvYyohIzs3JCQhMjZmPVB1dCxDIiEjPCQiMSl5JXotNS8jeiohIzs3JCQhMlE5SGVtWyczNSEjPCQiMUcjKUdeQVtsKSohIzs3JCQhMWxwUnplQnJ4ISM8JCIxYjguKXpZPCMqKiEjOzckJCExbCNmPVBhJ0ddISM8JCIxOjEzSCVveScqKiEjOzckJCEyV2NAVidHMidHIyEjPSQiMWt0JXBLVk0qKiohIzs3JCQhMiVvKGU8TlMnUTYhIz0kIjE0OGtceVApKioqISM7NyQkIjBjRlMhMzsjeikhIz4kIjBRc0whKioqKioqKiohIzo3JCQiMk8jb090WUFjNiEjPSQiMTNfLzd0SykqKiohIzs3JCQiMiY+J0hmPWRPSSMhIz0kIjFcRypwcVRMKioqISM7NyQkIjE7KiopemZmeClcISM8JCIxYT0neW4nUm8qKiEjOzckJCIxNy0wNT8nPW4oISM8JCIxaDNkcWt6QioqISM7NyQkIjJYTXBReGRMLSIhIzwkIjB3bGZzUzgnKSohIzo3JCQiMnhtTG5NSCZ6NyEjPCQiMUJeIT5lZXh4KiEjOzckJCIya3JWKFsyKnB0IiEjPCQiMXMnKVtuJ3kyZCohIzs3JCQiLyYpcFJSWF5BISM5JCIxLG1cIkh0OUMqISM7NyQkIjFySmpFdEtwRiEjOyQiMWw4aSl5QzchKSkhIzs3JCQiMmt6ZTxOUlpHJCEjPCQiMUNXSU1OXmMjKSEjOzckJCIxNj5Rd0FmaVAhIzskIjFjTjEyOTpsdyEjOzckJCIxVHZdLDhRZFUhIzskIjFhbUgkPU4uKXAhIzs3JCQiMXRhND5HNHBaISM7JCIxNyI9S2tbZ0AnISM7NyQkIjEpeWM4Rmoiel8hIzskIjFpQil6MWRMVSYhIzs3JCQiMSJvTnJVTFEhZSEjOyQiMCUpUTREKmYvWSEjOjckJCIxWSdIZj1qZkUnISM7JCIyWEZITTtfRyFSISM8NyQkIjElKWY+Uj1AJ3knISM7JCIxV08pUmd5ZzokISM7NyQkIjEpMzxNbydmM3QhIzskIjI8KCpIISlwTiJwQyEjPDckJCIxPT5RdzcsN3khIzskIjE3ZnQ+VylmKD0hIzs3JCQiMXRReGEqZiJwIykhIzskIjJgcF5NTmlyUiIhIzw3JCQiMVkoWyhcUnY3KSkhIzskIjFlNnBNalJpKikhIzw3JCQiMW1UJG9PXEtGKiEjOyQiMVUkWz1tIlE3XyEjPDckJCIxYy0wNV0iKjMpKiEjOyQiMj41NjFYWCMpSCIhIz03JCQiMkxuTXApcElHNSEjOyQhMSxHYiQpKWZJJD0hIzw3JCQiMiZbKFwqKkdILjMiISM7JCExRlQ2VGooNCFcISM8NyQkIjJhNkJZI28nKUg2ISM7JCExakxqKy1IMHUhIzw3JCQiMjE4RV8vYTo9IiEjOyQhMT5xSSZvJWYyJiohIzw3JCQiMiU+UHVbIT4hSDchIzskITJuJlsobyEpUUE0IiEjPDckJCIyPT9TIWV4aGE3ISM7JCEyUHIpby0ncG85IiEjPDckJCIyVm9PdFk7LUciISM7JCExKVxHJWVNNSc9IiEjOzckJCIyaTZCJypSNk5IIiEjOyQhMldKKil6NFYvPyIhIzw3JCQiMiNbJjQ+TDFvSSIhIzskITImUkQxaEdyNTchIzw3JCQiMi0pZj5rNzU/OCEjOyQhMiNSRTNyJnpwQCIhIzw3JCQiMkBUI1snPidSTDghIzskITI4byNbaiRHJD43ISM8NyQkIjJMZz9UWnBcTSIhIzskITBBQicqKUhFPTchIzo3JCQiMlh6ZTx2VWxOIiEjOyQhMXJpI2YoW1E5NyEjOzckJCIyYylwUkhnNm84ISM7JCEyQlxuIW89eTI3ISM8NyQkIjJvPE5xSSpvejghIzskITEjNDV3dV0mKT4iISM7NyQkIjFzVSYzQSlvLzkhIzokITI4JjRAcSs6cTYhIzw3JCQiMW5Mbk1yb0g5ISM6JCEyX0YibzcqbzY4IiEjPDckJCIyRGQ5SHlSOFsiISM7JCEyKipbMVg+MUgtIiEjPDckJCIyT2I1QCM9KD1gIiEjOyQhMTNZbHlMOjcqKSEjPDckJCIyKjM8TW9UdyFlIiEjOyQhMSd5KjQ1NDQ6diEjPDckJCIyUGQ5SHldXWoiISM7JCExIzMkZlk9KFwmZiEjPDckJCIyWywuMXNIUW8iISM7JCExUj4lKSkqZlVXWSEjPDckJCIyaj9UI1s7ImZ0IiEjOyQhMW1fXjdcRztNISM8NyQkIjAqeWQ6YzUkeSIhIzkkITIoKmYiKXBjTCQqWyMhIz03JCQiMmE9UHUzLFokPSEjOyQhMXA4OTMzMHo7ISM8NyQkIjFSd18wJVtLKT0hIzokITJ2VTA6JW8rIjMiISM9NyQkIjIzLjE3TSUqUiQ+ISM7JCEwPSR6cSkpKVF0JiEjPDckJCIyOEFXKW94ZyQpPiEjOyQhMiVcZjc7cjx4OCEjPjckJCIxVSNbJ0glW2IuIyEjOiQiMmFodGE1VFkhSCEjPjckJCIyRlsnSGZNZCYzIyEjOyQiMCNmOD9uJFx0JyEjPDckJCIxTXBReDd0T0AhIzokIjJvTj1VY2IlPTUhIz03JCQiMlBkOUhbbHU9IyEjOyQiMWJvIzNfTF9IIiEjPDckJCIyJT1QdVtcM01BISM7JCIySDBkdEh5KHk5ISM9NyQkIjImUnplPGheKEcjISM7JCIyRCxuW3E1Z2YiISM9NyQkIjIuISlmPmYwYEwjISM7JCIyLlZpMVI/W2giISM9NyQkIjApZj5SImZpUSMhIzkkIjIkXEswLls1XjohIz03JCQiMm44RmE9R11WIyEjOyQiMTxvQ0BSLkA5ISM8NyQkIjEkZj1QJSp6IipbIyEjOiQiMlU3V0Y1P3hAIiEjPTckJCIxJz1QdVFyZ2AjISM6JCIyTjRlVCFwXDY1ISM9NyQkIjEoUXhhZiRIKmUjISM6JCIyJik+YDxyKG92dyEjPjckJCIyd10sLicpKnpQRSEjOyQiMVVESEhUWGhiISM9NyQkIjF1WiY0NGUzcCMhIzokIjAsNzojRy5hTiEjPDckJCIxc1UmM1BRbXQjISM6JCIxQEpBIT1NJXlAISM9NyQkIjJpOUhld3coKXkjISM7JCIydU1DJ0dAKT0xIiEjPjckJCIyZC4yOSkpUiJSRyEjOyQiMmpBclBGVzc6JSEjPzckJCIvKnpmNHElKilHISM4JCIyUjY3OUQzeDEiISM/NyQkIjFwUXhhXmhSSCEjOiQiMkdjMSwhZigpKjMiISNANyQkIjJlJSopeWQpKXkoKUghIzskIjE9QE1TPChlMSMhI0I3JCQiMlttS2whZicpUkkhIzskIiIhISIiNyQkIjI7RF0rNipcKjMkISM7JCIiISEiIjckJCIyMip6Zj5kdFRKISM7JCIiISEiIjckJCIyUHZdLFZBISo9JCEjOyQiIiEhIiI3JCQiMVF1Wyg0JEdUSyEjOiQiIiEhIiI3JCQiMV8tMDUoUjhIJCEjOiQiIiEhIiI3JCQiMSczPE1bdTdNJCEjOiQiIiEhIiI3JCQiMSRwUXhhSk1SJCEjOiQiIiEhIiI3JCQiMjo/UyEzLFpUTSEjOyQiIiEhIiI3JCQiMUFUI1s7bzFcJCEjOiQiIiEhIiI3JCQiMUxtS2wnKSlcYSQhIzokIiIhISIiNyQkIjB0WCJIOTwlZiQhIzkkIiIhISIiNyQkIjAlemU8K1pXTyEjOSQiIiEhIiI3JCQiMWhAVidRQWNwJCEjOiQiIiEhIiI3JCQiMlhvT3RPVEV1JCEjOyQiIiEhIiI3JCQiMWg+Unk/dyN6JCEjOiQiIiEhIiI3JCQiMlpvT3RFLEQlUSEjOyQiIiEhIiI3JCQiMW9NcFFucSYqUSEjOiQiIiEhIiI3JCQiMWQ6SmkjZUUlUiEjOiQiIiEhIiI3JCQiMnhNcFFkSW8qUiEjOyQiIiEhIiI3JCQiMTlGYTNwclhTISM6JCIiISEiIjckJCIxT3FTIlEoMyU0JSEjOiQiIiEhIiI3JCQiMXVXKil5NjVZVCEjOiQiIiEhIiI3JCQiMk5kOUhRRCQpPiUhIzskIiIhISIiNyQkIjEoUnplblRlQyUhIzokIiIhISIiNyQkIjE0PE1vPUknSCUhIzokIiIhISIiNyQkIjE2QFUlM1liTSUhIzokIiIhISIiNyQkIjFiMzxNdCMqKVIlISM6JCIiISEiIjckJCIwI1J5Y3A2WFchIzkkIiIhISIiNyQkIjAlemU8dTspXCUhIzkkIiIhISIiNyQkIjElXClwUncuW1ghIzokIiIhISIiNyQkIjFbI1wpcGhVKGYlISM6JCIiISEiIjckJCIxQ1olKikpUiZvayUhIzokIiIhISIiNyQkIjEjUnljQm5zcCUhIzokIiIhISIiNyQkIjE8TG1LV3FdWiEjOiQiIiEhIiI3JCQiMVJ4YTQ2cSp6JSEjOiQiIiEhIiI3JCQiMUdiNUByMVtbISM6JCIiISEiIjckJCIxKUdkOWZwKCoqWyEjOiQiIiEhIiI3JCQiMV4tMDUmZjgmXCEjOiQiIiEhIiI3JCQiI10hIiIkIiIhISIiLSUnTEVHRU5ERzYjLSUpX1RZUEVTRVRHNiMtSSVtc3ViRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiYtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1UScmIzkyMzs2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjctSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USI0NiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLUkjbW9HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2PlEiLDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJmZlbmNlR1EmZmFsc2U2Ii8lKnNlcGFyYXRvckdRJXRydWU2Ii8lKXN0cmV0Y2h5R1EmZmFsc2U2Ii8lKnN5bW1ldHJpY0dRJmZhbHNlNiIvJShsYXJnZW9wR1EmZmFsc2U2Ii8lLm1vdmFibGVsaW1pdHNHUSZmYWxzZTYiLyUnYWNjZW50R1EmZmFsc2U2Ii8lJ2xzcGFjZUdRJjAuMGVtNiIvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbTYiLUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEiMzYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJS9zdWJzY3JpcHRzaGlmdEdRIjA2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii0lJkNPTE9SRzYnJSRSR0JHJCIiISEiIiQiKCc+IVwmISIpJCIpQyllcSUhIiktJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUnQ1VSVkVTRzYlN1t5NyQkISNdISIiJCIiISEiIjckJCExVihbKFxSVVpcISM6JCIiISEiIjckJCEyJlF4YTR5bixcISM7JCIiISEiIjckJCExaEFYIVxKLSZbISM6JCIiISEiIjckJCExJXplPDpXJSl6JSEjOiQiIiEhIiI3JCQhMUppQ1xIIXB1JSEjOiQiIiEhIiI3JCQhMCNSeWN3NipwJSEjOSQiIiEhIiI3JCQhMWQ4RmEoUSdcWSEjOiQiIiEhIiI3JCQhMWpEXi13WSlmJSEjOiQiIiEhIiI3JCQhMUtrR2QwWVpYISM6JCIiISEiIjckJCExViYzPGEkKlxcJSEjOiQiIiEhIiI3JCQhMmI5SGVjIXlbVyEjOyQiIiEhIiI3JCQhMThEXStkdidSJSEjOiQiIiEhIiI3JCQhMS0vMztzXldWISM6JCIiISEiIjckJCExPlJ5Y2Q8JUglISM6JCIiISEiIjckJCExQ1olKikpM1lbVSEjOiQiIiEhIiI3JCQhMU9zVypbLFQ+JSEjOiQiIiEhIiI3JCQhMk5wUXglPjBbVCEjOyQiIiEhIiI3JCQhMSYzPE1RJlslNCUhIzokIiIhISIiNyQkITFQdVsoKilwcS8lISM6JCIiISEiIjckJCEyO09zV2ZaXSpSISM7JCIiISEiIjckJCEyWioqKXpmK15YUiEjOyQiIiEhIiI3JCQhMiZ6Zj5SRyNRKlEhIzskIiIhISIiNyQkITI7UnljJHlOWVEhIzskIiIhISIiNyQkITFGYTM8LzsmeiQhIzokIiIhISIiNyQkITIlKXBSem8hKT51JCEjOyQiIiEhIiI3JCQhMlokcFF4dm8mcCQhIzskIiIhISIiNyQkITJOdVsoXCgqb1hPISM7JCIiISEiIjckJCEyd2AyOjVQU2YkISM7JCIiISEiIjckJCExZTpKaV1dVk4hIzokIiIhISIiNyQkITEtLzM7RmglXCQhIzokIiIhISIiNyQkITJ4YDI6NUUuVyQhIzskIiIhISIiNyQkITJgND5RO1o6UiQhIzskIiIhISIiNyQkITJWITQ9T19ZUkwhIzskIiIhISIiNyQkITFAVSUpbzdGI0gkISM6JCIiISEiIjckJCEyWiNcKXB6djFDJCEjOyQiIiEhIiI3JCQhMkNaJSopeSVHQD4kISM7JCIiISEiIjckJCEyLTM7S2EjUVRKISM7JCIiISEiIjckJCEyKCopeWQ6InA8NCQhIzskIiIhISIiNyQkITFwUXhhJUcpUkkhIzokIiIhISIiNyQkITFHYzdETSEpKilIISM6JCIxRCZIZWIzWCc+ISNENyQkITJjPE5xZ1gnUUghIzskIjIxTEw7J1svUEIhI0E3JCQhMnRgMjpTNnopRyEjOyQiMTAoPiMpeWsoW1IhIz83JCQhMjxSeWMkPkhURyEjOyQiMWMjb2EmUj96PSEjPjckJCEyMTxNb3dneXkjISM7JCIxKCpvZGtGZm9rISM+NyQkITI7SmlDSHIrdSMhIzskIjI5bWQ7OnUqZjkhIz43JCQhMjE4RV91PCIqbyMhIzskIjFIPVkmZV8oXEchIz03JCQhMlooXCoqKXBbLmsjISM7JCIxQD1NX0F1KnAlISM9NyQkITJ2Xi4yJXA+J2UjISM7JCIxOWBGeChRVUMoISM9NyQkITJYI1wpcFwwJFJEISM7JCIxVV8oPU1ALm8qISM9NyQkITJOc1cqKUckMydbIyEjOyQiMlxnRVopPSg0QyIhIz03JCQhMS4xN0NxZFBDISM6JCIwWlglKXprbFgiISM7NyQkITJtTG5Nej1YUSMhIzskIjIyKVJedUUtQzshIz03JCQhMVJ5YzgmUShRQiEjOiQiMSpmZFEieiU0cCIhIzw3JCQhMlonSGY9LGcnRyMhIzskIjIjXCZcPWNUam0iISM9NyQkITJgMjpJK1BpQiMhIzskIjIiKmYyTSU0L1I6ISM9NyQkITIzQFUlKXkxZj0jISM7JCIydzw8NU9cJT44ISM9NyQkITFUI1snSDx3TkAhIzokIjF2JSpSJillcUQ1ISM8NyQkITJkO0xtLSllKDMjISM7JCIxM0c8JkcwSyJwISM9NyQkITFaJSopeSg0Xk4/ISM6JCIyJykpcCRRT3RHIUghIz43JCQhMWY9UHV4KGUpPiEjOiQhMCRlW3dYJFw9IiEjPDckJCEyLjdDWztUTyQ+ISM7JCExdVVcKFI5X3EmISM9NyQkITJvTnJVWGFqKT0hIzskITIuNjZvKlEnKjM1ISM9NyQkITJLbk1weSQ0TT0hIzskITFHbVotWS9xOiEjPDckJCEyJGY9UHVyLiV5IiEjOyQhMUo8dldxN1xBISM8NyQkITJfLTA1Uy1UdCIhIzskITE3amw9cHZISiEjPDckJCEybFQkb09gJT5vIiEjOyQhMSJIU10jcGkxViEjPDckJCEyJjQ+UXduIVJqIiEjOyQhMWJbaSNSISlbaCYhIzw3JCQhMicqKXpmPigzWmUiISM7JCExQF9NKnkiSD1yISM8NyQkITJzWiY0PiMpUUk6ISM7JCEwcCh5Q1U7VCkpISM7NyQkITEjUXdfWDA3WyIhIzokITEyKnojSFNBSTUhIzs3JCQhMjA8TW8nbyE0ViIhIzskITJUO0ZbLmtIOiIhIzw3JCQhMDE3Q29JYFMiISM5JCEyYlFJMmoqKikqPiIhIzw3JCQhMiVcKiopelxhKHo4ISM7JCExT3E+QDInUkIiISM7NyQkITIpPVF3XygqKnpPIiEjOyQhMid5XFI+VChbQyIhIzw3JCQhMiMpb1B2K1hpTiIhIzskITEkUi52RkZFRCIhIzs3JCQhMnZiNkJFIVxXOCEjOyQhMkRqU2AqZTZkNyEjPDckJCExRmEzPGJ0SzghIzokITEmR3VCeV8jZTchIzs3JCQhMnlnQCRSYD8/OCEjOyQhMTxJUzxmcGI3ISM7NyQkITInKXlkOjt2d0kiISM7JCEyciRIPjglKj1cNyEjPDckJCEyJnBSeiQpXDkmSCIhIzskITJRLE5JKlJwUTchIzw3JCQhMi46SWchW2gjRyIhIzskITJvQSZ6IilIPkM3ISM8NyQkITIoKXlkOkBYeEQiISM7JCEyVWo0ZkUpZSQ9IiEjPDckJCEyclUmMzxjKEdCIiEjOyQhMXdGOlljX0Y2ISM7NyQkITJGa0dkOXEnejYhIzskITFMbSI0cDplZSohIzw3JCQhMWAwNkEnPUY4IiEjOiQhMS8pPWNqVHRmKCEjPDckJCEyUHdfMEpZJnk1ISM7JCEwciYqRycpKipRIlshIzs3JCQhMShSemUoKmYnSDUhIzokITI8djssaEYjPT4hIz03JCQhMV8yOkldKkciKSohIzskIjJDJlxjbTdncTchIz03JCQhMSdRd18wZEZIKiEjOyQiMWJnImZvLG4vJiEjPDckJCExdmAyOl1ecSgpISM7JCIxRnciems/KEgjKiEjPDckJCExUHJVJjNfYEgpISM7JCIxPEFfZnQ4WTghIzs3JCQhMTtTITM7XTJ6KCEjOyQiMSNvXWBBJG9fPSEjOzckJCExJCoqKioqKip6SSlIKCEjOyQiMClcZ29VUjpDISM6NyQkITBjN0RdJlxrbiEjOiQiMjldKEhQWlwzSiEjPDckJCExMz5RdyMqZi1qISM7JCIyJFtbPiRcQlx4JCEjPDckJCExLjxNb1k0c2QhIzskIjFRb0tSS0AsWSEjOzckJCExeWhCWkNSdF8hIzskIjEwR2ZLNDw3YSEjOzckJCEyKFEnR2Q5MiZ6WiEjPCQiMWY9OVElZmtAJyEjOzckJCEyYCdReGEqR19HJSEjPCQiMUZTWHNFRSopcCEjOzckJCEyYj1QdVsnNCJ5JCEjPCQiMUdBI3owIz03eCEjOzckJCEyVyV6ZTxYc1lLISM8JCIxVERiKHA5eVApISM7NyQkITJYclYoW3h2Y0YhIzwkIjFjd0lYbmIiKSkpISM7NyQkITJFJGU7THc0dEEhIzwkIjEyI3kpKipbLHYjKiEjOzckJCEyRENbJ0hIMmM8ISM8JCIxV3M4TyNceGUqISM7NyQkITI2Zj1QdXQsQyIhIzwkIjFzKm9QX3k/ISkqISM7NyQkITJROUhlbVsnMzUhIzwkIjExUyQpUXVscSkqISM7NyQkITFscFJ6ZUJyeCEjPCQiMSJmb3lwIylRIyoqISM7NyQkITFsI2Y9UGEnR10hIzwkIjFDLEdCb0pvKiohIzs3JCQhMldjQFYnRzInRyMhIz0kIjFXcHMoNG1NKioqISM7NyQkITIlbyhlPE5TJ1E2ISM9JCIxXk5OYCR6JCkqKiohIzs3JCQiMGNGUyEzOyN6KSEjPiQiMSZRc0whKioqKioqKiohIzs3JCQiMk8jb090WUFjNiEjPSQiMSk+MyI0KkckKSoqKiEjOzckJCIyJj4nSGY9ZE9JIyEjPSQiMEtmNDtsTCoqKiEjOjckJCIxOyoqKXpmZngpXCEjPCQiMXonUmohPSQpbyoqISM7NyQkIjE3LTA1Pyc9bighIzwkIjFuYTldKFFlIyoqISM7NyQkIjJYTXBReGRMLSIhIzwkIjFyPUwoZW9uJykqISM7NyQkIjJ4bUxuTUgmejchIzwkIjFtOFA9QSIpKXkqISM7NyQkIjJrclYoWzIqcHQiISM8JCIxRSVmQzQ+dGYqISM7NyQkIi8mKXBSUlheQSEjOSQiMTlCQEUicC1IKiEjOzckJCIxckpqRXRLcEYhIzskIjEuKlxjUmkqcCkpISM7NyQkIjJremU8TlJaRyQhIzwkIjElM2trIjNNTSQpISM7NyQkIjE2PlF3QWZpUCEjOyQiMS4sKHlQK3J0KCEjOzckJCIxVHZdLDhRZFUhIzskIjEqKTQhbykpKT1KcSEjOzckJCIxdGE0Pkc0cFohIzskIjEiKmUiXGcqPUxpISM7NyQkIjEpeWM4Rmoiel8hIzskIjEnUVdAZDpGUyYhIzs3JCQiMSJvTnJVTFEhZSEjOyQiMkRdYXRDLC9iJSEjPDckJCIxWSdIZj1qZkUnISM7JCIxO1VJIWZOLCRRISM7NyQkIjElKWY+Uj1AJ3knISM7JCIxW0l1WT9peUkhIzs3JCQiMSkzPE1vJ2YzdCEjOyQiMS1YIWUiPSpHUyMhIzs3JCQiMT0+UXc3LDd5ISM7JCIyT3FWIlIvKSpIPSEjPDckJCIxdFF4YSpmInAjKSEjOyQiMk5EJjMqUW8zUCIhIzw3JCQiMVkoWyhcUnY3KSkhIzskIjFCOydITz1bKCkpISM8NyQkIjFtVCRvT1xLRiohIzskIjFSIWVxLidbJj4mISM8NyQkIjFjLTA1XSIqMykqISM7JCIyPWswQHBKIilIIiEjPTckJCIyTG5NcClwSUc1ISM7JCEyWT5FYWk9TCQ9ISM9NyQkIjImWyhcKipHSC4zIiEjOyQhMiVINihRO2NIIlwhIz03JCQiMmE2QlkjbycpSDYhIzskITFydj8+eTdqdSEjPDckJCIyMThFXy9hOj0iISM7JCExMEwvInlyamwqISM8NyQkIjIlPlB1WyE+IUg3ISM7JCEyZFoqXHguWzw2ISM8NyQkIjI9P1MhZXhoYTchIzskITIuUkYzenl0PCIhIzw3JCQiMlZvT3RZOy1HIiEjOyQhMm0jW3N4Mic0QSIhIzw3JCQiMmk2QicqUjZOSCIhIzskITJHJmZNUDEuUDchIzw3JCQiMiNbJjQ+TDFvSSIhIzskITJYIUdEI3AhZls3ISM8NyQkIjItKWY+azc1PzghIzskITIpWz5JNiNlY0QiISM8NyQkIjJAVCNbJz4nUkw4ISM7JCEyeHN6ImYheiNlNyEjPDckJCIyTGc/VFpwXE0iISM7JCExPigzdiF6KnBEIiEjOzckJCIyWHplPHZVbE4iISM7JCEybV0mMyZ5cUNEIiEjPDckJCIyYylwUkhnNm84ISM7JCEyJFEpeV5YInlXNyEjPDckJCIybzxOcUkqb3o4ISM7JCEyKWZabVkoSFNCIiEjPDckJCIxc1UmM0Epby85ISM6JCExUSFlXHg+ND8iISM7NyQkIjFuTG5Ncm9IOSEjOiQhMmRYJz46JHBhOiIhIzw3JCQiMkRkOUh5UjhbIiEjOyQhMlAwWzN6XylINSEjPDckJCIyT2I1QCM9KD1gIiEjOyQhMW12VU0qb1p6KSEjPDckJCIyKjM8TW9UdyFlIiEjOyQhMUdbKj1RIjRWcyEjPDckJCIyUGQ5SHldXWoiISM7JCEyWF8ra0lwOmUmISM9NyQkIjJbLC4xc0hRbyIhIzskITFtQjcsQ1pmVSEjPDckJCIyaj9UI1s7ImZ0IiEjOyQhMmVNIilSQGVQNCQhIz03JCQiMCp5ZDpjNSR5IiEjOSQhMigpPmUvUkRORSMhIz03JCQiMmE9UHUzLFokPSEjOyQhMiRIM3A1XCFHYyIhIz03JCQiMVJ3XzAlW0spPSEjOiQhMiNwS1dWXlpSNSEjPTckJCIyMy4xN00lKlIkPiEjOyQhMUdVUSJwN1FuJiEjPTckJCIyOEFXKW94ZyQpPiEjOyQhMjtASFkiUidvUCIhIz43JCQiMVUjWydIJVtiLiMhIzokIjI6VmFjMnJlIUghIz43JCQiMkZbJ0hmTWQmMyMhIzskIjFXJyk9cSI9WncnISM9NyQkIjFNcFF4N3RPQCEjOiQiMWNxdSkqNCg+LiIhIzw3JCQiMlBkOUhbbHU9IyEjOyQiMlgxdjE0IltGOCEjPTckJCIyJT1QdVtcM01BISM7JCIyLWJOPExUOWAiISM9NyQkIjImUnplPGheKEcjISM7JCIyKDNCSjh3c247ISM9NyQkIjIuISlmPmYwYEwjISM7JCIyOV5mVls0RnAiISM9NyQkIjApZj5SImZpUSMhIzkkIjIpUV0udHEmKj47ISM9NyQkIjJuOEZhPUddViMhIzskIjIiZkwuZVxabTkhIz03JCQiMSRmPVAlKnoiKlsjISM6JCIyKD1OQSUpZSFlQSIhIz03JCQiMSc9UHVRcmdgIyEjOiQiMUQ+Inp6IltdKSohIz03JCQiMShReGFmJEgqZSMhIzokIjEsIipSMj5XKTMoISM9NyQkIjJ3XSwuJykqelBFISM7JCIxamRxVVNFNFshIz03JCQiMXVaJjQ0ZTNwIyEjOiQiMXoiPnFgR0h6IyEjPTckJCIxc1UmM1BRbXQjISM6JCIyPTZaKm9eJmZgIiEjPjckJCIyaTlIZXd3KCl5IyEjOyQiMShRPTZIKTNhaiEjPjckJCIyZC4yOSkpUiJSRyEjOyQiMXJDVixsQCQqPiEjPjckJCIvKnpmNHElKilHISM4JCIxZGJGXmFKLlAhIz83JCQiMXBReGFeaFJIISM6JCIyajlEWj9GaTsjISNBNyQkIjJlJSopeWQpKXkoKUghIzskIjFUbk0iNG0yI2UhI0Q3JCQiMlttS2whZicpUkkhIzskIiIhISIiNyQkIjI7RF0rNipcKjMkISM7JCIiISEiIjckJCIyMip6Zj5kdFRKISM7JCIiISEiIjckJCIyUHZdLFZBISo9JCEjOyQiIiEhIiI3JCQiMVF1Wyg0JEdUSyEjOiQiIiEhIiI3JCQiMV8tMDUoUjhIJCEjOiQiIiEhIiI3JCQiMSczPE1bdTdNJCEjOiQiIiEhIiI3JCQiMSRwUXhhSk1SJCEjOiQiIiEhIiI3JCQiMjo/UyEzLFpUTSEjOyQiIiEhIiI3JCQiMUFUI1s7bzFcJCEjOiQiIiEhIiI3JCQiMUxtS2wnKSlcYSQhIzokIiIhISIiNyQkIjB0WCJIOTwlZiQhIzkkIiIhISIiNyQkIjAlemU8K1pXTyEjOSQiIiEhIiI3JCQiMWhAVidRQWNwJCEjOiQiIiEhIiI3JCQiMlhvT3RPVEV1JCEjOyQiIiEhIiI3JCQiMWg+Unk/dyN6JCEjOiQiIiEhIiI3JCQiMlpvT3RFLEQlUSEjOyQiIiEhIiI3JCQiMW9NcFFucSYqUSEjOiQiIiEhIiI3JCQiMWQ6SmkjZUUlUiEjOiQiIiEhIiI3JCQiMnhNcFFkSW8qUiEjOyQiIiEhIiI3JCQiMTlGYTNwclhTISM6JCIiISEiIjckJCIxT3FTIlEoMyU0JSEjOiQiIiEhIiI3JCQiMXVXKil5NjVZVCEjOiQiIiEhIiI3JCQiMk5kOUhRRCQpPiUhIzskIiIhISIiNyQkIjEoUnplblRlQyUhIzokIiIhISIiNyQkIjE0PE1vPUknSCUhIzokIiIhISIiNyQkIjE2QFUlM1liTSUhIzokIiIhISIiNyQkIjFiMzxNdCMqKVIlISM6JCIiISEiIjckJCIwI1J5Y3A2WFchIzkkIiIhISIiNyQkIjAlemU8dTspXCUhIzkkIiIhISIiNyQkIjElXClwUncuW1ghIzokIiIhISIiNyQkIjFbI1wpcGhVKGYlISM6JCIiISEiIjckJCIxQ1olKikpUiZvayUhIzokIiIhISIiNyQkIjEjUnljQm5zcCUhIzokIiIhISIiNyQkIjE8TG1LV3FdWiEjOiQiIiEhIiI3JCQiMVJ4YTQ2cSp6JSEjOiQiIiEhIiI3JCQiMUdiNUByMVtbISM6JCIiISEiIjckJCIxKUdkOWZwKCoqWyEjOiQiIiEhIiI3JCQiMV4tMDUmZjgmXCEjOiQiIiEhIiI3JCQiI10hIiIkIiIhISIiLSUnTEVHRU5ERzYjLSUpX1RZUEVTRVRHNiMtSSVtc3ViRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiYtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1UScmIzkyMzs2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjctSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USI0NiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLUkjbW9HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2PlEiLDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJmZlbmNlR1EmZmFsc2U2Ii8lKnNlcGFyYXRvckdRJXRydWU2Ii8lKXN0cmV0Y2h5R1EmZmFsc2U2Ii8lKnN5bW1ldHJpY0dRJmZhbHNlNiIvJShsYXJnZW9wR1EmZmFsc2U2Ii8lLm1vdmFibGVsaW1pdHNHUSZmYWxzZTYiLyUnYWNjZW50R1EmZmFsc2U2Ii8lJ2xzcGFjZUdRJjAuMGVtNiIvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbTYiLUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEiNDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJS9zdWJzY3JpcHRzaGlmdEdRIjA2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii0lJkNPTE9SRzYnJSRSR0JHJCIoaD4hSCEiKCQiKUMpZXElISIpJCIiISEiIi0lK19BVFRSSUJVVEVHNiMvJSdzb3VyY2VHJSxtYXRoZGVmYXVsdEctJSVWSUVXRzYkOyQhI10hIiIkIiNdISIiJShERUZBVUxURy0mJSZfQVhJU0c2IyIiIjYnLSUrX0dSSURMSU5FU0c2Ji0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIiQiIiEhIiIkIiIhISIiLSUqTElORVNUWUxFRzYjIiIhLSUqVEhJQ0tORVNTRzYjIiIhLSUtVFJBTlNQQVJFTkNZRzYjJCIiISEiIi0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIiQiIiEhIiIkIiIhISIiLSUqTElORVNUWUxFRzYjIiIhLSUqVEhJQ0tORVNTRzYjIiIhLSUtVFJBTlNQQVJFTkNZRzYjJCIiISEiIi0mJSZfQVhJU0c2IyIiIzYnLSUrX0dSSURMSU5FU0c2Ji0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIiQiIiEhIiIkIiIhISIiLSUqTElORVNUWUxFRzYjIiIhLSUqVEhJQ0tORVNTRzYjIiIhLSUtVFJBTlNQQVJFTkNZRzYjJCIiISEiIi0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIiQiIiEhIiIkIiIhISIiLSUqTElORVNUWUxFRzYjIiIhLSUqVEhJQ0tORVNTRzYjIiIhLSUtVFJBTlNQQVJFTkNZRzYjJCIiISEiIi0lK0FYRVNMQUJFTFNHNiQtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USJ4NiIvJSdmYW1pbHlHUSE2Ii8lJXNpemVHUSMxMDYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSV0cnVlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1EnaXRhbGljNiJRITYiLSUlUk9PVEc2Jy0lKUJPVU5EU19YRzYjJCIjcSEiIi0lKUJPVU5EU19ZRzYjJCIkPyIhIiItJS1CT1VORFNfV0lEVEhHNiMkIiZTRSIhIiItJS5CT1VORFNfSEVJR0hURzYjJCIlK3EhIiItJSlDSElMRFJFTkc2Ig==</Plot></Text-field> -</Output> -<Output> -<Text-field style="Maple Plot" layout="Maple Plot"><Plot height="603" type="two-dimensional" width="1074" plot-scale="1.0" plot-xtrans="0.0" plot-ytrans="0.0" gridlinevisibility="1" legendvisibility="true">LSUlUExPVEc2Ky0lJ0NVUlZFU0c2JTdoeDckJCEjXSEiIiQiIiEhIiI3JCQhMVYoWyhcUlVaXCEjOiQiIiEhIiI3JCQhMiZReGE0eW4sXCEjOyQiIiEhIiI3JCQhMWhBWCFcSi0mWyEjOiQiIiEhIiI3JCQhMSV6ZTw6VyUpeiUhIzokIiIhISIiNyQkITFKaUNcSCFwdSUhIzokIiIhISIiNyQkITAjUnljdzYqcCUhIzkkIiIhISIiNyQkITFkOEZhKFEnXFkhIzokIiIhISIiNyQkITFqRF4td1kpZiUhIzokIiIhISIiNyQkITFLa0dkMFlaWCEjOiQiIiEhIiI3JCQhMVYmMzxhJCpcXCUhIzokIiIhISIiNyQkITJiOUhlYyF5W1chIzskIiIhISIiNyQkITE4RF0rZHYnUiUhIzokIiIhISIiNyQkITEtLzM7c15XViEjOiQiIiEhIiI3JCQhMT5SeWNkPCVIJSEjOiQiIiEhIiI3JCQhMUNaJSopKTNZW1UhIzokIiIhISIiNyQkITFPc1cqWyxUPiUhIzokIiIhISIiNyQkITJOcFF4JT4wW1QhIzskIiIhISIiNyQkITEmMzxNUSZbJTQlISM6JCIiISEiIjckJCExUHVbKCopcHEvJSEjOiQiIiEhIiI3JCQhMjtPc1dmWl0qUiEjOyQhMHZjdzBSWUIiISNDNyQkITJaKiopemYrXlhSISM7JCEyQSYzcCFRIXBUOiEjQTckJCEyJnpmPlJHI1EqUSEjOyQhMTk2O3lYcEo+ISM/NyQkITI7UnljJHlOWVEhIzskITEmcElGLXQ4UyghIz83JCQhMUZhMzwvOyZ6JCEjOiQhMSM0OW0hNHYyPyEjPjckJCEyJSlwUnpvISk+dSQhIzskITE4SSUpMzo4eFUhIz43JCQhMlokcFF4dm8mcCQhIzskITEsJCpILiZ5KzUoISM+NyQkITJOdVsoXCgqb1hPISM7JCEyLlUpUngvXiY0IiEjPjckJCEyd2AyOjVQU2YkISM7JCExN2dSXltVZTohIz03JCQhMWU6SmldXVZOISM6JCEyayZHbWJkNFI/ISM+NyQkITEtLzM7RmglXCQhIzokITJZdUwhPXIpKSlbIyEjPjckJCEyeGAyOjVFLlckISM7JCExUnlJcWEtPUghIz03JCQhMmA0PlE7WjpSJCEjOyQhMm4wUlhRLGI+JCEjPjckJCEyViE0PU9fWVJMISM7JCEyKDMnZTwjWzZRTCEjPjckJCExQFUlKW83RiNIJCEjOiQhMjxIY3FBL2dJJCEjPjckJCEyWiNcKXB6djFDJCEjOyQhMnclZTNueDkkMyQhIz43JCQhMkNaJSopeSVHQD4kISM7JCExLikpZmZzSClwIyEjPTckJCEyLTM7S2EjUVRKISM7JCExXlFjKHprVzgjISM9NyQkITIoKil5ZDoicDw0JCEjOyQhMjZPWEQpKioqZVgiISM+NyQkITFwUXhhJUcpUkkhIzokITEsZ0lpLFJLbCEjPjckJCExR2M3RE0hKSopSCEjOiQiMiZ6SmlnQDgwPCEjPzckJCEyYzxOcWdYJ1FIISM7JCIyKD1dblJFaGI1ISM+NyQkITJ0YDI6UzZ6KUchIzskIjJQdzlAJ0d5cz8hIz43JCQhMjxSeWMkPkhURyEjOyQiMVx5ZlF1MXpLISM9NyQkITIxPE1vd2d5eSMhIzskIjFKXyJmR3diOiYhIz03JCQhMjtKaUNIcit1IyEjOyQiMV9ONW4vJSp6dCEjPTckJCEyMThFX3U8IipvIyEjOyQiMiMqUVd6ZEhNLiIhIz03JCQhMlooXCoqKXBbLmsjISM7JCIyb0wiXCMpUTprOCEjPTckJCEydl4uMiVwPidlIyEjOyQiMVFoeU12OWw8ISM8NyQkITJYI1wpcFwwJFJEISM7JCIyayJlbz9CKWY2IyEjPTckJCEyTnNXKilHJDMnWyMhIzskIjElSE4oSHlNJFsjISM8NyQkITEuMTdDcWRQQyEjOiQiMiVRQ1dld2RjRiEjPTckJCEybUxuTXo9WFEjISM7JCIyWyh5SXctYl9IISM9NyQkITFSeWM4JlEoUUIhIzokIjJraFJVJz5MNkkhIz03JCQhMlonSGY9LGcnRyMhIzskIjEiPUMjeiN6WCRIISM8NyQkITJgMjpJK1BpQiMhIzskIjJXPylcPD13MUYhIz03JCQhMjNAVSUpeTFmPSMhIzskIjJvOGI/JDNpSkIhIz03JCQhMVQjWydIPHdOQCEjOiQiMikpUUhWQU9oIz0hIz03JCQhMmQ7TG0tKWUoMyMhIzskIjJkKFEiPik9KipRNyEjPTckJCExWiUqKXkoNF5OPyEjOiQiMXpNUGhLcEFfISM9NyQkITFmPVB1eChlKT4hIzokITElel82PiIpSDgjISM9NyQkITIuN0NbO1RPJD4hIzskITJBX2AtXHktLiIhIz03JCQhMm9OclVYYWopPSEjOyQhMl8lUWRiQih5Iz0hIz03JCQhMktuTXB5JDRNPSEjOyQhMXlJPS1tcjtHISM8NyQkITIkZj1QdXIuJXkiISM7JCExc1ImeSkzYjJSISM8NyQkITJfLTA1Uy1UdCIhIzskITJrbGpEP1JQOiYhIz03JCQhMmxUJG9PYCU+byIhIzskIS9RP11gbzZtISM6NyQkITImND5Rd24hUmoiISM7JCExLj5NdSl5WTApISM8NyQkITInKil6Zj4oM1plIiEjOyQhMXcsbkV2U2omKiEjPDckJCEyc1omND4jKVFJOiEjOyQhMmt2YlBzPmM2IiEjPDckJCExI1F3X1gwN1siISM6JCExLkIhZjtnO0MiISM7NyQkITIwPE1vJ28hNFYiISM7JCEyZFQ7PShIclM4ISM8NyQkITAxN0NvSWBTIiEjOSQhMkF3blFOaGVQIiEjPDckJCEyJVwqKil6XGEoejghIzskITIkPTEtTGEkKilSIiEjPDckJCEyKT1Rd18oKip6TyIhIzskITJaLy86RWFeUyIhIzw3JCQhMiMpb1B2K1hpTiIhIzskITJ1WiFIaUFZMzkhIzw3JCQhMnZiNkJFIVxXOCEjOyQhMlYmKSl5JUdqKDM5ISM8NyQkITFGYTM8YnRLOCEjOiQhMjhEXlkzcWZTIiEjPDckJCEyJyl5ZDo7dndJIiEjOyQhMSRbXSxkUiQqUSIhIzs3JCQhMi46SWchW2gjRyIhIzskITF1eCkpMzNxZDghIzs3JCQhMigpeWQ6QFh4RCIhIzskITImPU82LDkzNjghIzw3JCQhMnJVJjM8YyhHQiIhIzskITEyKlxbU0wiXDchIzs3JCQhMkZrR2Q5cSd6NiEjOyQhMmhMIzMiUVBjMSIhIzw3JCQhMWAwNkEnPUY4IiEjOiQhMTI5O2VpMydbKSEjPDckJCEyUHdfMEpZJnk1ISM7JCExJltrWiJlMS5hISM8NyQkITEoUnplKCpmJ0g1ISM6JCEyOG5OPGpJdjojISM9NyQkITFfMjpJXSpHIikqISM7JCIyWnpqKD5eV0g5ISM9NyQkITEnUXdfMGRGSCohIzskIjFWMlI5YyhRbyYhIzw3JCQhMXZgMjpdXnEoKSEjOyQiMnUlRyQqKlxROS8iISM8NyQkITFQclUmM19gSCkhIzskIjI8OHA/TEEiPTohIzw3JCQhMTtTITM7XTJ6KCEjOyQiMlUiKW9VQml6MiMhIzw3JCQhMSQqKioqKioqekkpSCghIzskIjJGOWFfZUwjekUhIzw3JCQhMGM3RF0mXGtuISM6JCIyKClmJnldcGUpUSQhIzw3JCQhMTM+UXcjKmYtaiEjOyQiMiVwImUxLVZGLyUhIzw3JCQhMS48TW9ZNHNkISM7JCIxJEgnKXkjKnlhI1shIzs3JCQhMXloQlpDUnRfISM7JCIxKkc8J0dQbHRiISM7NyQkITIoUSdHZDkyJnpaISM8JCIxODIuIT1IZ0knISM7NyQkITJgJ1F4YSpHX0clISM8JCIxLVFoXSRSKDRxISM7NyQkITJiPVB1Wyc0InkkISM8JCIxZmdyUV0jb24oISM7NyQkITJXJXplPFhzWUshIzwkIjFNMjBHI3p5SSkhIzs3JCQhMlhyVihbeHZjRiEjPCQiMVdqYiMpUXcuKSkhIzs3JCQhMkUkZTtMdzR0QSEjPCQiMGQ8IXklW3c/KiEjOjckJCEyRENbJ0hIMmM8ISM8JCIxJSopKVEkSC5EYSohIzs3JCQhMjZmPVB1dCxDIiEjPCQiMVQ8NDVgZ3ooKiEjOzckJCExbHBSemVCcnghIzwkIjFjaTNFUCVlIioqISM7NyQkITFsI2Y9UGEnR10hIzwkIjFbR0AkPTVfJyoqISM7NyQkITJXY0BWJ0cyJ0cjISM9JCIxRCN5MWNwRyoqKiEjOzckJCEyJW8oZTxOUydRNiEjPSQiMTkhKUhKVUIpKioqISM7NyQkIjBjRlMhMzsjeikhIz4kIjBFJHklKikqKioqKioqISM6NyQkIjJPI29PdFlBYzYhIz0kIjFBO1VQI3oiKSoqKiEjOzckJCIyJj4nSGY9ZE9JIyEjPSQiMTA3WCY9ZkYqKiohIzs3JCQiMTsqKil6ZmZ4KVwhIzwkIjEpeSozRCN6ZCcqKiEjOzckJCIxNy0wNT8nPW4oISM8JCIxTyNILktEIT0qKiEjOzckJCIyWE1wUXhkTC0iISM8JCIxa0NnLGIpPiYpKiEjOzckJCIyeG1Mbk1IJno3ISM8JCIxKSpIcScqcHlrKCohIzs3JCQiMmtyVihbMipwdCIhIzwkIjFPTVdyYidIYiohIzs3JCQiLyYpcFJSWF5BISM5JCIxcjRlc1BuQiMqISM7NyQkIjFySmpFdEtwRiEjOyQiMWVvWyo9NkB6KSEjOzckJCIya3plPE5SWkckISM8JCIxdldAcXglZkUpISM7NyQkIjE2PlF3QWZpUCEjOyQiMXlYKzo6NCt4ISM7NyQkIjFUdl0sOFFkVSEjOyQiMWNGNHdINVtxISM7NyQkIjF0YTQ+RzRwWiEjOyQiMVg4NmsrQkBqISM7NyQkIjEpeWM4Rmoiel8hIzskIjA2VjlaMF1jJiEjOjckJCIxIm9OclVMUSFlISM7JCIxVCdlInkxMHlaISM7NyQkIjFZJ0hmPWpmRSchIzskIjJFJ29XJ2U3ZjQlISM8NyQkIjElKWY+Uj1AJ3knISM7JCIwOm1NV3InZUwhIzo3JCQiMSkzPE1vJ2YzdCEjOyQiMk82VSE9I0dobSMhIzw3JCQiMT0+UXc3LDd5ISM7JCIyWDROUmI/SzAjISM8NyQkIjF0UXhhKmYicCMpISM7JCIyVl4hUTMrelg6ISM8NyQkIjFZKFsoXFJ2NykpISM7JCIwRjpaQyJILDUhIzo3JCQiMW1UJG9PXEtGKiEjOyQiMmxRO2QpPSg9JmUhIz03JCQiMWMtMDVdIiozKSohIzskIjIjKiplbmglPi9ZIiEjPTckJCIyTG5NcClwSUc1ISM7JCEyI28pR089eT8xIyEjPTckJCIyJlsoXCoqR0guMyIhIzskITE0TXE8X2M4YiEjPDckJCIyYTZCWSNvJylINiEjOyQhMT0kZnVcOSdRJCkhIzw3JCQiMjE4RV8vYTo9IiEjOyQhMUtJMGdhSHQ1ISM7NyQkIjIlPlB1WyE+IUg3ISM7JCExI0g2K2dhIlE3ISM7NyQkIjI9P1MhZXhoYTchIzskITFWN2k6WzgvOCEjOzckJCIyVm9PdFk7LUciISM7JCExaj4rSCpwUU4iISM7NyQkIjJpNkInKlI2TkgiISM7JCEyajJKIkc+THQ4ISM8NyQkIjIjWyY0Pkwxb0kiISM7JCEyJlthRiJvJ1wpUSIhIzw3JCQiMi0pZj5rNzU/OCEjOyQhMmIoZitRKkclKlIiISM8NyQkIjJAVCNbJz4nUkw4ISM7JCEyb1hhel81aVMiISM8NyQkIjJMZz9UWnBcTSIhIzskITJyKj48XzQiKTM5ISM8NyQkIjJYemU8dlVsTiIhIzskITEwdFMtX1QzOSEjOzckJCIyYylwUkhnNm84ISM7JCEyOnMoR01vNTA5ISM8NyQkIjJvPE5xSSpvejghIzskITJgPSQ0aHgoKilSIiEjPDckJCIxc1UmM0Epby85ISM6JCEyMktVMjolZnc4ISM8NyQkIjFuTG5Ncm9IOSEjOiQhMjQhKVIjKSpSa1U4ISM8NyQkIjJEZDlIeVI4WyIhIzskITJ0KW89JDNdOEMiISM8NyQkIjJPYjVAIz0oPWAiISM7JCEyVVwjXDx4WzY2ISM8NyQkIjIqMzxNb1R3IWUiISM7JCExM2MmPjhUSm8qISM8NyQkIjJQZDlIeV1daiIhIzskITE4WSR5O2gnPiEpISM8NyQkIjJbLC4xc0hRbyIhIzskITBQZD5ac21iJyEjOzckJCIyaj9UI1s7ImZ0IiEjOyQhMk4lSE8qW2tlNSYhIz03JCQiMCp5ZDpjNSR5IiEjOSQhMkVHLzNbVCRIUiEjPTckJCIyYT1QdTMsWiQ9ISM7JCEyJ0gpZTEjKjNXIUchIz03JCQiMVJ3XzAlW0spPSEjOiQhMF5RJik+XkkpPSEjOzckJCIyMy4xN00lKlIkPiEjOyQhMiN6KkgmPjtkQzUhIz03JCQiMjhBVylveGckKT4hIzskITJqWj0qPS5heUMhIz43JCQiMVUjWydIJVtiLiMhIzokIjJib0AiMyp6IUdfISM+NyQkIjJGWydIZk1kJjMjISM7JCIyXzwjZSYqSGw3NyEjPTckJCIxTXBReDd0T0AhIzokIjI6QVI0Jm8sUD0hIz03JCQiMlBkOUhbbHU9IyEjOyQiMjIheVkoM0lgTSMhIz03JCQiMiU9UHVbXDNNQSEjOyQiMSlHLjIucU9wIyEjPDckJCIyJlJ6ZTxoXihHIyEjOyQiMSV6Ni8oZUpQSCEjPDckJCIyLiEpZj5mMGBMIyEjOyQiMigqcGVWRU42LCQhIz03JCQiMClmPlIiZmlRIyEjOSQiMkREIjRDdTtbSCEjPTckJCIybjhGYT1HXVYjISM7JCIyKCpIJTRsTHJvRiEjPTckJCIxJGY9UCUqeiIqWyMhIzokIjEqb2I8IzNiakMhIzw3JCQiMSc9UHVRcmdgIyEjOiQiMiQqUSk0NFFnUkAhIz03JCQiMShReGFmJEgqZSMhIzokIjJPd0IuIkh5VDwhIz03JCQiMnddLC4nKSp6UEUhIzskIjJcZiMqKjMoUUNRIiEjPTckJCIxdVomNDRlM3AjISM6JCIyMiZweThgVEE1ISM9NyQkIjFzVSYzUFFtdCMhIzokIjFNJnkjeWNeZ3YhIz03JCQiMmk5SGV3dygpeSMhIzskIjFYI281JFs8PV4hIz03JCQiMmQuMjkpKVIiUkchIzskIjJZWF03dVBNTSQhIz43JCQiLyp6ZjRxJSopRyEjOCQiMUZvYyNHP3kuIyEjPTckJCIxcFF4YV5oUkghIzokIjIxLkkoKjM9IVE1ISM+NyQkIjJlJSopeWQpKXkoKUghIzskIjElR1I0UyhSVj8hIz43JCQiMlttS2whZicpUkkhIzskITFaO2I8SVRRbCEjPjckJCIyO0RdKzYqXCozJCEjOyQhMiN5O2R4U1pBOSEjPjckJCIyMip6Zj5kdFRKISM7JCExJltNeG4pKSlRQCEjPTckJCIyUHZdLFZBISo9JCEjOyQhMV9caVVHRG9FISM9NyQkIjFRdVsoNCRHVEshIzokITJaMyxbODZwMyQhIz43JCQiMV8tMDUoUjhIJCEjOiQhMS02KT1CSlBJJCEjPTckJCIxJzM8TVt1N00kISM6JCExL1owIyllPE9MISM9NyQkIjEkcFF4YUpNUiQhIzokITEuKTQvSWZyPSQhIz03JCQiMjo/UyEzLFpUTSEjOyQhMnRsPWpOPywiSCEjPjckJCIxQVQjWztvMVwkISM6JCExKT5ZJnldP0JEISM9NyQkIjFMbUtsJykpXGEkISM6JCExNFBnRzwqXC0jISM9NyQkIjB0WCJIOTwlZiQhIzkkITIuS1pqWGxyYiIhIz43JCQiMCV6ZTwrWldPISM5JCEybFxQcFAwZTUiISM+NyQkIjFoQFYnUUFjcCQhIzokITFyUTk0OGYvciEjPjckJCIyWG9PdE9URXUkISM7JCExO1FdMW1fVVUhIz43JCQiMWg+Unk/dyN6JCEjOiQhMnRbbm4/dSEpMyMhIz83JCQiMlpvT3RFLEQlUSEjOyQhMCZmbSopR3YiMykhIz43JCQiMW9NcFFucSYqUSEjOiQhMldUOlVzSXchPSEjQDckJCIxZDpKaSNlRSVSISM6JCEyelB6XSlSU3c9ISNBNyQkIjJ4TXBRZElvKlIhIzskITJQY29MJCpSIUc8ISNGNyQkIjE5RmEzcHJYUyEjOiQiIiEhIiI3JCQiMU9xUyJRKDMlNCUhIzokIiIhISIiNyQkIjF1VyopeTY1WVQhIzokIiIhISIiNyQkIjJOZDlIUUQkKT4lISM7JCIiISEiIjckJCIxKFJ6ZW5UZUMlISM6JCIiISEiIjckJCIxNDxNbz1JJ0glISM6JCIiISEiIjckJCIxNkBVJTNZYk0lISM6JCIiISEiIjckJCIxYjM8TXQjKilSJSEjOiQiIiEhIiI3JCQiMCNSeWNwNlhXISM5JCIiISEiIjckJCIwJXplPHU7KVwlISM5JCIiISEiIjckJCIxJVwpcFJ3LltYISM6JCIiISEiIjckJCIxWyNcKXBoVShmJSEjOiQiIiEhIiI3JCQiMUNaJSopKVImb2slISM6JCIiISEiIjckJCIxI1J5Y0Juc3AlISM6JCIiISEiIjckJCIxPExtS1dxXVohIzokIiIhISIiNyQkIjFSeGE0NnEqeiUhIzokIiIhISIiNyQkIjFHYjVAcjFbWyEjOiQiIiEhIiI3JCQiMSlHZDlmcCgqKlshIzokIiIhISIiNyQkIjFeLTA1JmY4JlwhIzokIiIhISIiNyQkIiNdISIiJCIiISEiIi0lJ0xFR0VOREc2Iy0lKV9UWVBFU0VURzYjLUklbXN1Ykc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjYmLUkjbWlHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEnJiM5MjM7NiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY3LUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEiNjYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii1JI21vRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNj5RIiw2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJSZmZW5jZUdRJmZhbHNlNiIvJSpzZXBhcmF0b3JHUSV0cnVlNiIvJSlzdHJldGNoeUdRJmZhbHNlNiIvJSpzeW1tZXRyaWNHUSZmYWxzZTYiLyUobGFyZ2VvcEdRJmZhbHNlNiIvJS5tb3ZhYmxlbGltaXRzR1EmZmFsc2U2Ii8lJ2FjY2VudEdRJmZhbHNlNiIvJSdsc3BhY2VHUSYwLjBlbTYiLyUncnNwYWNlR1EsMC4zMzMzMzMzZW02Ii1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRIjM2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUvc3Vic2NyaXB0c2hpZnRHUSIwNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiItJSZDT0xPUkc2JyUkUkdCRyQiKUMpZXElISIpJCIiISEiIiQiKCc+IVwmISIpLSUrX0FUVFJJQlVURUc2Iy8lJ3NvdXJjZUclLG1hdGhkZWZhdWx0Ry0lJ0NVUlZFU0c2JTdqeDckJCEjXSEiIiQiIiEhIiI3JCQhMVYoWyhcUlVaXCEjOiQiIiEhIiI3JCQhMiZReGE0eW4sXCEjOyQiIiEhIiI3JCQhMWhBWCFcSi0mWyEjOiQiIiEhIiI3JCQhMSV6ZTw6VyUpeiUhIzokIiIhISIiNyQkITFKaUNcSCFwdSUhIzokIiIhISIiNyQkITAjUnljdzYqcCUhIzkkIiIhISIiNyQkITFkOEZhKFEnXFkhIzokIiIhISIiNyQkITFqRF4td1kpZiUhIzokIiIhISIiNyQkITFLa0dkMFlaWCEjOiQiIiEhIiI3JCQhMVYmMzxhJCpcXCUhIzokIiIhISIiNyQkITJiOUhlYyF5W1chIzskIiIhISIiNyQkITE4RF0rZHYnUiUhIzokIiIhISIiNyQkITEtLzM7c15XViEjOiQiIiEhIiI3JCQhMT5SeWNkPCVIJSEjOiQiIiEhIiI3JCQhMUNaJSopKTNZW1UhIzokIiIhISIiNyQkITFPc1cqWyxUPiUhIzokIiIhISIiNyQkITJOcFF4JT4wW1QhIzskIiIhISIiNyQkITEmMzxNUSZbJTQlISM6JCIiISEiIjckJCExUHVbKCopcHEvJSEjOiQiIiEhIiI3JCQhMjtPc1dmWl0qUiEjOyQiMnktYlVHKHkjPSMhI0U3JCQhMloqKil6ZiteWFIhIzskITIwdGRfaUVHdyMhI0I3JCQhMiZ6Zj5SRyNRKlEhIzskITF6NixgKzJbayEjQDckJCEyO1J5YyR5TllRISM7JCEyJSl6TyJwJjRDVCQhI0A3JCQhMUZhMzwvOyZ6JCEjOiQhMiNleTJtdio0PCIhIz83JCQhMiUpcFJ6byEpPnUkISM7JCExayZmIlx2J3knSCEjPjckJCEyWiRwUXh2byZwJCEjOyQhMWpMSlhgeDtiISM+NyQkITJOdVsoXCgqb1hPISM7JCExW0Y4ST9wWiQqISM+NyQkITJ3YDI6NVBTZiQhIzskITJCMUIpKUg/LlYiISM+NyQkITFlOkppXV1WTiEjOiQhMnQjKmUpPmVwcz4hIz43JCQhMS0vMztGaCVcJCEjOiQhMmp4S1hXZnRcIyEjPjckJCEyeGAyOjVFLlckISM7JCEyS3FARFx4bSskISM+NyQkITJgND5RO1o6UiQhIzskITJYKSlcNHM+aUwkISM+NyQkITJWITQ9T19ZUkwhIzskITIwcFYpMy9kLE4hIz43JCQhMUBVJSlvN0YjSCQhIzokITFYc0UkPnUiZk0hIz03JCQhMlojXClwenYxQyQhIzskITIpKmZuT3lgJyo+JCEjPjckJCEyQ1olKil5JUdAPiQhIzskITJXcDM0O3EteCMhIz43JCQhMi0zO0thI1FUSiEjOyQhMSRbSz1rSmU7IyEjPTckJCEyKCopeWQ6InA8NCQhIzskITFqLi8lPU5RWSIhIz03JCQhMXBReGElRylSSSEjOiQhMXpwPzhjTk9sISM+NyQkITFHYzdETSEpKilIISM6JCIxZmIjeiIqKilccSIhIz43JCQhMmM8TnFnWCdRSCEjOyQiMjwpcF0ieTI/LyIhIz43JCQhMnRgMjpTNnopRyEjOyQiMW8jPk16eGEnPiEjPTckJCEyPFJ5YyQ+SFRHISM7JCIyVz5tJDNHQ3RIISM+NyQkITIxPE1vd2d5eSMhIzskIjIwL25WK1xBXyUhIz43JCQhMjtKaUNIcit1IyEjOyQiMmwvJSk+RXlJWCchIz43JCQhMjE4RV91PCIqbyMhIzskIjFHUmMmZTA2QCohIz03JCQhMlooXCoqKXBbLmsjISM7JCIySnFxMzZPR0QiISM9NyQkITJ2Xi4yJXA+J2UjISM7JCIyRTM4Iio+MjVvIiEjPTckJCEyWCNcKXBcMCRSRCEjOyQiMiNSKVEqW052dD8hIz03JCQhMk5zVyopRyQzJ1sjISM7JCIyWjw0OltGJylcIyEjPTckJCExLjE3Q3FkUEMhIzokIjFzNFxXKVI2I0chIzw3JCQhMm1Mbk16PVhRIyEjOyQiMkJXWiFmQXBhSSEjPTckJCExUnljOCZRKFFCISM6JCIyTjl5ImUoKnlESiEjPTckJCEyWidIZj0sZydHIyEjOyQiMVI/Ri1mc1JJISM8NyQkITJgMjpJK1BpQiMhIzskIjIucSlRZmVkJnkjISM9NyQkITIzQFUlKXkxZj0jISM7JCIyJio0LXosJDN5QiEjPTckJCExVCNbJ0g8d05AISM6JCIxJkhOJFslKWZYPSEjPDckJCEyZDtMbS0pZSgzIyEjOyQiMjlAQihHWnRWNyEjPTckJCExWiUqKXkoNF5OPyEjOiQiMSZlR15JJlxDXyEjPTckJCExZj1QdXgoZSk+ISM6JCEyMEBecnpFRzgjISM+NyQkITIuN0NbO1RPJD4hIzskITIoby5hMVYoWy0iISM9NyQkITJvTnJVWGFqKT0hIzskITJXKSopM2kiR1V6IiEjPTckJCEyS25NcHkkNE09ISM7JCEwJmZlKSk9NDhGISM7NyQkITIkZj1QdXIuJXkiISM7JCEwPDBMN3IrciQhIzs3JCQhMl8tMDVTLVR0IiEjOyQhMiUzN1dvM0dtWyEjPTckJCEybFQkb09gJT5vIiEjOyQhMSxTOzVnNHJpISM8NyQkITImND5Rd24hUmoiISM7JCEwby92XWpocyghIzs3JCQhMicqKXpmPigzWmUiISM7JCEwPE1wXy1WSiohIzs3JCQhMnNaJjQ+IylRSTohIzskITIqKnlMSihvczA2ISM8NyQkITEjUXdfWDA3WyIhIzokITJNMSc+SVwkeUMiISM8NyQkITIwPE1vJ28hNFYiISM7JCExck8/O3MlPU8iISM7NyQkITAxN0NvSWBTIiEjOSQhMkdSaSc0MSpHUyIhIzw3JCQhMiVcKiopelxhKHo4ISM7JCEyMF5lWigzQ0k5ISM8NyQkITIpPVF3XygqKnpPIiEjOyQhMTpcc24+I3lWIiEjOzckJCEyIylvUHYrWGlOIiEjOyQhMjEoNCsqeSc0VTkhIzw3JCQhMnZiNkJFIVxXOCEjOyQhMlFjInAoW21IVyIhIzw3JCQhMUZhMzxidEs4ISM6JCEyRHE+YyJ5TVM5ISM8NyQkITJ5Z0AkUmA/PzghIzskITIjPTIiPScpUk9WIiEjPDckJCEyJyl5ZDo7dndJIiEjOyQhMnclW2wjb0lHVSIhIzw3JCQhMiZwUnokKVw5JkgiISM7JCEwJFEoWykqenlTIiEjOjckJCEyLjpJZyFbaCNHIiEjOyQhMmlsa2s5bygpUSIhIzw3JCQhMigpeWQ6QFh4RCIhIzskITEoZVxJc0kmUTghIzs3JCQhMnJVJjM8YyhHQiIhIzskITJiNXNPZFhARiIhIzw3JCQhMkZrR2Q5cSd6NiEjOyQhMio9aSZmYEIleTUhIzw3JCQhMWAwNkEnPUY4IiEjOiQhMSNwJXlOIz0xYSkhIzw3JCQhMlB3XzBKWSZ5NSEjOyQhMTlgdjR6JUdUJiEjPDckJCExKFJ6ZSgqZidINSEjOiQhMXMjNHNkLnk6IyEjPDckJCExXzI6SV0qRyIpKiEjOyQiMkp5PnEsbyRIOSEjPTckJCExJ1F3XzBkRkgqISM7JCIwKSpmcidbZXNjISM7NyQkITF2YDI6XV5xKCkhIzskIjIyTzdIJD1ETTUhIzw3JCQhMVByVSYzX2BIKSEjOyQiMi0sMC8qemEqXCIhIzw3JCQhMTtTITM7XTJ6KCEjOyQiMSVIbUQnZVZWPyEjOzckJCExJCoqKioqKip6SSlIKCEjOyQiMTE5JSpcJ2UtaiMhIzs3JCQhMGM3RF0mXGtuISM6JCIvLEcuJzQ6TCQhIzk3JCQhMTM+UXcjKmYtaiEjOyQiMmtDKnl2O2YpKVIhIzw3JCQhMS48TW9ZNHNkISM7JCIybSUqMz9NdW95JSEjPDckJCExeWhCWkNSdF8hIzskIjF1RGkoKXp4ZWIhIzs3JCQhMihRJ0dkOTImelohIzwkIjF6XXNZcDI9aiEjOzckJCEyYCdReGEqR19HJSEjPCQiMWVQXWwnemYvKCEjOzckJCEyYj1QdVsnNCJ5JCEjPCQiMWM+PnV3Tkh4ISM7NyQkITJXJXplPFhzWUshIzwkIjFEJ3khXFErbCQpISM7NyQkITJYclYoW3h2Y0YhIzwkIjEqSFI/L1BTJikpISM7NyQkITJFJGU7THc0dEEhIzwkIjEtJz5RKUhCVyMqISM7NyQkITJEQ1snSEgyYzwhIzwkIjFgJTRENyFmaSYqISM7NyQkITI2Zj1QdXQsQyIhIzwkIjE5Ul16eilweSohIzs3JCQhMWxwUnplQnJ4ISM8JCIxeVMqZXA5dSIqKiEjOzckJCExbCNmPVBhJ0ddISM8JCIwI2VSISkqUmInKiohIzo3JCQhMldjQFYnRzInRyMhIz0kIjBoXigzailHKioqISM6NyQkITIlbyhlPE5TJ1E2ISM9JCIxbSMqR1BgQikqKiohIzs3JCQiMGNGUyEzOyN6KSEjPiQiMWxLeSUqKSoqKioqKiohIzs3JCQiMk8jb090WUFjNiEjPSQiMUNJMjcvPSkqKiohIzs3JCQiMiY+J0hmPWRPSSMhIz0kIjEsTixPa3gjKioqISM7NyQkIjE7KiopemZmeClcISM8JCIxTSRRX0UqNG0qKiEjOzckJCIxNy0wNT8nPW4oISM8JCIxJltiPFZGJj4qKiEjOzckJCIyWE1wUXhkTC0iISM8JCIxbiZwSHR4ZiYpKiEjOzckJCIyeG1Mbk1IJno3ISM8JCIxTUZVRXEiSHgqISM7NyQkIjJrclYoWzIqcHQiISM8JCIxXDhMWWlbcyYqISM7NyQkIi8mKXBSUlheQSEjOSQiMSJRMkVZaiZmIyohIzs3JCQiMXJKakV0S3BGISM7JCIxXFxiKD5vRSUpKSEjOzckJCIya3plPE5SWkckISM8JCIxOigzLUkhPkIkKSEjOzckJCIxNj5Rd0FmaVAhIzskIjFbQFMvMCxgeCEjOzckJCIxVHZdLDhRZFUhIzskIjEjSEROQzFiMyghIzs3JCQiMXRhND5HNHBaISM7JCIwJCpcY09QUUwnISM6NyQkIjEpeWM4Rmoiel8hIzskIjBBeTtdQilcYiEjOjckJCIxIm9OclVMUSFlISM7JCIyJjNLeWB3PVFaISM8NyQkIjFZJ0hmPWpmRSchIzskIjEncCIpKj4hSEMvJSEjOzckJCIxJSlmPlI9QCd5JyEjOyQiMSxqTCVlLDxJJCEjOzckJCIxKTM8TW8nZjN0ISM7JCIxVnJqaWBTPEUhIzs3JCQiMT0+UXc3LDd5ISM7JCIxPHUlR0glUT4/ISM7NyQkIjF0UXhhKmYicCMpISM7JCIxKTRgcWdda18iISM7NyQkIjFZKFsoXFJ2NykpISM7JCIwLUJWQClcWyoqISM7NyQkIjFtVCRvT1xLRiohIzskIjFBOURKXVdSZSEjPDckJCIxYy0wNV0iKjMpKiEjOyQiMU0+WiJ6Ti5ZIiEjPDckJCIyTG5NcClwSUc1ISM7JCExLSJlOmIxQjEjISM8NyQkIjImWyhcKipHSC4zIiEjOyQhMmtwW09yUVRfJiEjPTckJCIyYTZCWSNvJylINiEjOyQhL1x2I1tpJypRKSEjOjckJCIyMThFXy9hOj0iISM7JCEySkY1ZmxFazMiISM8NyQkIjIlPlB1WyE+IUg3ISM7JCEyIylSbihISVZnNyEjPDckJCIyPT9TIWV4aGE3ISM7JCEyakJKL1xpNUwiISM8NyQkIjJWb090WTstRyIhIzskITJBaV5ASU5ZUSIhIzw3JCQiMmk2QicqUjZOSCIhIzskITIleiYpZTNXaTA5ISM8NyQkIjIjWyY0Pkwxb0kiISM7JCEyOlcjXCUpeiM+VSIhIzw3JCQiMi0pZj5rNzU/OCEjOyQhMl95aEEvbk5WIiEjPDckJCIyQFQjWyc+J1JMOCEjOyQhMmNTMjJ2KWVTOSEjPDckJCIyTGc/VFpwXE0iISM7JCEyX3dsdnMpKkhXIiEjPDckJCIyWHplPHZVbE4iISM7JCExQT0xZCwuVTkhIzs3JCQiMmMpcFJIZzZvOCEjOyQhMmRuXzsqSHdQOSEjPDckJCIybzxOcUkqb3o4ISM7JCEyaU40VSQ9SEk5ISM8NyQkIjFzVSYzQSlvLzkhIzokITI6RFooZjx2LjkhIzw3JCQiMW5Mbk1yb0g5ISM6JCEyOkoiKlt1IjRrOCEjPDckJCIyRGQ5SHlSOFsiISM7JCEyPFZSJzQ3W1o3ISM8NyQkIjJPYjVAIz0oPWAiISM7JCEyTz1oV0VGNjUiISM8NyQkIjIqMzxNb1R3IWUiISM7JCEwdjlTKT4yViUqISM7NyQkIjJQZDlIeV1daiIhIzskITBXeCNSRzQhcCghIzs3JCQiMlssLjFzSFFvIiEjOyQhMVRYT3ohNHBAJyEjPDckJCIyaj9UI1s7ImZ0IiEjOyQhMVpDKj1pKj5AWyEjPDckJCIwKnlkOmM1JHkiISM5JCExRll4QDcvSVAhIzw3JCQiMmE9UHUzLFokPSEjOyQhMXVXOSVHND1xIyEjPDckJCIxUndfMCVbSyk9ISM6JCEyW0RKRydcUlk9ISM9NyQkIjIzLjE3TSUqUiQ+ISM7JCEyTnFOdkNwIz41ISM9NyQkIjI4QVcpb3hnJCk+ISM7JCEwRFxIKVFFeUMhIzw3JCQiMVUjWydIJVtiLiMhIzokIjFfJVx0NyopKUhfISM9NyQkIjJGWydIZk1kJjMjISM7JCIyJkdSUyQpUS48NyEjPTckJCIxTXBReDd0T0AhIzokIjEpNFVqQykqbyY9ISM8NyQkIjJQZDlIW2x1PSMhIzskIjJEJT0wRG53I1IjISM9NyQkIjIlPVB1W1wzTUEhIzskIjEvbEVMIlE2eCMhIzw3JCQiMiZSemU8aF4oRyMhIzskIjJEai9SWjdHLyQhIz03JCQiMi4hKWY+ZjBgTCMhIzskIjJ0cShmYjdyREohIz03JCQiMClmPlIiZmlRIyEjOSQiMWtRZUksWFxJISM8NyQkIjJuOEZhPUddViMhIzskIjIjeTJMKnlkYiRHISM9NyQkIjEkZj1QJSp6IipbIyEjOiQiMk9EVWc4WGFaIyEjPTckJCIxJz1QdVFyZ2AjISM6JCIyI3l4QXl0cCtAISM9NyQkIjEoUXhhZiRIKmUjISM6JCIxUkFsTSMpUmI7ISM8NyQkIjJ3XSwuJykqelBFISM7JCIyW2BUNVshenI3ISM9NyQkIjF1WiY0NGUzcCMhIzokIjFkPTlJeWIvIiohIz03JCQiMXNVJjNQUW10IyEjOiQiMWpEc0MnPmFoJyEjPTckJCIyaTlIZXd3KCl5IyEjOyQiMUZqVSVRRTNcJSEjPTckJCIyZC4yOSkpUiJSRyEjOyQiMigzQHReKSkpZi0kISM+NyQkIi8qemY0cSUqKUchIzgkIjJ0Kik9LVhOXyQ+ISM+NyQkIjFwUXhhXmhSSCEjOiQiMVhwKSpHRjxENSEjPTckJCIyZSUqKXlkKSl5KClIISM7JCIyW2o/RyYpNEovIyEjPzckJCIyW21LbCFmJylSSSEjOyQhMUZqeUlaUlVsISM+NyQkIjI7RF0rNipcKjMkISM7JCEyV04sJyo0bChIOSEjPjckJCIyMip6Zj5kdFRKISM7JCExI3BEMC4oW3FAISM9NyQkIjJQdl0sVkEhKj0kISM7JCExWDdLXnFUUEYhIz03JCQiMVF1Wyg0JEdUSyEjOiQhMV5iaClcWVI/JCEjPTckJCIxXy0wNShSOEgkISM6JCEyTWksInlyVmNNISM+NyQkIjEnMzxNW3U3TSQhIzokITJhbnY0LWclKlwkISM+NyQkIjEkcFF4YUpNUiQhIzokITJpemQvcnZqSyQhIz43JCQiMjo/UyEzLFpUTSEjOyQhMTFKKCk+RkUoKkghIz03JCQiMUFUI1s7bzFcJCEjOiQhMV5kJVEkZid5YCMhIz03JCQiMUxtS2wnKSlcYSQhIzokITJZJmZGb0laYz4hIz43JCQiMHRYIkg5PCVmJCEjOSQhMjZcL0VISSpHOSEjPjckJCIwJXplPCtaV08hIzkkITFaXixxcUBhJSohIz43JCQiMWhAVidRQWNwJCEjOiQhMVc5JXBIWzVfJiEjPjckJCIyWG9PdE9URXUkISM7JCEyJ0g/Z005WFFIISM/NyQkIjFoPlJ5P3cjeiQhIzokITI3IlEyMykpKipHNyEjPzckJCIyWm9PdEUsRCVRISM7JCExZSZwJj55KVshUSEjPzckJCIxb01wUW5xJipRISM6JCExWV1tQyhvcyRmISNANyQkIjFkOkppI2VFJVIhIzokITFmISopWz9GQWEkISNBNyQkIjJ4TXBRZElvKlIhIzskIjJXLzNbbGZDXCQhI0U3JCQiMTlGYTNwclhTISM6JCIiISEiIjckJCIxT3FTIlEoMyU0JSEjOiQiIiEhIiI3JCQiMXVXKil5NjVZVCEjOiQiIiEhIiI3JCQiMk5kOUhRRCQpPiUhIzskIiIhISIiNyQkIjEoUnplblRlQyUhIzokIiIhISIiNyQkIjE0PE1vPUknSCUhIzokIiIhISIiNyQkIjE2QFUlM1liTSUhIzokIiIhISIiNyQkIjFiMzxNdCMqKVIlISM6JCIiISEiIjckJCIwI1J5Y3A2WFchIzkkIiIhISIiNyQkIjAlemU8dTspXCUhIzkkIiIhISIiNyQkIjElXClwUncuW1ghIzokIiIhISIiNyQkIjFbI1wpcGhVKGYlISM6JCIiISEiIjckJCIxQ1olKikpUiZvayUhIzokIiIhISIiNyQkIjEjUnljQm5zcCUhIzokIiIhISIiNyQkIjE8TG1LV3FdWiEjOiQiIiEhIiI3JCQiMVJ4YTQ2cSp6JSEjOiQiIiEhIiI3JCQiMUdiNUByMVtbISM6JCIiISEiIjckJCIxKUdkOWZwKCoqWyEjOiQiIiEhIiI3JCQiMV4tMDUmZjgmXCEjOiQiIiEhIiI3JCQiI10hIiIkIiIhISIiLSUnTEVHRU5ERzYjLSUpX1RZUEVTRVRHNiMtSSVtc3ViRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiYtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1UScmIzkyMzs2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjctSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USI2NiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLUkjbW9HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2PlEiLDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJmZlbmNlR1EmZmFsc2U2Ii8lKnNlcGFyYXRvckdRJXRydWU2Ii8lKXN0cmV0Y2h5R1EmZmFsc2U2Ii8lKnN5bW1ldHJpY0dRJmZhbHNlNiIvJShsYXJnZW9wR1EmZmFsc2U2Ii8lLm1vdmFibGVsaW1pdHNHUSZmYWxzZTYiLyUnYWNjZW50R1EmZmFsc2U2Ii8lJ2xzcGFjZUdRJjAuMGVtNiIvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbTYiLUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEiNDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJS9zdWJzY3JpcHRzaGlmdEdRIjA2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii0lJkNPTE9SRzYnJSRSR0JHJCIiISEiIiQiKCc+IVwmISIpJCIpQyllcSUhIiktJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUnQ1VSVkVTRzYlN2l4NyQkISNdISIiJCIiISEiIjckJCExVihbKFxSVVpcISM6JCIiISEiIjckJCEyJlF4YTR5bixcISM7JCIiISEiIjckJCExaEFYIVxKLSZbISM6JCIiISEiIjckJCExJXplPDpXJSl6JSEjOiQiIiEhIiI3JCQhMUppQ1xIIXB1JSEjOiQiIiEhIiI3JCQhMCNSeWN3NipwJSEjOSQiIiEhIiI3JCQhMWQ4RmEoUSdcWSEjOiQiIiEhIiI3JCQhMWpEXi13WSlmJSEjOiQiIiEhIiI3JCQhMUtrR2QwWVpYISM6JCIiISEiIjckJCExViYzPGEkKlxcJSEjOiQiIiEhIiI3JCQhMmI5SGVjIXlbVyEjOyQiIiEhIiI3JCQhMThEXStkdidSJSEjOiQiIiEhIiI3JCQhMS0vMztzXldWISM6JCIiISEiIjckJCExPlJ5Y2Q8JUglISM6JCIiISEiIjckJCExQ1olKikpM1lbVSEjOiQiIiEhIiI3JCQhMU9zVypbLFQ+JSEjOiQiIiEhIiI3JCQhMk5wUXglPjBbVCEjOyQiIiEhIiI3JCQhMSYzPE1RJlslNCUhIzokIiIhISIiNyQkITFQdVsoKilwcS8lISM6JCIiISEiIjckJCEyO09zV2ZaXSpSISM7JCIyTkpZb1BbS2UiISNCNyQkITJaKiopemYrXlhSISM7JCEyIzQlcDwqR15wPCEjQzckJCEyJnpmPlJHI1EqUSEjOyQhMiV5Uy1GMjsuQiEjQTckJCEyO1J5YyR5TllRISM7JCEyQVJPRCFIQSw7ISNANyQkITFGYTM8LzsmeiQhIzokIS9QVkskPSRbcCEjPTckJCEyJSlwUnpvISk+dSQhIzskITI5XnBxJFslbzQjISM/NyQkITJaJHBReHZvJnAkISM7JCExSnEtY2tcXVYhIz43JCQhMk51WyhcKCpvWE8hIzskITEtTCVwVSFRcSEpISM+NyQkITJ3YDI6NVBTZiQhIzskITIjR0k9IilHQUI4ISM+NyQkITFlOkppXV1WTiEjOiQhMSRwRGwlXF86PiEjPTckJCExLS8zO0ZoJVwkISM6JCEyJlxXbE5PdS9EISM+NyQkITJ4YDI6NUUuVyQhIzskITFRRUBMNFcjMyQhIz03JCQhMmA0PlE7WjpSJCEjOyQhMk8jPnRnUl9fTSEjPjckJCEyViE0PU9fWVJMISM7JCEyMEJPWWM2J0dPISM+NyQkITFAVSUpbzdGI0gkISM6JCExTkFERGUnKm9OISM9NyQkITJaI1wpcHp2MUMkISM7JCEyWSlmayc9XUxGJCEjPjckJCEyQ1olKil5JUdAPiQhIzskITE2IW9iJGUlKjNHISM9NyQkITItMztLYSNRVEohIzskITEmSGZzOTkhekAhIz03JCQhMigqKXlkOiJwPDQkISM7JCExMTVrcCQzaFkiISM9NyQkITFwUXhhJUcpUkkhIzokITEnei1jWyNvT2whIz43JCQhMUdjN0RNISkqKUghIzokIjIlZVl5d24oW3EiISM/NyQkITJjPE5xZ1gnUUghIzskIjJ2LSVRVnRKUjUhIz43JCQhMnRgMjpTNnopRyEjOyQiMjkpPiFcIVxTRz4hIz43JCQhMjxSeWMkPkhURyEjOyQiMSV5Ti0/NjskRyEjPTckJCEyMTxNb3dneXkjISM7JCIxYDUpWyg0MWJUISM9NyQkITI7SmlDSHIrdSMhIzskIjE3ZzQqUiFlTWUhIz03JCQhMjE4RV91PCIqbyMhIzskIjA3PkIya2pQKSEjPDckJCEyWihcKiopcFsuayMhIzskIjJNIT06I3kvUjsiISM9NyQkITJ2Xi4yJXA+J2UjISM7JCIyTUJeO1MuLWgiISM9NyQkITJYI1wpcFwwJFJEISM7JCIySyRHYi4iZXQuIyEjPTckJCEyTnNXKilHJDMnWyMhIzskIjIoMyI+WUNvPV4jISM9NyQkITEuMTdDcWRQQyEjOiQiMjp4dydRc0R3RyEjPTckJCEybUxuTXo9WFEjISM7JCIxIzN2TiYqWyZRSiEjPDckJCExUnljOCZRKFFCISM6JCIwIyp6I1xpczlLISM7NyQkITJaJ0hmPSxnJ0cjISM7JCIyVmEvSi8tVjYkISM9NyQkITJgMjpJK1BpQiMhIzskIjIleU0oPVQwXCRHISM9NyQkITIzQFUlKXkxZj0jISM7JCIyMzsuWkJ2Q1MjISM9NyQkITFUI1snSDx3TkAhIzokIjBoUihcJz5OJj0hIzs3JCQhMmQ7TG0tKWUoMyMhIzskIjFod0hUJFtdQyIhIzw3JCQhMVolKil5KDReTj8hIzokIjFmMVl1ISpwQ18hIz03JCQhMWY9UHV4KGUpPiEjOiQhMWk+OChlPkc4IyEjPTckJCEyLjdDWztUTyQ+ISM7JCEyL2BEOnc3UC0iISM9NyQkITJvTnJVWGFqKT0hIzskITJNKUh4bj1aI3kiISM9NyQkITJLbk1weSQ0TT0hIzskITIjUitHU3lNakUhIz03JCQhMiRmPVB1ci4leSIhIzskITFHdU48azIlZiQhIzw3JCQhMl8tMDVTLVR0IiEjOyQhMUovJUhyTTtuJSEjPDckJCEybFQkb09gJT5vIiEjOyQhMjpjUWM2TlssJyEjPTckJCEyJjQ+UXduIVJqIiEjOyQhMXJ1d1RkcGh1ISM8NyQkITInKil6Zj4oM1plIiEjOyQhMUUsPEYhcFc1KiEjPDckJCEyc1omND4jKVFJOiEjOyQhMiNlIWZcMnpyNCIhIzw3JCQhMSNRd19YMDdbIiEjOiQhMilcZF91Qj1gNyEjPDckJCEyMDxNbydvITRWIiEjOyQhMW8sMTtkIyl6OCEjOzckJCEwMTdDb0lgUyIhIzkkITE8WS1qNlxEOSEjOzckJCEyJVwqKil6XGEoejghIzskITF5N1dSKyNlWCIhIzs3JCQhMik9UXdfKCoqek8iISM7JCEyKXByOC8jeVRZIiEjPDckJCEyIylvUHYrWGlOIiEjOyQhMSh6ZEQmWyYpbzkhIzs3JCQhMnZiNkJFIVxXOCEjOyQhMU85XiFlZihwOSEjOzckJCExRmEzPGJ0SzghIzokITIjUjY/Y14jb1kiISM8NyQkITJ5Z0AkUmA/PzghIzskITAvTjJaPyVmOSEjOjckJCEyJyl5ZDo7dndJIiEjOyQhMkwtLVxAeXZXIiEjPDckJCEyJnBSeiQpXDkmSCIhIzskITJYYXQqKjMsOFYiISM8NyQkITIuOklnIVtoI0ciISM7JCEyZXYvOjk9MVQiISM8NyQkITIoKXlkOkBYeEQiISM7JCEyUTYoeWF3dWM4ISM8NyQkITJyVSYzPGMoR0IiISM7JCExL2VBKFsxa0ciISM7NyQkITJGa0dkOXEnejYhIzskITI2P05rIzQnXDMiISM8NyQkITFgMDZBJz1GOCIhIzokITFBb2wkWyNSaSYpISM8NyQkITJQd18wSlkmeTUhIzskITJtPCozRFJJOmEhIz03JCQhMShSemUoKmYnSDUhIzokITFeZ2JFMyR5OiMhIzw3JCQhMV8yOkldKkciKSohIzskIjJzWENpNWokSDkhIz03JCQhMSdRd18wZEZIKiEjOyQiMSQpeTswMixxYyEjPDckJCExdmAyOl1ecSgpISM7JCIyKVtjbldOY0o1ISM8NyQkITFQclUmM19gSCkhIzskIjElM1lpak8vXCIhIzs3JCQhMTtTITM7XTJ6KCEjOyQiMjEiR3pjNyNHLSMhIzw3JCQhMSQqKioqKioqekkpSCghIzskIjJYTUlza2ZuZiMhIzw3JCQhMGM3RF0mXGtuISM6JCIxRk9NbFY8KUckISM7NyQkITEzPlF3IypmLWohIzskIjJiZU5ydTtbJVIhIzw3JCQhMS48TW9ZNHNkISM7JCIyJkcleko8JD5hWiEjPDckJCExeWhCWkNSdF8hIzskIjFkJ2YnKnA6ZmEmISM7NyQkITIoUSdHZDkyJnpaISM8JCIxdXAlKVxcXUdqISM7NyQkITJgJ1F4YSpHX0clISM8JCIwQUtTW21uMighIzo3JCQhMmI9UHVbJzQieSQhIzwkIjFkblNgJzNBeCghIzs3JCQhMlclemU8WHNZSyEjPCQiMW0kR0c+YCUzJSkhIzs3JCQhMlhyVihbeHZjRiEjPCQiMTpzKClwLCcpKSkpKSEjOzckJCEyRSRlO0x3NHRBISM8JCIxSCZ5KkdOX20jKiEjOzckJCEyRENbJ0hIMmM8ISM8JCIxeUJERnhucyYqISM7NyQkITI2Zj1QdXQsQyIhIzwkIjEzWUQqPnEoKnkqISM7NyQkITFscFJ6ZUJyeCEjPCQiMShSYigpRzB5IioqISM7NyQkITFsI2Y9UGEnR10hIzwkIjFFbSZ6aCVmbCoqISM7NyQkITJXY0BWJ0cyJ0cjISM9JCIxJFFpbGcoKUcqKiohIzs3JCQhMiVvKGU8TlMnUTYhIz0kIjFRdVohUU4jKSoqKiEjOzckJCIwY0ZTITM7I3opISM+JCIxbEt5JSopKioqKioqKiEjOzckJCIyTyNvT3RZQWM2ISM9JCIxOENrZS89KSoqKiEjOzckJCIyJj4nSGY9ZE9JIyEjPSQiMSopPiFHeXhGKioqISM7NyQkIjE7KiopemZmeClcISM8JCIxPSYzeSg9Om0qKiEjOzckJCIxNy0wNT8nPW4oISM8JCIxLTp3RGwqKT4qKiEjOzckJCIyeG1Mbk1IJno3ISM8JCIwMTU8I1IxdygqISM6NyQkIjJrclYoWzIqcHQiISM8JCIxNy46WmE/I2UqISM7NyQkIi8mKXBSUlheQSEjOSQiMHVyLTckRyJHKiEjOjckJCIxckpqRXRLcEYhIzskIjFbJ3luYyd5eCkpISM7NyQkIjJremU8TlJaRyQhIzwkIjF3UFtiNipwTykhIzs3JCQiMTY+UXdBZmlQISM7JCIxSCgqKlw+JDQneighIzs3JCQiMVR2XSw4UWRVISM7JCIxYUhpXyRHczYoISM7NyQkIjF0YTQ+RzRwWiEjOyQiMTElPjRpWlpNJyEjOzckJCIxKXljOEZqInpfISM7JCIxRVkhRzYpcE9iISM7NyQkIjEib05yVUxRIWUhIzskIjFcKXliSTVYcSUhIzs3JCQiMVknSGY9amZFJyEjOyQiMWppdD8kPiEqKlIhIzs3JCQiMSUpZj5SPUAneSchIzskIjFhazNVLmdlSyEjOzckJCIxKTM8TW8nZjN0ISM7JCIyTSs0aCopZVRlIyEjPDckJCIxPT5RdzcsN3khIzskIjJVTzsyYkAkKio+ISM8NyQkIjF0UXhhKmYicCMpISM7JCIxIz5NXmhbb14iISM7NyQkIjFZKFsoXFJ2NykpISM7JCIxclk9cCg9XiMqKiEjPDckJCIxbVQkb09cS0YqISM7JCIyYU85VyIpUmwkZSEjPTckJCIxYy0wNV0iKjMpKiEjOyQiMmNuSjdOSS5ZIiEjPTckJCIyTG5NcClwSUc1ISM7JCEyMGwlelckR0IxIyEjPTckJCIyJlsoXCoqR0guMyIhIzskITJiRXJhVltvXyYhIz03JCQiMmE2QlkjbycpSDYhIzskITFIUS4pPnQnNCUpISM8NyQkIjIxOEVfL2E6PSIhIzskITFMRVR4Xz4kNCIhIzs3JCQiMiU+UHVbIT4hSDchIzskITF6bXhiKXlTRiIhIzs3JCQiMj0/UyFleGhhNyEjOyQhMS16W28yels4ISM7NyQkIjJWb090WTstRyIhIzskITFMQ29DNTsxOSEjOzckJCIyaTZCJypSNk5IIiEjOyQhMiVRKUc+WWApRzkhIzw3JCQiMiNbJjQ+TDFvSSIhIzskITJjQ0p5WiNmWTkhIzw3JCQiMi0pZj5rNzU/OCEjOyQhMUtsIyoqUlMkZjkhIzs3JCQiMkBUI1snPidSTDghIzskITJQVScqcHgjNG45ISM8NyQkIjJMZz9UWnBcTSIhIzskITJYZ0lWUSh6cDkhIzw3JCQiMlh6ZTx2VWxOIiEjOyQhMWA2QkNFeW85ISM7NyQkIjJjKXBSSGc2bzghIzskITI8bipHKFE4VFkiISM8NyQkIjJvPE5xSSpvejghIzskITIocFIqKVxqKGVYIiEjPDckJCIxc1UmM0Epby85ISM6JCEybipmMVIiW2tVIiEjPDckJCIxbkxuTXJvSDkhIzokITFsUGMlR0NCUSIhIzs3JCQiMkRkOUh5UjhbIiEjOyQhMm1GKXpyNHpfNyEjPDckJCIyT2I1QCM9KD1gIiEjOyQhMiozITN2dnlANCIhIzw3JCQiMiozPE1vVHchZSIhIzskITFhMz5VaUlTIyohIzw3JCQiMlBkOUh5XV1qIiEjOyQhMWhNNkUiSF5VKCEjPDckJCIyWywuMXNIUW8iISM7JCExUl5KLD8zaWYhIzw3JCQiMmo/VCNbOyJmdCIhIzskITJDMDJgayVHSFkhIz03JCQiMCp5ZDpjNSR5IiEjOSQhMGN6JD4+aDdPISM7NyQkIjJhPVB1MyxaJD0hIzskITJHS1hvIT5xX0UhIz03JCQiMVJ3XzAlW0spPSEjOiQhMXB5KzJBR0w9ISM8NyQkIjIzLjE3TSUqUiQ+ISM7JCEyPTlZJXpfOD01ISM9NyQkIjI4QVcpb3hnJCk+ISM7JCExQ1omUVxaI3lDISM9NyQkIjFVI1snSCVbYi4jISM6JCIxWGowW0U1SV8hIz03JCQiMkZbJ0hmTWQmMyMhIzskIjInelkjKVxDQT03ISM9NyQkIjFNcFF4N3RPQCEjOiQiMjApUTx4I1FdJz0hIz03JCQiMlBkOUhbbHU9IyEjOyQiMjljTTNXSnlUIyEjPTckJCIyJT1QdVtcM01BISM7JCIxOGJXJlE9JD5HISM8NyQkIjImUnplPGheKEcjISM7JCIyMSpIMEUxeTxKISM9NyQkIjIuISlmPmYwYEwjISM7JCIxRV4kPSdlSDlLISM8NyQkIjApZj5SImZpUSMhIzkkIjE2cVpII1JGOCQhIzw3JCQiMm44RmE9R11WIyEjOyQiMUROaCcqKlxEKkchIzw3JCQiMSRmPVAlKnoiKlsjISM6JCIxV1w+eER2JlsjISM8NyQkIjEnPVB1UXJnYCMhIzokIjF3Tzg9KkdyMSMhIzw3JCQiMShReGFmJEgqZSMhIzokIjE3YTp0MShHZSIhIzw3JCQiMnddLC4nKSp6UEUhIzskIjEnUUQqRyQ+Sj0iISM8NyQkIjF1WiY0NGUzcCMhIzokIjFFNFlaTDB2IykhIz03JCQiMXNVJjNQUW10IyEjOiQiMSYpeTBUYk56ZiEjPTckJCIyaTlIZXd3KCl5IyEjOyQiMU4xR2UtQUdUISM9NyQkIjJkLjI5KSlSIlJHISM7JCIxMnMpPWlhdChHISM9NyQkIi8qemY0cSUqKUchIzgkIjJFXSNRVUpGKz4hIz43JCQiMXBReGFeaFJIISM6JCIySmZJM0plRS0iISM+NyQkIjJlJSopeWQpKXkoKUghIzskIjIpNC0rMHB4VT8hIz83JCQiMlttS2whZicpUkkhIzskITE9IVI+Qlw/YSchIz43JCQiMjtEXSs2KlwqMyQhIzskITJEO1ZZRUs9ViIhIz43JCQiMjIqemY+ZHRUSiEjOyQhMiZ5VXNrKSp6JD0jISM+NyQkIjJQdl0sVkEhKj0kISM7JCEyJHpUJz5XQ1V4IyEjPjckJCIxUXVbKDQkR1RLISM6JCExRyN6NlwhPXlLISM9NyQkIjFfLTA1KFI4SCQhIzokITEmeVZjdid5bE4hIz03JCQiMSczPE1bdTdNJCEjOiQhMTpjd0soKW9FTyEjPTckJCIxJHBReGFKTVIkISM6JCEyd1xSKVtQXlRNISM+NyQkIjI6P1MhMyxaVE0hIzskITJWU2QoSCcqeXJJISM+NyQkIjFBVCNbO28xXCQhIzokITFEblsyJ3owYiMhIz03JCQiMUxtS2wnKSlcYSQhIzokITEjelNSLilcKCo9ISM9NyQkIjB0WCJIOTwlZiQhIzkkITJIZSJcUUNsQDghIz43JCQiMCV6ZTwrWldPISM5JCExJ1tkVEoybzwpISM+NyQkIjFoQFYnUUFjcCQhIzokITE7J1tDV01eTiUhIz43JCQiMlhvT3RPVEV1JCEjOyQhMjBBXUQhNFVzPyEjPzckJCIxaD5SeT93I3okISM6JCEwNHAnM0JKIVEoISM+NyQkIjJab090RSxEJVEhIzskITIydyRSNzxiQT0hI0A3JCQiMW9NcFFucSYqUSEjOiQhMXpLVU5OTS0/ISNANyQkIjFkOkppI2VFJVIhIzokIjJGMGFUbTQqWz8hI0I3JCQiMnhNcFFkSW8qUiEjOyQiMTdceU4kekglSCEjQTckJCIxOUZhM3ByWFMhIzokIiIhISIiNyQkIjFPcVMiUSgzJTQlISM6JCIiISEiIjckJCIxdVcqKXk2NVlUISM6JCIiISEiIjckJCIyTmQ5SFFEJCk+JSEjOyQiIiEhIiI3JCQiMShSemVuVGVDJSEjOiQiIiEhIiI3JCQiMTQ8TW89SSdIJSEjOiQiIiEhIiI3JCQiMTZAVSUzWWJNJSEjOiQiIiEhIiI3JCQiMWIzPE10IyopUiUhIzokIiIhISIiNyQkIjAjUnljcDZYVyEjOSQiIiEhIiI3JCQiMCV6ZTx1OylcJSEjOSQiIiEhIiI3JCQiMSVcKXBSdy5bWCEjOiQiIiEhIiI3JCQiMVsjXClwaFUoZiUhIzokIiIhISIiNyQkIjFDWiUqKSlSJm9rJSEjOiQiIiEhIiI3JCQiMSNSeWNCbnNwJSEjOiQiIiEhIiI3JCQiMTxMbUtXcV1aISM6JCIiISEiIjckJCIxUnhhNDZxKnolISM6JCIiISEiIjckJCIxR2I1QHIxW1shIzokIiIhISIiNyQkIjEpR2Q5ZnAoKipbISM6JCIiISEiIjckJCIxXi0wNSZmOCZcISM6JCIiISEiIjckJCIjXSEiIiQiIiEhIiItJSdMRUdFTkRHNiMtJSlfVFlQRVNFVEc2Iy1JJW1zdWJHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2Ji1JI21pRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRJyYjOTIzOzYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2Ny1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRIjY2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSNtb0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY+USIsNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUmZmVuY2VHUSZmYWxzZTYiLyUqc2VwYXJhdG9yR1EldHJ1ZTYiLyUpc3RyZXRjaHlHUSZmYWxzZTYiLyUqc3ltbWV0cmljR1EmZmFsc2U2Ii8lKGxhcmdlb3BHUSZmYWxzZTYiLyUubW92YWJsZWxpbWl0c0dRJmZhbHNlNiIvJSdhY2NlbnRHUSZmYWxzZTYiLyUnbHNwYWNlR1EmMC4wZW02Ii8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtNiItSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USI1NiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lL3N1YnNjcmlwdHNoaWZ0R1EiMDYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLSUmQ09MT1JHNiclJFJHQkckIihoPiFIISIoJCIpQyllcSUhIikkIiIhISIiLSUrX0FUVFJJQlVURUc2Iy8lJ3NvdXJjZUclLG1hdGhkZWZhdWx0Ry0lJ0NVUlZFU0c2JTdbeTckJCEjXSEiIiQiIiEhIiI3JCQhMVYoWyhcUlVaXCEjOiQiIiEhIiI3JCQhMiZReGE0eW4sXCEjOyQiIiEhIiI3JCQhMWhBWCFcSi0mWyEjOiQiIiEhIiI3JCQhMSV6ZTw6VyUpeiUhIzokIiIhISIiNyQkITFKaUNcSCFwdSUhIzokIiIhISIiNyQkITAjUnljdzYqcCUhIzkkIiIhISIiNyQkITFkOEZhKFEnXFkhIzokIiIhISIiNyQkITFqRF4td1kpZiUhIzokIiIhISIiNyQkITFLa0dkMFlaWCEjOiQiIiEhIiI3JCQhMVYmMzxhJCpcXCUhIzokIiIhISIiNyQkITJiOUhlYyF5W1chIzskIiIhISIiNyQkITE4RF0rZHYnUiUhIzokIiIhISIiNyQkITEtLzM7c15XViEjOiQiIiEhIiI3JCQhMT5SeWNkPCVIJSEjOiQiIiEhIiI3JCQhMUNaJSopKTNZW1UhIzokIiIhISIiNyQkITFPc1cqWyxUPiUhIzokIiIhISIiNyQkITJOcFF4JT4wW1QhIzskIiIhISIiNyQkITEmMzxNUSZbJTQlISM6JCIiISEiIjckJCExUHVbKCopcHEvJSEjOiQiIiEhIiI3JCQhMjtPc1dmWl0qUiEjOyQiLkRjRShwOVEhIz03JCQhMloqKil6ZiteWFIhIzskITIoeiJmY1VSIz41ISNANyQkITImemY+UkcjUSpRISM7JCIxIyo+YSFvXSxdJSEjQDckJCEyO1J5YyR5TllRISM7JCEyJVtAJmZzTUFaIiEjQDckJCExRmEzPC87JnokISM6JCExOz1oUjpOTXQhIz83JCQhMiUpcFJ6byEpPnUkISM7JCEyLVx4SlRGRk4iISM/NyQkITJaJHBReHZvJnAkISM7JCEybWI/W2BEKSpvJCEjPzckJCEyTnVbKFwoKm9YTyEjOyQhMVEjPlp4W040KCEjPjckJCEyd2AyOjVQU2YkISM7JCEyTyJSI1ssMSE9NyEjPjckJCExZTpKaV1dVk4hIzokITJLSSk+KikpZXglPSEjPjckJCExLS8zO0ZoJVwkISM6JCEyT3I3UWVHLV0jISM+NyQkITJ4YDI6NUUuVyQhIzskITJFcTJkSC5VOiQhIz43JCQhMmA0PlE7WjpSJCEjOyQhMiRRbjpCNERRTiEjPjckJCEyViE0PU9fWVJMISM7JCExTiN5dGhLS3QkISM9NyQkITFAVSUpbzdGI0gkISM6JCEyJSpmJlJNTyJlbCQhIz43JCQhMlojXClwenYxQyQhIzskITFodm86SG9PTCEjPTckJCEyQ1olKil5JUdAPiQhIzskITFqKHAhW0Y+UkchIz03JCQhMi0zO0thI1FUSiEjOyQhMXBUKVwoNHl6QCEjPTckJCEyKCopeWQ6InA8NCQhIzskITEjW25dNm8kcDkhIz03JCQhMXBReGElRylSSSEjOiQhMSY9QCJ5bDRvbCEjPjckJCExR2M3RE0hKSopSCEjOiQiMiQqKVInXFE2WHMiISM/NyQkITJjPE5xZ1gnUUghIzskIjFwPk9CMkRONSEjPTckJCEydGAyOlM2eilHISM7JCIySG5rSiZHdTc+ISM+NyQkITI8UnljJD5IVEchIzskIjJtOFZJYS4nZUYhIz43JCQhMjE8TW93Z3l5IyEjOyQiMWgzQCdwcU0kUiEjPTckJCEyO0ppQ0hyK3UjISM7JCIxOSYzJjRyOTJhISM9NyQkITIxOEVfdTwiKm8jISM7JCIxLG9bRiFHQnQoISM9NyQkITJaKFwqKilwWy5rIyEjOyQiMFVCdUJKMDQiISM7NyQkITJ2Xi4yJXA+J2UjISM7JCIya2NbcFNAJls6ISM9NyQkITJYI1wpcFwwJFJEISM7JCIyI3BQbzskZVwrIyEjPTckJCEyTnNXKilHJDMnWyMhIzskIjJrJnlEPSFcT18jISM9NyQkITEuMTdDcWRQQyEjOiQiMmQnKnBKISlmWyNIISM9NyQkITJtTG5Nej1YUSMhIzskIjEyO0MyTl00SyEjPDckJCExKWU8TmxHO08jISM6JCIxSGMmUTNyKW9LISM8NyQkITFSeWM4JlEoUUIhIzokIjF5JnA/OVtoRyQhIzw3JCQhMS0vMzskcEVKIyEjOiQiMTZKIUdnN1ZEJCEjPDckJCEyWidIZj0sZydHIyEjOyQiMic+YTUoXCEpKW9KISM9NyQkITJgMjpJK1BpQiMhIzskIjI9WnpgZlNvJ0chIz03JCQhMjNAVSUpeTFmPSMhIzskIjInSGZkV3ZzOkMhIz03JCQhMVQjWydIPHdOQCEjOiQiMm9uYyw6L28mPSEjPTckJCEyZDtMbS0pZSgzIyEjOyQiMV9Hc1Q3Xlg3ISM8NyQkITFaJSopeSg0Xk4/ISM6JCIxMCYzVFUhekNfISM9NyQkITFmPVB1eChlKT4hIzokITIwV01sTHpGOCMhIz43JCQhMi43Q1s7VE8kPiEjOyQhMkJRJUh1Y1hCNSEjPTckJCEyb05yVVhhaik9ISM7JCEyJ3l4PS4oRyN5PCEjPTckJCEyS25NcHkkNE09ISM7JCExYTsiPnMnb1FFISM8NyQkITIkZj1QdXIuJXkiISM7JCEyYidIWSQpPXJCTiEjPTckJCEyXy0wNVMtVHQiISM7JCExI0c0KWUiPWJgJSEjPDckJCEybFQkb09gJT5vIiEjOyQhMSlIJmZyMXI6ZSEjPDckJCEyJjQ+UXduIVJqIiEjOyQhMS0heVIqMyM9QyghIzw3JCQhMicqKXpmPigzWmUiISM7JCEvc24qb0g+IyopISM6NyQkITJzWiY0PiMpUUk6ISM7JCExNkBYUjtiKjMiISM7NyQkITEjUXdfWDA3WyIhIzokITI4Iz1EaFsnekQiISM8NyQkITIwPE1vJ28hNFYiISM7JCEyIz5GJDNCP2NSIiEjPDckJCEwMTdDb0lgUyIhIzkkITIoKSl5KlE4Ml1XIiEjPDckJCEyJVwqKil6XGEoejghIzskITItJzNMI1EvdVoiISM8NyQkITIpPVF3XygqKnpPIiEjOyQhMSYqNCI+TlFoWyIhIzs3JCQhMiMpb1B2K1hpTiIhIzskITJ0JilcWzBSM1wiISM8NyQkITJ2YjZCRSFcVzghIzskITI5czIkPlxWIlwiISM8NyQkITFGYTM8YnRLOCEjOiQhMT0hPSw6Jil5WyIhIzs3JCQhMicpeWQ6O3Z3SSIhIzskITIkNCFlTlNqa1kiISM8NyQkITIuOklnIVtoI0ciISM7JCEyLUcleV4lKVtFOSEjPDckJCEyKCl5ZDpAWHhEIiEjOyQhMkxJeEI4TCNwOCEjPDckJCEyclUmMzxjKEdCIiEjOyQhMUskKXArTWAmSCIhIzs3JCQhMkZrR2Q5cSd6NiEjOyQhMjhiVyUpejclKTMiISM8NyQkITFgMDZBJz1GOCIhIzokITFKR1o2OFByJikhIzw3JCQhMlB3XzBKWSZ5NSEjOyQhMVInKXleMiVmVCYhIzw3JCQhMShSemUoKmYnSDUhIzokITBLPUpnTHk6IyEjOzckJCExXzI6SV0qRyIpKiEjOyQiMm4pPT0keWkkSDkhIz03JCQhMSdRd18wZEZIKiEjOyQiMWUrKW9oLyVwYyEjPDckJCExdmAyOl1ecSgpISM7JCIyL3U7Uy5EMC4iISM8NyQkITFQclUmM19gSCkhIzskIjBzJ1s9NCNlWyIhIzo3JCQhMTtTITM7XTJ6KCEjOyQiMG5pWDI1LCwjISM6NyQkITEkKioqKioqKnpJKUgoISM7JCIxUGJGcmk0dEQhIzs3JCQhMGM3RF0mXGtuISM6JCIyRTozNngmPmFLISM8NyQkITEzPlF3IypmLWohIzskIjFOJDRecXIjM1IhIzs3JCQhMS48TW9ZNHNkISM7JCIyMSE0ajc1aURaISM8NyQkITF5aEJaQ1J0XyEjOyQiMFguI1EuVk1iISM6NyQkITIoUSdHZDkyJnpaISM8JCIxYEphIVFFeUwnISM7NyQkITJgJ1F4YSpHX0clISM8JCIxLmJgeGt4LnIhIzs3JCQhMmI9UHVbJzQieSQhIzwkIjE2XTg/akkzeSEjOzckJCEyVyV6ZTxYc1lLISM8JCIxNFk2JHAjZVUlKSEjOzckJCEyWHJWKFt4dmNGISM8JCIxRmgpWykzeDgqKSEjOzckJCEyRSRlO0x3NHRBISM8JCIxUF9qUCVcMEcqISM7NyQkITJEQ1snSEgyYzwhIzwkIjBfWUFgNHpkKiEjOjckJCEyNmY9UHV0LEMiISM8JCIxZUFBPkkmM3oqISM7NyQkITFscFJ6ZUJyeCEjPCQiMWBPMCJlMHoiKiohIzs3JCQhMWwjZj1QYSdHXSEjPCQiMXB6Lm1SZ2wqKiEjOzckJCEyV2NAVidHMidHIyEjPSQiMF9AL3IoKUcqKiohIzo3JCQhMiVvKGU8TlMnUTYhIz0kIjEwIj5BUU4jKSoqKiEjOzckJCIwY0ZTITM7I3opISM+JCIxbEt5JSopKioqKioqKiEjOzckJCIyTyNvT3RZQWM2ISM9JCIxJzRcMFkhPSkqKiohIzs3JCQiMiY+J0hmPWRPSSMhIz0kIjFBLFIiKnl4IyoqKiEjOzckJCIxOyoqKXpmZngpXCEjPCQiMVwjcCsiMzttKiohIzs3JCQiMTctMDU/Jz1uKCEjPCQiMXg/dCc9ISoqPioqISM7NyQkIjJ4bUxuTUgmejchIzwkIjAmZiEpZj1LeCgqISM6NyQkIjJrclYoWzIqcHQiISM8JCIxcCopZV1IPyhlKiEjOzckJCIvJilwUlJYXkEhIzkkIjFUbyNmZmRbSCohIzs3JCQiMXJKakV0S3BGISM7JCIxPiZSSkJ6SCEqKSEjOzckJCIya3plPE5SWkckISM8JCIxJVJAQm4uO1MpISM7NyQkIjE2PlF3QWZpUCEjOyQiMWNrJEchZkpLeSEjOzckJCIxVHZdLDhRZFUhIzskIjF1JDNleDddOSghIzs3JCQiMXRhND5HNHBaISM7JCIxJFswPkgpXGFqISM7NyQkIjEpeWM4Rmoiel8hIzskIjEpUmFeSnpcXyYhIzs3JCQiMSJvTnJVTFEhZSEjOyQiMlYuInpodjd2WSEjPDckJCIxWSdIZj1qZkUnISM7JCIxJjNyTCVHamlSISM7NyQkIjElKWY+Uj1AJ3knISM7JCIyPF5YVEdDXEEkISM8NyQkIjEpMzxNbydmM3QhIzskIjBCa1RPSTJjIyEjOjckJCIxPT5RdzcsN3khIzskIjIuQFA5Rk9xKT4hIzw3JCQiMXRReGEqZiJwIykhIzskIjEiUioqKSo+RD5eIiEjOzckJCIxWShbKFxSdjcpKSEjOyQiMXokZlROYmoiKiohIzw3JCQiMW1UJG9PXEtGKiEjOyQiMTNjLihRUWUkZSEjPDckJCIxYy0wNV0iKjMpKiEjOyQiMiVmWiplKSpILlkiISM9NyQkIjJMbk1wKXBJRzUhIzskITIjKkhKTlRJQjEjISM9NyQkIjImWyhcKipHSC4zIiEjOyQhMmIoUVEkZWx2XyYhIz03JCQiMmE2QlkjbycpSDYhIzskITEsby5oUng8JSkhIzw3JCQiMjE4RV8vYTo9IiEjOyQhMmA3T3RVKXonNCIhIzw3JCQiMiU+UHVbIT4hSDchIzskITAtRChwMXIjRyIhIzo3JCQiMj0/UyFleGhhNyEjOyQhMmtkdmZbVzNPIiEjPDckJCIyVm9PdFk7LUciISM7JCEyOXElZWlcckA5ISM8NyQkIjJpNkInKlI2TkgiISM7JCEyOHBMYXk0aFciISM8NyQkIjIjWyY0Pkwxb0kiISM7JCEyT1dvKnBZUWw5ISM8NyQkIjItKWY+azc1PzghIzskITJHaF9WWk4lejkhIzw3JCQiMkBUI1snPidSTDghIzskITFIbi46XD4pWyIhIzs3JCQiMkxnP1RacFxNIiEjOyQhMmkielIkXCJcIlwiISM8NyQkIjJYemU8dlVsTiIhIzskITAmNCE0VHEyXCIhIzo3JCQiMmMpcFJIZzZvOCEjOyQhMnR2SlJhcmdbIiEjPDckJCIybzxOcUkqb3o4ISM7JCEyWEk/NCFRWXg5ISM8NyQkIjFzVSYzQSlvLzkhIzokITJfQnkpPXAuWTkhIzw3JCQiMW5Mbk1yb0g5ISM6JCEyJnBiXzg0TClSIiEjPDckJCIyRGQ5SHlSOFsiISM7JCEyLThyMCkpUnZEIiEjPDckJCIyT2I1QCM9KD1gIiEjOyQhMVUmXFQhbz4lMyIhIzs3JCQiMiozPE1vVHchZSIhIzskITFjZlxWQVdqISohIzw3JCQiMlBkOUh5XV1qIiEjOyQhMTAyQyJHTF4/KCEjPDckJCIyWywuMXNIUW8iISM7JCExRl1HSDRxa2QhIzw3JCQiMmo/VCNbOyJmdCIhIzskITBkdnQqXG0mXCUhIzs3JCQiMCp5ZDpjNSR5IiEjOSQhMXhQKj4jZjpUTiEjPDckJCIyYT1QdTMsWiQ9ISM7JCExJ1IjPkxsVUdFISM8NyQkIjFSd18wJVtLKT0hIzokITJGJWYsT2xWRz0hIz03JCQiMjMuMTdNJSpSJD4hIzskITJuLCp6az4peSwiISM9NyQkIjI4QVcpb3hnJCk+ISM7JCEydyoqNCQ+cUF5QyEjPjckJCIxVSNbJ0glW2IuIyEjOiQiMWw4KUhdLixCJiEjPTckJCIyRlsnSGZNZCYzIyEjOyQiMih5eDpkXl09NyEjPTckJCIxTXBReDd0T0AhIzokIjFVZmhRP1hvPSEjPDckJCIyUGQ5SFtsdT0jISM7JCIyQzYmKlwoKVs5ViMhIz03JCQiMiU9UHVbXDNNQSEjOyQiMj1AQyd6KlEuJkchIz03JCQiMiZSemU8aF4oRyMhIzskIjA8T2BpREY8JCEjOzckJCIwKFF4YTNUNkIhIzkkIjF5VkQ6bFBeSyEjPDckJCIyLiEpZj5mMGBMIyEjOyQiMSlwX1ZcPV1HJCEjPDckJCIwKnlkbEJ5Z0IhIzkkIjJjazxBamAtRiQhIz03JCQiMClmPlIiZmlRIyEjOSQiMnUlUjhyPlkuSyEjPTckJCIybjhGYT1HXVYjISM7JCIyeXExa0wtRSVIISM9NyQkIjEkZj1QJSp6IipbIyEjOiQiMScqKWUjRyUpMyZcIyEjPDckJCIxJz1QdVFyZ2AjISM6JCIxWShHRSJHUFA/ISM8NyQkIjEoUXhhZiRIKmUjISM6JCIyM2lRS2NrJz46ISM9NyQkIjJ3XSwuJykqelBFISM7JCIyJzRQXEwkcCY0NiEjPTckJCIxdVomNDRlM3AjISM6JCIxaElMNXZaVHchIz03JCQiMXNVJjNQUW10IyEjOiQiMWQva0tTQVRiISM9NyQkIjJpOUhld3coKXkjISM7JCIxOD9HUWZeN1IhIz03JCQiMmQuMjkpKVIiUkchIzskIjFzXCIzJSo0USFHISM9NyQkIi8qemY0cSUqKUchIzgkIjJrXmdsYnprKT0hIz43JCQiMXBReGFeaFJIISM6JCIybkxFOi1HKT41ISM+NyQkIjJlJSopeWQpKXkoKUghIzskIjJ4KVspUSFSWyE0IyEjPzckJCIyW21LbCFmJylSSSEjOyQhMV8vbF8/KmVoJyEjPjckJCIyO0RdKzYqXCozJCEjOyQhMmB4c3IwdkpWIiEjPjckJCIyMip6Zj5kdFRKISM7JCEyYnhiLSE9biM9IyEjPjckJCIyUHZdLFZBISo9JCEjOyQhMDlmWm8uRHojISM8NyQkIjFRdVsoNCRHVEshIzokITJZeikqKikzYE1MJCEjPjckJCIxXy0wNShSOEgkISM6JCExV2lJIVE/KFJPISM9NyQkIjEnMzxNW3U3TSQhIzokITJkKHA+MT9ORVAhIz43JCQiMSRwUXhhSk1SJCEjOiQhMW1pXiIzdUNiJCEjPTckJCIyOj9TITMsWlRNISM7JCEydjlFKio9KVw1SiEjPjckJCIxQVQjWztvMVwkISM6JCEyQXohR28qNHZhIyEjPjckJCIxTG1LbCcpKVxhJCEjOiQhMllxJSllJSo9OCc9ISM+NyQkIjB0WCJIOTwlZiQhIzkkITJAbzYvMj09QyIhIz43JCQiMCV6ZTwrWldPISM5JCExN1hpXzx1O3YhIz43JCQiMWhAVidRQWNwJCEjOiQhMUokKm9mKGVnViQhIz43JCQiMlhvT3RPVEV1JCEjOyQhMiZ5YTZQVG5UOiEjPzckJCIxaD5SeT93I3okISM6JCEyOSVcMXo+YkxLISNANyQkIjJab090RSxEJVEhIzskIjI7NWFIUyg+TEQhI0A3JCQiMW9NcFFucSYqUSEjOiQiMXpMJyoqUkxeKkghIz83JCQiMWQ6SmkjZUUlUiEjOiQhMkdRbiE+ayhRLiQhI0A3JCQiMnhNcFFkSW8qUiEjOyQhMVJdIkhPMSFHZCEjPzckJCIxOUZhM3ByWFMhIzokIiIhISIiNyQkIjFPcVMiUSgzJTQlISM6JCIiISEiIjckJCIxdVcqKXk2NVlUISM6JCIiISEiIjckJCIyTmQ5SFFEJCk+JSEjOyQiIiEhIiI3JCQiMShSemVuVGVDJSEjOiQiIiEhIiI3JCQiMTQ8TW89SSdIJSEjOiQiIiEhIiI3JCQiMTZAVSUzWWJNJSEjOiQiIiEhIiI3JCQiMWIzPE10IyopUiUhIzokIiIhISIiNyQkIjAjUnljcDZYVyEjOSQiIiEhIiI3JCQiMCV6ZTx1OylcJSEjOSQiIiEhIiI3JCQiMSVcKXBSdy5bWCEjOiQiIiEhIiI3JCQiMVsjXClwaFUoZiUhIzokIiIhISIiNyQkIjFDWiUqKSlSJm9rJSEjOiQiIiEhIiI3JCQiMSNSeWNCbnNwJSEjOiQiIiEhIiI3JCQiMTxMbUtXcV1aISM6JCIiISEiIjckJCIxUnhhNDZxKnolISM6JCIiISEiIjckJCIxR2I1QHIxW1shIzokIiIhISIiNyQkIjEpR2Q5ZnAoKipbISM6JCIiISEiIjckJCIxXi0wNSZmOCZcISM6JCIiISEiIjckJCIjXSEiIiQiIiEhIiItJSdMRUdFTkRHNiMtJSlfVFlQRVNFVEc2Iy1JJW1zdWJHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2Ji1JI21pRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRJyYjOTIzOzYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2Ny1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRIjY2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSNtb0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY+USIsNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUmZmVuY2VHUSZmYWxzZTYiLyUqc2VwYXJhdG9yR1EldHJ1ZTYiLyUpc3RyZXRjaHlHUSZmYWxzZTYiLyUqc3ltbWV0cmljR1EmZmFsc2U2Ii8lKGxhcmdlb3BHUSZmYWxzZTYiLyUubW92YWJsZWxpbWl0c0dRJmZhbHNlNiIvJSdhY2NlbnRHUSZmYWxzZTYiLyUnbHNwYWNlR1EmMC4wZW02Ii8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtNiItSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USI2NiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lL3N1YnNjcmlwdHNoaWZ0R1EiMDYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLSUmQ09MT1JHNiclJFJHQkckIilFUEpDISIpJCIpW3c2TSEiKSQiKGw8VCYhIigtJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUlVklFV0c2JDskISNdISIiJCIjXSEiIiUoREVGQVVMVEctJiUmX0FYSVNHNiMiIiI2Jy0lK19HUklETElORVNHNiYtJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJiUmX0FYSVNHNiMiIiM2Jy0lK19HUklETElORVNHNiYtJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJStBWEVTTEFCRUxTRzYkLUkjbWlHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEieDYiLyUnZmFtaWx5R1EhNiIvJSVzaXplR1EjMTA2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EldHJ1ZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ2l0YWxpYzYiUSE2Ii0lJVJPT1RHNictJSlCT1VORFNfWEc2IyQiI3EhIiItJSlCT1VORFNfWUc2IyQiJD8iISIiLSUtQk9VTkRTX1dJRFRIRzYjJCImPzEiISIiLSUuQk9VTkRTX0hFSUdIVEc2IyQiJSFbJiEiIi0lKUNISUxEUkVORzYi</Plot></Text-field> -</Output> -</Group> -<Group labelreference="L536" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="plot([Lambda[2, 1], Lambda[2, 2], Lambda[4, 2], Lambda[4, 3], Lambda[4, 4], Lambda[6, 3], Lambda[6, 4], Lambda[6, 5], Lambda[6, 6], Lambda[8, 4]], x = -5 .. 5, legend = [typeset('Lambda[2, 1]'), typeset('Lambda[2, 2]'), typeset('Lambda[4, 2]'), typeset('Lambda[4, 3]'), typeset('Lambda[4, 4]'), typeset('Lambda[6, 3]'), typeset('Lambda[6, 4]'), typeset('Lambda[6, 5]'), typeset('Lambda[6, 6]'), typeset('Lambda[8, 4]')]); 1; plot([Lambda[2, 1], Lambda[2, 2], Lambda[4, 2], Lambda[4, 3], Lambda[4, 4], Lambda[6, 3], Lambda[6, 4], Lambda[6, 5], Lambda[6, 6], Lambda[8, 4]], x = -5 .. -1)" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYrLUkjbWlHRiQ2JVElcGxvdEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYyLUY2NiYtRiM2Ny1JJW1zdWJHRiQ2JS1GLDYlUSkmTGFtYmRhO0YnL0YwUSZmYWxzZUYnL0YzUSdub3JtYWxGJy1GIzYmLUkjbW5HRiQ2JFEiMkYnRkYtSSNtb0dGJDYtUSIsRidGRi8lJmZlbmNlR0ZFLyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRkUvJSpzeW1tZXRyaWNHRkUvJShsYXJnZW9wR0ZFLyUubW92YWJsZWxpbWl0c0dGRS8lJ2FjY2VudEdGRS8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUZLNiRRIjFGJ0ZGRkYvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJ0ZOLUY/NiUtRiw2JVEnJiM5MjM7RidGREZGLUYjNidGSkZORkpGL0YyRmNvRk4tRj82JUZoby1GIzYmLUZLNiRRIjRGJ0ZGRk5GSkZGRmNvRk4tRj82JUZBLUYjNiZGYXBGTi1GSzYkUSIzRidGRkZGRmNvRk4tRj82JUZBLUYjNiZGYXBGTkZhcEZGRmNvRk4tRj82JUZBLUYjNiYtRks2JFEiNkYnRkZGTkZocEZGRmNvRk4tRj82JUZBLUYjNiZGY3FGTkZhcEZGRmNvRk4tRj82JUZBLUYjNiZGY3FGTi1GSzYkUSI1RidGRkZGRmNvRk4tRj82JUZBLUYjNiZGY3FGTkZjcUZGRmNvRk4tRj82JUZoby1GIzYmLUZLNiRRIjhGJ0ZGRk5GYXBGRkZjby8lK2V4ZWN1dGFibGVHRkVGRkZGLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRk4tRiw2JVEieEYnRi9GMi1GTzYtUSI9RidGRkZSL0ZVRkVGVkZYRlpGZm5GaG4vRltvUSwwLjI3Nzc3NzhlbUYnL0Zeb0ZcdC1GTzYtUSomdW1pbnVzMDtGJ0ZGRlJGanNGVkZYRlpGZm5GaG4vRltvUSwwLjIyMjIyMjJlbUYnL0Zeb0ZidEZeci1GTzYtUSMuLkYnRkZGUkZqc0ZWRlhGWkZmbkZobkZhdC9GXm9GXG9GXnJGTi1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0Zcby8lJmRlcHRoR0ZddS8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GaXQ2JkZbdUZedUZgdS9GY3VRJWF1dG9GJy1GLDYlUSdsZWdlbmRGJ0YvRjJGZ3MtRjY2Ji1GIzZDLUYsNiVRKHR5cGVzZXRGJ0YvRjItRjY2JC1GIzYnLUZPNi1RIidGJ0ZGRlJGanNGVkZYRlpGZm5GaG4vRltvUSwwLjExMTExMTFlbUYnRmd0LUY/NiVGaG9GSEZjb0ZndkZcc0ZGRkZGTkZgdi1GNjYkLUYjNiZGZ3YtRj82JUZBLUYjNiZGSkZORkpGRkZjb0ZndkZGRkZGTkZgdi1GNjYkLUYjNiZGZ3ZGXXBGZ3ZGRkZGRk5GYHYtRjY2JC1GIzYmRmd2RmRwRmd2RkZGRkZORmB2LUY2NiQtRiM2JkZndkZbcUZndkZGRkZGTkZodEZldUZgdi1GNjYkLUYjNiZGZ3YtRj82JUZob0ZhcUZjb0ZndkZGRkZGTkZgdi1GNjYkLUYjNiZGZ3ZGZnFGZ3ZGRkZGRk5GYHYtRjY2JC1GIzYmRmd2RmpxRmd2RkZGRkZORmB2LUY2NiQtRiM2JkZndkZhckZndkZGRkZGTkZgdi1GNjYkLUYjNiZGZ3YtRj82JUZBRmdyRmNvRmd2RkZGRkZcc0ZGRkZGXnNGYXNGXHNGRkZGLUZPNi1RIjtGJ0ZGRlJGVEZWRlhGWkZmbkZobkZqbkZddEZodEZldUYrLUY2NiQtRiM2LC1GNjYmLUYjNjZGPkZORmZvRk5GXXBGTkZkcEZORltxRk5GX3FGTkZmcUZORmpxRk5GYXJGTkZoeUZGRkZGXnNGYXNGTkZkc0Znc0ZedEZeckZkdEZedEZgb0ZGRkZGXHNGRg==">QyUtSSVwbG90RzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliRzYiNiU3LCZJJ0xhbWJkYUdGKDYkIiIjIiIiJkYsNiRGLkYuJkYsNiQiIiVGLiZGLDYkRjQiIiQmRiw2JEY0RjQmRiw2JCIiJ0Y3JkYsNiRGPEY0JkYsNiRGPCIiJiZGLDYkRjxGPCZGLDYkIiIpRjQvSSJ4R0YoOyEiJkZBL0knbGVnZW5kR0YoNywtSSh0eXBlc2V0R0YoNiMuRistRk82Iy5GMC1GTzYjLkYyLUZPNiMuRjUtRk82Iy5GOC1GTzYjLkY6LUZPNiMuRj0tRk82Iy5GPy1GTzYjLkZCLUZPNiMuRkRGLy1GJDYkRiovRkg7RkohIiI=</Equation></Text-field> -</Input> -<Output> -<Text-field style="Maple Plot" layout="Maple Plot"><Plot height="753" type="two-dimensional" width="1210" plot-scale="1.0" plot-xtrans="0.0" plot-ytrans="0.0" gridlinevisibility="1" legendvisibility="true">LSUlUExPVEc2MS0lJ0NVUlZFU0c2JTdpeDckJCEjXSEiIiQiIiEhIiI3JCQhMVYoWyhcUlVaXCEjOiQiIiEhIiI3JCQhMiZReGE0eW4sXCEjOyQiIiEhIiI3JCQhMWhBWCFcSi0mWyEjOiQiIiEhIiI3JCQhMSV6ZTw6VyUpeiUhIzokIiIhISIiNyQkITFKaUNcSCFwdSUhIzokIiIhISIiNyQkITAjUnljdzYqcCUhIzkkIiIhISIiNyQkITFkOEZhKFEnXFkhIzokIiIhISIiNyQkITFqRF4td1kpZiUhIzokIiIhISIiNyQkITFLa0dkMFlaWCEjOiQiIiEhIiI3JCQhMVYmMzxhJCpcXCUhIzokIiIhISIiNyQkITJiOUhlYyF5W1chIzskIiIhISIiNyQkITE4RF0rZHYnUiUhIzokIiIhISIiNyQkITEtLzM7c15XViEjOiQiIiEhIiI3JCQhMT5SeWNkPCVIJSEjOiQiIiEhIiI3JCQhMUNaJSopKTNZW1UhIzokIiIhISIiNyQkITFPc1cqWyxUPiUhIzokIiIhISIiNyQkITJOcFF4JT4wW1QhIzskIiIhISIiNyQkITEmMzxNUSZbJTQlISM6JCIiISEiIjckJCExUHVbKCopcHEvJSEjOiQiIiEhIiI3JCQhMjtPc1dmWl0qUiEjOyQiIiEhIiI3JCQhMloqKil6ZiteWFIhIzskIiIhISIiNyQkITImemY+UkcjUSpRISM7JCIiISEiIjckJCEyO1J5YyR5TllRISM7JCIiISEiIjckJCExRmEzPC87JnokISM6JCIiISEiIjckJCEyJSlwUnpvISk+dSQhIzskIiIhISIiNyQkITJaJHBReHZvJnAkISM7JCIiISEiIjckJCEyTnVbKFwoKm9YTyEjOyQiIiEhIiI3JCQhMndgMjo1UFNmJCEjOyQiIiEhIiI3JCQhMWU6SmldXVZOISM6JCIiISEiIjckJCExLS8zO0ZoJVwkISM6JCIiISEiIjckJCEyeGAyOjVFLlckISM7JCIiISEiIjckJCEyYDQ+UTtaOlIkISM7JCIiISEiIjckJCEyViE0PU9fWVJMISM7JCIiISEiIjckJCExQFUlKW83RiNIJCEjOiQiIiEhIiI3JCQhMlojXClwenYxQyQhIzskIiIhISIiNyQkITJDWiUqKXklR0A+JCEjOyQiIiEhIiI3JCQhMi0zO0thI1FUSiEjOyQiIiEhIiI3JCQhMigqKXlkOiJwPDQkISM7JCIiISEiIjckJCExcFF4YSVHKVJJISM6JCIiISEiIjckJCExR2M3RE0hKSopSCEjOiQiIiEhIiI3JCQhMmM8TnFnWCdRSCEjOyQiIiEhIiI3JCQhMnRgMjpTNnopRyEjOyQiIiEhIiI3JCQhMjxSeWMkPkhURyEjOyQiIiEhIiI3JCQhMjE8TW93Z3l5IyEjOyQiIiEhIiI3JCQhMjtKaUNIcit1IyEjOyQiIiEhIiI3JCQhMjE4RV91PCIqbyMhIzskIiIhISIiNyQkITJaKFwqKilwWy5rIyEjOyQiIiEhIiI3JCQhMnZeLjIlcD4nZSMhIzskIiIhISIiNyQkITJYI1wpcFwwJFJEISM7JCIiISEiIjckJCEyTnNXKilHJDMnWyMhIzskIiIhISIiNyQkITEuMTdDcWRQQyEjOiQiIiEhIiI3JCQhMm1Mbk16PVhRIyEjOyQiIiEhIiI3JCQhMVJ5YzgmUShRQiEjOiQiIiEhIiI3JCQhMlonSGY9LGcnRyMhIzskIiIhISIiNyQkITJgMjpJK1BpQiMhIzskIiIhISIiNyQkITIzQFUlKXkxZj0jISM7JCIiISEiIjckJCExVCNbJ0g8d05AISM6JCIiISEiIjckJCEyZDtMbS0pZSgzIyEjOyQiIiEhIiI3JCQhMVolKil5KDReTj8hIzokIiIhISIiNyQkITFgMTh3VnA1PyEjOiQiIiEhIiI3JCQhMWY9UHV4KGUpPiEjOiQhMCIpenckei5KKSohIz43JCQhMicqKXpmcCVmKGY+ISM7JCExIylbLEJScHF4ISM+NyQkITIuN0NbO1RPJD4hIzskITFlOkkuQGtiPyEjPTckJCEyb05yVVhhaik9ISM7JCExJ1JXPElyUHMmISM9NyQkITJLbk1weSQ0TT0hIzskITJZcj9tQDt6OSIhIz03JCQhMiRmPVB1ci4leSIhIzskITIzVDshPkNQRz0hIz03JCQhMl8tMDVTLVR0IiEjOyQhMjkrYj9FM15mIyEjPTckJCEybFQkb09gJT5vIiEjOyQhMXJ5TU12QlxNISM8NyQkITImND5Rd24hUmoiISM7JCExdyhcQidSJXpDJSEjPDckJCEyJyopemY+KDNaZSIhIzskITFYKj41W1ZALyYhIzw3JCQhMnNaJjQ+IylRSTohIzskITIxTUdiRGslW2UhIz03JCQhMSNRd19YMDdbIiEjOiQhMTFTeiIqKm9kWichIzw3JCQhMjA8TW8nbyE0ViIhIzskITEpb1R1ZUR5KHAhIzw3JCQhMDE3Q29JYFMiISM5JCExOSgzQyRvKW87KCEjPDckJCEyJVwqKil6XGEoejghIzskITE3MUsnKUdtL3QhIzw3JCQhMiMpb1B2K1hpTiIhIzskITE7UCpbYGg8USghIzw3JCQhMUZhMzxidEs4ISM6JCExbDpeRiYqUTJ1ISM8NyQkITInKXlkOjt2d0kiISM7JCExazw5RWRrdHQhIzw3JCQhMi46SWchW2gjRyIhIzskITElSD4lPWNFc3MhIzw3JCQhMigpeWQ6QFh4RCIhIzskITEjM3owS04sNSghIzw3JCQhMnJVJjM8YyhHQiIhIzskITE3Nyp6L0lAJm8hIzw3JCQhMkZrR2Q5cSd6NiEjOyQhMk9TblIrcmAvJyEjPTckJCExYDA2QSc9RjgiISM6JCExeCtUdVlSIipcISM8NyQkITJQd18wSlkmeTUhIzskITInKjMjZStIZk1MISM9NyQkITEoUnplKCpmJ0g1ISM6JCEyYTYwQCo+TCdSIiEjPTckJCExXzI6SV0qRyIpKiEjOyQiMmJpVWImKWVYKyIhIz03JCQhMSdRd18wZEZIKiEjOyQiMXVmMFFpYCRbJSEjPDckJCExdmAyOl1ecSgpISM7JCIxJWUiKSozPyI+KikpISM8NyQkITFQclUmM19gSCkhIzskIjJ2cSRRV3g9ZjghIzw3JCQhMTtTITM7XTJ6KCEjOyQiMU9XdiN6USE+PiEjOzckJCExJCoqKioqKip6SSlIKCEjOyQiMkw8aVNfdFteIyEjPDckJCEwYzdEXSZca24hIzokIjInZS5qYHVRLkshIzw3JCQhMTM+UXcjKmYtaiEjOyQiMid6aWRWKmZZI1EhIzw3JCQhMS48TW9ZNHNkISM7JCIxUGlkNTFQYlghIzs3JCQhMXloQlpDUnRfISM7JCIxI2ZNT0pCdkMmISM7NyQkITIoUSdHZDkyJnpaISM8JCIxVS5KXjkhbyNmISM7NyQkITJgJ1F4YSpHX0clISM8JCIxVS5MQixjKmUnISM7NyQkITJiPVB1Wyc0InkkISM8JCIxTC4rU1tvT3MhIzs3JCQhMlclemU8WHNZSyEjPCQiMU1xYVU6MXl5ISM7NyQkITJYclYoW3h2Y0YhIzwkIjF4ZSpmP0lWVCkhIzs3JCQhMkUkZTtMdzR0QSEjPCQiMTQtJ1FIS1cpKSkhIzs3JCQhMkRDWydISDJjPCEjPCQiMWxLdkNDRzUkKiEjOzckJCEyNmY9UHV0LEMiISM8JCIxT3dxYU81VycqISM7NyQkITFscFJ6ZUJyeCEjPCQiMWohND5iZmcmKSohIzs3JCQhMWwjZj1QYSdHXSEjPCQiMU1PRzQhKm9RKiohIzs3JCQhMldjQFYnRzInRyMhIz0kIjFfeCNvKVE2KCkqKiEjOzckJCEyaztTITNtTjc8ISM9JCIwKkchMyFcdSMqKiohIzo3JCQhMiVvKGU8TlMnUTYhIz0kIjE7SzYqKTN5JyoqKiEjOzckJCExL1B4YTRDXGMhIz0kIjE7dkRjWz8qKioqISM7NyQkIjBjRlMhMzsjeikhIz4kIjFuXHYxKSoqKioqKiohIzs3JCQiMmNEYTM8JTNEZSEjPiQiMVRwbnVZOioqKiohIzs3JCQiMk8jb090WUFjNiEjPSQiMFBUby8ibycqKiohIzo3JCQiMjpBWydINCUqSDwhIz0kIjFuJVwoPWZmIyoqKiEjOzckJCIyJj4nSGY9ZE9JIyEjPSQiMVhDIWZHO3ApKiohIzs3JCQiMTsqKil6ZmZ4KVwhIzwkIjFgSXIpKm9tUioqISM7NyQkIjE3LTA1Pyc9bighIzwkIjFvKClvRyZIJ2YpKiEjOzckJCIyeG1Mbk1IJno3ISM8JCIwW1hedkJAaSohIzo3JCQiMmtyVihbMipwdCIhIzwkIjBASHAnb0tDJCohIzo3JCQiLyYpcFJSWF5BISM5JCIxJD11U2dIUiEqKSEjOzckJCIxckpqRXRLcEYhIzskIjEvRCopSExHLCUpISM7NyQkIjJremU8TlJaRyQhIzwkIjFZd2EoKkdCTXkhIzs3JCQiMTY+UXdBZmlQISM7JCIvOz4uZXRmcyEjOTckJCIxVHZdLDhRZFUhIzskIjFzI1smRzA8RW0hIzs3JCQiMXRhND5HNHBaISM7JCIxUWReWih6NCVmISM7NyQkIjEpeWM4Rmoiel8hIzskIjFkbFROJkcmUl8hIzs3JCQiMSJvTnJVTFEhZSEjOyQiMThqemxpTzZYISM7NyQkIjFZJ0hmPWpmRSchIzskIjIwKD4pNHRuWShRISM8NyQkIjElKWY+Uj1AJ3knISM7JCIxUkB3Wyp6WTwkISM7NyQkIjEpMzxNbydmM3QhIzskIjJtZjNKPikqPl0jISM8NyQkIjE9PlF3Nyw3eSEjOyQiMlsnKUc+NE5WKj0hIzw3JCQiMXRReGEqZiJwIykhIzskIjEnKnlRRkQhb1EiISM7NyQkIjFZKFsoXFJ2NykpISM7JCIxQTdUXk9KLyYpISM8NyQkIjFtVCRvT1xLRiohIzskIjFKTmRLJDREaiUhIzw3JCQiMWMtMDVdIiozKSohIzskIjI0dDcrSzB1LSIhIz03JCQiMkxuTXApcElHNSEjOyQhMk4jUXMlKltOTzghIz03JCQiMiZbKFwqKkdILjMiISM7JCEyTXpCa1YtclIkISM9NyQkIjJhNkJZI28nKUg2ISM7JCExOFJgalpKO1whIzw3JCQiMjE4RV8vYTo9IiEjOyQhMjooNFwiPUwyMychIz03JCQiMiU+UHVbIT4hSDchIzskITFQejxyI3psIW8hIzw3JCQiMj0/UyFleGhhNyEjOyQhMTprVXVPQHRxISM8NyQkIjJWb090WTstRyIhIzskITF3aWZNVCUpZXMhIzw3JCQiMiNbJjQ+TDFvSSIhIzskITEjKipvKCkpKipHcnQhIzw3JCQiMkBUI1snPidSTDghIzskITEmM0opNHNTMnUhIzw3JCQiMlh6ZTx2VWxOIiEjOyQhMWYoUjhuKTQiUSghIzw3JCQiMm88TnFJKm96OCEjOyQhMT1GPGJVJVxJKCEjPDckJCIxc1UmM0Epby85ISM6JCExJHkrMGwnKjQ8KCEjPDckJCIxbkxuTXJvSDkhIzokITAyJ1tiQiR6KXAhIzs3JCQiMkRkOUh5UjhbIiEjOyQhMS5HPlZGQXVrISM8NyQkIjJPYjVAIz0oPWAiISM7JCEyTnJNIilvRHkjZSEjPTckJCIyKjM8TW9UdyFlIiEjOyQhMjBYKilbRDxQNSYhIz03JCQiMlBkOUh5XV1qIiEjOyQhMjspUVclKlwwSFUhIz03JCQiMlssLjFzSFFvIiEjOyQhMXJeOyJmMHpUJCEjPDckJCIyaj9UI1s7ImZ0IiEjOyQhMWBMJkhxQGljIyEjPDckJCIwKnlkOmM1JHkiISM5JCEyUFtma28pKT4lPSEjPTckJCIyYT1QdTMsWiQ9ISM7JCEyayJ6I3lQZC45IiEjPTckJCIxUndfMCVbSyk9ISM6JCExbE0/PjJ2PmchIz03JCQiMjMuMTdNJSpSJD4hIzskITJhbCRvPSYpZU0/ISM+NyQkIjFFXi1iNSEpZT4hIzokITFSQTpkJj5yOCkhIz43JCQiMjhBVylveGckKT4hIzskITJYcS0iPkddQDghIz83JCQiMjpCWSMqNHkmND8hIzskIiIhISIiNyQkIjFVI1snSCVbYi4jISM6JCIiISEiIjckJCIyRlsnSGZNZCYzIyEjOyQiIiEhIiI3JCQiMU1wUXg3dE9AISM6JCIiISEiIjckJCIyUGQ5SFtsdT0jISM7JCIiISEiIjckJCIyJT1QdVtcM01BISM7JCIiISEiIjckJCIyJlJ6ZTxoXihHIyEjOyQiIiEhIiI3JCQiMi4hKWY+ZjBgTCMhIzskIiIhISIiNyQkIjApZj5SImZpUSMhIzkkIiIhISIiNyQkIjJuOEZhPUddViMhIzskIiIhISIiNyQkIjEkZj1QJSp6IipbIyEjOiQiIiEhIiI3JCQiMSc9UHVRcmdgIyEjOiQiIiEhIiI3JCQiMShReGFmJEgqZSMhIzokIiIhISIiNyQkIjJ3XSwuJykqelBFISM7JCIiISEiIjckJCIxdVomNDRlM3AjISM6JCIiISEiIjckJCIxc1UmM1BRbXQjISM6JCIiISEiIjckJCIyaTlIZXd3KCl5IyEjOyQiIiEhIiI3JCQiMmQuMjkpKVIiUkchIzskIiIhISIiNyQkIi8qemY0cSUqKUchIzgkIiIhISIiNyQkIjFwUXhhXmhSSCEjOiQiIiEhIiI3JCQiMmUlKil5ZCkpeSgpSCEjOyQiIiEhIiI3JCQiMlttS2whZicpUkkhIzskIiIhISIiNyQkIjI7RF0rNipcKjMkISM7JCIiISEiIjckJCIyMip6Zj5kdFRKISM7JCIiISEiIjckJCIyUHZdLFZBISo9JCEjOyQiIiEhIiI3JCQiMVF1Wyg0JEdUSyEjOiQiIiEhIiI3JCQiMV8tMDUoUjhIJCEjOiQiIiEhIiI3JCQiMSczPE1bdTdNJCEjOiQiIiEhIiI3JCQiMSRwUXhhSk1SJCEjOiQiIiEhIiI3JCQiMjo/UyEzLFpUTSEjOyQiIiEhIiI3JCQiMUFUI1s7bzFcJCEjOiQiIiEhIiI3JCQiMUxtS2wnKSlcYSQhIzokIiIhISIiNyQkIjB0WCJIOTwlZiQhIzkkIiIhISIiNyQkIjAlemU8K1pXTyEjOSQiIiEhIiI3JCQiMWhAVidRQWNwJCEjOiQiIiEhIiI3JCQiMlhvT3RPVEV1JCEjOyQiIiEhIiI3JCQiMWg+Unk/dyN6JCEjOiQiIiEhIiI3JCQiMlpvT3RFLEQlUSEjOyQiIiEhIiI3JCQiMW9NcFFucSYqUSEjOiQiIiEhIiI3JCQiMWQ6SmkjZUUlUiEjOiQiIiEhIiI3JCQiMnhNcFFkSW8qUiEjOyQiIiEhIiI3JCQiMTlGYTNwclhTISM6JCIiISEiIjckJCIxT3FTIlEoMyU0JSEjOiQiIiEhIiI3JCQiMXVXKil5NjVZVCEjOiQiIiEhIiI3JCQiMk5kOUhRRCQpPiUhIzskIiIhISIiNyQkIjEoUnplblRlQyUhIzokIiIhISIiNyQkIjE0PE1vPUknSCUhIzokIiIhISIiNyQkIjE2QFUlM1liTSUhIzokIiIhISIiNyQkIjFiMzxNdCMqKVIlISM6JCIiISEiIjckJCIwI1J5Y3A2WFchIzkkIiIhISIiNyQkIjAlemU8dTspXCUhIzkkIiIhISIiNyQkIjElXClwUncuW1ghIzokIiIhISIiNyQkIjFbI1wpcGhVKGYlISM6JCIiISEiIjckJCIxQ1olKikpUiZvayUhIzokIiIhISIiNyQkIjEjUnljQm5zcCUhIzokIiIhISIiNyQkIjE8TG1LV3FdWiEjOiQiIiEhIiI3JCQiMVJ4YTQ2cSp6JSEjOiQiIiEhIiI3JCQiMUdiNUByMVtbISM6JCIiISEiIjckJCIxKUdkOWZwKCoqWyEjOiQiIiEhIiI3JCQiMV4tMDUmZjgmXCEjOiQiIiEhIiI3JCQiI10hIiIkIiIhISIiLSUnTEVHRU5ERzYjLSUpX1RZUEVTRVRHNiMtSSVtc3ViRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiYtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1UScmIzkyMzs2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjctSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USIyNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLUkjbW9HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2PlEiLDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJmZlbmNlR1EmZmFsc2U2Ii8lKnNlcGFyYXRvckdRJXRydWU2Ii8lKXN0cmV0Y2h5R1EmZmFsc2U2Ii8lKnN5bW1ldHJpY0dRJmZhbHNlNiIvJShsYXJnZW9wR1EmZmFsc2U2Ii8lLm1vdmFibGVsaW1pdHNHUSZmYWxzZTYiLyUnYWNjZW50R1EmZmFsc2U2Ii8lJ2xzcGFjZUdRJjAuMGVtNiIvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbTYiLUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEiMTYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJS9zdWJzY3JpcHRzaGlmdEdRIjA2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii0lJkNPTE9SRzYnJSRSR0JHJCIpQyllcSUhIikkIiIhISIiJCIoJz4hXCYhIiktJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUnQ1VSVkVTRzYlN1x5NyQkISNdISIiJCIiISEiIjckJCExVihbKFxSVVpcISM6JCIiISEiIjckJCEyJlF4YTR5bixcISM7JCIiISEiIjckJCExaEFYIVxKLSZbISM6JCIiISEiIjckJCExJXplPDpXJSl6JSEjOiQiIiEhIiI3JCQhMUppQ1xIIXB1JSEjOiQiIiEhIiI3JCQhMCNSeWN3NipwJSEjOSQiIiEhIiI3JCQhMWQ4RmEoUSdcWSEjOiQiIiEhIiI3JCQhMWpEXi13WSlmJSEjOiQiIiEhIiI3JCQhMUtrR2QwWVpYISM6JCIiISEiIjckJCExViYzPGEkKlxcJSEjOiQiIiEhIiI3JCQhMmI5SGVjIXlbVyEjOyQiIiEhIiI3JCQhMThEXStkdidSJSEjOiQiIiEhIiI3JCQhMS0vMztzXldWISM6JCIiISEiIjckJCExPlJ5Y2Q8JUglISM6JCIiISEiIjckJCExQ1olKikpM1lbVSEjOiQiIiEhIiI3JCQhMU9zVypbLFQ+JSEjOiQiIiEhIiI3JCQhMk5wUXglPjBbVCEjOyQiIiEhIiI3JCQhMSYzPE1RJlslNCUhIzokIiIhISIiNyQkITFQdVsoKilwcS8lISM6JCIiISEiIjckJCEyO09zV2ZaXSpSISM7JCIiISEiIjckJCEyWioqKXpmK15YUiEjOyQiIiEhIiI3JCQhMiZ6Zj5SRyNRKlEhIzskIiIhISIiNyQkITI7UnljJHlOWVEhIzskIiIhISIiNyQkITFGYTM8LzsmeiQhIzokIiIhISIiNyQkITIlKXBSem8hKT51JCEjOyQiIiEhIiI3JCQhMlokcFF4dm8mcCQhIzskIiIhISIiNyQkITJOdVsoXCgqb1hPISM7JCIiISEiIjckJCEyd2AyOjVQU2YkISM7JCIiISEiIjckJCExZTpKaV1dVk4hIzokIiIhISIiNyQkITEtLzM7RmglXCQhIzokIiIhISIiNyQkITJ4YDI6NUUuVyQhIzskIiIhISIiNyQkITJgND5RO1o6UiQhIzskIiIhISIiNyQkITJWITQ9T19ZUkwhIzskIiIhISIiNyQkITFAVSUpbzdGI0gkISM6JCIiISEiIjckJCEyWiNcKXB6djFDJCEjOyQiIiEhIiI3JCQhMkNaJSopeSVHQD4kISM7JCIiISEiIjckJCEyLTM7S2EjUVRKISM7JCIiISEiIjckJCEyKCopeWQ6InA8NCQhIzskIiIhISIiNyQkITFwUXhhJUcpUkkhIzokIiIhISIiNyQkITFHYzdETSEpKilIISM6JCIiISEiIjckJCEyYzxOcWdYJ1FIISM7JCIiISEiIjckJCEydGAyOlM2eilHISM7JCIiISEiIjckJCEyPFJ5YyQ+SFRHISM7JCIiISEiIjckJCEyMTxNb3dneXkjISM7JCIiISEiIjckJCEyO0ppQ0hyK3UjISM7JCIiISEiIjckJCEyMThFX3U8IipvIyEjOyQiIiEhIiI3JCQhMlooXCoqKXBbLmsjISM7JCIiISEiIjckJCEydl4uMiVwPidlIyEjOyQiIiEhIiI3JCQhMlgjXClwXDAkUkQhIzskIiIhISIiNyQkITJOc1cqKUckMydbIyEjOyQiIiEhIiI3JCQhMS4xN0NxZFBDISM6JCIiISEiIjckJCEybUxuTXo9WFEjISM7JCIiISEiIjckJCExUnljOCZRKFFCISM6JCIiISEiIjckJCEyWidIZj0sZydHIyEjOyQiIiEhIiI3JCQhMmAyOkkrUGlCIyEjOyQiIiEhIiI3JCQhMjNAVSUpeTFmPSMhIzskIiIhISIiNyQkITFUI1snSDx3TkAhIzokIiIhISIiNyQkITJkO0xtLSllKDMjISM7JCIiISEiIjckJCExWiUqKXkoNF5OPyEjOiQiIiEhIiI3JCQhMWY9UHV4KGUpPiEjOiQhMkVsPiZ5MChlNyUhI0E3JCQhMi43Q1s7VE8kPiEjOyQhMmBJaDNGZzciUiEjPzckJCEyb05yVVhhaik9ISM7JCEyLTNOdXglZi49ISM+NyQkITJLbk1weSQ0TT0hIzskITE0LmZXIW85MyYhIz03JCQhMiRmPVB1ci4leSIhIzskITJhayVRYTUuOTUhIz03JCQhMl8tMDVTLVR0IiEjOyQhMUZiUi1IOS48ISM8NyQkITJsVCRvT2AlPm8iISM7JCExOVk2LnFIJGYjISM8NyQkITImND5Rd24hUmoiISM7JCEyJ1JeTi5ieEVOISM9NyQkITInKil6Zj4oM1plIiEjOyQhMVFrPiVbcEVhJSEjPDckJCEyc1omND4jKVFJOiEjOyQhMTlzYSZRUSpmYyEjPDckJCExI1F3X1gwN1siISM6JCExYyFmaj0uSGYnISM8NyQkITIwPE1vJ28hNFYiISM7JCExVTpRITNCTFIoISM8NyQkITAxN0NvSWBTIiEjOSQhMXcqRyVIeSFwcighIzw3JCQhMiVcKiopelxhKHo4ISM7JCExNipIPnl6PCh6ISM8NyQkITIjKW9QditYaU4iISM7JCEwRUdWMEp5OCkhIzs3JCQhMUZhMzxidEs4ISM6JCExaWFyKmYuPkIpISM8NyQkITJ5Z0AkUmA/PzghIzskITFiI0hvbHkwRCkhIzw3JCQhMicpeWQ6O3Z3SSIhIzskITFLQSVRcCZIWSMpISM8NyQkITImcFJ6JClcOSZIIiEjOyQhMEx1KD1NRz0jKSEjOzckJCEyLjpJZyFbaCNHIiEjOyQhMSI+MjRWRmU7KSEjPDckJCEyKCl5ZDpAWHhEIiEjOyQhMSR6RWJRK28peiEjPDckJCEyclUmMzxjKEdCIiEjOyQhMUJcQTB3aS94ISM8NyQkITFOcVMiKUdGMTchIzokIS9QKnBJelxHKCEjOjckJCEyRmtHZDlxJ3o2ISM7JCExNyoqXCMzUTd1JyEjPDckJCExYDA2QSc9RjgiISM6JCExT0QoUV8xIXlhISM8NyQkITJQd18wSlkmeTUhIzskITJZdCRldnJPYk4hIz03JCQhMShSemUoKmYnSDUhIzokITJZckwjPi9ITjkhIz03JCQhMV8yOkldKkciKSohIzskIjFeUic+YGApZSYqISM9NyQkITEnUXdfMGRGSCohIzskIjEwRklqJG9zI1IhIzw3JCQhMXZgMjpdXnEoKSEjOyQiMVgsXDA0and2ISM8NyQkITFQclUmM19gSCkhIzskIjJURk4mRyEzOjsiISM8NyQkITE7UyEzO10yeighIzskIjIjXE9Kam0scjshIzw3JCQhMSQqKioqKioqekkpSCghIzskIjIzPUAqel4hb0MjISM8NyQkITBjN0RdJlxrbiEjOiQiMmF5MGU7PSlcSCEjPDckJCExMz5RdyMqZi1qISM7JCIxVHVUIWZdQ2gkISM7NyQkITEuPE1vWTRzZCEjOyQiMXQvPCFlQ3VUJSEjOzckJCExeWhCWkNSdF8hIzskIjFHJz1mR29sPiYhIzs3JCQhMihRJ0dkOTImelohIzwkIjEzOyo+QSQpeidmISM7NyQkITJgJ1F4YSpHX0clISM8JCIxX0ZzVCFlIj1uISM7NyQkITJiPVB1Wyc0InkkISM8JCIxdyY9Jnk/KClRdSEjOzckJCEyVyV6ZTxYc1lLISM8JCIxKEhGPitHNDgpISM7NyQkITJYclYoW3h2Y0YhIzwkIjEpXHkwIlxsI28pISM7NyQkITJFJGU7THc0dEEhIzwkIjF3cTJ5QiFvOCohIzs3JCQhMkRDWydISDJjPCEjPCQiMEo+ImZGQzkmKiEjOjckJCEyNmY9UHV0LEMiISM8JCIxL1YjeT5Dc3gqISM7NyQkITJROUhlbVsnMzUhIzwkIjFwVS1PWmBmKSohIzs3JCQhMWxwUnplQnJ4ISM8JCIxMjktNClRNiMqKiEjOzckJCExOiJHYzdYKipSJyEjPCQiMSNbIipIY3ElWyoqISM7NyQkITFsI2Y9UGEnR10hIzwkIjFiQyFHSmclcCoqISM7NyQkITJYVCE0PU9PZE8hIz0kIjFNbkhKV2IlKSoqISM7NyQkITJXY0BWJ0cyJ0cjISM9JCIxO0ojKVFsRCUqKiohIzs3JCQhMiVvKGU8TlMnUTYhIz0kIjEwZCg9S1EnKSoqKiEjOzckJCIwY0ZTITM7I3opISM+JCIxSHRtQSoqKioqKioqISM7NyQkIjJPI29PdFlBYzYhIz0kIjFITyY+I1xmKSoqKiEjOzckJCIyJj4nSGY9ZE9JIyEjPSQiMSplKikpZlI7JSoqKiEjOzckJCIxbyhmPlIzZGskISM8JCIxKFtHKmUpZVkpKiohIzs3JCQiMTsqKil6ZmZ4KVwhIzwkIjF6IXAuUSQqKnAqKiEjOzckJCIxaystLzMiKUhqISM8JCIxR3AhPVMlcFwqKiEjOzckJCIxNy0wNT8nPW4oISM8JCIxKCl5UW44TUIqKiEjOzckJCIyWE1wUXhkTC0iISM8JCIxWGhvO2AkXCYpKiEjOzckJCIyeG1Mbk1IJno3ISM8JCIxPlkjUiZvM2goKiEjOzckJCIya3JWKFsyKnB0IiEjPCQiMVg2Zj9HKWZfKiEjOzckJCIvJilwUlJYXkEhIzkkIjElKUhQNTwpWzoqISM7NyQkIjFySmpFdEtwRiEjOyQiMWlPW00mNCdwJykhIzs3JCQiMmt6ZTxOUlpHJCEjPCQiMVxLd3U0ZyUzKSEjOzckJCIxNj5Rd0FmaVAhIzskIjFFMUc5KCo+a3UhIzs3JCQiMVR2XSw4UWRVISM7JCIxeEJQc2hMZm4hIzs3JCQiMXRhND5HNHBaISM7JCIxRDF6bi40JSlmISM7NyQkIjEpeWM4Rmoiel8hIzskIjFmJ0ctRDZ2PSYhIzs3JCQiMSJvTnJVTFEhZSEjOyQiMVRIJSlbeExvViEjOzckJCIxWSdIZj1qZkUnISM7JCIxKClvUTt5dm1PISM7NyQkIjElKWY+Uj1AJ3knISM7JCIxZFwpUlEmej5IISM7NyQkIjEpMzxNbydmM3QhIzskIjFHZmpARy1NQSEjOzckJCIxPT5RdzcsN3khIzskIjJ3Vj5PcHF5ayIhIzw3JCQiMXRReGEqZiJwIykhIzskIjJUPXdaKWYqZT0iISM8NyQkIjFZKFsoXFJ2NykpISM7JCIxZSslb0xSQEQoISM8NyQkIjFtVCRvT1xLRiohIzskIjJPQEohPklEXVMhIz03JCQiMWMtMDVdIiozKSohIzskIjFUImVxKD1BbigqISM9NyQkIjJMbk1wKXBJRzUhIzskITJDcFY7WlQ/UCIhIz03JCQiMiZbKFwqKkdILjMiISM7JCEyQ0YkKkhsWmhpJCEjPTckJCIyYTZCWSNvJylINiEjOyQhMiZSTSspelwqKVEmISM9NyQkIjIxOEVfL2E6PSIhIzskITFOSyoqKT5dUXknISM8NyQkIjIlPlB1WyE+IUg3ISM7JCExYyIqUWoiNDlsKCEjPDckJCIyPT9TIWV4aGE3ISM7JCExZSMzKEhQMWR6ISM8NyQkIjJWb090WTstRyIhIzskITEjKXlRJlxXSDopISM8NyQkIjJpNkInKlI2TkgiISM7JCEwelV2J1slR0ApISM7NyQkIjIjWyY0Pkwxb0kiISM7JCExd2o4SnY3WCMpISM8NyQkIjItKWY+azc1PzghIzskITB6J0hTKFExRCkhIzs3JCQiMkBUI1snPidSTDghIzskITFzWzx6ckhJIykhIzw3JCQiMlh6ZTx2VWxOIiEjOyQhMHVjIT5dO08iKSEjOzckJCIybzxOcUkqb3o4ISM7JCExKD5SLSZSTHN6ISM8NyQkIjFzVSYzQSlvLzkhIzokITEmKWVIQycqPUN4ISM8NyQkIjFuTG5Ncm9IOSEjOiQhMWlZNlEneSxUKCEjPDckJCIyRGQ5SHlSOFsiISM7JCEwQCJSW1dfIWYnISM7NyQkIjJPYjVAIz0oPWAiISM7JCEyRFMsPUlVLWomISM9NyQkIjIqMzxNb1R3IWUiISM7JCExVkU0LSNRXGklISM8NyQkIjJQZDlIeV1daiIhIzskITFucG5kRmwuTiEjPDckJCIyWywuMXNIUW8iISM7JCExJFEjKjMqeWVlRCEjPDckJCIyaj9UI1s7ImZ0IiEjOyQhMnhnbWxgeF5uIiEjPTckJCIwKnlkOmM1JHkiISM5JCEyPj5XIz1dQ0Q1ISM9NyQkIjJhPVB1MyxaJD0hIzskITBWTTlvPT0uJiEjPDckJCIxUndfMCVbSyk9ISM6JCEyJiozLF4jb0xXPiEjPjckJCIyMy4xN00lKlIkPiEjOyQhMmEqSFs9cGFeUSEjPzckJCIyOEFXKW94ZyQpPiEjOyQhMTBWXW1ccEZrISNANyQkIjFVI1snSCVbYi4jISM6JCIiISEiIjckJCIyRlsnSGZNZCYzIyEjOyQiIiEhIiI3JCQiMU1wUXg3dE9AISM6JCIiISEiIjckJCIyUGQ5SFtsdT0jISM7JCIiISEiIjckJCIyJT1QdVtcM01BISM7JCIiISEiIjckJCIyJlJ6ZTxoXihHIyEjOyQiIiEhIiI3JCQiMi4hKWY+ZjBgTCMhIzskIiIhISIiNyQkIjApZj5SImZpUSMhIzkkIiIhISIiNyQkIjJuOEZhPUddViMhIzskIiIhISIiNyQkIjEkZj1QJSp6IipbIyEjOiQiIiEhIiI3JCQiMSc9UHVRcmdgIyEjOiQiIiEhIiI3JCQiMShReGFmJEgqZSMhIzokIiIhISIiNyQkIjJ3XSwuJykqelBFISM7JCIiISEiIjckJCIxdVomNDRlM3AjISM6JCIiISEiIjckJCIxc1UmM1BRbXQjISM6JCIiISEiIjckJCIyaTlIZXd3KCl5IyEjOyQiIiEhIiI3JCQiMmQuMjkpKVIiUkchIzskIiIhISIiNyQkIi8qemY0cSUqKUchIzgkIiIhISIiNyQkIjFwUXhhXmhSSCEjOiQiIiEhIiI3JCQiMmUlKil5ZCkpeSgpSCEjOyQiIiEhIiI3JCQiMlttS2whZicpUkkhIzskIiIhISIiNyQkIjI7RF0rNipcKjMkISM7JCIiISEiIjckJCIyMip6Zj5kdFRKISM7JCIiISEiIjckJCIyUHZdLFZBISo9JCEjOyQiIiEhIiI3JCQiMVF1Wyg0JEdUSyEjOiQiIiEhIiI3JCQiMV8tMDUoUjhIJCEjOiQiIiEhIiI3JCQiMSczPE1bdTdNJCEjOiQiIiEhIiI3JCQiMSRwUXhhSk1SJCEjOiQiIiEhIiI3JCQiMjo/UyEzLFpUTSEjOyQiIiEhIiI3JCQiMUFUI1s7bzFcJCEjOiQiIiEhIiI3JCQiMUxtS2wnKSlcYSQhIzokIiIhISIiNyQkIjB0WCJIOTwlZiQhIzkkIiIhISIiNyQkIjAlemU8K1pXTyEjOSQiIiEhIiI3JCQiMWhAVidRQWNwJCEjOiQiIiEhIiI3JCQiMlhvT3RPVEV1JCEjOyQiIiEhIiI3JCQiMWg+Unk/dyN6JCEjOiQiIiEhIiI3JCQiMlpvT3RFLEQlUSEjOyQiIiEhIiI3JCQiMW9NcFFucSYqUSEjOiQiIiEhIiI3JCQiMWQ6SmkjZUUlUiEjOiQiIiEhIiI3JCQiMnhNcFFkSW8qUiEjOyQiIiEhIiI3JCQiMTlGYTNwclhTISM6JCIiISEiIjckJCIxT3FTIlEoMyU0JSEjOiQiIiEhIiI3JCQiMXVXKil5NjVZVCEjOiQiIiEhIiI3JCQiMk5kOUhRRCQpPiUhIzskIiIhISIiNyQkIjEoUnplblRlQyUhIzokIiIhISIiNyQkIjE0PE1vPUknSCUhIzokIiIhISIiNyQkIjE2QFUlM1liTSUhIzokIiIhISIiNyQkIjFiMzxNdCMqKVIlISM6JCIiISEiIjckJCIwI1J5Y3A2WFchIzkkIiIhISIiNyQkIjAlemU8dTspXCUhIzkkIiIhISIiNyQkIjElXClwUncuW1ghIzokIiIhISIiNyQkIjFbI1wpcGhVKGYlISM6JCIiISEiIjckJCIxQ1olKikpUiZvayUhIzokIiIhISIiNyQkIjEjUnljQm5zcCUhIzokIiIhISIiNyQkIjE8TG1LV3FdWiEjOiQiIiEhIiI3JCQiMVJ4YTQ2cSp6JSEjOiQiIiEhIiI3JCQiMUdiNUByMVtbISM6JCIiISEiIjckJCIxKUdkOWZwKCoqWyEjOiQiIiEhIiI3JCQiMV4tMDUmZjgmXCEjOiQiIiEhIiI3JCQiI10hIiIkIiIhISIiLSUnTEVHRU5ERzYjLSUpX1RZUEVTRVRHNiMtSSVtc3ViRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiYtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1UScmIzkyMzs2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjctSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USIyNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLUkjbW9HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2PlEiLDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJmZlbmNlR1EmZmFsc2U2Ii8lKnNlcGFyYXRvckdRJXRydWU2Ii8lKXN0cmV0Y2h5R1EmZmFsc2U2Ii8lKnN5bW1ldHJpY0dRJmZhbHNlNiIvJShsYXJnZW9wR1EmZmFsc2U2Ii8lLm1vdmFibGVsaW1pdHNHUSZmYWxzZTYiLyUnYWNjZW50R1EmZmFsc2U2Ii8lJ2xzcGFjZUdRJjAuMGVtNiIvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbTYiLUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEiMjYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJS9zdWJzY3JpcHRzaGlmdEdRIjA2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii0lJkNPTE9SRzYnJSRSR0JHJCIiISEiIiQiKCc+IVwmISIpJCIpQyllcSUhIiktJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUnQ1VSVkVTRzYlN1t5NyQkISNdISIiJCIiISEiIjckJCExVihbKFxSVVpcISM6JCIiISEiIjckJCEyJlF4YTR5bixcISM7JCIiISEiIjckJCExaEFYIVxKLSZbISM6JCIiISEiIjckJCExJXplPDpXJSl6JSEjOiQiIiEhIiI3JCQhMUppQ1xIIXB1JSEjOiQiIiEhIiI3JCQhMCNSeWN3NipwJSEjOSQiIiEhIiI3JCQhMWQ4RmEoUSdcWSEjOiQiIiEhIiI3JCQhMWpEXi13WSlmJSEjOiQiIiEhIiI3JCQhMUtrR2QwWVpYISM6JCIiISEiIjckJCExViYzPGEkKlxcJSEjOiQiIiEhIiI3JCQhMmI5SGVjIXlbVyEjOyQiIiEhIiI3JCQhMThEXStkdidSJSEjOiQiIiEhIiI3JCQhMS0vMztzXldWISM6JCIiISEiIjckJCExPlJ5Y2Q8JUglISM6JCIiISEiIjckJCExQ1olKikpM1lbVSEjOiQiIiEhIiI3JCQhMU9zVypbLFQ+JSEjOiQiIiEhIiI3JCQhMk5wUXglPjBbVCEjOyQiIiEhIiI3JCQhMSYzPE1RJlslNCUhIzokIiIhISIiNyQkITFQdVsoKilwcS8lISM6JCIiISEiIjckJCEyO09zV2ZaXSpSISM7JCIiISEiIjckJCEyWioqKXpmK15YUiEjOyQiIiEhIiI3JCQhMiZ6Zj5SRyNRKlEhIzskIiIhISIiNyQkITI7UnljJHlOWVEhIzskIiIhISIiNyQkITFGYTM8LzsmeiQhIzokIiIhISIiNyQkITIlKXBSem8hKT51JCEjOyQiIiEhIiI3JCQhMlokcFF4dm8mcCQhIzskIiIhISIiNyQkITJOdVsoXCgqb1hPISM7JCIiISEiIjckJCEyd2AyOjVQU2YkISM7JCIiISEiIjckJCExZTpKaV1dVk4hIzokIiIhISIiNyQkITEtLzM7RmglXCQhIzokIiIhISIiNyQkITJ4YDI6NUUuVyQhIzskIiIhISIiNyQkITJgND5RO1o6UiQhIzskIiIhISIiNyQkITJWITQ9T19ZUkwhIzskIiIhISIiNyQkITFAVSUpbzdGI0gkISM6JCIiISEiIjckJCEyWiNcKXB6djFDJCEjOyQiIiEhIiI3JCQhMkNaJSopeSVHQD4kISM7JCIiISEiIjckJCEyLTM7S2EjUVRKISM7JCIiISEiIjckJCEyKCopeWQ6InA8NCQhIzskIiIhISIiNyQkITFwUXhhJUcpUkkhIzokIiIhISIiNyQkITFHYzdETSEpKilIISM6JCIyJkhpW1BQRFFJISNCNyQkITJjPE5xZ1gnUUghIzskIjAneSZwckdmLychIz43JCQhMnRgMjpTNnopRyEjOyQiMjE4I1EzeC9iTCEjPzckJCEyPFJ5YyQ+SFRHISM7JCIxa1IuOypRcnApISM+NyQkITIxPE1vd2d5eSMhIzskIjEmZiEpZU4oUWg9ISM9NyQkITI7SmlDSHIrdSMhIzskIjFpSTtyPyRwMyQhIz03JCQhMjE4RV91PCIqbyMhIzskIjJYWyk0ZCc+ISlwJSEjPjckJCEyWihcKiopcFsuayMhIzskIjFYQSYqWyRIbFgnISM9NyQkITJ2Xi4yJXA+J2UjISM7JCIxVmo/Ti0qUWApISM9NyQkITJYI1wpcFwwJFJEISM7JCIyOjYjKnlqLz4uIiEjPTckJCEyTnNXKilHJDMnWyMhIzskIjFWMkElcEh6QCIhIzw3JCQhMS4xN0NxZFBDISM6JCIybHZaOFwpUmU4ISM9NyQkITJtTG5Nej1YUSMhIzskIjIkR1tyXDtIbDkhIz03JCQhMVJ5YzgmUShRQiEjOiQiMSMqXDdbIz11XSIhIzw3JCQhMlonSGY9LGcnRyMhIzskIjJOJFIkbz5qJSlbIiEjPTckJCEyYDI6SStQaUIjISM7JCIyJGZFQTl2MyZSIiEjPTckJCEyM0BVJSl5MWY9IyEjOyQiMmNdTEU9W1ZBIiEjPTckJCExVCNbJ0g8d05AISM6JCIxJFtcSCdRYyJ5KiEjPTckJCEyZDtMbS0pZSgzIyEjOyQiMUM9Z3hhPGVuISM9NyQkITFaJSopeSg0Xk4/ISM6JCIxTXF5LkF3ISpHISM9NyQkITFmPVB1eChlKT4hIzokITJjYzRlPk0qKT0iISM+NyQkITIuN0NbO1RPJD4hIzskITFQRiRIQkZzMSchIz03JCQhMm9OclVYYWopPSEjOyQhMkx6XF5OY0E7IiEjPTckJCEyS25NcHkkNE09ISM7JCExW2w8JW9xYyU+ISM8NyQkITIkZj1QdXIuJXkiISM7JCEydW9ETyM+L3ZHISM9NyQkITJfLTA1Uy1UdCIhIzskITE4KVJiK2tLJ1IhIzw3JCQhMmxUJG9PYCU+byIhIzskITFSL0tiYSpSQiYhIzw3JCQhMiY0PlF3biFSaiIhIzskITEkW3dHbURfWichIzw3JCQhMicqKXpmPigzWmUiISM7JCExUDQwN2FGYXghIzw3JCQhMnNaJjQ+IylRSTohIzskITFRXis+KDQtNCohIzw3JCQhMSNRd19YMDdbIiEjOiQhMndJZVItKnA5NSEjPDckJCEyMDxNbydvITRWIiEjOyQhMVhBX28xSSo0IiEjOzckJCEwMTdDb0lgUyIhIzkkITJOUURxUzIxOCIhIzw3JCQhMiVcKiopelxhKHo4ISM7JCEyZCg0VEc0bV82ISM8NyQkITIpPVF3XygqKnpPIiEjOyQhMkY+UTAkb1VmNiEjPDckJCEyIylvUHYrWGlOIiEjOyQhMiZINkkmR1lSOyIhIzw3JCQhMnZiNkJFIVxXOCEjOyQhMkRFbDhRTWg7IiEjPDckJCExRmEzPGJ0SzghIzokITIzSC1YIyo0ZjsiISM8NyQkITJ5Z0AkUmA/PzghIzskITJbQyMpKVF0I0g7IiEjPDckJCEyJyl5ZDo7dndJIiEjOyQhMk5HXiopZkZxOiIhIzw3JCQhMiZwUnokKVw5JkgiISM7JCEyLj9YXFpHIls2ISM8NyQkITIuOklnIVtoI0ciISM7JCEwMkxJLmFoOCIhIzo3JCQhMigpeWQ6QFh4RCIhIzskITIqNFN0cEQsLjYhIzw3JCQhMnJVJjM8YyhHQiIhIzskITB5YGprTHEwIiEjOjckJCEyRmtHZDlxJ3o2ISM7JCEwWXpaJGUhPTkqISM7NyQkITFgMDZBJz1GOCIhIzokITFgXlRgMj5zdCEjPDckJCEyUHdfMEpZJnk1ISM7JCExQF9VIVs2aXYlISM8NyQkITEoUnplKCpmJ0g1ISM6JCExTHVoJzRbWSI+ISM8NyQkITFfMjpJXSpHIikqISM7JCIyKUhjOnpQV3M3ISM9NyQkITEnUXdfMGRGSCohIzskIjEqKlJCbys5TF4hIzw3JCQhMXZgMjpdXnEoKSEjOyQiMUU9SyR6NUtnKiEjPDckJCExUHJVJjNfYEgpISM7JCIyOjpnLGdXZFUiISM8NyQkITE7UyEzO10yeighIzskIjEwIVEhKWZKRSk+ISM7NyQkITEkKioqKioqKnpJKUgoISM7JCIxZWZmRidlWmUjISM7NyQkITBjN0RdJlxrbiEjOiQiMTslUlBTNFNIJCEjOzckJCExMz5RdyMqZi1qISM7JCIxWSlbcyZScVdSISM7NyQkITEuPE1vWTRzZCEjOyQiMWJPQHEkZSI+WiEjOzckJCExeWhCWkNSdF8hIzskIjF2aSJ6Iz00ZGEhIzs3JCQhMihRJ0dkOTImelohIzwkIjFWeFtQIyo0IT0nISM7NyQkITJgJ1F4YSpHX0clISM8JCIxJHB2anZhKHlvISM7NyQkITJiPVB1Wyc0InkkISM8JCIxXkEmRyNSSlt2ISM7NyQkITJXJXplPFhzWUshIzwkIjEwSFknelNCPikhIzs3JCQhMlhyVihbeHZjRiEjPCQiMSlwdi5CQyE0KCkhIzs3JCQhMkUkZTtMdzR0QSEjPCQiMChvWCFRJTNSIiohIzo3JCQhMkRDWydISDJjPCEjPCQiMSNbbGgvREldKiEjOzckJCEyNmY9UHV0LEMiISM8JCIxb0lGKHk/UncqISM7NyQkITJROUhlbVsnMzUhIzwkIjFrTjUoKVw2WykqISM7NyQkITFscFJ6ZUJyeCEjPCQiMUt2JkcxeEUiKiohIzs3JCQhMWwjZj1QYSdHXSEjPCQiMXVNKj0kNCxsKiohIzs3JCQhMldjQFYnRzInRyMhIz0kIjFWMUQlM0xKKioqISM7NyQkITIlbyhlPE5TJ1E2ISM9JCIxKHkzUj5QJCkqKiohIzs3JCQiMGNGUyEzOyN6KSEjPiQiMW1ETi4qKioqKioqKiEjOzckJCIyTyNvT3RZQWM2ISM9JCIxJEdEOnklRykqKiohIzs3JCQiMiY+J0hmPWRPSSMhIz0kIjFbXUZRWC0kKioqISM7NyQkIjE7KiopemZmeClcISM8JCIxVCNcdD0tYycqKiEjOzckJCIxNy0wNT8nPW4oISM8JCIvT2gsOS06KiohIzk3JCQiMlhNcFF4ZEwtIiEjPCQiMW5VYjt6TlYpKiEjOzckJCIyeG1Mbk1IJno3ISM8JCIxNyRwJUcoM3d1KiEjOzckJCIya3JWKFsyKnB0IiEjPCQiMVxOKjQ+K1heKiEjOzckJCIvJilwUlJYXkEhIzkkIjFHR2BLZU1jIiohIzs3JCQiMXJKakV0S3BGISM7JCIwKTRVcipcbnApISM6NyQkIjJremU8TlJaRyQhIzwkIjEmeUBbJilIIlwiKSEjOzckJCIxNj5Rd0FmaVAhIzskIjBEeEFyWT1kKCEjOjckJCIxVHZdLDhRZFUhIzskIjEqM2hiJilIcSJwISM7NyQkIjF0YTQ+RzRwWiEjOyQiMVV6RCd5T14+JyEjOzckJCIxKXljOEZqInpfISM7JCIxQVYvQ1djW2EhIzs3JCQiMSJvTnJVTFEhZSEjOyQiMXI2LyQqKkhCbiUhIzs3JCQiMVknSGY9amZFJyEjOyQiMmtvTig0L1coKlIhIzw3JCQiMSUpZj5SPUAneSchIzskIjImKlJHLztvVEUkISM8NyQkIjEpMzxNbydmM3QhIzskIjJYIylcNCMzanJEISM8NyQkIjE9PlF3Nyw3eSEjOyQiMk1CTEpMKSp5Jj4hIzw3JCQiMXRReGEqZiJwIykhIzskIjE+QkZIWjJgOSEjOzckJCIxWShbKFxSdjcpKSEjOyQiMUolUlRZWHJAKiEjPDckJCIxbVQkb09cS0YqISM7JCIyOXAlXDdAbylHJiEjPTckJCIxYy0wNV0iKjMpKiEjOyQiMWF2PT5FNCs4ISM8NyQkIjJMbk1wKXBJRzUhIzskITFeJlsjSHA+ST0hIzw3JCQiMiZbKFwqKkdILjMiISM7JCExbmV6YktpXlshIzw3JCQiMmE2QlkjbycpSDYhIzskITF5ZiFlZjomXHMhIzw3JCQiMjE4RV8vYTo9IiEjOyQhMVtAdisib0c/KiEjPDckJCIyJT5QdVshPiFINyEjOyQhMlldJypmZUkoWzUhIzw3JCQiMj0/UyFleGhhNyEjOyQhMiZmaiJbTVd6NCIhIzw3JCQiMlZvT3RZOy1HIiEjOyQhMk8uWzhgME44IiEjPDckJCIyaTZCJypSNk5IIiEjOyQhMnRzdEhBVm45IiEjPDckJCIyI1smND5MMW9JIiEjOyQhMiQ+MnRHIzNsOiIhIzw3JCQiMi0pZj5rNzU/OCEjOyQhMiMqKT46by8qRzsiISM8NyQkIjJAVCNbJz4nUkw4ISM7JCEyQSU0P3V5KWY7IiEjPDckJCIyTGc/VFpwXE0iISM7JCEyIz5ETDc9NG02ISM8NyQkIjJYemU8dlVsTiIhIzskITJyVFNsQmdROyIhIzw3JCQiMmMpcFJIZzZvOCEjOyQhMkc5cDR3cSRmNiEjPDckJCIybzxOcUkqb3o4ISM7JCExZmEiZlsvRjoiISM7NyQkIjFzVSYzQSlvLzkhIzokITEkeTY5Iyl5NzgiISM7NyQkIjFuTG5Ncm9IOSEjOiQhMUZVJXopKikpNDUiISM7NyQkIjJEZDlIeVI4WyIhIzskITJII3lPdHdWOTUhIzw3JCQiMk9iNUAjPSg9YCIhIzskITEsI1wsP1JjMCohIzw3JCQiMiozPE1vVHchZSIhIzskITEnNFxMKD00YnkhIzw3JCQiMlBkOUh5XV1qIiEjOyQhMF4pWypIQWBXJyEjOzckJCIyWywuMXNIUW8iISM7JCEyOipHR1hTSic9JiEjPTckJCIyaj9UI1s7ImZ0IiEjOyQhMUtYcz9lT0BSISM8NyQkIjAqeWQ6YzUkeSIhIzkkITJfJ0dkZ3klUipHISM9NyQkIjJhPVB1MyxaJD0hIzskITItInBPR3lZTj4hIz03JCQiMVJ3XzAlW0spPSEjOiQhMicqPVsyXCNlLjchIz03JCQiMjMuMTdNJSpSJD4hIzskITE+TSpmWHMvLichIz03JCQiMjhBVylveGckKT4hIzskITJXZCR6bCUqMyRRIiEjPjckJCIxVSNbJ0glW2IuIyEjOiQiMkNyeWhvQVAqRyEjPjckJCIyRlsnSGZNZCYzIyEjOyQiMVtCMFhbNT5tISM9NyQkIjFNcFF4N3RPQCEjOiQiMSU9XEF3b2ckKSohIz03JCQiMlBkOUhbbHU9IyEjOyQiMnhhVSFSNiEzQiIhIz03JCQiMiU9UHVbXDNNQSEjOyQiMkQxI28jXCJRKlEiISM9NyQkIjImUnplPGheKEcjISM7JCIyTGNgb1dnJSpbIiEjPTckJCIyLiEpZj5mMGBMIyEjOyQiMkRiVVYoKmUlMzohIz03JCQiMClmPlIiZmlRIyEjOSQiMlx4SCczL3JpOSEjPTckJCIybjhGYT1HXVYjISM7JCIxJVs+b0RrWk8iISM8NyQkIjEkZj1QJSp6IipbIyEjOiQiMmUsXjEjPih5PyIhIz03JCQiMSc9UHVRcmdgIyEjOiQiMk1VMWl6alEvIiEjPTckJCIxKFF4YWYkSCplIyEjOiQiMVQ+KT1CWlRUKSEjPTckJCIyd10sLicpKnpQRSEjOyQiLzJsSk9WX2whIzs3JCQiMXVaJjQ0ZTNwIyEjOiQiMSY9SG51RidRWSEjPTckJCIxc1UmM1BRbXQjISM6JCIyZFpKLSZlTSc9JCEjPjckJCIyaTlIZXd3KCl5IyEjOyQiMSZHPDI2TTQlPSEjPTckJCIyZC4yOSkpUiJSRyEjOyQiMUA2b04jR3AsKiEjPjckJCIvKnpmNHElKilHISM4JCIxW1hdJmZubEEkISM+NyQkIjFwUXhhXmhSSCEjOiQiMidbQSZmd1hSeCYhI0A3JCQiMmUlKil5ZCkpeSgpSCEjOyQiMWQsIylmNzkrXyEjQTckJCIyW21LbCFmJylSSSEjOyQiIiEhIiI3JCQiMjtEXSs2KlwqMyQhIzskIiIhISIiNyQkIjIyKnpmPmR0VEohIzskIiIhISIiNyQkIjJQdl0sVkEhKj0kISM7JCIiISEiIjckJCIxUXVbKDQkR1RLISM6JCIiISEiIjckJCIxXy0wNShSOEgkISM6JCIiISEiIjckJCIxJzM8TVt1N00kISM6JCIiISEiIjckJCIxJHBReGFKTVIkISM6JCIiISEiIjckJCIyOj9TITMsWlRNISM7JCIiISEiIjckJCIxQVQjWztvMVwkISM6JCIiISEiIjckJCIxTG1LbCcpKVxhJCEjOiQiIiEhIiI3JCQiMHRYIkg5PCVmJCEjOSQiIiEhIiI3JCQiMCV6ZTwrWldPISM5JCIiISEiIjckJCIxaEBWJ1FBY3AkISM6JCIiISEiIjckJCIyWG9PdE9URXUkISM7JCIiISEiIjckJCIxaD5SeT93I3okISM6JCIiISEiIjckJCIyWm9PdEUsRCVRISM7JCIiISEiIjckJCIxb01wUW5xJipRISM6JCIiISEiIjckJCIxZDpKaSNlRSVSISM6JCIiISEiIjckJCIyeE1wUWRJbypSISM7JCIiISEiIjckJCIxOUZhM3ByWFMhIzokIiIhISIiNyQkIjFPcVMiUSgzJTQlISM6JCIiISEiIjckJCIxdVcqKXk2NVlUISM6JCIiISEiIjckJCIyTmQ5SFFEJCk+JSEjOyQiIiEhIiI3JCQiMShSemVuVGVDJSEjOiQiIiEhIiI3JCQiMTQ8TW89SSdIJSEjOiQiIiEhIiI3JCQiMTZAVSUzWWJNJSEjOiQiIiEhIiI3JCQiMWIzPE10IyopUiUhIzokIiIhISIiNyQkIjAjUnljcDZYVyEjOSQiIiEhIiI3JCQiMCV6ZTx1OylcJSEjOSQiIiEhIiI3JCQiMSVcKXBSdy5bWCEjOiQiIiEhIiI3JCQiMVsjXClwaFUoZiUhIzokIiIhISIiNyQkIjFDWiUqKSlSJm9rJSEjOiQiIiEhIiI3JCQiMSNSeWNCbnNwJSEjOiQiIiEhIiI3JCQiMTxMbUtXcV1aISM6JCIiISEiIjckJCIxUnhhNDZxKnolISM6JCIiISEiIjckJCIxR2I1QHIxW1shIzokIiIhISIiNyQkIjEpR2Q5ZnAoKipbISM6JCIiISEiIjckJCIxXi0wNSZmOCZcISM6JCIiISEiIjckJCIjXSEiIiQiIiEhIiItJSdMRUdFTkRHNiMtJSlfVFlQRVNFVEc2Iy1JJW1zdWJHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2Ji1JI21pRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRJyYjOTIzOzYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2Ny1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRIjQ2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSNtb0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY+USIsNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUmZmVuY2VHUSZmYWxzZTYiLyUqc2VwYXJhdG9yR1EldHJ1ZTYiLyUpc3RyZXRjaHlHUSZmYWxzZTYiLyUqc3ltbWV0cmljR1EmZmFsc2U2Ii8lKGxhcmdlb3BHUSZmYWxzZTYiLyUubW92YWJsZWxpbWl0c0dRJmZhbHNlNiIvJSdhY2NlbnRHUSZmYWxzZTYiLyUnbHNwYWNlR1EmMC4wZW02Ii8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtNiItSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USIyNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lL3N1YnNjcmlwdHNoaWZ0R1EiMDYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLSUmQ09MT1JHNiclJFJHQkckIihoPiFIISIoJCIpQyllcSUhIikkIiIhISIiLSUrX0FUVFJJQlVURUc2Iy8lJ3NvdXJjZUclLG1hdGhkZWZhdWx0Ry0lJ0NVUlZFU0c2JTdbeTckJCEjXSEiIiQiIiEhIiI3JCQhMVYoWyhcUlVaXCEjOiQiIiEhIiI3JCQhMiZReGE0eW4sXCEjOyQiIiEhIiI3JCQhMWhBWCFcSi0mWyEjOiQiIiEhIiI3JCQhMSV6ZTw6VyUpeiUhIzokIiIhISIiNyQkITFKaUNcSCFwdSUhIzokIiIhISIiNyQkITAjUnljdzYqcCUhIzkkIiIhISIiNyQkITFkOEZhKFEnXFkhIzokIiIhISIiNyQkITFqRF4td1kpZiUhIzokIiIhISIiNyQkITFLa0dkMFlaWCEjOiQiIiEhIiI3JCQhMVYmMzxhJCpcXCUhIzokIiIhISIiNyQkITJiOUhlYyF5W1chIzskIiIhISIiNyQkITE4RF0rZHYnUiUhIzokIiIhISIiNyQkITEtLzM7c15XViEjOiQiIiEhIiI3JCQhMT5SeWNkPCVIJSEjOiQiIiEhIiI3JCQhMUNaJSopKTNZW1UhIzokIiIhISIiNyQkITFPc1cqWyxUPiUhIzokIiIhISIiNyQkITJOcFF4JT4wW1QhIzskIiIhISIiNyQkITEmMzxNUSZbJTQlISM6JCIiISEiIjckJCExUHVbKCopcHEvJSEjOiQiIiEhIiI3JCQhMjtPc1dmWl0qUiEjOyQiIiEhIiI3JCQhMloqKil6ZiteWFIhIzskIiIhISIiNyQkITImemY+UkcjUSpRISM7JCIiISEiIjckJCEyO1J5YyR5TllRISM7JCIiISEiIjckJCExRmEzPC87JnokISM6JCIiISEiIjckJCEyJSlwUnpvISk+dSQhIzskIiIhISIiNyQkITJaJHBReHZvJnAkISM7JCIiISEiIjckJCEyTnVbKFwoKm9YTyEjOyQiIiEhIiI3JCQhMndgMjo1UFNmJCEjOyQiIiEhIiI3JCQhMWU6SmldXVZOISM6JCIiISEiIjckJCExLS8zO0ZoJVwkISM6JCIiISEiIjckJCEyeGAyOjVFLlckISM7JCIiISEiIjckJCEyYDQ+UTtaOlIkISM7JCIiISEiIjckJCEyViE0PU9fWVJMISM7JCIiISEiIjckJCExQFUlKW83RiNIJCEjOiQiIiEhIiI3JCQhMlojXClwenYxQyQhIzskIiIhISIiNyQkITJDWiUqKXklR0A+JCEjOyQiIiEhIiI3JCQhMi0zO0thI1FUSiEjOyQiIiEhIiI3JCQhMigqKXlkOiJwPDQkISM7JCIiISEiIjckJCExcFF4YSVHKVJJISM6JCIiISEiIjckJCExR2M3RE0hKSopSCEjOiQiMjkwZ0VbTSQ0NSEjQzckJCEyYzxOcWdYJ1FIISM7JCIyUWBZcCEqKWVlNiEjQDckJCEydGAyOlM2eilHISM7JCIya3VpJGUwTUM2ISM/NyQkITI8UnljJD5IVEchIzskIjEoeXp3STcjZVIhIz43JCQhMjE8TW93Z3l5IyEjOyQiMjdhR2wyKFJ4NSEjPjckJCEyO0ppQ0hyK3UjISM7JCIyJDQqRyd5dzAhNCMhIz43JCQhMjE4RV91PCIqbyMhIzskIjFcXWdPM0k4TyEjPTckJCEyWihcKiopcFsuayMhIzskIjE9aVs8U1tjYSEjPTckJCEydl4uMiVwPidlIyEjOyQiMT1WOkR2QTt5ISM9NyQkITJYI1wpcFwwJFJEISM7JCIxOyVSSyhRUm4qKiEjPTckJCEyTnNXKilHJDMnWyMhIzskIjJlMmgjUlplSTchIz03JCQhMS4xN0NxZFBDISM6JCIyc01ca0R2RVQiISM9NyQkITJtTG5Nej1YUSMhIzskIjI3SSJIX2llYTohIz03JCQhMVJ5YzgmUShRQiEjOiQiMVkiekk6UkpoIiEjPDckJCEyWidIZj0sZydHIyEjOyQiMiY0RypHZmlbZiIhIz03JCQhMmAyOkkrUGlCIyEjOyQiMioqW05MI0hZJlsiISM9NyQkITIzQFUlKXkxZj0jISM7JCIyd1FkT0JreUciISM9NyQkITFUI1snSDx3TkAhIzokIjJ5TiQzNmFaNzUhIz03JCQhMmQ7TG0tKWUoMyMhIzskIjImMypSWEZqNClvISM+NyQkITFaJSopeSg0Xk4/ISM6JCIyayl5PSdIWzshSCEjPjckJCExZj1QdXgoZSk+ISM6JCEyKSllPidSJjRePSIhIz43JCQhMi43Q1s7VE8kPiEjOyQhMWJBaWVTV21kISM9NyQkITJvTnJVWGFqKT0hIzskITImPm4oRyRIM1o1ISM9NyQkITJLbk1weSQ0TT0hIzskITIlNEsiWyI+WChvIiEjPTckJCEyJGY9UHVyLiV5IiEjOyQhMVkkZTxmc0daIyEjPDckJCEyXy0wNVMtVHQiISM7JCExdkc1SCdbYVgkISM8NyQkITJsVCRvT2AlPm8iISM7JCEwbTZpSztEcCUhIzs3JCQhMiY0PlF3biFSaiIhIzskITFQVmNBKiozKClmISM8NyQkITInKil6Zj4oM1plIiEjOyQhMUgnW0gpKkcwUyghIzw3JCQhMnNaJjQ+IylRSTohIzskITF0U0I1MkRgKikhIzw3JCQhMSNRd19YMDdbIiEjOiQhMlcpMywiKnpBQjUhIzw3JCQhMjA8TW8nbyE0ViIhIzskITIoKkdCPiQpPSFINiEjPDckJCEwMTdDb0lgUyIhIzkkITJvODAzTnYjcDYhIzw3JCQhMiVcKiopelxhKHo4ISM7JCExNzBgLDpcKT4iISM7NyQkITIpPVF3XygqKnpPIiEjOyQhMjA3WnRXaHk/IiEjPDckJCEyIylvUHYrWGlOIiEjOyQhMjdxQ0o+PlhAIiEjPDckJCEydmI2QkUhXFc4ISM7JCEydEgtISlcaiQ9NyEjPDckJCExRmEzPGJ0SzghIzokITIoWyRlUWstJD43ISM8NyQkITJ5Z0AkUmA/PzghIzskITJBOEUrMDhxQCIhIzw3JCQhMicpeWQ6O3Z3SSIhIzskITInPlp5PFFDNjchIzw3JCQhMiZwUnokKVw5JkgiISM7JCEyJXAjeVs2Qj4/IiEjPDckJCEyLjpJZyFbaCNHIiEjOyQhMktXS2BgJCoqKT0iISM8NyQkITIoKXlkOkBYeEQiISM7JCEyeCNbJCpbISlbXzYhIzw3JCQhMnJVJjM8YyhHQiIhIzskITIsJ1xkWEZYLDYhIzw3JCQhMkZrR2Q5cSd6NiEjOyQhMTFiVkV6JTRXKiEjPDckJCExYDA2QSc9RjgiISM6JCExOClwaWpjYmAoISM8NyQkITJQd18wSlkmeTUhIzskITEvRzssbiJHIVshIzw3JCQhMShSemUoKmYnSDUhIzokITJMUGo7Tz16Ij4hIz03JCQhMV8yOkldKkciKSohIzskIjJcYjdmNDEyRiIhIz03JCQhMSdRd18wZEZIKiEjOyQiMk8oUWZfRTBpXSEjPTckJCExdmAyOl1ecSgpISM7JCIxPXFiKCo0VkYkKiEjPDckJCExUHJVJjNfYEgpISM7JCIyeCR5Q1c2UnI4ISM8NyQkITE7UyEzO10yeighIzskIjJwQTlXW0QnKio9ISM8NyQkITEkKioqKioqKnpJKUgoISM7JCIyRUFqLCkzKT5bIyEjPDckJCEwYzdEXSZca24hIzokIjJrLnBqVig0Jz0kISM8NyQkITEzPlF3IypmLWohIzskIjE5XnkiKXphW1EhIzs3JCQhMS48TW9ZNHNkISM7JCIxTyxcaS1xYFkhIzs3JCQhMXloQlpDUnRfISM7JCIxUFkpejInUkthISM7NyQkITIoUSdHZDkyJnpaISM8JCIxeGVLQiN6Kz8nISM7NyQkITJgJ1F4YSpHX0clISM8JCIxJT0saDchKipScCEjOzckJCEyYj1QdVsnNCJ5JCEjPCQiMWA5PnckZTJrKCEjOzckJCEyVyV6ZTxYc1lLISM8JCIwYD9ec1osSSkhIzo3JCQhMlhyVihbeHZjRiEjPCQiMSlRJFxnXT84KSkhIzs3JCQhMkUkZTtMdzR0QSEjPCQiMXVtXypRdV9BKiEjOzckJCEyRENbJ0hIMmM8ISM8JCIxYV1fayFSL2MqISM7NyQkITI2Zj1QdXQsQyIhIzwkIjEpeSV6LTUvI3oqISM7NyQkITJROUhlbVsnMzUhIzwkIjFHIylHXkFbbCkqISM7NyQkITFscFJ6ZUJyeCEjPCQiMWI4Lil6WTwjKiohIzs3JCQhMWwjZj1QYSdHXSEjPCQiMToxM0glb3knKiohIzs3JCQhMldjQFYnRzInRyMhIz0kIjFrdCVwS1ZNKioqISM7NyQkITIlbyhlPE5TJ1E2ISM9JCIxNDhrXHlQKSoqKiEjOzckJCIwY0ZTITM7I3opISM+JCIwUXNMISoqKioqKioqISM6NyQkIjJPI29PdFlBYzYhIz0kIjEzXy83dEspKioqISM7NyQkIjImPidIZj1kT0kjISM9JCIxXEcqcHFUTCoqKiEjOzckJCIxOyoqKXpmZngpXCEjPCQiMWE9J3luJ1JvKiohIzs3JCQiMTctMDU/Jz1uKCEjPCQiMWgzZHFrekIqKiEjOzckJCIyWE1wUXhkTC0iISM8JCIwd2xmc1M4JykqISM6NyQkIjJ4bUxuTUgmejchIzwkIjFCXiE+ZWV4eCohIzs3JCQiMmtyVihbMipwdCIhIzwkIjFzJylbbid5MmQqISM7NyQkIi8mKXBSUlheQSEjOSQiMSxtXCJIdDlDKiEjOzckJCIxckpqRXRLcEYhIzskIjFsOGkpeUM3ISkpISM7NyQkIjJremU8TlJaRyQhIzwkIjFDV0lNTl5jIykhIzs3JCQiMTY+UXdBZmlQISM7JCIxY04xMjk6bHchIzs3JCQiMVR2XSw4UWRVISM7JCIxYW1IJD1OLilwISM7NyQkIjF0YTQ+RzRwWiEjOyQiMTciPUtrW2dAJyEjOzckJCIxKXljOEZqInpfISM7JCIxaUIpejFkTFUmISM7NyQkIjEib05yVUxRIWUhIzskIjAlKVE0RCpmL1khIzo3JCQiMVknSGY9amZFJyEjOyQiMlhGSE07X0chUiEjPDckJCIxJSlmPlI9QCd5JyEjOyQiMVdPKVJneWc6JCEjOzckJCIxKTM8TW8nZjN0ISM7JCIyPCgqSCEpcE4icEMhIzw3JCQiMT0+UXc3LDd5ISM7JCIxN2Z0PlcpZig9ISM7NyQkIjF0UXhhKmYicCMpISM7JCIyYHBeTU5pclIiISM8NyQkIjFZKFsoXFJ2NykpISM7JCIxZTZwTWpSaSopISM8NyQkIjFtVCRvT1xLRiohIzskIjFVJFs9bSJRN18hIzw3JCQiMWMtMDVdIiozKSohIzskIjI+NTYxWFgjKUgiISM9NyQkIjJMbk1wKXBJRzUhIzskITEsR2IkKSlmSSQ9ISM8NyQkIjImWyhcKipHSC4zIiEjOyQhMUZUNlRqKDQhXCEjPDckJCIyYTZCWSNvJylINiEjOyQhMWpMaistSDB1ISM8NyQkIjIxOEVfL2E6PSIhIzskITE+cUkmbyVmMiYqISM8NyQkIjIlPlB1WyE+IUg3ISM7JCEybiZbKG8hKVFBNCIhIzw3JCQiMj0/UyFleGhhNyEjOyQhMlByKW8tJ3BvOSIhIzw3JCQiMlZvT3RZOy1HIiEjOyQhMSlcRyVlTTUnPSIhIzs3JCQiMmk2QicqUjZOSCIhIzskITJXSiopejRWLz8iISM8NyQkIjIjWyY0Pkwxb0kiISM7JCEyJlJEMWhHcjU3ISM8NyQkIjItKWY+azc1PzghIzskITIjUkUzciZ6cEAiISM8NyQkIjJAVCNbJz4nUkw4ISM7JCEyOG8jW2okRyQ+NyEjPDckJCIyTGc/VFpwXE0iISM7JCEwQUInKilIRT03ISM6NyQkIjJYemU8dlVsTiIhIzskITFyaSNmKFtROTchIzs3JCQiMmMpcFJIZzZvOCEjOyQhMkJcbiFvPXkyNyEjPDckJCIybzxOcUkqb3o4ISM7JCExIzQ1d3VdJik+IiEjOzckJCIxc1UmM0Epby85ISM6JCEyOCY0QHErOnE2ISM8NyQkIjFuTG5Ncm9IOSEjOiQhMl9GIm83Km82OCIhIzw3JCQiMkRkOUh5UjhbIiEjOyQhMioqWzFYPjFILSIhIzw3JCQiMk9iNUAjPSg9YCIhIzskITEzWWx5TDo3KikhIzw3JCQiMiozPE1vVHchZSIhIzskITEneSo0NTQ0OnYhIzw3JCQiMlBkOUh5XV1qIiEjOyQhMSMzJGZZPShcJmYhIzw3JCQiMlssLjFzSFFvIiEjOyQhMVI+JSkpKmZVV1khIzw3JCQiMmo/VCNbOyJmdCIhIzskITFtX143XEc7TSEjPDckJCIwKnlkOmM1JHkiISM5JCEyKCpmIilwY0wkKlsjISM9NyQkIjJhPVB1MyxaJD0hIzskITFwODkzMzB6OyEjPDckJCIxUndfMCVbSyk9ISM6JCEydlUwOiVvKyIzIiEjPTckJCIyMy4xN00lKlIkPiEjOyQhMD0kenEpKSlRdCYhIzw3JCQiMjhBVylveGckKT4hIzskITIlXGY3O3I8eDghIz43JCQiMVUjWydIJVtiLiMhIzokIjJhaHRhNVRZIUghIz43JCQiMkZbJ0hmTWQmMyMhIzskIjAjZjg/biRcdCchIzw3JCQiMU1wUXg3dE9AISM6JCIyb049VWNiJT01ISM9NyQkIjJQZDlIW2x1PSMhIzskIjFibyMzX0xfSCIhIzw3JCQiMiU9UHVbXDNNQSEjOyQiMkgwZHRIeSh5OSEjPTckJCIyJlJ6ZTxoXihHIyEjOyQiMkQsbltxNWdmIiEjPTckJCIyLiEpZj5mMGBMIyEjOyQiMi5WaTFSP1toIiEjPTckJCIwKWY+UiJmaVEjISM5JCIyJFxLMC5bNV46ISM9NyQkIjJuOEZhPUddViMhIzskIjE8b0NAUi5AOSEjPDckJCIxJGY9UCUqeiIqWyMhIzokIjJVN1dGNT94QCIhIz03JCQiMSc9UHVRcmdgIyEjOiQiMk40ZVQhcFw2NSEjPTckJCIxKFF4YWYkSCplIyEjOiQiMiYpPmA8cihvdnchIz43JCQiMnddLC4nKSp6UEUhIzskIjFVREhIVFhoYiEjPTckJCIxdVomNDRlM3AjISM6JCIwLDc6I0cuYU4hIzw3JCQiMXNVJjNQUW10IyEjOiQiMUBKQSE9TSV5QCEjPTckJCIyaTlIZXd3KCl5IyEjOyQiMnVNQydHQCk9MSIhIz43JCQiMmQuMjkpKVIiUkchIzskIjJqQXJQRlc3OiUhIz83JCQiLyp6ZjRxJSopRyEjOCQiMlI2NzlEM3gxIiEjPzckJCIxcFF4YV5oUkghIzokIjJHYzEsIWYoKSozIiEjQDckJCIyZSUqKXlkKSl5KClIISM7JCIxPUBNUzwoZTEjISNCNyQkIjJbbUtsIWYnKVJJISM7JCIiISEiIjckJCIyO0RdKzYqXCozJCEjOyQiIiEhIiI3JCQiMjIqemY+ZHRUSiEjOyQiIiEhIiI3JCQiMlB2XSxWQSEqPSQhIzskIiIhISIiNyQkIjFRdVsoNCRHVEshIzokIiIhISIiNyQkIjFfLTA1KFI4SCQhIzokIiIhISIiNyQkIjEnMzxNW3U3TSQhIzokIiIhISIiNyQkIjEkcFF4YUpNUiQhIzokIiIhISIiNyQkIjI6P1MhMyxaVE0hIzskIiIhISIiNyQkIjFBVCNbO28xXCQhIzokIiIhISIiNyQkIjFMbUtsJykpXGEkISM6JCIiISEiIjckJCIwdFgiSDk8JWYkISM5JCIiISEiIjckJCIwJXplPCtaV08hIzkkIiIhISIiNyQkIjFoQFYnUUFjcCQhIzokIiIhISIiNyQkIjJYb090T1RFdSQhIzskIiIhISIiNyQkIjFoPlJ5P3cjeiQhIzokIiIhISIiNyQkIjJab090RSxEJVEhIzskIiIhISIiNyQkIjFvTXBRbnEmKlEhIzokIiIhISIiNyQkIjFkOkppI2VFJVIhIzokIiIhISIiNyQkIjJ4TXBRZElvKlIhIzskIiIhISIiNyQkIjE5RmEzcHJYUyEjOiQiIiEhIiI3JCQiMU9xUyJRKDMlNCUhIzokIiIhISIiNyQkIjF1VyopeTY1WVQhIzokIiIhISIiNyQkIjJOZDlIUUQkKT4lISM7JCIiISEiIjckJCIxKFJ6ZW5UZUMlISM6JCIiISEiIjckJCIxNDxNbz1JJ0glISM6JCIiISEiIjckJCIxNkBVJTNZYk0lISM6JCIiISEiIjckJCIxYjM8TXQjKilSJSEjOiQiIiEhIiI3JCQiMCNSeWNwNlhXISM5JCIiISEiIjckJCIwJXplPHU7KVwlISM5JCIiISEiIjckJCIxJVwpcFJ3LltYISM6JCIiISEiIjckJCIxWyNcKXBoVShmJSEjOiQiIiEhIiI3JCQiMUNaJSopKVImb2slISM6JCIiISEiIjckJCIxI1J5Y0Juc3AlISM6JCIiISEiIjckJCIxPExtS1dxXVohIzokIiIhISIiNyQkIjFSeGE0NnEqeiUhIzokIiIhISIiNyQkIjFHYjVAcjFbWyEjOiQiIiEhIiI3JCQiMSlHZDlmcCgqKlshIzokIiIhISIiNyQkIjFeLTA1JmY4JlwhIzokIiIhISIiNyQkIiNdISIiJCIiISEiIi0lJ0xFR0VOREc2Iy0lKV9UWVBFU0VURzYjLUklbXN1Ykc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjYmLUkjbWlHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEnJiM5MjM7NiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY3LUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEiNDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii1JI21vRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNj5RIiw2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJSZmZW5jZUdRJmZhbHNlNiIvJSpzZXBhcmF0b3JHUSV0cnVlNiIvJSlzdHJldGNoeUdRJmZhbHNlNiIvJSpzeW1tZXRyaWNHUSZmYWxzZTYiLyUobGFyZ2VvcEdRJmZhbHNlNiIvJS5tb3ZhYmxlbGltaXRzR1EmZmFsc2U2Ii8lJ2FjY2VudEdRJmZhbHNlNiIvJSdsc3BhY2VHUSYwLjBlbTYiLyUncnNwYWNlR1EsMC4zMzMzMzMzZW02Ii1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRIjM2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUvc3Vic2NyaXB0c2hpZnRHUSIwNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiItJSZDT0xPUkc2JyUkUkdCRyQiKUVQSkMhIikkIilbdzZNISIpJCIobDxUJiEiKC0lK19BVFRSSUJVVEVHNiMvJSdzb3VyY2VHJSxtYXRoZGVmYXVsdEctJSdDVVJWRVNHNiU3W3k3JCQhI10hIiIkIiIhISIiNyQkITFWKFsoXFJVWlwhIzokIiIhISIiNyQkITImUXhhNHluLFwhIzskIiIhISIiNyQkITFoQVghXEotJlshIzokIiIhISIiNyQkITElemU8OlclKXolISM6JCIiISEiIjckJCExSmlDXEghcHUlISM6JCIiISEiIjckJCEwI1J5Y3c2KnAlISM5JCIiISEiIjckJCExZDhGYShRJ1xZISM6JCIiISEiIjckJCExakReLXdZKWYlISM6JCIiISEiIjckJCExS2tHZDBZWlghIzokIiIhISIiNyQkITFWJjM8YSQqXFwlISM6JCIiISEiIjckJCEyYjlIZWMheVtXISM7JCIiISEiIjckJCExOERdK2R2J1IlISM6JCIiISEiIjckJCExLS8zO3NeV1YhIzokIiIhISIiNyQkITE+UnljZDwlSCUhIzokIiIhISIiNyQkITFDWiUqKSkzWVtVISM6JCIiISEiIjckJCExT3NXKlssVD4lISM6JCIiISEiIjckJCEyTnBReCU+MFtUISM7JCIiISEiIjckJCExJjM8TVEmWyU0JSEjOiQiIiEhIiI3JCQhMVB1WygqKXBxLyUhIzokIiIhISIiNyQkITI7T3NXZlpdKlIhIzskIiIhISIiNyQkITJaKiopemYrXlhSISM7JCIiISEiIjckJCEyJnpmPlJHI1EqUSEjOyQiIiEhIiI3JCQhMjtSeWMkeU5ZUSEjOyQiIiEhIiI3JCQhMUZhMzwvOyZ6JCEjOiQiIiEhIiI3JCQhMiUpcFJ6byEpPnUkISM7JCIiISEiIjckJCEyWiRwUXh2byZwJCEjOyQiIiEhIiI3JCQhMk51WyhcKCpvWE8hIzskIiIhISIiNyQkITJ3YDI6NVBTZiQhIzskIiIhISIiNyQkITFlOkppXV1WTiEjOiQiIiEhIiI3JCQhMS0vMztGaCVcJCEjOiQiIiEhIiI3JCQhMnhgMjo1RS5XJCEjOyQiIiEhIiI3JCQhMmA0PlE7WjpSJCEjOyQiIiEhIiI3JCQhMlYhND1PX1lSTCEjOyQiIiEhIiI3JCQhMUBVJSlvN0YjSCQhIzokIiIhISIiNyQkITJaI1wpcHp2MUMkISM7JCIiISEiIjckJCEyQ1olKil5JUdAPiQhIzskIiIhISIiNyQkITItMztLYSNRVEohIzskIiIhISIiNyQkITIoKil5ZDoicDw0JCEjOyQiIiEhIiI3JCQhMXBReGElRylSSSEjOiQiIiEhIiI3JCQhMUdjN0RNISkqKUghIzokIjFEJkhlYjNYJz4hI0Q3JCQhMmM8TnFnWCdRSCEjOyQiMjFMTDsnWy9QQiEjQTckJCEydGAyOlM2eilHISM7JCIxMCg+Iyl5ayhbUiEjPzckJCEyPFJ5YyQ+SFRHISM7JCIxYyNvYSZSP3o9ISM+NyQkITIxPE1vd2d5eSMhIzskIjEoKm9ka0Zmb2shIz43JCQhMjtKaUNIcit1IyEjOyQiMjltZDs6dSpmOSEjPjckJCEyMThFX3U8IipvIyEjOyQiMUg9WSZlXyhcRyEjPTckJCEyWihcKiopcFsuayMhIzskIjFAPU1fQXUqcCUhIz03JCQhMnZeLjIlcD4nZSMhIzskIjE5YEZ4KFFVQyghIz03JCQhMlgjXClwXDAkUkQhIzskIjFVXyg9TUAubyohIz03JCQhMk5zVyopRyQzJ1sjISM7JCIyXGdFWik9KDRDIiEjPTckJCExLjE3Q3FkUEMhIzokIjBaWCUpemtsWCIhIzs3JCQhMm1Mbk16PVhRIyEjOyQiMjIpUl51RS1DOyEjPTckJCExUnljOCZRKFFCISM6JCIxKmZkUSJ6JTRwIiEjPDckJCEyWidIZj0sZydHIyEjOyQiMiNcJlw9Y1RqbSIhIz03JCQhMmAyOkkrUGlCIyEjOyQiMiIqZjJNJTQvUjohIz03JCQhMjNAVSUpeTFmPSMhIzskIjJ3PDw1T1wlPjghIz03JCQhMVQjWydIPHdOQCEjOiQiMXYlKlImKWVxRDUhIzw3JCQhMmQ7TG0tKWUoMyMhIzskIjEzRzwmRzBLInAhIz03JCQhMVolKil5KDReTj8hIzokIjInKSlwJFFPdEchSCEjPjckJCExZj1QdXgoZSk+ISM6JCEwJGVbd1gkXD0iISM8NyQkITIuN0NbO1RPJD4hIzskITF1VVwoUjlfcSYhIz03JCQhMm9OclVYYWopPSEjOyQhMi42Nm8qUScqMzUhIz03JCQhMktuTXB5JDRNPSEjOyQhMUdtWi1ZL3E6ISM8NyQkITIkZj1QdXIuJXkiISM7JCExSjx2V3E3XEEhIzw3JCQhMl8tMDVTLVR0IiEjOyQhMTdqbD1wdkhKISM8NyQkITJsVCRvT2AlPm8iISM7JCExIkhTXSNwaTFWISM8NyQkITImND5Rd24hUmoiISM7JCExYltpI1IhKVtoJiEjPDckJCEyJyopemY+KDNaZSIhIzskITFAX00qeSJIPXIhIzw3JCQhMnNaJjQ+IylRSTohIzskITBwKHlDVTtUKSkhIzs3JCQhMSNRd19YMDdbIiEjOiQhMTIqeiNIU0FJNSEjOzckJCEyMDxNbydvITRWIiEjOyQhMlQ7Rlsua0g6IiEjPDckJCEwMTdDb0lgUyIhIzkkITJiUUkyaioqKSo+IiEjPDckJCEyJVwqKil6XGEoejghIzskITFPcT5AMidSQiIhIzs3JCQhMik9UXdfKCoqek8iISM7JCEyJ3lcUj5UKFtDIiEjPDckJCEyIylvUHYrWGlOIiEjOyQhMSRSLnZGRkVEIiEjOzckJCEydmI2QkUhXFc4ISM7JCEyRGpTYCplNmQ3ISM8NyQkITFGYTM8YnRLOCEjOiQhMSZHdUJ5XyNlNyEjOzckJCEyeWdAJFJgPz84ISM7JCExPElTPGZwYjchIzs3JCQhMicpeWQ6O3Z3SSIhIzskITJyJEg+OCUqPVw3ISM8NyQkITImcFJ6JClcOSZIIiEjOyQhMlEsTkkqUnBRNyEjPDckJCEyLjpJZyFbaCNHIiEjOyQhMm9BJnoiKUg+QzchIzw3JCQhMigpeWQ6QFh4RCIhIzskITJVajRmRSllJD0iISM8NyQkITJyVSYzPGMoR0IiISM7JCExd0Y6WWNfRjYhIzs3JCQhMkZrR2Q5cSd6NiEjOyQhMUxtIjRwOmVlKiEjPDckJCExYDA2QSc9RjgiISM6JCExLyk9Y2pUdGYoISM8NyQkITJQd18wSlkmeTUhIzskITByJipHJykqKlEiWyEjOzckJCExKFJ6ZSgqZidINSEjOiQhMjx2OyxoRiM9PiEjPTckJCExXzI6SV0qRyIpKiEjOyQiMkMmXGNtN2dxNyEjPTckJCExJ1F3XzBkRkgqISM7JCIxYmciZm8sbi8mISM8NyQkITF2YDI6XV5xKCkhIzskIjFGdyJ6az8oSCMqISM8NyQkITFQclUmM19gSCkhIzskIjE8QV9mdDhZOCEjOzckJCExO1MhMztdMnooISM7JCIxI29dYEEkb189ISM7NyQkITEkKioqKioqKnpJKUgoISM7JCIwKVxnb1VSOkMhIzo3JCQhMGM3RF0mXGtuISM6JCIyOV0oSFBaXDNKISM8NyQkITEzPlF3IypmLWohIzskIjIkW1s+JFxCXHgkISM8NyQkITEuPE1vWTRzZCEjOyQiMVFvS1JLQCxZISM7NyQkITF5aEJaQ1J0XyEjOyQiMTBHZks0PDdhISM7NyQkITIoUSdHZDkyJnpaISM8JCIxZj05USVma0AnISM7NyQkITJgJ1F4YSpHX0clISM8JCIxRlNYc0VFKilwISM7NyQkITJiPVB1Wyc0InkkISM8JCIxR0EjejAjPTd4ISM7NyQkITJXJXplPFhzWUshIzwkIjFURGIocDl5UCkhIzs3JCQhMlhyVihbeHZjRiEjPCQiMWN3SVhuYiIpKSkhIzs3JCQhMkUkZTtMdzR0QSEjPCQiMTIjeSkqKlssdiMqISM7NyQkITJEQ1snSEgyYzwhIzwkIjFXczhPI1x4ZSohIzs3JCQhMjZmPVB1dCxDIiEjPCQiMXMqb1BfeT8hKSohIzs3JCQhMlE5SGVtWyczNSEjPCQiMTFTJClRdWxxKSohIzs3JCQhMWxwUnplQnJ4ISM8JCIxImZveXAjKVEjKiohIzs3JCQhMWwjZj1QYSdHXSEjPCQiMUMsR0JvSm8qKiEjOzckJCEyV2NAVidHMidHIyEjPSQiMVdwcyg0bU0qKiohIzs3JCQhMiVvKGU8TlMnUTYhIz0kIjFeTk5gJHokKSoqKiEjOzckJCIwY0ZTITM7I3opISM+JCIxJlFzTCEqKioqKioqKiEjOzckJCIyTyNvT3RZQWM2ISM9JCIxKT4zIjQqRyQpKioqISM7NyQkIjImPidIZj1kT0kjISM9JCIwS2Y0O2xMKioqISM6NyQkIjE7KiopemZmeClcISM8JCIxeidSaiE9JClvKiohIzs3JCQiMTctMDU/Jz1uKCEjPCQiMW5hOV0oUWUjKiohIzs3JCQiMlhNcFF4ZEwtIiEjPCQiMXI9TChlb24nKSohIzs3JCQiMnhtTG5NSCZ6NyEjPCQiMW04UD1BIikpeSohIzs3JCQiMmtyVihbMipwdCIhIzwkIjFFJWZDND50ZiohIzs3JCQiLyYpcFJSWF5BISM5JCIxOUJARSJwLUgqISM7NyQkIjFySmpFdEtwRiEjOyQiMS4qXGNSaSpwKSkhIzs3JCQiMmt6ZTxOUlpHJCEjPCQiMSUza2siM01NJCkhIzs3JCQiMTY+UXdBZmlQISM7JCIxLiwoeVArcnQoISM7NyQkIjFUdl0sOFFkVSEjOyQiMSopNCFvKSkpPUpxISM7NyQkIjF0YTQ+RzRwWiEjOyQiMSIqZSJcZyo9TGkhIzs3JCQiMSl5YzhGaiJ6XyEjOyQiMSdRV0BkOkZTJiEjOzckJCIxIm9OclVMUSFlISM7JCIyRF1hdEMsL2IlISM8NyQkIjFZJ0hmPWpmRSchIzskIjE7VUkhZk4sJFEhIzs3JCQiMSUpZj5SPUAneSchIzskIjFbSXVZP2l5SSEjOzckJCIxKTM8TW8nZjN0ISM7JCIxLVghZSI9KkdTIyEjOzckJCIxPT5RdzcsN3khIzskIjJPcVYiUi8pKkg9ISM8NyQkIjF0UXhhKmYicCMpISM7JCIyTkQmMypRbzNQIiEjPDckJCIxWShbKFxSdjcpKSEjOyQiMUI7J0hPPVsoKSkhIzw3JCQiMW1UJG9PXEtGKiEjOyQiMVIhZXEuJ1smPiYhIzw3JCQiMWMtMDVdIiozKSohIzskIjI9azBAcEoiKUgiISM9NyQkIjJMbk1wKXBJRzUhIzskITJZPkVhaT1MJD0hIz03JCQiMiZbKFwqKkdILjMiISM7JCEyJUg2KFE7Y0giXCEjPTckJCIyYTZCWSNvJylINiEjOyQhMXJ2Pz55N2p1ISM8NyQkIjIxOEVfL2E6PSIhIzskITEwTC8ieXJqbCohIzw3JCQiMiU+UHVbIT4hSDchIzskITJkWipceC5bPDYhIzw3JCQiMj0/UyFleGhhNyEjOyQhMi5SRjN6eXQ8IiEjPDckJCIyVm9PdFk7LUciISM7JCEybSNbc3gyJzRBIiEjPDckJCIyaTZCJypSNk5IIiEjOyQhMkcmZk1QMS5QNyEjPDckJCIyI1smND5MMW9JIiEjOyQhMlghR0QjcCFmWzchIzw3JCQiMi0pZj5rNzU/OCEjOyQhMilbPkk2I2VjRCIhIzw3JCQiMkBUI1snPidSTDghIzskITJ4c3oiZiF6I2U3ISM8NyQkIjJMZz9UWnBcTSIhIzskITE+KDN2IXoqcEQiISM7NyQkIjJYemU8dlVsTiIhIzskITJtXSYzJnlxQ0QiISM8NyQkIjJjKXBSSGc2bzghIzskITIkUSl5XlgieVc3ISM8NyQkIjJvPE5xSSpvejghIzskITIpZlptWShIU0IiISM8NyQkIjFzVSYzQSlvLzkhIzokITFRIWVceD40PyIhIzs3JCQiMW5Mbk1yb0g5ISM6JCEyZFgnPjokcGE6IiEjPDckJCIyRGQ5SHlSOFsiISM7JCEyUDBbM3pfKUg1ISM8NyQkIjJPYjVAIz0oPWAiISM7JCExbXZVTSpvWnopISM8NyQkIjIqMzxNb1R3IWUiISM7JCExR1sqPVEiNFZzISM8NyQkIjJQZDlIeV1daiIhIzskITJYXytrSXA6ZSYhIz03JCQiMlssLjFzSFFvIiEjOyQhMW1CNyxDWmZVISM8NyQkIjJqP1QjWzsiZnQiISM7JCEyZU0iKVJAZVA0JCEjPTckJCIwKnlkOmM1JHkiISM5JCEyKCk+ZS9SRE5FIyEjPTckJCIyYT1QdTMsWiQ9ISM7JCEyJEgzcDVcIUdjIiEjPTckJCIxUndfMCVbSyk9ISM6JCEyI3BLV1ZeWlI1ISM9NyQkIjIzLjE3TSUqUiQ+ISM7JCExR1VRInA3UW4mISM9NyQkIjI4QVcpb3hnJCk+ISM7JCEyO0BIWSJSJ29QIiEjPjckJCIxVSNbJ0glW2IuIyEjOiQiMjpWYWMycmUhSCEjPjckJCIyRlsnSGZNZCYzIyEjOyQiMVcnKT1xIj1adychIz03JCQiMU1wUXg3dE9AISM6JCIxY3F1KSo0KD4uIiEjPDckJCIyUGQ5SFtsdT0jISM7JCIyWDF2MTQiW0Y4ISM9NyQkIjIlPVB1W1wzTUEhIzskIjItYk48TFQ5YCIhIz03JCQiMiZSemU8aF4oRyMhIzskIjIoM0JKOHdzbjshIz03JCQiMi4hKWY+ZjBgTCMhIzskIjI5XmZWWzRGcCIhIz03JCQiMClmPlIiZmlRIyEjOSQiMilRXS50cSYqPjshIz03JCQiMm44RmE9R11WIyEjOyQiMiJmTC5lXFptOSEjPTckJCIxJGY9UCUqeiIqWyMhIzokIjIoPU5BJSllIWVBIiEjPTckJCIxJz1QdVFyZ2AjISM6JCIxRD4ienoiW10pKiEjPTckJCIxKFF4YWYkSCplIyEjOiQiMSwiKlIyPlcpMyghIz03JCQiMnddLC4nKSp6UEUhIzskIjFqZHFVU0U0WyEjPTckJCIxdVomNDRlM3AjISM6JCIxeiI+cWBHSHojISM9NyQkIjFzVSYzUFFtdCMhIzokIjI9Nloqb14mZmAiISM+NyQkIjJpOUhld3coKXkjISM7JCIxKFE9NkgpM2FqISM+NyQkIjJkLjI5KSlSIlJHISM7JCIxckNWLGxAJCo+ISM+NyQkIi8qemY0cSUqKUchIzgkIjFkYkZeYUouUCEjPzckJCIxcFF4YV5oUkghIzokIjJqOURaP0ZpOyMhI0E3JCQiMmUlKil5ZCkpeSgpSCEjOyQiMVRuTSI0bTIjZSEjRDckJCIyW21LbCFmJylSSSEjOyQiIiEhIiI3JCQiMjtEXSs2KlwqMyQhIzskIiIhISIiNyQkIjIyKnpmPmR0VEohIzskIiIhISIiNyQkIjJQdl0sVkEhKj0kISM7JCIiISEiIjckJCIxUXVbKDQkR1RLISM6JCIiISEiIjckJCIxXy0wNShSOEgkISM6JCIiISEiIjckJCIxJzM8TVt1N00kISM6JCIiISEiIjckJCIxJHBReGFKTVIkISM6JCIiISEiIjckJCIyOj9TITMsWlRNISM7JCIiISEiIjckJCIxQVQjWztvMVwkISM6JCIiISEiIjckJCIxTG1LbCcpKVxhJCEjOiQiIiEhIiI3JCQiMHRYIkg5PCVmJCEjOSQiIiEhIiI3JCQiMCV6ZTwrWldPISM5JCIiISEiIjckJCIxaEBWJ1FBY3AkISM6JCIiISEiIjckJCIyWG9PdE9URXUkISM7JCIiISEiIjckJCIxaD5SeT93I3okISM6JCIiISEiIjckJCIyWm9PdEUsRCVRISM7JCIiISEiIjckJCIxb01wUW5xJipRISM6JCIiISEiIjckJCIxZDpKaSNlRSVSISM6JCIiISEiIjckJCIyeE1wUWRJbypSISM7JCIiISEiIjckJCIxOUZhM3ByWFMhIzokIiIhISIiNyQkIjFPcVMiUSgzJTQlISM6JCIiISEiIjckJCIxdVcqKXk2NVlUISM6JCIiISEiIjckJCIyTmQ5SFFEJCk+JSEjOyQiIiEhIiI3JCQiMShSemVuVGVDJSEjOiQiIiEhIiI3JCQiMTQ8TW89SSdIJSEjOiQiIiEhIiI3JCQiMTZAVSUzWWJNJSEjOiQiIiEhIiI3JCQiMWIzPE10IyopUiUhIzokIiIhISIiNyQkIjAjUnljcDZYVyEjOSQiIiEhIiI3JCQiMCV6ZTx1OylcJSEjOSQiIiEhIiI3JCQiMSVcKXBSdy5bWCEjOiQiIiEhIiI3JCQiMVsjXClwaFUoZiUhIzokIiIhISIiNyQkIjFDWiUqKSlSJm9rJSEjOiQiIiEhIiI3JCQiMSNSeWNCbnNwJSEjOiQiIiEhIiI3JCQiMTxMbUtXcV1aISM6JCIiISEiIjckJCIxUnhhNDZxKnolISM6JCIiISEiIjckJCIxR2I1QHIxW1shIzokIiIhISIiNyQkIjEpR2Q5ZnAoKipbISM6JCIiISEiIjckJCIxXi0wNSZmOCZcISM6JCIiISEiIjckJCIjXSEiIiQiIiEhIiItJSdMRUdFTkRHNiMtJSlfVFlQRVNFVEc2Iy1JJW1zdWJHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2Ji1JI21pRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRJyYjOTIzOzYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2Ny1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRIjQ2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSNtb0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY+USIsNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUmZmVuY2VHUSZmYWxzZTYiLyUqc2VwYXJhdG9yR1EldHJ1ZTYiLyUpc3RyZXRjaHlHUSZmYWxzZTYiLyUqc3ltbWV0cmljR1EmZmFsc2U2Ii8lKGxhcmdlb3BHUSZmYWxzZTYiLyUubW92YWJsZWxpbWl0c0dRJmZhbHNlNiIvJSdhY2NlbnRHUSZmYWxzZTYiLyUnbHNwYWNlR1EmMC4wZW02Ii8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtNiItSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USI0NiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lL3N1YnNjcmlwdHNoaWZ0R1EiMDYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLSUmQ09MT1JHNiclJFJHQkckIilDKWVxJSEiKSQiIiEhIiIkIikkKWVxVyEiKS0lK19BVFRSSUJVVEVHNiMvJSdzb3VyY2VHJSxtYXRoZGVmYXVsdEctJSdDVVJWRVNHNiU3aHg3JCQhI10hIiIkIiIhISIiNyQkITFWKFsoXFJVWlwhIzokIiIhISIiNyQkITImUXhhNHluLFwhIzskIiIhISIiNyQkITFoQVghXEotJlshIzokIiIhISIiNyQkITElemU8OlclKXolISM6JCIiISEiIjckJCExSmlDXEghcHUlISM6JCIiISEiIjckJCEwI1J5Y3c2KnAlISM5JCIiISEiIjckJCExZDhGYShRJ1xZISM6JCIiISEiIjckJCExakReLXdZKWYlISM6JCIiISEiIjckJCExS2tHZDBZWlghIzokIiIhISIiNyQkITFWJjM8YSQqXFwlISM6JCIiISEiIjckJCEyYjlIZWMheVtXISM7JCIiISEiIjckJCExOERdK2R2J1IlISM6JCIiISEiIjckJCExLS8zO3NeV1YhIzokIiIhISIiNyQkITE+UnljZDwlSCUhIzokIiIhISIiNyQkITFDWiUqKSkzWVtVISM6JCIiISEiIjckJCExT3NXKlssVD4lISM6JCIiISEiIjckJCEyTnBReCU+MFtUISM7JCIiISEiIjckJCExJjM8TVEmWyU0JSEjOiQiIiEhIiI3JCQhMVB1WygqKXBxLyUhIzokIiIhISIiNyQkITI7T3NXZlpdKlIhIzskITB2Y3cwUllCIiEjQzckJCEyWioqKXpmK15YUiEjOyQhMkEmM3AhUSFwVDohI0E3JCQhMiZ6Zj5SRyNRKlEhIzskITE5Njt5WHBKPiEjPzckJCEyO1J5YyR5TllRISM7JCExJnBJRi10OFMoISM/NyQkITFGYTM8LzsmeiQhIzokITEjNDltITR2Mj8hIz43JCQhMiUpcFJ6byEpPnUkISM7JCExOEklKTM6OHhVISM+NyQkITJaJHBReHZvJnAkISM7JCExLCQqSC4meSs1KCEjPjckJCEyTnVbKFwoKm9YTyEjOyQhMi5VKVJ4L14mNCIhIz43JCQhMndgMjo1UFNmJCEjOyQhMTdnUl5bVWU6ISM9NyQkITFlOkppXV1WTiEjOiQhMmsmR21iZDRSPyEjPjckJCExLS8zO0ZoJVwkISM6JCEyWXVMIT1yKSkpWyMhIz43JCQhMnhgMjo1RS5XJCEjOyQhMVJ5SXFhLT1IISM9NyQkITJgND5RO1o6UiQhIzskITJuMFJYUSxiPiQhIz43JCQhMlYhND1PX1lSTCEjOyQhMigzJ2U8I1s2UUwhIz43JCQhMUBVJSlvN0YjSCQhIzokITI8SGNxQS9nSSQhIz43JCQhMlojXClwenYxQyQhIzskITJ3JWUzbng5JDMkISM+NyQkITJDWiUqKXklR0A+JCEjOyQhMS4pKWZmc0gpcCMhIz03JCQhMi0zO0thI1FUSiEjOyQhMV5RYyh6a1c4IyEjPTckJCEyKCopeWQ6InA8NCQhIzskITI2T1hEKSoqKmVYIiEjPjckJCExcFF4YSVHKVJJISM6JCExLGdJaSxSS2whIz43JCQhMUdjN0RNISkqKUghIzokIjImekppZ0A4MDwhIz83JCQhMmM8TnFnWCdRSCEjOyQiMig9XW5SRWhiNSEjPjckJCEydGAyOlM2eilHISM7JCIyUHc5QCdHeXM/ISM+NyQkITI8UnljJD5IVEchIzskIjFceWZRdTF6SyEjPTckJCEyMTxNb3dneXkjISM7JCIxSl8iZkd3YjomISM9NyQkITI7SmlDSHIrdSMhIzskIjFfTjVuLyUqenQhIz03JCQhMjE4RV91PCIqbyMhIzskIjIjKlFXemRITS4iISM9NyQkITJaKFwqKilwWy5rIyEjOyQiMm9MIlwjKVE6azghIz03JCQhMnZeLjIlcD4nZSMhIzskIjFRaHlNdjlsPCEjPDckJCEyWCNcKXBcMCRSRCEjOyQiMmsiZW8/QilmNiMhIz03JCQhMk5zVyopRyQzJ1sjISM7JCIxJUhOKEh5TSRbIyEjPDckJCExLjE3Q3FkUEMhIzokIjIlUUNXZXdkY0YhIz03JCQhMm1Mbk16PVhRIyEjOyQiMlsoeUl3LWJfSCEjPTckJCExUnljOCZRKFFCISM6JCIya2hSVSc+TDZJISM9NyQkITJaJ0hmPSxnJ0cjISM7JCIxIj1DI3ojelgkSCEjPDckJCEyYDI6SStQaUIjISM7JCIyVz8pXDw9dzFGISM9NyQkITIzQFUlKXkxZj0jISM7JCIybzhiPyQzaUpCISM9NyQkITFUI1snSDx3TkAhIzokIjIpKVFIVkFPaCM9ISM9NyQkITJkO0xtLSllKDMjISM7JCIyZChRIj4pPSoqUTchIz03JCQhMVolKil5KDReTj8hIzokIjF6TVBoS3BBXyEjPTckJCExZj1QdXgoZSk+ISM6JCExJXpfNj4iKUg4IyEjPTckJCEyLjdDWztUTyQ+ISM7JCEyQV9gLVx5LS4iISM9NyQkITJvTnJVWGFqKT0hIzskITJfJVFkYkIoeSM9ISM9NyQkITJLbk1weSQ0TT0hIzskITF5ST0tbXI7RyEjPDckJCEyJGY9UHVyLiV5IiEjOyQhMXNSJnkpM2IyUiEjPDckJCEyXy0wNVMtVHQiISM7JCEya2xqRD9SUDomISM9NyQkITJsVCRvT2AlPm8iISM7JCEvUT9dYG82bSEjOjckJCEyJjQ+UXduIVJqIiEjOyQhMS4+TXUpeVkwKSEjPDckJCEyJyopemY+KDNaZSIhIzskITF3LG5FdlNqJiohIzw3JCQhMnNaJjQ+IylRSTohIzskITJrdmJQcz5jNiIhIzw3JCQhMSNRd19YMDdbIiEjOiQhMS5CIWY7ZztDIiEjOzckJCEyMDxNbydvITRWIiEjOyQhMmRUOz0oSHJTOCEjPDckJCEwMTdDb0lgUyIhIzkkITJBd25RTmhlUCIhIzw3JCQhMiVcKiopelxhKHo4ISM7JCEyJD0xLUxhJCopUiIhIzw3JCQhMik9UXdfKCoqek8iISM7JCEyWi8vOkVhXlMiISM8NyQkITIjKW9QditYaU4iISM7JCEydVohSGlBWTM5ISM8NyQkITJ2YjZCRSFcVzghIzskITJWJikpeSVHaigzOSEjPDckJCExRmEzPGJ0SzghIzokITI4RF5ZM3FmUyIhIzw3JCQhMicpeWQ6O3Z3SSIhIzskITEkW10sZFIkKlEiISM7NyQkITIuOklnIVtoI0ciISM7JCExdXgpKTMzcWQ4ISM7NyQkITIoKXlkOkBYeEQiISM7JCEyJj1PNiw5MzY4ISM8NyQkITJyVSYzPGMoR0IiISM7JCExMipcW1NMIlw3ISM7NyQkITJGa0dkOXEnejYhIzskITJoTCMzIlFQYzEiISM8NyQkITFgMDZBJz1GOCIhIzokITEyOTtlaTMnWykhIzw3JCQhMlB3XzBKWSZ5NSEjOyQhMSZba1oiZTEuYSEjPDckJCExKFJ6ZSgqZidINSEjOiQhMjhuTjxqSXY6IyEjPTckJCExXzI6SV0qRyIpKiEjOyQiMlp6aig+XldIOSEjPTckJCExJ1F3XzBkRkgqISM7JCIxVjJSOWMoUW8mISM8NyQkITF2YDI6XV5xKCkhIzskIjJ1JUckKipcUTkvIiEjPDckJCExUHJVJjNfYEgpISM7JCIyPDhwP0xBIj06ISM8NyQkITE7UyEzO10yeighIzskIjJVIilvVUJpejIjISM8NyQkITEkKioqKioqKnpJKUgoISM7JCIyRjlhX2VMI3pFISM8NyQkITBjN0RdJlxrbiEjOiQiMigpZiZ5XXBlKVEkISM8NyQkITEzPlF3IypmLWohIzskIjIlcCJlMS1WRi8lISM8NyQkITEuPE1vWTRzZCEjOyQiMSRIJyl5Iyp5YSNbISM7NyQkITF5aEJaQ1J0XyEjOyQiMSpHPCdHUGx0YiEjOzckJCEyKFEnR2Q5MiZ6WiEjPCQiMTgyLiE9SGdJJyEjOzckJCEyYCdReGEqR19HJSEjPCQiMS1RaF0kUig0cSEjOzckJCEyYj1QdVsnNCJ5JCEjPCQiMWZnclFdI29uKCEjOzckJCEyVyV6ZTxYc1lLISM8JCIxTTIwRyN6eUkpISM7NyQkITJYclYoW3h2Y0YhIzwkIjFXamIjKVF3LikpISM7NyQkITJFJGU7THc0dEEhIzwkIjBkPCF5JVt3PyohIzo3JCQhMkRDWydISDJjPCEjPCQiMSUqKSlRJEguRGEqISM7NyQkITI2Zj1QdXQsQyIhIzwkIjFUPDQ1YGd6KCohIzs3JCQhMWxwUnplQnJ4ISM8JCIxY2kzRVAlZSIqKiEjOzckJCExbCNmPVBhJ0ddISM8JCIxW0dAJD01XycqKiEjOzckJCEyV2NAVidHMidHIyEjPSQiMUQjeTFjcEcqKiohIzs3JCQhMiVvKGU8TlMnUTYhIz0kIjE5ISlISlVCKSoqKiEjOzckJCIwY0ZTITM7I3opISM+JCIwRSR5JSopKioqKioqKiEjOjckJCIyTyNvT3RZQWM2ISM9JCIxQTtVUCN6IikqKiohIzs3JCQiMiY+J0hmPWRPSSMhIz0kIjEwN1gmPWZGKioqISM7NyQkIjE7KiopemZmeClcISM8JCIxKXkqM0QjemQnKiohIzs3JCQiMTctMDU/Jz1uKCEjPCQiMU8jSC5LRCE9KiohIzs3JCQiMlhNcFF4ZEwtIiEjPCQiMWtDZyxiKT4mKSohIzs3JCQiMnhtTG5NSCZ6NyEjPCQiMSkqSHEnKnB5aygqISM7NyQkIjJrclYoWzIqcHQiISM8JCIxT01XcmInSGIqISM7NyQkIi8mKXBSUlheQSEjOSQiMXI0ZXNQbkIjKiEjOzckJCIxckpqRXRLcEYhIzskIjFlb1sqPTZAeikhIzs3JCQiMmt6ZTxOUlpHJCEjPCQiMXZXQHF4JWZFKSEjOzckJCIxNj5Rd0FmaVAhIzskIjF5WCs6OjQreCEjOzckJCIxVHZdLDhRZFUhIzskIjFjRjR3SDVbcSEjOzckJCIxdGE0Pkc0cFohIzskIjFYODZrK0JAaiEjOzckJCIxKXljOEZqInpfISM7JCIwNlY5WjBdYyYhIzo3JCQiMSJvTnJVTFEhZSEjOyQiMVQnZSJ5MTB5WiEjOzckJCIxWSdIZj1qZkUnISM7JCIyRSdvVydlN2Y0JSEjPDckJCIxJSlmPlI9QCd5JyEjOyQiMDptTVdyJ2VMISM6NyQkIjEpMzxNbydmM3QhIzskIjJPNlUhPSNHaG0jISM8NyQkIjE9PlF3Nyw3eSEjOyQiMlg0TlJiP0swIyEjPDckJCIxdFF4YSpmInAjKSEjOyQiMlZeIVEzK3pYOiEjPDckJCIxWShbKFxSdjcpKSEjOyQiMEY6WkMiSCw1ISM6NyQkIjFtVCRvT1xLRiohIzskIjJsUTtkKT0oPSZlISM9NyQkIjFjLTA1XSIqMykqISM7JCIyIyoqZW5oJT4vWSIhIz03JCQiMkxuTXApcElHNSEjOyQhMiNvKUdPPXk/MSMhIz03JCQiMiZbKFwqKkdILjMiISM7JCExNE1xPF9jOGIhIzw3JCQiMmE2QlkjbycpSDYhIzskITE9JGZ1XDknUSQpISM8NyQkIjIxOEVfL2E6PSIhIzskITFLSTBnYUh0NSEjOzckJCIyJT5QdVshPiFINyEjOyQhMSNINitnYSJRNyEjOzckJCIyPT9TIWV4aGE3ISM7JCExVjdpOls4LzghIzs3JCQiMlZvT3RZOy1HIiEjOyQhMWo+K0gqcFFOIiEjOzckJCIyaTZCJypSNk5IIiEjOyQhMmoySiJHPkx0OCEjPDckJCIyI1smND5MMW9JIiEjOyQhMiZbYUYibydcKVEiISM8NyQkIjItKWY+azc1PzghIzskITJiKGYrUSpHJSpSIiEjPDckJCIyQFQjWyc+J1JMOCEjOyQhMm9YYXpfNWlTIiEjPDckJCIyTGc/VFpwXE0iISM7JCEycio+PF80IikzOSEjPDckJCIyWHplPHZVbE4iISM7JCExMHRTLV9UMzkhIzs3JCQiMmMpcFJIZzZvOCEjOyQhMjpzKEdNbzUwOSEjPDckJCIybzxOcUkqb3o4ISM7JCEyYD0kNGh4KCopUiIhIzw3JCQiMXNVJjNBKW8vOSEjOiQhMjJLVTI6JWZ3OCEjPDckJCIxbkxuTXJvSDkhIzokITI0ISlSIykqUmtVOCEjPDckJCIyRGQ5SHlSOFsiISM7JCEydClvPSQzXThDIiEjPDckJCIyT2I1QCM9KD1gIiEjOyQhMlVcI1w8eFs2NiEjPDckJCIyKjM8TW9UdyFlIiEjOyQhMTNjJj44VEpvKiEjPDckJCIyUGQ5SHldXWoiISM7JCExOFkkeTtoJz4hKSEjPDckJCIyWywuMXNIUW8iISM7JCEwUGQ+WnNtYichIzs3JCQiMmo/VCNbOyJmdCIhIzskITJOJUhPKltrZTUmISM9NyQkIjAqeWQ6YzUkeSIhIzkkITJFRy8zW1QkSFIhIz03JCQiMmE9UHUzLFokPSEjOyQhMidIKWUxIyozVyFHISM9NyQkIjFSd18wJVtLKT0hIzokITBeUSYpPl5JKT0hIzs3JCQiMjMuMTdNJSpSJD4hIzskITIjeipIJj47ZEM1ISM9NyQkIjI4QVcpb3hnJCk+ISM7JCEyalo9Kj0uYXlDISM+NyQkIjFVI1snSCVbYi4jISM6JCIyYm9AIjMqeiFHXyEjPjckJCIyRlsnSGZNZCYzIyEjOyQiMl88I2UmKkhsNzchIz03JCQiMU1wUXg3dE9AISM6JCIyOkFSNCZvLFA9ISM9NyQkIjJQZDlIW2x1PSMhIzskIjIyIXlZKDNJYE0jISM9NyQkIjIlPVB1W1wzTUEhIzskIjEpRy4yLnFPcCMhIzw3JCQiMiZSemU8aF4oRyMhIzskIjElejYvKGVKUEghIzw3JCQiMi4hKWY+ZjBgTCMhIzskIjIoKnBlVkVONiwkISM9NyQkIjApZj5SImZpUSMhIzkkIjJERCI0Q3U7W0ghIz03JCQiMm44RmE9R11WIyEjOyQiMigqSCU0bExyb0YhIz03JCQiMSRmPVAlKnoiKlsjISM6JCIxKm9iPCMzYmpDISM8NyQkIjEnPVB1UXJnYCMhIzokIjIkKlEpNDRRZ1JAISM9NyQkIjEoUXhhZiRIKmUjISM6JCIyT3dCLiJIeVQ8ISM9NyQkIjJ3XSwuJykqelBFISM7JCIyXGYjKiozKFFDUSIhIz03JCQiMXVaJjQ0ZTNwIyEjOiQiMjImcHk4YFRBNSEjPTckJCIxc1UmM1BRbXQjISM6JCIxTSZ5I3ljXmd2ISM9NyQkIjJpOUhld3coKXkjISM7JCIxWCNvNSRbPD1eISM9NyQkIjJkLjI5KSlSIlJHISM7JCIyWVhdN3VQTU0kISM+NyQkIi8qemY0cSUqKUchIzgkIjFGb2MjRz95LiMhIz03JCQiMXBReGFeaFJIISM6JCIyMS5JKCozPSFRNSEjPjckJCIyZSUqKXlkKSl5KClIISM7JCIxJUdSNFMoUlY/ISM+NyQkIjJbbUtsIWYnKVJJISM7JCExWjtiPElUUWwhIz43JCQiMjtEXSs2KlwqMyQhIzskITIjeTtkeFNaQTkhIz43JCQiMjIqemY+ZHRUSiEjOyQhMSZbTXhuKSkpUUAhIz03JCQiMlB2XSxWQSEqPSQhIzskITFfXGlVR0RvRSEjPTckJCIxUXVbKDQkR1RLISM6JCEyWjMsWzg2cDMkISM+NyQkIjFfLTA1KFI4SCQhIzokITEtNik9QkpQSSQhIz03JCQiMSczPE1bdTdNJCEjOiQhMS9aMCMpZTxPTCEjPTckJCIxJHBReGFKTVIkISM6JCExLik0L0lmcj0kISM9NyQkIjI6P1MhMyxaVE0hIzskITJ0bD1qTj8sIkghIz43JCQiMUFUI1s7bzFcJCEjOiQhMSk+WSZ5XT9CRCEjPTckJCIxTG1LbCcpKVxhJCEjOiQhMTRQZ0c8KlwtIyEjPTckJCIwdFgiSDk8JWYkISM5JCEyLktaalhscmIiISM+NyQkIjAlemU8K1pXTyEjOSQhMmxcUHBQMGU1IiEjPjckJCIxaEBWJ1FBY3AkISM6JCExclE5NDhmL3IhIz43JCQiMlhvT3RPVEV1JCEjOyQhMTtRXTFtX1VVISM+NyQkIjFoPlJ5P3cjeiQhIzokITJ0W25uP3UhKTMjISM/NyQkIjJab090RSxEJVEhIzskITAmZm0qKUd2IjMpISM+NyQkIjFvTXBRbnEmKlEhIzokITJXVDpVc0l3IT0hI0A3JCQiMWQ6SmkjZUUlUiEjOiQhMnpQel0pUlN3PSEjQTckJCIyeE1wUWRJbypSISM7JCEyUGNvTCQqUiFHPCEjRjckJCIxOUZhM3ByWFMhIzokIiIhISIiNyQkIjFPcVMiUSgzJTQlISM6JCIiISEiIjckJCIxdVcqKXk2NVlUISM6JCIiISEiIjckJCIyTmQ5SFFEJCk+JSEjOyQiIiEhIiI3JCQiMShSemVuVGVDJSEjOiQiIiEhIiI3JCQiMTQ8TW89SSdIJSEjOiQiIiEhIiI3JCQiMTZAVSUzWWJNJSEjOiQiIiEhIiI3JCQiMWIzPE10IyopUiUhIzokIiIhISIiNyQkIjAjUnljcDZYVyEjOSQiIiEhIiI3JCQiMCV6ZTx1OylcJSEjOSQiIiEhIiI3JCQiMSVcKXBSdy5bWCEjOiQiIiEhIiI3JCQiMVsjXClwaFUoZiUhIzokIiIhISIiNyQkIjFDWiUqKSlSJm9rJSEjOiQiIiEhIiI3JCQiMSNSeWNCbnNwJSEjOiQiIiEhIiI3JCQiMTxMbUtXcV1aISM6JCIiISEiIjckJCIxUnhhNDZxKnolISM6JCIiISEiIjckJCIxR2I1QHIxW1shIzokIiIhISIiNyQkIjEpR2Q5ZnAoKipbISM6JCIiISEiIjckJCIxXi0wNSZmOCZcISM6JCIiISEiIjckJCIjXSEiIiQiIiEhIiItJSdMRUdFTkRHNiMtJSlfVFlQRVNFVEc2Iy1JJW1zdWJHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2Ji1JI21pRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRJyYjOTIzOzYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2Ny1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRIjY2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSNtb0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY+USIsNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUmZmVuY2VHUSZmYWxzZTYiLyUqc2VwYXJhdG9yR1EldHJ1ZTYiLyUpc3RyZXRjaHlHUSZmYWxzZTYiLyUqc3ltbWV0cmljR1EmZmFsc2U2Ii8lKGxhcmdlb3BHUSZmYWxzZTYiLyUubW92YWJsZWxpbWl0c0dRJmZhbHNlNiIvJSdhY2NlbnRHUSZmYWxzZTYiLyUnbHNwYWNlR1EmMC4wZW02Ii8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtNiItSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USIzNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lL3N1YnNjcmlwdHNoaWZ0R1EiMDYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLSUmQ09MT1JHNiclJFJHQkckIiIhISIiJCIpQyllcSUhIikkIilHJ286JSEiKS0lK19BVFRSSUJVVEVHNiMvJSdzb3VyY2VHJSxtYXRoZGVmYXVsdEctJSdDVVJWRVNHNiU3ang3JCQhI10hIiIkIiIhISIiNyQkITFWKFsoXFJVWlwhIzokIiIhISIiNyQkITImUXhhNHluLFwhIzskIiIhISIiNyQkITFoQVghXEotJlshIzokIiIhISIiNyQkITElemU8OlclKXolISM6JCIiISEiIjckJCExSmlDXEghcHUlISM6JCIiISEiIjckJCEwI1J5Y3c2KnAlISM5JCIiISEiIjckJCExZDhGYShRJ1xZISM6JCIiISEiIjckJCExakReLXdZKWYlISM6JCIiISEiIjckJCExS2tHZDBZWlghIzokIiIhISIiNyQkITFWJjM8YSQqXFwlISM6JCIiISEiIjckJCEyYjlIZWMheVtXISM7JCIiISEiIjckJCExOERdK2R2J1IlISM6JCIiISEiIjckJCExLS8zO3NeV1YhIzokIiIhISIiNyQkITE+UnljZDwlSCUhIzokIiIhISIiNyQkITFDWiUqKSkzWVtVISM6JCIiISEiIjckJCExT3NXKlssVD4lISM6JCIiISEiIjckJCEyTnBReCU+MFtUISM7JCIiISEiIjckJCExJjM8TVEmWyU0JSEjOiQiIiEhIiI3JCQhMVB1WygqKXBxLyUhIzokIiIhISIiNyQkITI7T3NXZlpdKlIhIzskIjJ5LWJVRyh5Iz0jISNFNyQkITJaKiopemYrXlhSISM7JCEyMHRkX2lFR3cjISNCNyQkITImemY+UkcjUSpRISM7JCExejYsYCsyW2shI0A3JCQhMjtSeWMkeU5ZUSEjOyQhMiUpek8icCY0Q1QkISNANyQkITFGYTM8LzsmeiQhIzokITIjZXkybXYqNDwiISM/NyQkITIlKXBSem8hKT51JCEjOyQhMWsmZiJcdid5J0ghIz43JCQhMlokcFF4dm8mcCQhIzskITFqTEpYYHg7YiEjPjckJCEyTnVbKFwoKm9YTyEjOyQhMVtGOEk/cFokKiEjPjckJCEyd2AyOjVQU2YkISM7JCEyQjFCKSlIPy5WIiEjPjckJCExZTpKaV1dVk4hIzokITJ0IyplKT5lcHM+ISM+NyQkITEtLzM7RmglXCQhIzokITJqeEtYV2Z0XCMhIz43JCQhMnhgMjo1RS5XJCEjOyQhMktxQERceG0rJCEjPjckJCEyYDQ+UTtaOlIkISM7JCEyWCkpXDRzPmlMJCEjPjckJCEyViE0PU9fWVJMISM7JCEyMHBWKTMvZCxOISM+NyQkITFAVSUpbzdGI0gkISM6JCExWHNFJD51ImZNISM9NyQkITJaI1wpcHp2MUMkISM7JCEyKSpmbk95YCcqPiQhIz43JCQhMkNaJSopeSVHQD4kISM7JCEyV3AzNDtxLXgjISM+NyQkITItMztLYSNRVEohIzskITEkW0s9a0plOyMhIz03JCQhMigqKXlkOiJwPDQkISM7JCExai4vJT1OUVkiISM9NyQkITFwUXhhJUcpUkkhIzokITF6cD84Y05PbCEjPjckJCExR2M3RE0hKSopSCEjOiQiMWZiI3oiKiopXHEiISM+NyQkITJjPE5xZ1gnUUghIzskIjI8KXBdInkyPy8iISM+NyQkITJ0YDI6UzZ6KUchIzskIjFvIz5NenhhJz4hIz03JCQhMjxSeWMkPkhURyEjOyQiMlc+bSQzR0N0SCEjPjckJCEyMTxNb3dneXkjISM7JCIyMC9uVitcQV8lISM+NyQkITI7SmlDSHIrdSMhIzskIjJsLyUpPkV5SVgnISM+NyQkITIxOEVfdTwiKm8jISM7JCIxR1JjJmUwNkAqISM9NyQkITJaKFwqKilwWy5rIyEjOyQiMkpxcTM2T0dEIiEjPTckJCEydl4uMiVwPidlIyEjOyQiMkUzOCIqPjI1byIhIz03JCQhMlgjXClwXDAkUkQhIzskIjIjUilRKltOdnQ/ISM9NyQkITJOc1cqKUckMydbIyEjOyQiMlo8NDpbRicpXCMhIz03JCQhMS4xN0NxZFBDISM6JCIxczRcVylSNiNHISM8NyQkITJtTG5Nej1YUSMhIzskIjJCV1ohZkFwYUkhIz03JCQhMVJ5YzgmUShRQiEjOiQiMk45eSJlKCp5REohIz03JCQhMlonSGY9LGcnRyMhIzskIjFSP0YtZnNSSSEjPDckJCEyYDI6SStQaUIjISM7JCIyLnEpUWZlZCZ5IyEjPTckJCEyM0BVJSl5MWY9IyEjOyQiMiYqNC16LCQzeUIhIz03JCQhMVQjWydIPHdOQCEjOiQiMSZITiRbJSlmWD0hIzw3JCQhMmQ7TG0tKWUoMyMhIzskIjI5QEIoR1p0VjchIz03JCQhMVolKil5KDReTj8hIzokIjEmZUdeSSZcQ18hIz03JCQhMWY9UHV4KGUpPiEjOiQhMjBAXnJ6RUc4IyEjPjckJCEyLjdDWztUTyQ+ISM7JCEyKG8uYTFWKFstIiEjPTckJCEyb05yVVhhaik9ISM7JCEyVykqKTNpIkdVeiIhIz03JCQhMktuTXB5JDRNPSEjOyQhMCZmZSkpPTQ4RiEjOzckJCEyJGY9UHVyLiV5IiEjOyQhMDwwTDdyK3IkISM7NyQkITJfLTA1Uy1UdCIhIzskITIlMzdXbzNHbVshIz03JCQhMmxUJG9PYCU+byIhIzskITEsUzs1ZzRyaSEjPDckJCEyJjQ+UXduIVJqIiEjOyQhMG8vdl1qaHMoISM7NyQkITInKil6Zj4oM1plIiEjOyQhMDxNcF8tVkoqISM7NyQkITJzWiY0PiMpUUk6ISM7JCEyKip5TEoob3MwNiEjPDckJCExI1F3X1gwN1siISM6JCEyTTEnPklcJHlDIiEjPDckJCEyMDxNbydvITRWIiEjOyQhMXJPPztzJT1PIiEjOzckJCEwMTdDb0lgUyIhIzkkITJHUmknNDEqR1MiISM8NyQkITIlXCoqKXpcYSh6OCEjOyQhMjBeZVooM0NJOSEjPDckJCEyKT1Rd18oKip6TyIhIzskITE6XHNuPiN5ViIhIzs3JCQhMiMpb1B2K1hpTiIhIzskITIxKDQrKnknNFU5ISM8NyQkITJ2YjZCRSFcVzghIzskITJRYyJwKFttSFciISM8NyQkITFGYTM8YnRLOCEjOiQhMkRxPmMieU1TOSEjPDckJCEyeWdAJFJgPz84ISM7JCEyIz0yIj0nKVJPViIhIzw3JCQhMicpeWQ6O3Z3SSIhIzskITJ3JVtsI29JR1UiISM8NyQkITImcFJ6JClcOSZIIiEjOyQhMCRRKFspKnp5UyIhIzo3JCQhMi46SWchW2gjRyIhIzskITJpbGtrOW8oKVEiISM8NyQkITIoKXlkOkBYeEQiISM7JCExKGVcSXNJJlE4ISM7NyQkITJyVSYzPGMoR0IiISM7JCEyYjVzT2RYQEYiISM8NyQkITJGa0dkOXEnejYhIzskITIqPWkmZmBCJXk1ISM8NyQkITFgMDZBJz1GOCIhIzokITEjcCV5TiM9MWEpISM8NyQkITJQd18wSlkmeTUhIzskITE5YHY0eiVHVCYhIzw3JCQhMShSemUoKmYnSDUhIzokITFzIzRzZC55OiMhIzw3JCQhMV8yOkldKkciKSohIzskIjJKeT5xLG8kSDkhIz03JCQhMSdRd18wZEZIKiEjOyQiMCkqZnInW2VzYyEjOzckJCExdmAyOl1ecSgpISM7JCIyMk83SCQ9RE01ISM8NyQkITFQclUmM19gSCkhIzskIjItLDAvKnphKlwiISM8NyQkITE7UyEzO10yeighIzskIjElSG1EJ2VWVj8hIzs3JCQhMSQqKioqKioqekkpSCghIzskIjExOSUqXCdlLWojISM7NyQkITBjN0RdJlxrbiEjOiQiLyxHLic0OkwkISM5NyQkITEzPlF3IypmLWohIzskIjJrQyp5djtmKSlSISM8NyQkITEuPE1vWTRzZCEjOyQiMm0lKjM/TXVveSUhIzw3JCQhMXloQlpDUnRfISM7JCIxdURpKCl6eGViISM7NyQkITIoUSdHZDkyJnpaISM8JCIxel1zWXAyPWohIzs3JCQhMmAnUXhhKkdfRyUhIzwkIjFlUF1sJ3pmLyghIzs3JCQhMmI9UHVbJzQieSQhIzwkIjFjPj51d05IeCEjOzckJCEyVyV6ZTxYc1lLISM8JCIxRCd5IVxRK2wkKSEjOzckJCEyWHJWKFt4dmNGISM8JCIxKkhSPy9QUyYpKSEjOzckJCEyRSRlO0x3NHRBISM8JCIxLSc+USlIQlcjKiEjOzckJCEyRENbJ0hIMmM8ISM8JCIxYCU0RDchZmkmKiEjOzckJCEyNmY9UHV0LEMiISM8JCIxOVJdenopcHkqISM7NyQkITFscFJ6ZUJyeCEjPCQiMXlTKmVwOXUiKiohIzs3JCQhMWwjZj1QYSdHXSEjPCQiMCNlUiEpKlJiJyoqISM6NyQkITJXY0BWJ0cyJ0cjISM9JCIwaF4oM2opRyoqKiEjOjckJCEyJW8oZTxOUydRNiEjPSQiMW0jKkdQYEIpKioqISM7NyQkIjBjRlMhMzsjeikhIz4kIjFsS3klKikqKioqKioqISM7NyQkIjJPI29PdFlBYzYhIz0kIjFDSTI3Lz0pKioqISM7NyQkIjImPidIZj1kT0kjISM9JCIxLE4sT2t4IyoqKiEjOzckJCIxOyoqKXpmZngpXCEjPCQiMU0kUV9FKjRtKiohIzs3JCQiMTctMDU/Jz1uKCEjPCQiMSZbYjxWRiY+KiohIzs3JCQiMlhNcFF4ZEwtIiEjPCQiMW4mcEh0eGYmKSohIzs3JCQiMnhtTG5NSCZ6NyEjPCQiMU1GVUVxIkh4KiEjOzckJCIya3JWKFsyKnB0IiEjPCQiMVw4TFlpW3MmKiEjOzckJCIvJilwUlJYXkEhIzkkIjEiUTJFWWomZiMqISM7NyQkIjFySmpFdEtwRiEjOyQiMVxcYig+b0UlKSkhIzs3JCQiMmt6ZTxOUlpHJCEjPCQiMTooMy1JIT5CJCkhIzs3JCQiMTY+UXdBZmlQISM7JCIxW0BTLzAsYHghIzs3JCQiMVR2XSw4UWRVISM7JCIxI0hETkMxYjMoISM7NyQkIjF0YTQ+RzRwWiEjOyQiMCQqXGNPUFFMJyEjOjckJCIxKXljOEZqInpfISM7JCIwQXk7XUIpXGIhIzo3JCQiMSJvTnJVTFEhZSEjOyQiMiYzS3lgdz1RWiEjPDckJCIxWSdIZj1qZkUnISM7JCIxJ3AiKSo+IUhDLyUhIzs3JCQiMSUpZj5SPUAneSchIzskIjEsakwlZSw8SSQhIzs3JCQiMSkzPE1vJ2YzdCEjOyQiMVZyamlgUzxFISM7NyQkIjE9PlF3Nyw3eSEjOyQiMTx1JUdIJVE+PyEjOzckJCIxdFF4YSpmInAjKSEjOyQiMSk0YHFnXWtfIiEjOzckJCIxWShbKFxSdjcpKSEjOyQiMC1CVkApXFsqKiEjOzckJCIxbVQkb09cS0YqISM7JCIxQTlESl1XUmUhIzw3JCQiMWMtMDVdIiozKSohIzskIjFNPloiek4uWSIhIzw3JCQiMkxuTXApcElHNSEjOyQhMS0iZTpiMUIxIyEjPDckJCIyJlsoXCoqR0guMyIhIzskITJrcFtPclFUXyYhIz03JCQiMmE2QlkjbycpSDYhIzskIS9cdiNbaScqUSkhIzo3JCQiMjE4RV8vYTo9IiEjOyQhMkpGNWZsRWszIiEjPDckJCIyJT5QdVshPiFINyEjOyQhMiMpUm4oSElWZzchIzw3JCQiMj0/UyFleGhhNyEjOyQhMmpCSi9caTVMIiEjPDckJCIyVm9PdFk7LUciISM7JCEyQWleQElOWVEiISM8NyQkIjJpNkInKlI2TkgiISM7JCEyJXomKWUzV2kwOSEjPDckJCIyI1smND5MMW9JIiEjOyQhMjpXI1wlKXojPlUiISM8NyQkIjItKWY+azc1PzghIzskITJfeWhBL25OViIhIzw3JCQiMkBUI1snPidSTDghIzskITJjUzIydillUzkhIzw3JCQiMkxnP1RacFxNIiEjOyQhMl93bHZzKSpIVyIhIzw3JCQiMlh6ZTx2VWxOIiEjOyQhMUE9MWQsLlU5ISM7NyQkIjJjKXBSSGc2bzghIzskITJkbl87Kkh3UDkhIzw3JCQiMm88TnFJKm96OCEjOyQhMmlONFUkPUhJOSEjPDckJCIxc1UmM0Epby85ISM6JCEyOkRaKGY8di45ISM8NyQkIjFuTG5Ncm9IOSEjOiQhMjpKIipbdSI0azghIzw3JCQiMkRkOUh5UjhbIiEjOyQhMjxWUic0N1taNyEjPDckJCIyT2I1QCM9KD1gIiEjOyQhMk89aFdFRjY1IiEjPDckJCIyKjM8TW9UdyFlIiEjOyQhMHY5Uyk+MlYlKiEjOzckJCIyUGQ5SHldXWoiISM7JCEwV3gjUkc0IXAoISM7NyQkIjJbLC4xc0hRbyIhIzskITFUWE96ITRwQCchIzw3JCQiMmo/VCNbOyJmdCIhIzskITFaQyo9aSo+QFshIzw3JCQiMCp5ZDpjNSR5IiEjOSQhMUZZeEA3L0lQISM8NyQkIjJhPVB1MyxaJD0hIzskITF1VzklRzQ9cSMhIzw3JCQiMVJ3XzAlW0spPSEjOiQhMltESkcnXFJZPSEjPTckJCIyMy4xN00lKlIkPiEjOyQhMk5xTnZDcCM+NSEjPTckJCIyOEFXKW94ZyQpPiEjOyQhMERcSClRRXlDISM8NyQkIjFVI1snSCVbYi4jISM6JCIxXyVcdDcqKSlIXyEjPTckJCIyRlsnSGZNZCYzIyEjOyQiMiZHUlMkKVEuPDchIz03JCQiMU1wUXg3dE9AISM6JCIxKTRVakMpKm8mPSEjPDckJCIyUGQ5SFtsdT0jISM7JCIyRCU9MERudyNSIyEjPTckJCIyJT1QdVtcM01BISM7JCIxL2xFTCJRNngjISM8NyQkIjImUnplPGheKEcjISM7JCIyRGovUlo3Ry8kISM9NyQkIjIuISlmPmYwYEwjISM7JCIydHEoZmI3ckRKISM9NyQkIjApZj5SImZpUSMhIzkkIjFrUWVJLFhcSSEjPDckJCIybjhGYT1HXVYjISM7JCIyI3kyTCp5ZGIkRyEjPTckJCIxJGY9UCUqeiIqWyMhIzokIjJPRFVnOFhhWiMhIz03JCQiMSc9UHVRcmdgIyEjOiQiMiN5eEF5dHArQCEjPTckJCIxKFF4YWYkSCplIyEjOiQiMVJBbE0jKVJiOyEjPDckJCIyd10sLicpKnpQRSEjOyQiMltgVDVbIXpyNyEjPTckJCIxdVomNDRlM3AjISM6JCIxZD05SXliLyIqISM9NyQkIjFzVSYzUFFtdCMhIzokIjFqRHNDJz5haCchIz03JCQiMmk5SGV3dygpeSMhIzskIjFGalUlUUUzXCUhIz03JCQiMmQuMjkpKVIiUkchIzskIjIoM0B0XikpKWYtJCEjPjckJCIvKnpmNHElKilHISM4JCIydCopPS1YTl8kPiEjPjckJCIxcFF4YV5oUkghIzokIjFYcCkqR0Y8RDUhIz03JCQiMmUlKil5ZCkpeSgpSCEjOyQiMltqP0cmKTRKLyMhIz83JCQiMlttS2whZicpUkkhIzskITFGanlJWlJVbCEjPjckJCIyO0RdKzYqXCozJCEjOyQhMldOLCcqNGwoSDkhIz43JCQiMjIqemY+ZHRUSiEjOyQhMSNwRDAuKFtxQCEjPTckJCIyUHZdLFZBISo9JCEjOyQhMVg3S15xVFBGISM9NyQkIjFRdVsoNCRHVEshIzokITFeYmgpXFlSPyQhIz03JCQiMV8tMDUoUjhIJCEjOiQhMk1pLCJ5clZjTSEjPjckJCIxJzM8TVt1N00kISM6JCEyYW52NC1nJSpcJCEjPjckJCIxJHBReGFKTVIkISM6JCEyaXpkL3J2akskISM+NyQkIjI6P1MhMyxaVE0hIzskITExSigpPkZFKCpIISM9NyQkIjFBVCNbO28xXCQhIzokITFeZCVRJGYneWAjISM9NyQkIjFMbUtsJykpXGEkISM6JCEyWSZmRm9JWmM+ISM+NyQkIjB0WCJIOTwlZiQhIzkkITI2XC9FSEkqRzkhIz43JCQiMCV6ZTwrWldPISM5JCExWl4scXFAYSUqISM+NyQkIjFoQFYnUUFjcCQhIzokITFXOSVwSFs1XyYhIz43JCQiMlhvT3RPVEV1JCEjOyQhMidIP2dNOVhRSCEjPzckJCIxaD5SeT93I3okISM6JCEyNyJRMjMpKSoqRzchIz83JCQiMlpvT3RFLEQlUSEjOyQhMWUmcCY+eSlbIVEhIz83JCQiMW9NcFFucSYqUSEjOiQhMVldbUMob3MkZiEjQDckJCIxZDpKaSNlRSVSISM6JCExZiEqKVs/RkFhJCEjQTckJCIyeE1wUWRJbypSISM7JCIyVy8zW2xmQ1wkISNFNyQkIjE5RmEzcHJYUyEjOiQiIiEhIiI3JCQiMU9xUyJRKDMlNCUhIzokIiIhISIiNyQkIjF1VyopeTY1WVQhIzokIiIhISIiNyQkIjJOZDlIUUQkKT4lISM7JCIiISEiIjckJCIxKFJ6ZW5UZUMlISM6JCIiISEiIjckJCIxNDxNbz1JJ0glISM6JCIiISEiIjckJCIxNkBVJTNZYk0lISM6JCIiISEiIjckJCIxYjM8TXQjKilSJSEjOiQiIiEhIiI3JCQiMCNSeWNwNlhXISM5JCIiISEiIjckJCIwJXplPHU7KVwlISM5JCIiISEiIjckJCIxJVwpcFJ3LltYISM6JCIiISEiIjckJCIxWyNcKXBoVShmJSEjOiQiIiEhIiI3JCQiMUNaJSopKVImb2slISM6JCIiISEiIjckJCIxI1J5Y0Juc3AlISM6JCIiISEiIjckJCIxPExtS1dxXVohIzokIiIhISIiNyQkIjFSeGE0NnEqeiUhIzokIiIhISIiNyQkIjFHYjVAcjFbWyEjOiQiIiEhIiI3JCQiMSlHZDlmcCgqKlshIzokIiIhISIiNyQkIjFeLTA1JmY4JlwhIzokIiIhISIiNyQkIiNdISIiJCIiISEiIi0lJ0xFR0VOREc2Iy0lKV9UWVBFU0VURzYjLUklbXN1Ykc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjYmLUkjbWlHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEnJiM5MjM7NiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY3LUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEiNjYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii1JI21vRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNj5RIiw2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJSZmZW5jZUdRJmZhbHNlNiIvJSpzZXBhcmF0b3JHUSV0cnVlNiIvJSlzdHJldGNoeUdRJmZhbHNlNiIvJSpzeW1tZXRyaWNHUSZmYWxzZTYiLyUobGFyZ2VvcEdRJmZhbHNlNiIvJS5tb3ZhYmxlbGltaXRzR1EmZmFsc2U2Ii8lJ2FjY2VudEdRJmZhbHNlNiIvJSdsc3BhY2VHUSYwLjBlbTYiLyUncnNwYWNlR1EsMC4zMzMzMzMzZW02Ii1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRIjQ2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUvc3Vic2NyaXB0c2hpZnRHUSIwNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiItJSZDT0xPUkc2JyUkUkdCRyQiKDFadyQhIigkIikpPiFcRCEiKSQiKHZpbyYhIigtJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUnQ1VSVkVTRzYlN2l4NyQkISNdISIiJCIiISEiIjckJCExVihbKFxSVVpcISM6JCIiISEiIjckJCEyJlF4YTR5bixcISM7JCIiISEiIjckJCExaEFYIVxKLSZbISM6JCIiISEiIjckJCExJXplPDpXJSl6JSEjOiQiIiEhIiI3JCQhMUppQ1xIIXB1JSEjOiQiIiEhIiI3JCQhMCNSeWN3NipwJSEjOSQiIiEhIiI3JCQhMWQ4RmEoUSdcWSEjOiQiIiEhIiI3JCQhMWpEXi13WSlmJSEjOiQiIiEhIiI3JCQhMUtrR2QwWVpYISM6JCIiISEiIjckJCExViYzPGEkKlxcJSEjOiQiIiEhIiI3JCQhMmI5SGVjIXlbVyEjOyQiIiEhIiI3JCQhMThEXStkdidSJSEjOiQiIiEhIiI3JCQhMS0vMztzXldWISM6JCIiISEiIjckJCExPlJ5Y2Q8JUglISM6JCIiISEiIjckJCExQ1olKikpM1lbVSEjOiQiIiEhIiI3JCQhMU9zVypbLFQ+JSEjOiQiIiEhIiI3JCQhMk5wUXglPjBbVCEjOyQiIiEhIiI3JCQhMSYzPE1RJlslNCUhIzokIiIhISIiNyQkITFQdVsoKilwcS8lISM6JCIiISEiIjckJCEyO09zV2ZaXSpSISM7JCIyTkpZb1BbS2UiISNCNyQkITJaKiopemYrXlhSISM7JCEyIzQlcDwqR15wPCEjQzckJCEyJnpmPlJHI1EqUSEjOyQhMiV5Uy1GMjsuQiEjQTckJCEyO1J5YyR5TllRISM7JCEyQVJPRCFIQSw7ISNANyQkITFGYTM8LzsmeiQhIzokIS9QVkskPSRbcCEjPTckJCEyJSlwUnpvISk+dSQhIzskITI5XnBxJFslbzQjISM/NyQkITJaJHBReHZvJnAkISM7JCExSnEtY2tcXVYhIz43JCQhMk51WyhcKCpvWE8hIzskITEtTCVwVSFRcSEpISM+NyQkITJ3YDI6NVBTZiQhIzskITIjR0k9IilHQUI4ISM+NyQkITFlOkppXV1WTiEjOiQhMSRwRGwlXF86PiEjPTckJCExLS8zO0ZoJVwkISM6JCEyJlxXbE5PdS9EISM+NyQkITJ4YDI6NUUuVyQhIzskITFRRUBMNFcjMyQhIz03JCQhMmA0PlE7WjpSJCEjOyQhMk8jPnRnUl9fTSEjPjckJCEyViE0PU9fWVJMISM7JCEyMEJPWWM2J0dPISM+NyQkITFAVSUpbzdGI0gkISM6JCExTkFERGUnKm9OISM9NyQkITJaI1wpcHp2MUMkISM7JCEyWSlmayc9XUxGJCEjPjckJCEyQ1olKil5JUdAPiQhIzskITE2IW9iJGUlKjNHISM9NyQkITItMztLYSNRVEohIzskITEmSGZzOTkhekAhIz03JCQhMigqKXlkOiJwPDQkISM7JCExMTVrcCQzaFkiISM9NyQkITFwUXhhJUcpUkkhIzokITEnei1jWyNvT2whIz43JCQhMUdjN0RNISkqKUghIzokIjIlZVl5d24oW3EiISM/NyQkITJjPE5xZ1gnUUghIzskIjJ2LSVRVnRKUjUhIz43JCQhMnRgMjpTNnopRyEjOyQiMjkpPiFcIVxTRz4hIz43JCQhMjxSeWMkPkhURyEjOyQiMSV5Ti0/NjskRyEjPTckJCEyMTxNb3dneXkjISM7JCIxYDUpWyg0MWJUISM9NyQkITI7SmlDSHIrdSMhIzskIjE3ZzQqUiFlTWUhIz03JCQhMjE4RV91PCIqbyMhIzskIjA3PkIya2pQKSEjPDckJCEyWihcKiopcFsuayMhIzskIjJNIT06I3kvUjsiISM9NyQkITJ2Xi4yJXA+J2UjISM7JCIyTUJeO1MuLWgiISM9NyQkITJYI1wpcFwwJFJEISM7JCIySyRHYi4iZXQuIyEjPTckJCEyTnNXKilHJDMnWyMhIzskIjIoMyI+WUNvPV4jISM9NyQkITEuMTdDcWRQQyEjOiQiMjp4dydRc0R3RyEjPTckJCEybUxuTXo9WFEjISM7JCIxIzN2TiYqWyZRSiEjPDckJCExUnljOCZRKFFCISM6JCIwIyp6I1xpczlLISM7NyQkITJaJ0hmPSxnJ0cjISM7JCIyVmEvSi8tVjYkISM9NyQkITJgMjpJK1BpQiMhIzskIjIleU0oPVQwXCRHISM9NyQkITIzQFUlKXkxZj0jISM7JCIyMzsuWkJ2Q1MjISM9NyQkITFUI1snSDx3TkAhIzokIjBoUihcJz5OJj0hIzs3JCQhMmQ7TG0tKWUoMyMhIzskIjFod0hUJFtdQyIhIzw3JCQhMVolKil5KDReTj8hIzokIjFmMVl1ISpwQ18hIz03JCQhMWY9UHV4KGUpPiEjOiQhMWk+OChlPkc4IyEjPTckJCEyLjdDWztUTyQ+ISM7JCEyL2BEOnc3UC0iISM9NyQkITJvTnJVWGFqKT0hIzskITJNKUh4bj1aI3kiISM9NyQkITJLbk1weSQ0TT0hIzskITIjUitHU3lNakUhIz03JCQhMiRmPVB1ci4leSIhIzskITFHdU48azIlZiQhIzw3JCQhMl8tMDVTLVR0IiEjOyQhMUovJUhyTTtuJSEjPDckJCEybFQkb09gJT5vIiEjOyQhMjpjUWM2TlssJyEjPTckJCEyJjQ+UXduIVJqIiEjOyQhMXJ1d1RkcGh1ISM8NyQkITInKil6Zj4oM1plIiEjOyQhMUUsPEYhcFc1KiEjPDckJCEyc1omND4jKVFJOiEjOyQhMiNlIWZcMnpyNCIhIzw3JCQhMSNRd19YMDdbIiEjOiQhMilcZF91Qj1gNyEjPDckJCEyMDxNbydvITRWIiEjOyQhMW8sMTtkIyl6OCEjOzckJCEwMTdDb0lgUyIhIzkkITE8WS1qNlxEOSEjOzckJCEyJVwqKil6XGEoejghIzskITF5N1dSKyNlWCIhIzs3JCQhMik9UXdfKCoqek8iISM7JCEyKXByOC8jeVRZIiEjPDckJCEyIylvUHYrWGlOIiEjOyQhMSh6ZEQmWyYpbzkhIzs3JCQhMnZiNkJFIVxXOCEjOyQhMU85XiFlZihwOSEjOzckJCExRmEzPGJ0SzghIzokITIjUjY/Y14jb1kiISM8NyQkITJ5Z0AkUmA/PzghIzskITAvTjJaPyVmOSEjOjckJCEyJyl5ZDo7dndJIiEjOyQhMkwtLVxAeXZXIiEjPDckJCEyJnBSeiQpXDkmSCIhIzskITJYYXQqKjMsOFYiISM8NyQkITIuOklnIVtoI0ciISM7JCEyZXYvOjk9MVQiISM8NyQkITIoKXlkOkBYeEQiISM7JCEyUTYoeWF3dWM4ISM8NyQkITJyVSYzPGMoR0IiISM7JCExL2VBKFsxa0ciISM7NyQkITJGa0dkOXEnejYhIzskITI2P05rIzQnXDMiISM8NyQkITFgMDZBJz1GOCIhIzokITFBb2wkWyNSaSYpISM8NyQkITJQd18wSlkmeTUhIzskITJtPCozRFJJOmEhIz03JCQhMShSemUoKmYnSDUhIzokITFeZ2JFMyR5OiMhIzw3JCQhMV8yOkldKkciKSohIzskIjJzWENpNWokSDkhIz03JCQhMSdRd18wZEZIKiEjOyQiMSQpeTswMixxYyEjPDckJCExdmAyOl1ecSgpISM7JCIyKVtjbldOY0o1ISM8NyQkITFQclUmM19gSCkhIzskIjElM1lpak8vXCIhIzs3JCQhMTtTITM7XTJ6KCEjOyQiMjEiR3pjNyNHLSMhIzw3JCQhMSQqKioqKioqekkpSCghIzskIjJYTUlza2ZuZiMhIzw3JCQhMGM3RF0mXGtuISM6JCIxRk9NbFY8KUckISM7NyQkITEzPlF3IypmLWohIzskIjJiZU5ydTtbJVIhIzw3JCQhMS48TW9ZNHNkISM7JCIyJkcleko8JD5hWiEjPDckJCExeWhCWkNSdF8hIzskIjFkJ2YnKnA6ZmEmISM7NyQkITIoUSdHZDkyJnpaISM8JCIxdXAlKVxcXUdqISM7NyQkITJgJ1F4YSpHX0clISM8JCIwQUtTW21uMighIzo3JCQhMmI9UHVbJzQieSQhIzwkIjFkblNgJzNBeCghIzs3JCQhMlclemU8WHNZSyEjPCQiMW0kR0c+YCUzJSkhIzs3JCQhMlhyVihbeHZjRiEjPCQiMTpzKClwLCcpKSkpKSEjOzckJCEyRSRlO0x3NHRBISM8JCIxSCZ5KkdOX20jKiEjOzckJCEyRENbJ0hIMmM8ISM8JCIxeUJERnhucyYqISM7NyQkITI2Zj1QdXQsQyIhIzwkIjEzWUQqPnEoKnkqISM7NyQkITFscFJ6ZUJyeCEjPCQiMShSYigpRzB5IioqISM7NyQkITFsI2Y9UGEnR10hIzwkIjFFbSZ6aCVmbCoqISM7NyQkITJXY0BWJ0cyJ0cjISM9JCIxJFFpbGcoKUcqKiohIzs3JCQhMiVvKGU8TlMnUTYhIz0kIjFRdVohUU4jKSoqKiEjOzckJCIwY0ZTITM7I3opISM+JCIxbEt5JSopKioqKioqKiEjOzckJCIyTyNvT3RZQWM2ISM9JCIxOENrZS89KSoqKiEjOzckJCIyJj4nSGY9ZE9JIyEjPSQiMSopPiFHeXhGKioqISM7NyQkIjE7KiopemZmeClcISM8JCIxPSYzeSg9Om0qKiEjOzckJCIxNy0wNT8nPW4oISM8JCIxLTp3RGwqKT4qKiEjOzckJCIyeG1Mbk1IJno3ISM8JCIwMTU8I1IxdygqISM6NyQkIjJrclYoWzIqcHQiISM8JCIxNy46WmE/I2UqISM7NyQkIi8mKXBSUlheQSEjOSQiMHVyLTckRyJHKiEjOjckJCIxckpqRXRLcEYhIzskIjFbJ3luYyd5eCkpISM7NyQkIjJremU8TlJaRyQhIzwkIjF3UFtiNipwTykhIzs3JCQiMTY+UXdBZmlQISM7JCIxSCgqKlw+JDQneighIzs3JCQiMVR2XSw4UWRVISM7JCIxYUhpXyRHczYoISM7NyQkIjF0YTQ+RzRwWiEjOyQiMTElPjRpWlpNJyEjOzckJCIxKXljOEZqInpfISM7JCIxRVkhRzYpcE9iISM7NyQkIjEib05yVUxRIWUhIzskIjFcKXliSTVYcSUhIzs3JCQiMVknSGY9amZFJyEjOyQiMWppdD8kPiEqKlIhIzs3JCQiMSUpZj5SPUAneSchIzskIjFhazNVLmdlSyEjOzckJCIxKTM8TW8nZjN0ISM7JCIyTSs0aCopZVRlIyEjPDckJCIxPT5RdzcsN3khIzskIjJVTzsyYkAkKio+ISM8NyQkIjF0UXhhKmYicCMpISM7JCIxIz5NXmhbb14iISM7NyQkIjFZKFsoXFJ2NykpISM7JCIxclk9cCg9XiMqKiEjPDckJCIxbVQkb09cS0YqISM7JCIyYU85VyIpUmwkZSEjPTckJCIxYy0wNV0iKjMpKiEjOyQiMmNuSjdOSS5ZIiEjPTckJCIyTG5NcClwSUc1ISM7JCEyMGwlelckR0IxIyEjPTckJCIyJlsoXCoqR0guMyIhIzskITJiRXJhVltvXyYhIz03JCQiMmE2QlkjbycpSDYhIzskITFIUS4pPnQnNCUpISM8NyQkIjIxOEVfL2E6PSIhIzskITFMRVR4Xz4kNCIhIzs3JCQiMiU+UHVbIT4hSDchIzskITF6bXhiKXlTRiIhIzs3JCQiMj0/UyFleGhhNyEjOyQhMS16W28yels4ISM7NyQkIjJWb090WTstRyIhIzskITFMQ29DNTsxOSEjOzckJCIyaTZCJypSNk5IIiEjOyQhMiVRKUc+WWApRzkhIzw3JCQiMiNbJjQ+TDFvSSIhIzskITJjQ0p5WiNmWTkhIzw3JCQiMi0pZj5rNzU/OCEjOyQhMUtsIyoqUlMkZjkhIzs3JCQiMkBUI1snPidSTDghIzskITJQVScqcHgjNG45ISM8NyQkIjJMZz9UWnBcTSIhIzskITJYZ0lWUSh6cDkhIzw3JCQiMlh6ZTx2VWxOIiEjOyQhMWA2QkNFeW85ISM7NyQkIjJjKXBSSGc2bzghIzskITI8bipHKFE4VFkiISM8NyQkIjJvPE5xSSpvejghIzskITIocFIqKVxqKGVYIiEjPDckJCIxc1UmM0Epby85ISM6JCEybipmMVIiW2tVIiEjPDckJCIxbkxuTXJvSDkhIzokITFsUGMlR0NCUSIhIzs3JCQiMkRkOUh5UjhbIiEjOyQhMm1GKXpyNHpfNyEjPDckJCIyT2I1QCM9KD1gIiEjOyQhMiozITN2dnlANCIhIzw3JCQiMiozPE1vVHchZSIhIzskITFhMz5VaUlTIyohIzw3JCQiMlBkOUh5XV1qIiEjOyQhMWhNNkUiSF5VKCEjPDckJCIyWywuMXNIUW8iISM7JCExUl5KLD8zaWYhIzw3JCQiMmo/VCNbOyJmdCIhIzskITJDMDJgayVHSFkhIz03JCQiMCp5ZDpjNSR5IiEjOSQhMGN6JD4+aDdPISM7NyQkIjJhPVB1MyxaJD0hIzskITJHS1hvIT5xX0UhIz03JCQiMVJ3XzAlW0spPSEjOiQhMXB5KzJBR0w9ISM8NyQkIjIzLjE3TSUqUiQ+ISM7JCEyPTlZJXpfOD01ISM9NyQkIjI4QVcpb3hnJCk+ISM7JCExQ1omUVxaI3lDISM9NyQkIjFVI1snSCVbYi4jISM6JCIxWGowW0U1SV8hIz03JCQiMkZbJ0hmTWQmMyMhIzskIjInelkjKVxDQT03ISM9NyQkIjFNcFF4N3RPQCEjOiQiMjApUTx4I1FdJz0hIz03JCQiMlBkOUhbbHU9IyEjOyQiMjljTTNXSnlUIyEjPTckJCIyJT1QdVtcM01BISM7JCIxOGJXJlE9JD5HISM8NyQkIjImUnplPGheKEcjISM7JCIyMSpIMEUxeTxKISM9NyQkIjIuISlmPmYwYEwjISM7JCIxRV4kPSdlSDlLISM8NyQkIjApZj5SImZpUSMhIzkkIjE2cVpII1JGOCQhIzw3JCQiMm44RmE9R11WIyEjOyQiMUROaCcqKlxEKkchIzw3JCQiMSRmPVAlKnoiKlsjISM6JCIxV1w+eER2JlsjISM8NyQkIjEnPVB1UXJnYCMhIzokIjF3Tzg9KkdyMSMhIzw3JCQiMShReGFmJEgqZSMhIzokIjE3YTp0MShHZSIhIzw3JCQiMnddLC4nKSp6UEUhIzskIjEnUUQqRyQ+Sj0iISM8NyQkIjF1WiY0NGUzcCMhIzokIjFFNFlaTDB2IykhIz03JCQiMXNVJjNQUW10IyEjOiQiMSYpeTBUYk56ZiEjPTckJCIyaTlIZXd3KCl5IyEjOyQiMU4xR2UtQUdUISM9NyQkIjJkLjI5KSlSIlJHISM7JCIxMnMpPWlhdChHISM9NyQkIi8qemY0cSUqKUchIzgkIjJFXSNRVUpGKz4hIz43JCQiMXBReGFeaFJIISM6JCIySmZJM0plRS0iISM+NyQkIjJlJSopeWQpKXkoKUghIzskIjIpNC0rMHB4VT8hIz83JCQiMlttS2whZicpUkkhIzskITE9IVI+Qlw/YSchIz43JCQiMjtEXSs2KlwqMyQhIzskITJEO1ZZRUs9ViIhIz43JCQiMjIqemY+ZHRUSiEjOyQhMiZ5VXNrKSp6JD0jISM+NyQkIjJQdl0sVkEhKj0kISM7JCEyJHpUJz5XQ1V4IyEjPjckJCIxUXVbKDQkR1RLISM6JCExRyN6NlwhPXlLISM9NyQkIjFfLTA1KFI4SCQhIzokITEmeVZjdid5bE4hIz03JCQiMSczPE1bdTdNJCEjOiQhMTpjd0soKW9FTyEjPTckJCIxJHBReGFKTVIkISM6JCEyd1xSKVtQXlRNISM+NyQkIjI6P1MhMyxaVE0hIzskITJWU2QoSCcqeXJJISM+NyQkIjFBVCNbO28xXCQhIzokITFEblsyJ3owYiMhIz03JCQiMUxtS2wnKSlcYSQhIzokITEjelNSLilcKCo9ISM9NyQkIjB0WCJIOTwlZiQhIzkkITJIZSJcUUNsQDghIz43JCQiMCV6ZTwrWldPISM5JCExJ1tkVEoybzwpISM+NyQkIjFoQFYnUUFjcCQhIzokITE7J1tDV01eTiUhIz43JCQiMlhvT3RPVEV1JCEjOyQhMjBBXUQhNFVzPyEjPzckJCIxaD5SeT93I3okISM6JCEwNHAnM0JKIVEoISM+NyQkIjJab090RSxEJVEhIzskITIydyRSNzxiQT0hI0A3JCQiMW9NcFFucSYqUSEjOiQhMXpLVU5OTS0/ISNANyQkIjFkOkppI2VFJVIhIzokIjJGMGFUbTQqWz8hI0I3JCQiMnhNcFFkSW8qUiEjOyQiMTdceU4kekglSCEjQTckJCIxOUZhM3ByWFMhIzokIiIhISIiNyQkIjFPcVMiUSgzJTQlISM6JCIiISEiIjckJCIxdVcqKXk2NVlUISM6JCIiISEiIjckJCIyTmQ5SFFEJCk+JSEjOyQiIiEhIiI3JCQiMShSemVuVGVDJSEjOiQiIiEhIiI3JCQiMTQ8TW89SSdIJSEjOiQiIiEhIiI3JCQiMTZAVSUzWWJNJSEjOiQiIiEhIiI3JCQiMWIzPE10IyopUiUhIzokIiIhISIiNyQkIjAjUnljcDZYVyEjOSQiIiEhIiI3JCQiMCV6ZTx1OylcJSEjOSQiIiEhIiI3JCQiMSVcKXBSdy5bWCEjOiQiIiEhIiI3JCQiMVsjXClwaFUoZiUhIzokIiIhISIiNyQkIjFDWiUqKSlSJm9rJSEjOiQiIiEhIiI3JCQiMSNSeWNCbnNwJSEjOiQiIiEhIiI3JCQiMTxMbUtXcV1aISM6JCIiISEiIjckJCIxUnhhNDZxKnolISM6JCIiISEiIjckJCIxR2I1QHIxW1shIzokIiIhISIiNyQkIjEpR2Q5ZnAoKipbISM6JCIiISEiIjckJCIxXi0wNSZmOCZcISM6JCIiISEiIjckJCIjXSEiIiQiIiEhIiItJSdMRUdFTkRHNiMtJSlfVFlQRVNFVEc2Iy1JJW1zdWJHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2Ji1JI21pRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRJyYjOTIzOzYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2Ny1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRIjY2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSNtb0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY+USIsNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUmZmVuY2VHUSZmYWxzZTYiLyUqc2VwYXJhdG9yR1EldHJ1ZTYiLyUpc3RyZXRjaHlHUSZmYWxzZTYiLyUqc3ltbWV0cmljR1EmZmFsc2U2Ii8lKGxhcmdlb3BHUSZmYWxzZTYiLyUubW92YWJsZWxpbWl0c0dRJmZhbHNlNiIvJSdhY2NlbnRHUSZmYWxzZTYiLyUnbHNwYWNlR1EmMC4wZW02Ii8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtNiItSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USI1NiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lL3N1YnNjcmlwdHNoaWZ0R1EiMDYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLSUmQ09MT1JHNiclJFJHQkckIiIhISIiJCIoaD4hSCEiKCQiKUMpZXElISIpLSUrX0FUVFJJQlVURUc2Iy8lJ3NvdXJjZUclLG1hdGhkZWZhdWx0Ry0lJ0NVUlZFU0c2JTdbeTckJCEjXSEiIiQiIiEhIiI3JCQhMVYoWyhcUlVaXCEjOiQiIiEhIiI3JCQhMiZReGE0eW4sXCEjOyQiIiEhIiI3JCQhMWhBWCFcSi0mWyEjOiQiIiEhIiI3JCQhMSV6ZTw6VyUpeiUhIzokIiIhISIiNyQkITFKaUNcSCFwdSUhIzokIiIhISIiNyQkITAjUnljdzYqcCUhIzkkIiIhISIiNyQkITFkOEZhKFEnXFkhIzokIiIhISIiNyQkITFqRF4td1kpZiUhIzokIiIhISIiNyQkITFLa0dkMFlaWCEjOiQiIiEhIiI3JCQhMVYmMzxhJCpcXCUhIzokIiIhISIiNyQkITJiOUhlYyF5W1chIzskIiIhISIiNyQkITE4RF0rZHYnUiUhIzokIiIhISIiNyQkITEtLzM7c15XViEjOiQiIiEhIiI3JCQhMT5SeWNkPCVIJSEjOiQiIiEhIiI3JCQhMUNaJSopKTNZW1UhIzokIiIhISIiNyQkITFPc1cqWyxUPiUhIzokIiIhISIiNyQkITJOcFF4JT4wW1QhIzskIiIhISIiNyQkITEmMzxNUSZbJTQlISM6JCIiISEiIjckJCExUHVbKCopcHEvJSEjOiQiIiEhIiI3JCQhMjtPc1dmWl0qUiEjOyQiLkRjRShwOVEhIz03JCQhMloqKil6ZiteWFIhIzskITIoeiJmY1VSIz41ISNANyQkITImemY+UkcjUSpRISM7JCIxIyo+YSFvXSxdJSEjQDckJCEyO1J5YyR5TllRISM7JCEyJVtAJmZzTUFaIiEjQDckJCExRmEzPC87JnokISM6JCExOz1oUjpOTXQhIz83JCQhMiUpcFJ6byEpPnUkISM7JCEyLVx4SlRGRk4iISM/NyQkITJaJHBReHZvJnAkISM7JCEybWI/W2BEKSpvJCEjPzckJCEyTnVbKFwoKm9YTyEjOyQhMVEjPlp4W040KCEjPjckJCEyd2AyOjVQU2YkISM7JCEyTyJSI1ssMSE9NyEjPjckJCExZTpKaV1dVk4hIzokITJLSSk+KikpZXglPSEjPjckJCExLS8zO0ZoJVwkISM6JCEyT3I3UWVHLV0jISM+NyQkITJ4YDI6NUUuVyQhIzskITJFcTJkSC5VOiQhIz43JCQhMmA0PlE7WjpSJCEjOyQhMiRRbjpCNERRTiEjPjckJCEyViE0PU9fWVJMISM7JCExTiN5dGhLS3QkISM9NyQkITFAVSUpbzdGI0gkISM6JCEyJSpmJlJNTyJlbCQhIz43JCQhMlojXClwenYxQyQhIzskITFodm86SG9PTCEjPTckJCEyQ1olKil5JUdAPiQhIzskITFqKHAhW0Y+UkchIz03JCQhMi0zO0thI1FUSiEjOyQhMXBUKVwoNHl6QCEjPTckJCEyKCopeWQ6InA8NCQhIzskITEjW25dNm8kcDkhIz03JCQhMXBReGElRylSSSEjOiQhMSY9QCJ5bDRvbCEjPjckJCExR2M3RE0hKSopSCEjOiQiMiQqKVInXFE2WHMiISM/NyQkITJjPE5xZ1gnUUghIzskIjFwPk9CMkRONSEjPTckJCEydGAyOlM2eilHISM7JCIySG5rSiZHdTc+ISM+NyQkITI8UnljJD5IVEchIzskIjJtOFZJYS4nZUYhIz43JCQhMjE8TW93Z3l5IyEjOyQiMWgzQCdwcU0kUiEjPTckJCEyO0ppQ0hyK3UjISM7JCIxOSYzJjRyOTJhISM9NyQkITIxOEVfdTwiKm8jISM7JCIxLG9bRiFHQnQoISM9NyQkITJaKFwqKilwWy5rIyEjOyQiMFVCdUJKMDQiISM7NyQkITJ2Xi4yJXA+J2UjISM7JCIya2NbcFNAJls6ISM9NyQkITJYI1wpcFwwJFJEISM7JCIyI3BQbzskZVwrIyEjPTckJCEyTnNXKilHJDMnWyMhIzskIjJrJnlEPSFcT18jISM9NyQkITEuMTdDcWRQQyEjOiQiMmQnKnBKISlmWyNIISM9NyQkITJtTG5Nej1YUSMhIzskIjEyO0MyTl00SyEjPDckJCExKWU8TmxHO08jISM6JCIxSGMmUTNyKW9LISM8NyQkITFSeWM4JlEoUUIhIzokIjF5JnA/OVtoRyQhIzw3JCQhMS0vMzskcEVKIyEjOiQiMTZKIUdnN1ZEJCEjPDckJCEyWidIZj0sZydHIyEjOyQiMic+YTUoXCEpKW9KISM9NyQkITJgMjpJK1BpQiMhIzskIjI9WnpgZlNvJ0chIz03JCQhMjNAVSUpeTFmPSMhIzskIjInSGZkV3ZzOkMhIz03JCQhMVQjWydIPHdOQCEjOiQiMm9uYyw6L28mPSEjPTckJCEyZDtMbS0pZSgzIyEjOyQiMV9Hc1Q3Xlg3ISM8NyQkITFaJSopeSg0Xk4/ISM6JCIxMCYzVFUhekNfISM9NyQkITFmPVB1eChlKT4hIzokITIwV01sTHpGOCMhIz43JCQhMi43Q1s7VE8kPiEjOyQhMkJRJUh1Y1hCNSEjPTckJCEyb05yVVhhaik9ISM7JCEyJ3l4PS4oRyN5PCEjPTckJCEyS25NcHkkNE09ISM7JCExYTsiPnMnb1FFISM8NyQkITIkZj1QdXIuJXkiISM7JCEyYidIWSQpPXJCTiEjPTckJCEyXy0wNVMtVHQiISM7JCExI0c0KWUiPWJgJSEjPDckJCEybFQkb09gJT5vIiEjOyQhMSlIJmZyMXI6ZSEjPDckJCEyJjQ+UXduIVJqIiEjOyQhMS0heVIqMyM9QyghIzw3JCQhMicqKXpmPigzWmUiISM7JCEvc24qb0g+IyopISM6NyQkITJzWiY0PiMpUUk6ISM7JCExNkBYUjtiKjMiISM7NyQkITEjUXdfWDA3WyIhIzokITI4Iz1EaFsnekQiISM8NyQkITIwPE1vJ28hNFYiISM7JCEyIz5GJDNCP2NSIiEjPDckJCEwMTdDb0lgUyIhIzkkITIoKSl5KlE4Ml1XIiEjPDckJCEyJVwqKil6XGEoejghIzskITItJzNMI1EvdVoiISM8NyQkITIpPVF3XygqKnpPIiEjOyQhMSYqNCI+TlFoWyIhIzs3JCQhMiMpb1B2K1hpTiIhIzskITJ0JilcWzBSM1wiISM8NyQkITJ2YjZCRSFcVzghIzskITI5czIkPlxWIlwiISM8NyQkITFGYTM8YnRLOCEjOiQhMT0hPSw6Jil5WyIhIzs3JCQhMicpeWQ6O3Z3SSIhIzskITIkNCFlTlNqa1kiISM8NyQkITIuOklnIVtoI0ciISM7JCEyLUcleV4lKVtFOSEjPDckJCEyKCl5ZDpAWHhEIiEjOyQhMkxJeEI4TCNwOCEjPDckJCEyclUmMzxjKEdCIiEjOyQhMUskKXArTWAmSCIhIzs3JCQhMkZrR2Q5cSd6NiEjOyQhMjhiVyUpejclKTMiISM8NyQkITFgMDZBJz1GOCIhIzokITFKR1o2OFByJikhIzw3JCQhMlB3XzBKWSZ5NSEjOyQhMVInKXleMiVmVCYhIzw3JCQhMShSemUoKmYnSDUhIzokITBLPUpnTHk6IyEjOzckJCExXzI6SV0qRyIpKiEjOyQiMm4pPT0keWkkSDkhIz03JCQhMSdRd18wZEZIKiEjOyQiMWUrKW9oLyVwYyEjPDckJCExdmAyOl1ecSgpISM7JCIyL3U7Uy5EMC4iISM8NyQkITFQclUmM19gSCkhIzskIjBzJ1s9NCNlWyIhIzo3JCQhMTtTITM7XTJ6KCEjOyQiMG5pWDI1LCwjISM6NyQkITEkKioqKioqKnpJKUgoISM7JCIxUGJGcmk0dEQhIzs3JCQhMGM3RF0mXGtuISM6JCIyRTozNngmPmFLISM8NyQkITEzPlF3IypmLWohIzskIjFOJDRecXIjM1IhIzs3JCQhMS48TW9ZNHNkISM7JCIyMSE0ajc1aURaISM8NyQkITF5aEJaQ1J0XyEjOyQiMFguI1EuVk1iISM6NyQkITIoUSdHZDkyJnpaISM8JCIxYEphIVFFeUwnISM7NyQkITJgJ1F4YSpHX0clISM8JCIxLmJgeGt4LnIhIzs3JCQhMmI9UHVbJzQieSQhIzwkIjE2XTg/akkzeSEjOzckJCEyVyV6ZTxYc1lLISM8JCIxNFk2JHAjZVUlKSEjOzckJCEyWHJWKFt4dmNGISM8JCIxRmgpWykzeDgqKSEjOzckJCEyRSRlO0x3NHRBISM8JCIxUF9qUCVcMEcqISM7NyQkITJEQ1snSEgyYzwhIzwkIjBfWUFgNHpkKiEjOjckJCEyNmY9UHV0LEMiISM8JCIxZUFBPkkmM3oqISM7NyQkITFscFJ6ZUJyeCEjPCQiMWBPMCJlMHoiKiohIzs3JCQhMWwjZj1QYSdHXSEjPCQiMXB6Lm1SZ2wqKiEjOzckJCEyV2NAVidHMidHIyEjPSQiMF9AL3IoKUcqKiohIzo3JCQhMiVvKGU8TlMnUTYhIz0kIjEwIj5BUU4jKSoqKiEjOzckJCIwY0ZTITM7I3opISM+JCIxbEt5JSopKioqKioqKiEjOzckJCIyTyNvT3RZQWM2ISM9JCIxJzRcMFkhPSkqKiohIzs3JCQiMiY+J0hmPWRPSSMhIz0kIjFBLFIiKnl4IyoqKiEjOzckJCIxOyoqKXpmZngpXCEjPCQiMVwjcCsiMzttKiohIzs3JCQiMTctMDU/Jz1uKCEjPCQiMXg/dCc9ISoqPioqISM7NyQkIjJ4bUxuTUgmejchIzwkIjAmZiEpZj1LeCgqISM6NyQkIjJrclYoWzIqcHQiISM8JCIxcCopZV1IPyhlKiEjOzckJCIvJilwUlJYXkEhIzkkIjFUbyNmZmRbSCohIzs3JCQiMXJKakV0S3BGISM7JCIxPiZSSkJ6SCEqKSEjOzckJCIya3plPE5SWkckISM8JCIxJVJAQm4uO1MpISM7NyQkIjE2PlF3QWZpUCEjOyQiMWNrJEchZkpLeSEjOzckJCIxVHZdLDhRZFUhIzskIjF1JDNleDddOSghIzs3JCQiMXRhND5HNHBaISM7JCIxJFswPkgpXGFqISM7NyQkIjEpeWM4Rmoiel8hIzskIjEpUmFeSnpcXyYhIzs3JCQiMSJvTnJVTFEhZSEjOyQiMlYuInpodjd2WSEjPDckJCIxWSdIZj1qZkUnISM7JCIxJjNyTCVHamlSISM7NyQkIjElKWY+Uj1AJ3knISM7JCIyPF5YVEdDXEEkISM8NyQkIjEpMzxNbydmM3QhIzskIjBCa1RPSTJjIyEjOjckJCIxPT5RdzcsN3khIzskIjIuQFA5Rk9xKT4hIzw3JCQiMXRReGEqZiJwIykhIzskIjEiUioqKSo+RD5eIiEjOzckJCIxWShbKFxSdjcpKSEjOyQiMXokZlROYmoiKiohIzw3JCQiMW1UJG9PXEtGKiEjOyQiMTNjLihRUWUkZSEjPDckJCIxYy0wNV0iKjMpKiEjOyQiMiVmWiplKSpILlkiISM9NyQkIjJMbk1wKXBJRzUhIzskITIjKkhKTlRJQjEjISM9NyQkIjImWyhcKipHSC4zIiEjOyQhMmIoUVEkZWx2XyYhIz03JCQiMmE2QlkjbycpSDYhIzskITEsby5oUng8JSkhIzw3JCQiMjE4RV8vYTo9IiEjOyQhMmA3T3RVKXonNCIhIzw3JCQiMiU+UHVbIT4hSDchIzskITAtRChwMXIjRyIhIzo3JCQiMj0/UyFleGhhNyEjOyQhMmtkdmZbVzNPIiEjPDckJCIyVm9PdFk7LUciISM7JCEyOXElZWlcckA5ISM8NyQkIjJpNkInKlI2TkgiISM7JCEyOHBMYXk0aFciISM8NyQkIjIjWyY0Pkwxb0kiISM7JCEyT1dvKnBZUWw5ISM8NyQkIjItKWY+azc1PzghIzskITJHaF9WWk4lejkhIzw3JCQiMkBUI1snPidSTDghIzskITFIbi46XD4pWyIhIzs3JCQiMkxnP1RacFxNIiEjOyQhMmkielIkXCJcIlwiISM8NyQkIjJYemU8dlVsTiIhIzskITAmNCE0VHEyXCIhIzo3JCQiMmMpcFJIZzZvOCEjOyQhMnR2SlJhcmdbIiEjPDckJCIybzxOcUkqb3o4ISM7JCEyWEk/NCFRWXg5ISM8NyQkIjFzVSYzQSlvLzkhIzokITJfQnkpPXAuWTkhIzw3JCQiMW5Mbk1yb0g5ISM6JCEyJnBiXzg0TClSIiEjPDckJCIyRGQ5SHlSOFsiISM7JCEyLThyMCkpUnZEIiEjPDckJCIyT2I1QCM9KD1gIiEjOyQhMVUmXFQhbz4lMyIhIzs3JCQiMiozPE1vVHchZSIhIzskITFjZlxWQVdqISohIzw3JCQiMlBkOUh5XV1qIiEjOyQhMTAyQyJHTF4/KCEjPDckJCIyWywuMXNIUW8iISM7JCExRl1HSDRxa2QhIzw3JCQiMmo/VCNbOyJmdCIhIzskITBkdnQqXG0mXCUhIzs3JCQiMCp5ZDpjNSR5IiEjOSQhMXhQKj4jZjpUTiEjPDckJCIyYT1QdTMsWiQ9ISM7JCExJ1IjPkxsVUdFISM8NyQkIjFSd18wJVtLKT0hIzokITJGJWYsT2xWRz0hIz03JCQiMjMuMTdNJSpSJD4hIzskITJuLCp6az4peSwiISM9NyQkIjI4QVcpb3hnJCk+ISM7JCEydyoqNCQ+cUF5QyEjPjckJCIxVSNbJ0glW2IuIyEjOiQiMWw4KUhdLixCJiEjPTckJCIyRlsnSGZNZCYzIyEjOyQiMih5eDpkXl09NyEjPTckJCIxTXBReDd0T0AhIzokIjFVZmhRP1hvPSEjPDckJCIyUGQ5SFtsdT0jISM7JCIyQzYmKlwoKVs5ViMhIz03JCQiMiU9UHVbXDNNQSEjOyQiMj1AQyd6KlEuJkchIz03JCQiMiZSemU8aF4oRyMhIzskIjA8T2BpREY8JCEjOzckJCIwKFF4YTNUNkIhIzkkIjF5VkQ6bFBeSyEjPDckJCIyLiEpZj5mMGBMIyEjOyQiMSlwX1ZcPV1HJCEjPDckJCIwKnlkbEJ5Z0IhIzkkIjJjazxBamAtRiQhIz03JCQiMClmPlIiZmlRIyEjOSQiMnUlUjhyPlkuSyEjPTckJCIybjhGYT1HXVYjISM7JCIyeXExa0wtRSVIISM9NyQkIjEkZj1QJSp6IipbIyEjOiQiMScqKWUjRyUpMyZcIyEjPDckJCIxJz1QdVFyZ2AjISM6JCIxWShHRSJHUFA/ISM8NyQkIjEoUXhhZiRIKmUjISM6JCIyM2lRS2NrJz46ISM9NyQkIjJ3XSwuJykqelBFISM7JCIyJzRQXEwkcCY0NiEjPTckJCIxdVomNDRlM3AjISM6JCIxaElMNXZaVHchIz03JCQiMXNVJjNQUW10IyEjOiQiMWQva0tTQVRiISM9NyQkIjJpOUhld3coKXkjISM7JCIxOD9HUWZeN1IhIz03JCQiMmQuMjkpKVIiUkchIzskIjFzXCIzJSo0USFHISM9NyQkIi8qemY0cSUqKUchIzgkIjJrXmdsYnprKT0hIz43JCQiMXBReGFeaFJIISM6JCIybkxFOi1HKT41ISM+NyQkIjJlJSopeWQpKXkoKUghIzskIjJ4KVspUSFSWyE0IyEjPzckJCIyW21LbCFmJylSSSEjOyQhMV8vbF8/KmVoJyEjPjckJCIyO0RdKzYqXCozJCEjOyQhMmB4c3IwdkpWIiEjPjckJCIyMip6Zj5kdFRKISM7JCEyYnhiLSE9biM9IyEjPjckJCIyUHZdLFZBISo9JCEjOyQhMDlmWm8uRHojISM8NyQkIjFRdVsoNCRHVEshIzokITJZeikqKikzYE1MJCEjPjckJCIxXy0wNShSOEgkISM6JCExV2lJIVE/KFJPISM9NyQkIjEnMzxNW3U3TSQhIzokITJkKHA+MT9ORVAhIz43JCQiMSRwUXhhSk1SJCEjOiQhMW1pXiIzdUNiJCEjPTckJCIyOj9TITMsWlRNISM7JCEydjlFKio9KVw1SiEjPjckJCIxQVQjWztvMVwkISM6JCEyQXohR28qNHZhIyEjPjckJCIxTG1LbCcpKVxhJCEjOiQhMllxJSllJSo9OCc9ISM+NyQkIjB0WCJIOTwlZiQhIzkkITJAbzYvMj09QyIhIz43JCQiMCV6ZTwrWldPISM5JCExN1hpXzx1O3YhIz43JCQiMWhAVidRQWNwJCEjOiQhMUokKm9mKGVnViQhIz43JCQiMlhvT3RPVEV1JCEjOyQhMiZ5YTZQVG5UOiEjPzckJCIxaD5SeT93I3okISM6JCEyOSVcMXo+YkxLISNANyQkIjJab090RSxEJVEhIzskIjI7NWFIUyg+TEQhI0A3JCQiMW9NcFFucSYqUSEjOiQiMXpMJyoqUkxeKkghIz83JCQiMWQ6SmkjZUUlUiEjOiQhMkdRbiE+ayhRLiQhI0A3JCQiMnhNcFFkSW8qUiEjOyQhMVJdIkhPMSFHZCEjPzckJCIxOUZhM3ByWFMhIzokIiIhISIiNyQkIjFPcVMiUSgzJTQlISM6JCIiISEiIjckJCIxdVcqKXk2NVlUISM6JCIiISEiIjckJCIyTmQ5SFFEJCk+JSEjOyQiIiEhIiI3JCQiMShSemVuVGVDJSEjOiQiIiEhIiI3JCQiMTQ8TW89SSdIJSEjOiQiIiEhIiI3JCQiMTZAVSUzWWJNJSEjOiQiIiEhIiI3JCQiMWIzPE10IyopUiUhIzokIiIhISIiNyQkIjAjUnljcDZYVyEjOSQiIiEhIiI3JCQiMCV6ZTx1OylcJSEjOSQiIiEhIiI3JCQiMSVcKXBSdy5bWCEjOiQiIiEhIiI3JCQiMVsjXClwaFUoZiUhIzokIiIhISIiNyQkIjFDWiUqKSlSJm9rJSEjOiQiIiEhIiI3JCQiMSNSeWNCbnNwJSEjOiQiIiEhIiI3JCQiMTxMbUtXcV1aISM6JCIiISEiIjckJCIxUnhhNDZxKnolISM6JCIiISEiIjckJCIxR2I1QHIxW1shIzokIiIhISIiNyQkIjEpR2Q5ZnAoKipbISM6JCIiISEiIjckJCIxXi0wNSZmOCZcISM6JCIiISEiIjckJCIjXSEiIiQiIiEhIiItJSdMRUdFTkRHNiMtJSlfVFlQRVNFVEc2Iy1JJW1zdWJHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2Ji1JI21pRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRJyYjOTIzOzYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2Ny1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRIjY2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSNtb0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY+USIsNiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUmZmVuY2VHUSZmYWxzZTYiLyUqc2VwYXJhdG9yR1EldHJ1ZTYiLyUpc3RyZXRjaHlHUSZmYWxzZTYiLyUqc3ltbWV0cmljR1EmZmFsc2U2Ii8lKGxhcmdlb3BHUSZmYWxzZTYiLyUubW92YWJsZWxpbWl0c0dRJmZhbHNlNiIvJSdhY2NlbnRHUSZmYWxzZTYiLyUnbHNwYWNlR1EmMC4wZW02Ii8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtNiItSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USI2NiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lL3N1YnNjcmlwdHNoaWZ0R1EiMDYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLSUmQ09MT1JHNiclJFJHQkckIilDKWVxJSEiKSQiKUJSISlIISIpJCIiISEiIi0lK19BVFRSSUJVVEVHNiMvJSdzb3VyY2VHJSxtYXRoZGVmYXVsdEctJSdDVVJWRVNHNiU3aXg3JCQhI10hIiIkIjIqPU1IYGBIJVsiISNENyQkITFWKFsoXFJVWlwhIzokIjFsMWNERkJWYyEjQjckJCEyJlF4YTR5bixcISM7JCIxUmkyJDNLMyEqKiEjQTckJCExaEFYIVxKLSZbISM6JCIwbFMrRC8qKW8nISM/NyQkITElemU8OlclKXolISM6JCIydikzO21YbitDISNANyQkITFKaUNcSCFwdSUhIzokIjEtX3h6UFpOZyEjPzckJCEwI1J5Y3c2KnAlISM5JCIyJEdqMSJHQS47IiEjPzckJCExZDhGYShRJ1xZISM6JCIydS0kUXdpQHQ+ISM/NyQkITFqRF4td1kpZiUhIzokIjEwKSo+Myc9Qy4kISM+NyQkITFLa0dkMFlaWCEjOiQiMWJJW3VQMkJVISM+NyQkITFWJjM8YSQqXFwlISM6JCIxQTEtKXA2U1gmISM+NyQkITJiOUhlYyF5W1chIzskIjFNLWBJOHI7ayEjPjckJCExOERdK2R2J1IlISM6JCIxIylwITRSLF1BKCEjPjckJCExLS8zO3NeV1YhIzokIjE6QmltKmVPaSghIz43JCQhMT5SeWNkPCVIJSEjOiQiMU53Sk0reVl2ISM+NyQkITFDWiUqKSkzWVtVISM6JCIxZGlLLzIxdXEhIz43JCQhMU9zVypbLFQ+JSEjOiQiMW1MZlg6Q2NnISM+NyQkITJOcFF4JT4wW1QhIzskIjImW1tWIUhXdChbISM/NyQkITEmMzxNUSZbJTQlISM6JCIxTlxKMElmWUshIz43JCQhMVB1WygqKXBxLyUhIzokIjImUlYzVDYpZmwiISM/NyQkITI7T3NXZlpdKlIhIzskITJCRm4qeltycTwhI0A3JCQhMloqKil6ZiteWFIhIzskITJ0JClwbDdgKyg+ISM/NyQkITImemY+UkcjUSpRISM7JCEybiU+RjcqcC8nUiEjPzckJCEyO1J5YyR5TllRISM7JCExRXAiUWc4KCo9JyEjPjckJCExRmEzPC87JnokISM6JCExJm9FWnohR24mKiEjPjckJCEyJSlwUnpvISk+dSQhIzskITI9JHBwUiZvI3o5ISM+NyQkITJaJHBReHZvJnAkISM7JCExeGBeZzczOUAhIz03JCQhMk51WyhcKCpvWE8hIzskITJgSVE6WkROKkghIz43JCQhMndgMjo1UFNmJCEjOyQhMUJ0bDYtS3VTISM9NyQkITFlOkppXV1WTiEjOiQhMSRcZHBPM3NAJiEjPTckJCExLS8zO0ZoJVwkISM6JCExKjQoeXE4PiRIJyEjPTckJCEyeGAyOjVFLlckISM7JCEwOVhiaUlpSSghIzw3JCQhMmA0PlE7WjpSJCEjOyQhMVFbQl1rVUd6ISM9NyQkITJWITQ9T19ZUkwhIzskITF6PlRxKnluPSkhIz03JCQhMUBVJSlvN0YjSCQhIzokITEyWy5FZXUyISkhIz03JCQhMlojXClwenYxQyQhIzskITEzKkdMd0NkTighIz03JCQhMkNaJSopeSVHQD4kISM7JCExN0ctazciXE0nISM9NyQkITItMztLYSNRVEohIzskITI5SEZJVyNlXlwhIz43JCQhMigqKXlkOiJwPDQkISM7JCEyOj0nXFJYO1hMISM+NyQkITFwUXhhJUcpUkkhIzokITJrSXFDeSUqUVwiISM+NyQkITFHYzdETSEpKilIISM6JCIwI29pWlE0KCpRISM9NyQkITJjPE5xZ1gnUUghIzskIjFuWSM9RzJzUCMhIz03JCQhMnRgMjpTNnopRyEjOyQiMUs/IUhJITNBVyEjPTckJCEyPFJ5YyQ+SFRHISM7JCIwaEJSWyZSbmshIzw3JCQhMjE8TW93Z3l5IyEjOyQiMUVWImU+Iz07IyohIz03JCQhMjtKaUNIcit1IyEjOyQiMTR3XkJhPkI3ISM8NyQkITIxOEVfdTwiKm8jISM7JCIxPCY0SSpmQTo7ISM8NyQkITJaKFwqKilwWy5rIyEjOyQiMlBUaS8pUWFjPyEjPTckJCEydl4uMiVwPidlIyEjOyQiMmsqWyczbCdvKmYjISM9NyQkITJYI1wpcFwwJFJEISM7JCIyTmRaX046MTMkISM9NyQkITJOc1cqKUckMydbIyEjOyQiMmszcFQjUiJcZSQhIz03JCQhMS4xN0NxZFBDISM6JCIxdiY9XFtiTCZSISM8NyQkITJtTG5Nej1YUSMhIzskIjFPOz1cNHUrVSEjPDckJCExKWU8TmxHO08jISM6JCIwQyopNCdHVlhVISM7NyQkITFSeWM4JlEoUUIhIzokIjElZUIlUSopb1tVISM8NyQkITEtLzM7JHBFSiMhIzokIjE8WnFsaiEpKj4lISM8NyQkITJaJ0hmPSxnJ0cjISM7JCIxeXhoSmUiUjQlISM8NyQkITJgMjpJK1BpQiMhIzskIjEoKSlwNitqMXQkISM8NyQkITIzQFUlKXkxZj0jISM7JCIxJlFqJD5nKFw8JCEjPDckJCExVCNbJ0g8d05AISM6JCIyLSVwMHROeGdDISM9NyQkITJkO0xtLSllKDMjISM7JCIyalk9KXpjKnlsIiEjPTckJCExWiUqKXkoNF5OPyEjOiQiMS0hb3UmW1xscCEjPTckJCExZj1QdXgoZSk+ISM6JCExb3pCTit0VkchIz03JCQhMi43Q1s7VE8kPiEjOyQhMkUnUVgzQFdsOCEjPTckJCEyb05yVVhhaik9ISM7JCEyalQhcCgpKWU+USMhIz03JCQhMktuTXB5JDRNPSEjOyQhMXUmbz40T2RjJCEjPDckJCEyJGY9UHVyLiV5IiEjOyQhMllvZFxuQVJ6JSEjPTckJCEyXy0wNVMtVHQiISM7JCEwc0g8ITREV2ghIzs3JCQhMmxUJG9PYCU+byIhIzskITFNKlxPY0stcSghIzw3JCQhMiY0PlF3biFSaiIhIzskITF0Ymw4UEZUIyohIzw3JCQhMicqKXpmPigzWmUiISM7JCEyJz0uJiopUWRqMyIhIzw3JCQhMnNaJjQ+IylRSTohIzskITElR2RkTU4nZTchIzs3JCQhMSNRd19YMDdbIiEjOiQhMVYiKXBvNWklUiIhIzs3JCQhMjA8TW8nbyE0ViIhIzskITFVQDBLIT4kKlwiISM7NyQkITAxN0NvSWBTIiEjOSQhMik9KipvXCc0W2AiISM8NyQkITIlXCoqKXpcYSh6OCEjOyQhMm1HRiNmNUJjOiEjPDckJCEyKT1Rd18oKip6TyIhIzskITJZbyhRWy8qNGMiISM8NyQkITIjKW9QditYaU4iISM7JCEyJ1x0IioqPiVSaTohIzw3JCQhMnZiNkJFIVxXOCEjOyQhMmFhWm0qKlwuYyIhIzw3JCQhMUZhMzxidEs4ISM6JCEwaD1nbHpaYiIhIzo3JCQhMicpeWQ6O3Z3SSIhIzskITIjKilcT3YhZTNgIiEjPDckJCEyLjpJZyFbaCNHIiEjOyQhMkRYUipvXkMhXCIhIzw3JCQhMigpeWQ6QFh4RCIhIzskITI8Jyo+RGpXTFYiISM8NyQkITJyVSYzPGMoR0IiISM7JCEyMj4hcGslKjNnOCEjPDckJCEyRmtHZDlxJ3o2ISM7JCEyPTo+JzRna102ISM8NyQkITFgMDZBJz1GOCIhIzokITAmWytMXSpwNSohIzs3JCQhMlB3XzBKWSZ5NSEjOyQhMVwubUpgNXNkISM8NyQkITEoUnplKCpmJ0g1ISM6JCExY1k7VGpgLEIhIzw3JCQhMV8yOkldKkciKSohIzskIjJceCdmLldpQzohIz03JCQhMSdRd18wZEZIKiEjOyQiMnY/VC8nRyR6LychIz03JCQhMXZgMjpdXnEoKSEjOyQiMmwqPUY2QCU0NSIhIzw3JCQhMVByVSYzX2BIKSEjOyQiMiQpZjY6dVM5ZiIhIzw3JCQhMTtTITM7XTJ6KCEjOyQiMUJWcjF0bmRAISM7NyQkITEkKioqKioqKnpJKUgoISM7JCIxWnpoVE4qKmVGISM7NyQkITBjN0RdJlxrbiEjOiQiMU0+LWx4SWxNISM7NyQkITEzPlF3IypmLWohIzskIjFVLk9qKm9xNiUhIzs3JCQhMS48TW9ZNHNkISM7JCIyMUVDJypmNiEqKlshIzw3JCQhMXloQlpDUnRfISM7JCIxJnAza1whKnprJiEjOzckJCEyKFEnR2Q5MiZ6WiEjPCQiMTYrOV5PeSFRJyEjOzckJCEyYCdReGEqR19HJSEjPCQiMC4hKVw/S0AzKCEjOjckJCEyYj1QdVsnNCJ5JCEjPCQiMVhbUT91Kj51KCEjOzckJCEyVyV6ZTxYc1lLISM8JCIxO3BuJWVFJ2YkKSEjOzckJCEyWHJWKFt4dmNGISM8JCIxMGM8O25lUikpISM7NyQkITJFJGU7THc0dEEhIzwkIjEjZi1KXTp1QSohIzs3JCQhMkRDWydISDJjPCEjPCQiMWRdbzNfaFsmKiEjOzckJCEyNmY9UHV0LEMiISM8JCIxNi1gKW9TJnkoKiEjOzckJCExbHBSemVCcnghIzwkIjBUNiIpKT15OCoqISM6NyQkITFsI2Y9UGEnR10hIzwkIjEkSDYnPil5UicqKiEjOzckJCEyV2NAVidHMidHIyEjPSQiMVglNFc/Z0QqKiohIzs3JCQhMiVvKGU8TlMnUTYhIz0kIjEkUncnSFY6KSoqKiEjOzckJCIwY0ZTITM7I3opISM+JCIxJSk9JioqKSkqKioqKioqISM7NyQkIjJPI29PdFlBYzYhIz0kIjFDITNTKW80KSoqKiEjOzckJCIyJj4nSGY9ZE9JIyEjPSQiMVpZMzFgVyMqKiohIzs3JCQiMTsqKil6ZmZ4KVwhIzwkIjEjR1hkKkhjayoqISM7NyQkIjE3LTA1Pyc9bighIzwkIjEkR3Y3WSMpZiIqKiEjOzckJCIyeG1Mbk1IJno3ISM8JCIxTVolcClILWsoKiEjOzckJCIya3JWKFsyKnB0IiEjPCQiMVFMaSozKG9lJiohIzs3JCQiLyYpcFJSWF5BISM5JCIxQiV5anFxRkMqISM7NyQkIjFySmpFdEtwRiEjOyQiMSkqXCNbIj5PRykpISM7NyQkIjJremU8TlJaRyQhIzwkIjEnNG5kISk+KT0kKSEjOzckJCIxNj5Rd0FmaVAhIzskIjElNHhcYCUqW3coISM7NyQkIjFUdl0sOFFkVSEjOyQiMU9DSikzTy03KCEjOzckJCIxdGE0Pkc0cFohIzskIjFNX0QyPChmUichIzs3JCQiMSl5YzhGaiJ6XyEjOyQiMSMpXEV1MExSYyEjOzckJCIxIm9OclVMUSFlISM7JCIyeHMkUShIcDomWyEjPDckJCIxWSdIZj1qZkUnISM7JCIyRFdeeVI0LDwlISM8NyQkIjElKWY+Uj1AJ3knISM7JCIwImUhMz1HYlYkISM6NyQkIjEpMzxNbydmM3QhIzskIjEmUmFNLUdmdSMhIzs3JCQiMT0+UXc3LDd5ISM7JCIxLyZRQmI8RzgjISM7NyQkIjF0UXhhKmYicCMpISM7JCIyJVtTTXJBaz47ISM8NyQkIjFZKFsoXFJ2NykpISM7JCIyUkc6UUQqPmY1ISM8NyQkIjFtVCRvT1xLRiohIzskIjExblNiVGlEaSEjPDckJCIxYy0wNV0iKjMpKiEjOyQiMU5dKCpbVmxkOiEjPDckJCIyTG5NcClwSUc1ISM7JCEyKClvISlvMClvKj4jISM9NyQkIjImWyhcKipHSC4zIiEjOyQhMSRSWSo0YHQhKmUhIzw3JCQiMmE2QlkjbycpSDYhIzskITFRSjNEJz1mJSopISM8NyQkIjIxOEVfL2E6PSIhIzskITBWTlJSTyNmNiEjOjckJCIyJT5QdVshPiFINyEjOyQhMi4oKSl6LCEqR1o4ISM8NyQkIjI9P1MhZXhoYTchIzskITIpKik+M0ddLUQ5ISM8NyQkIjJWb090WTstRyIhIzskITFsQ1dVdFomWyIhIzs3JCQiMiNbJjQ+TDFvSSIhIzskITJPV2BedUkoSDohIzw3JCQiMkBUI1snPidSTDghIzskITIlb1NAQ3U9YjohIzw3JCQiMkxnP1RacFxNIiEjOyQhMTs4Km96LDBjIiEjOzckJCIyWHplPHZVbE4iISM7JCExdzZoVzNTaTohIzs3JCQiMmMpcFJIZzZvOCEjOyQhMl9GKip6amY0YyIhIzw3JCQiMm88TnFJKm96OCEjOyQhMjNBOCk+bEVjOiEjPDckJCIxc1UmM0Epby85ISM6JCEyOyIpZiYpKWZfTjohIzw3JCQiMW5Mbk1yb0g5ISM6JCEyJkdxZSE0NDhdIiEjPDckJCIyRGQ5SHlSOFsiISM7JCEyW1drMGgpRyVSIiEjPDckJCIyT2I1QCM9KD1gIiEjOyQhMk5wWDlxaVREIiEjPDckJCIyKjM8TW9UdyFlIiEjOyQhMidwMURDP0cqNCIhIzw3JCQiMlBkOUh5XV1qIiEjOyQhMV90Mnpxdy4jKiEjPDckJCIyWywuMXNIUW8iISM7JCExJXlOJEdxZ1R3ISM8NyQkIjJqP1QjWzsiZnQiISM7JCExQmQoKUckPkg0JyEjPDckJCIwKnlkOmM1JHkiISM5JCExeig0IT0tKnkiWyEjPDckJCIyYT1QdTMsWiQ9ISM7JCExdnglM2oiW15OISM8NyQkIjFSd18wJVtLKT0hIzokITEkeSM9X3JDXUMhIzw3JCQiMjMuMTdNJSpSJD4hIzskITJFZm52eiIqek4iISM9NyQkIjI4QVcpb3hnJCk+ISM7JCExb1gjZSgpKUcvTCEjPTckJCIxVSNbJ0glW2IuIyEjOiQiMWkrUGNeb3NwISM9NyQkIjJGWydIZk1kJjMjISM7JCIwR2RgMDNCaSIhIzs3JCQiMU1wUXg3dE9AISM6JCIxSFFfS0MoZVojISM8NyQkIjJQZDlIW2x1PSMhIzskIjElUT5hWyN6JT4kISM8NyQkIjIlPVB1W1wzTUEhIzskIjJ2ZUlQR2gxciQhIz03JCQiMiZSemU8aF4oRyMhIzskIjFQP2RBRGcpNCUhIzw3JCQiMChReGEzVDZCISM5JCIxaC9Hb20rJz4lISM8NyQkIjIuISlmPmYwYEwjISM7JCIxLVkrbnZbWFUhIzw3JCQiMCp5ZGxCeWdCISM5JCIxQm13SVNJWVUhIzw3JCQiMClmPlIiZmlRIyEjOSQiMnUmMyhRKVxyJj4lISM9NyQkIjJuOEZhPUddViMhIzskIjIlPSoqcDszT3BSISM9NyQkIjEkZj1QJSp6IipbIyEjOiQiMSpcW0pBa3liJCEjPDckJCIxJz1QdVFyZ2AjISM6JCIydXVyXyJSNDhKISM9NyQkIjEoUXhhZiRIKmUjISM6JCIyMTpDPnI2eWMjISM9NyQkIjJ3XSwuJykqelBFISM7JCIyWSgqeUkwOjYzIyEjPTckJCIxdVomNDRlM3AjISM6JCIyd1c6PDQ3MWciISM9NyQkIjFzVSYzUFFtdCMhIzokIjIiPT5gVyFlc0MiISM9NyQkIjJpOUhld3coKXkjISM7JCIxKW8kXFxDMmsiKiEjPTckJCIyZC4yOSkpUiJSRyEjOyQiMUswd2xoQG9sISM9NyQkIi8qemY0cSUqKUchIzgkIjEoKW83ejBFZFYhIz03JCQiMXBReGFeaFJIISM6JCIxRigqZmhLL1JCISM9NyQkIjJlJSopeWQpKXkoKUghIzskIjE8SCJRZC4qcFkhIz43JCQiMlttS2whZicpUkkhIzskITJ2O2F3RXVfXCIhIz43JCQiMjtEXSs2KlwqMyQhIzskITF2bU00TkluSyEjPTckJCIyMip6Zj5kdFRKISM7JCExPElSYShmQSdcISM9NyQkIjJQdl0sVkEhKj0kISM7JCExY0dIQGFqb2khIz03JCQiMVF1Wyg0JEdUSyEjOiQhMS90OCczXmdPKCEjPTckJCIxXy0wNShSOEgkISM6JCExVjttRFU5KyEpISM9NyQkIjEnMzxNW3U3TSQhIzokITA4aiNmZWomPSkhIzw3JCQiMSRwUXhhSk1SJCEjOiQhMTtwPS85czV6ISM9NyQkIjI6P1MhMyxaVE0hIzskITEzUytrXSF6RyghIz03JCQiMUFUI1s7bzFcJCEjOiQhMS5ycHVkMHZqISM9NyQkIjFMbUtsJykpXGEkISM6JCExZHlDRERcJD0mISM9NyQkIjB0WCJIOTwlZiQhIzkkITFjV1ppb01yUyEjPTckJCIwJXplPCtaV08hIzkkITI7V3kkPktHPEkhIz43JCQiMWhAVidRQWNwJCEjOiQhMVxrWUAhKjQ6QCEjPTckJCIyWG9PdE9URXUkISM7JCEyekk5cm54OVoiISM+NyQkIjFoPlJ5P3cjeiQhIzokITEjWzRBcHMxdyohIz43JCQiMlpvT3RFLEQlUSEjOyQhMHZ1czRWOVMnISM9NyQkIjFvTXBRbnEmKlEhIzokITI6L2kpNGtyIylRISM/NyQkIjFkOkppI2VFJVIhIzokITIpKj5lJHB2KVwyIyEjPzckJCIyeE1wUWRJbypSISM7JCExJCpRJSlSJTRGOCIhIz83JCQiMTlGYTNwclhTISM6JCIxc2VTMXlCNDshIz43JCQiMU9xUyJRKDMlNCUhIzokIjFBdVlaZ3FMSyEjPjckJCIxdVcqKXk2NVlUISM6JCIxIno/JFslNEEjWyEjPjckJCIyTmQ5SFFEJCk+JSEjOyQiMEdkcFxUNjonISM9NyQkIjEoUnplblRlQyUhIzokIjEpUnV4OUZlLighIz43JCQiMTQ8TW89SSdIJSEjOiQiMWhNLWEnPiZmdiEjPjckJCIxNkBVJTNZYk0lISM6JCIxUUp5W05RP3chIz43JCQiMWIzPE10IyopUiUhIzokIjEncDZ3dGAoKT4oISM+NyQkIjAjUnljcDZYVyEjOSQiMU9WKFxZbllbJyEjPjckJCIwJXplPHU7KVwlISM5JCIxRCZ5ZDRlQVEmISM+NyQkIjElXClwUncuW1ghIzokIjAubUpRI0g0VSEjPTckJCIxWyNcKXBoVShmJSEjOiQiMHZCXCkqXGQwJCEjPTckJCIxQ1olKikpUiZvayUhIzokIjI8VGd2QyRwRD8hIz83JCQiMSNSeWNCbnNwJSEjOiQiMkVINj9APGs9IiEjPzckJCIxPExtS1dxXVohIzokIjImSC51RiZSISlvJiEjQDckJCIxUnhhNDZxKnolISM6JCIyTCY+XydleCdRQiEjQDckJCIxR2I1QHIxW1shIzokIjFQdTxKZnlFciEjQDckJCIxKUdkOWZwKCoqWyEjOiQiMiMqW2RLISo+XTMiISNBNyQkIjFeLTA1JmY4JlwhIzokIjE9UCZ5LnFgXCQhI0I3JCQiI10hIiIkIiIhISIiLSUnTEVHRU5ERzYjLSUpX1RZUEVTRVRHNiMtSSVtc3ViRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiYtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1UScmIzkyMzs2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjctSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USI4NiIvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW42Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLUkjbW9HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2PlEiLDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJmZlbmNlR1EmZmFsc2U2Ii8lKnNlcGFyYXRvckdRJXRydWU2Ii8lKXN0cmV0Y2h5R1EmZmFsc2U2Ii8lKnN5bW1ldHJpY0dRJmZhbHNlNiIvJShsYXJnZW9wR1EmZmFsc2U2Ii8lLm1vdmFibGVsaW1pdHNHUSZmYWxzZTYiLyUnYWNjZW50R1EmZmFsc2U2Ii8lJ2xzcGFjZUdRJjAuMGVtNiIvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbTYiLUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEiNDYiLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbjYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiIvJS9zdWJzY3JpcHRzaGlmdEdRIjA2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii0lJkNPTE9SRzYnJSRSR0JHJCIodmlvJiEiKCQiKSk+IVxEISIpJCIoaD4hSCEiKC0lK19BVFRSSUJVVEVHNiMvJSdzb3VyY2VHJSxtYXRoZGVmYXVsdEctJSVWSUVXRzYkOyQhI10hIiIkIiNdISIiJShERUZBVUxURy0mJSZfQVhJU0c2IyIiIjYnLSUrX0dSSURMSU5FU0c2Ji0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIiQiIiEhIiIkIiIhISIiLSUqTElORVNUWUxFRzYjIiIhLSUqVEhJQ0tORVNTRzYjIiIhLSUtVFJBTlNQQVJFTkNZRzYjJCIiISEiIi0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIiQiIiEhIiIkIiIhISIiLSUqTElORVNUWUxFRzYjIiIhLSUqVEhJQ0tORVNTRzYjIiIhLSUtVFJBTlNQQVJFTkNZRzYjJCIiISEiIi0mJSZfQVhJU0c2IyIiIzYnLSUrX0dSSURMSU5FU0c2Ji0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIiQiIiEhIiIkIiIhISIiLSUqTElORVNUWUxFRzYjIiIhLSUqVEhJQ0tORVNTRzYjIiIhLSUtVFJBTlNQQVJFTkNZRzYjJCIiISEiIi0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIiQiIiEhIiIkIiIhISIiLSUqTElORVNUWUxFRzYjIiIhLSUqVEhJQ0tORVNTRzYjIiIhLSUtVFJBTlNQQVJFTkNZRzYjJCIiISEiIi0lK0FYRVNMQUJFTFNHNiQtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USJ4NiIvJSdmYW1pbHlHUSE2Ii8lJXNpemVHUSMxMDYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSV0cnVlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1EnaXRhbGljNiJRITYiLSUlUk9PVEc2Jy0lKUJPVU5EU19YRzYjJCIjcSEiIi0lKUJPVU5EU19ZRzYjJCIkPyIhIiItJS1CT1VORFNfV0lEVEhHNiMkIiYhKT4iISIiLSUuQk9VTkRTX0hFSUdIVEc2IyQiJSEpcCEiIi0lKUNISUxEUkVORzYi</Plot></Text-field> -</Output> -<Output> -<Text-field style="Maple Plot" layout="Maple Plot"><Plot height="678" type="two-dimensional" width="1222" plot-scale="1.0" plot-xtrans="0.0" plot-ytrans="0.0" gridlinevisibility="1" legendvisibility="false">LSUlUExPVEc2MS0lJ0NVUlZFU0c2JDdieDckJCEjXSEiIiQiIiEhIiI3JCQhMnZcKiopeiZwKnlcISM7JCIiISEiIjckJCExJjQ+UTdyMSdcISM6JCIiISEiIjckJCExMDQ9J2YjNFNcISM6JCIiISEiIjckJCExPU5xZ3dQPlwhIzokIiIhISIiNyQkITEkXClwejZ3KSpbISM6JCIiISEiIjckJCExb05yaXFrelshIzokIiIhISIiNyQkITFWJjM8XWIpZlshIzokIiIhISIiNyQkITJiLTA1LyhRUlshIzskIiIhISIiNyQkITJEZDlIQSUpKj1bISM7JCIiISEiIjckJCExPE1vO3UqenolISM6JCIiISEiIjckJCExZTtMRUFeelohIzokIiIhISIiNyQkITEwNT8hRy0oZVohIzokIiIhISIiNyQkITIwO0trKW8heXQlISM7JCIiISEiIjckJCExb05yLS5uPFohIzokIiIhISIiNyQkITEqKXlkYlZRKnAlISM6JCIiISEiIjckJCExJiopeWRmU3duJSEjOiQiIiEhIiI3JCQhMXhhNHoyQWZZISM6JCIiISEiIjckJCExTW9PYFR6UFkhIzokIiIhISIiNyQkITF2XCoqZXojKT1ZISM6JCIiISEiIjckJCExVyopeVAhPiEpZiUhIzokIiIhISIiNyQkITEpZj5SLS8jeVghIzokIiIhISIiNyQkITEjUnljOEh2YiUhIzokIiIhISIiNyQkITJsTnJVOFYmUVghIzskIiIhISIiNyQkITFyVCRvO2shPVghIzokIiIhISIiNyQkITImemU8dkF6J1wlISM7JCIiISEiIjckJCExdVomNC52I3lXISM6JCIiISEiIjckJCExKVwqKikqKmVGZVchIzokIiIhISIiNyQkITE6SWdTW2hQVyEjOiQiIiEhIiI3JCQhMUJZI1wtLXVUJSEjOiQiIiEhIiI3JCQhMWhAViczWHlSJSEjOiQiIiEhIiI3JCQhMTpJZ1MvOHdWISM6JCIiISEiIjckJCExUXdfbCk9bU4lISM6JCIiISEiIjckJCExaUJaJTQneU5WISM6JCIiISEiIjckJCExKW9Qdl0zcEolISM6JCIiISEiIjckJCEwKFJ6PS5GJ0glISM5JCIiISEiIjckJCEyJip5ZDpSXm9GJSEjOyQiIiEhIiI3JCQhMUtrRzxJYmNVISM6JCIiISEiIjckJCExYzZCWXdxT1UhIzokIiIhISIiNyQkITFbJjQ+UUpmQCUhIzokIiIhISIiNyQkITFeLTBxOCNmPiUhIzokIiIhISIiNyQkITAyOUdDZWE8JSEjOSQiIiEhIiI3JCQhMTpJZ2dYO2JUISM6JCIiISEiIjckJCExZDhGdW5eT1QhIzokIiIhISIiNyQkITFwT3QxVjk6VCEjOiQiIiEhIiI3JCQhMURcKXBeR2c0JSEjOiQiIiEhIiI3JCQhMV8vNCk0WmMyJSEjOiQiIiEhIiI3JCQhMCp6ZnolUmgwJSEjOSQiIiEhIiI3JCQhMTI5R3coeVcuJSEjOiQiIiEhIiI3JCQhMChSeik+QWQsJSEjOSQiIiEhIiI3JCQhMiYqKXlkOkxWJSpSISM7JCIiISEiIjckJCExVCNbJzQzLnZSISM6JCIiISEiIjckJCEyWCRwUTx2IVEmUiEjOyQiIiEhIiI3JCQhMU9yVTBhXE5SISM6JCIiISEiIjckJCExJz1QdS9TWSJSISM6JCIiISEiIjckJCEyLi4xNyFbXCUqUSEjOyQiIiEhIiI3JCQhMlgpb1A6Rk91USEjOyQiIiEhIiI3JCQhMmxIZj1wL1YmUSEjOyQiIiEhIiI3JCQhMmtFYDFATl0kUSEjOyQiIiEhIiI3JCQhMXpkOiJSL1UiUSEjOiQiIiEhIiI3JCQhMlB1Wyg0Nk4leiQhIzskIiIhISIiNyQkITFbJ0hmWWNNeCQhIzokIiIhISIiNyQkITFWJjM8eVRYdiQhIzokIiIhISIiNyQkITIncFF4OXZqTFAhIzskIiIhISIiNyQkITFXKFsocFtoOFAhIzokIiIhISIiNyQkITIoND9TZzRrJHAkISM7JCIiISEiIjckJCExbkxuTSJ5Rm4kISM6JCIiISEiIjckJCEyUHdfMHJpTmwkISM7JCIiISEiIjckJCEyZD5SeVskKVFqJCEjOyQiIiEhIiI3JCQhMSI+UXdHYkBoJCEjOiQiIiEhIiI3JCQhMWAwNiM9I1sjZiQhIzokIiIhISIiNyQkITIkb090WUZPc04hIzskIiIhISIiNyQkITInemY+KnosPmIkISM7JCIiISEiIjckJCEyLzxNbz8lNExOISM7JCIiISEiIjckJCEyMDE3QyNmLzhOISM7JCIiISEiIjckJCExclQkb0NdSlwkISM6JCIiISEiIjckJCExZDlIZSFvPVokISM6JCIiISEiIjckJCEyOUFXKVt1M2BNISM7JCIiISEiIjckJCEyYjVAVV89OVYkISM7JCIiISEiIjckJCExZjxOISpSJz1UJCEjOiQiIiEhIiI3JCQhMC4xNyFlXiNSJCEjOSQiIiEhIiI3JCQhMmMwNkFHNTxQJCEjOyQiIiEhIiI3JCQhMTpJZysxIzNOJCEjOiQiIiEhIiI3JCQhMmAzPE0zOT1MJCEjOyQiIiEhIiI3JCQhMjI7S2srSTtKJCEjOyQiIiEhIiI3JCQhKktLPkgkISIpJCIiISEiIjckJCEyRl0rLCMpejBGJCEjOyQiIiEhIiI3JCQhMXdfMHJSNV9LISM6JCIiISEiIjckJCEyJW9PdCd5JCkzQiQhIzskIiIhISIiNyQkITFaJSopeXBONEAkISM6JCIiISEiIjckJCExWSJIZUchPSI+JCEjOiQiIiEhIiI3JCQhMlomND5lIjQ5PCQhIzskIiIhISIiNyQkITJ1WyhcZlFDXkohIzskIiIhISIiNyQkITJ3Xi4yKSpvKUhKISM7JCIiISEiIjckJCExXChcKjQuRjVKISM6JCIiISEiIjckJCEyTGpFYCFSIzQ0JCEjOyQiIiEhIiI3JCQhMCRmPTxIQ3FJISM5JCIiISEiIjckJCEyTnVbKFxwZ1xJISM7JCIiISEiIjckJCEydmU8TiVcM0pJISM7JCIiISEiIjckJCEyakdkOUhXIjRJISM7JCIiISEiIjckJCEyOkdjN1AmeSEqSCEjOyQiIiEhIiI3JCQhMSp6Zj5iNyRwSCEjOiQiIiEhIiI3JCQhMk1sSWgjKT0pW0ghIzskIiIhISIiNyQkITI4RF0rUD8wJEghIzskIiIhISIiNyQkITAxN0MlPSUqNEghIzkkIiIhISIiNyQkITJNbk1wIXBBKilHISM7JCIiISEiIjckJCEyJFsnSGZVNSdvRyEjOyQiIiEhIiI3JCQhMUNaJSozalxcRyEjOiQiIiEhIiI3JCQhMSlwUnp1LyhIRyEjOiQiIiEhIiI3JCQhMSI9T3NHTyM0RyEjOiQiIiEhIiI3JCQhMUhkOXBNJCkpeSMhIzokIiIhISIiNyQkITF0WCJIbVl5dyMhIzokIiIhISIiNyQkITE5R2NzOU9cRiEjOiQiIiEhIiI3JCQhMWhAVkU6YkdGISM6JCIiISEiIjckJCEya0pqRThjd3EjISM7JCIiISEiIjckJCEyTXNXKlsmPnZvIyEjOyQiIiEhIiI3JCQhMmIvND1nTCNwRSEjOyQiIiEhIiI3JCQhMi4wNT8lKSpbWkUhIzskIiIhISIiNyQkITJMakVgLXEhSEUhIzskIiIhISIiNyQkITIoKil6ZipSVndnIyEjOyQiIiEhIiI3JCQhMi84RV8/eCcpZSMhIzskIiIhISIiNyQkITIxNT9TR295YyMhIzskIiIhISIiNyQkITJQdl0sRmAhW0QhIzskIiIhISIiNyQkITJ4YTQ+UXl0XyMhIzskIiIhISIiNyQkITJCXi0wUSNSM0QhIzskIiIhISIiNyQkITJuS2xJVDh6WyMhIzskIiIhISIiNyQkITFOcVNAOmttQyEjOiQiIiEhIiI3JCQhMiRIZj14VTdbQyEjOyQiIiEhIiI3JCQhMk1sSWg5RCJHQyEjOyQiIiEhIiI3JCQhMXJUJG8za3VTIyEjOiQiIiEhIiI3JCQhMih5ZDpyN0QoUSMhIzskIiIhISIiNyQkITJtSmpFTCVwbkIhIzskIiIhISIiNyQkITIyPE1vb3pmTSMhIzskIiIhISIiNyQkITElemU8Nm9rSyMhIzokIiIhISIiNyQkITJ2Xi4yTU5jSSMhIzskIiIhISIiNyQkITJXJSlvUHZkbkcjISM7JCIiISEiIjckJCExRV4tbCY+aEUjISM6JCIiISEiIjckJCEyWCUqKXlQMXFZQSEjOyQiIiEhIiI3JCQhMSllPE5FLWtBIyEjOiQiIiEhIiI3JCQhMjtKaUMqb2IxQSEjOyQiIiEhIiI3JCQhMkxxUyJHMXkmPSMhIzskIiIhISIiNyQkITEyOUc7MXhsQCEjOiQiIiEhIiI3JCQhMmtBWCEqWzJgOSMhIzskIiIhISIiNyQkITIxPE1vIVEsREAhIzskIiIhISIiNyQkITE4RF0/Z08xQCEjOiQiIiEhIiI3JCQhMlgjWydIYiQqXDMjISM7JCIiISEiIjckJCEwMztLd3hlMSMhIzkkIiIhISIiNyQkITEzO0tXalxYPyEjOiQiIiEhIiI3JCQhMmM5SGVzKSlmLSMhIzskIiIhISIiNyQkITFqRF5BIUdWKyMhIzokIiIhISIiNyQkITJQcVMieSlRJyoqPiEjOyQhMWRCcnVeND1sISNCNyQkITJXJSlvUHRcXCo+ISM7JCEybWkiZV0hPilvNyEjQDckJCEyXilwUiplZy0qPiEjOyQhMXJYMzVRaCdwJSEjPzckJCEyZTdEXVdyYik+ISM7JCExS1JuenEqZS0iISM+NyQkITJjMzxNK0ZcKD4hIzskITEnSFteV2tXMSQhIz43JCQhMmEvND1jI0drPiEjOyQhMSxBd2FwJTM6JyEjPjckJCExKFJ6ZTAhKVslPiEjOiQhMjE3RGQ9cmBWIiEjPjckJCEyMzQ9T3djTyM+ISM7JCExQEUjKj4ncDtwIyEjPTckJCEyOEhlO2xXYCE+ISM7JCExdCM0LiEpeWQwJSEjPTckJCExVSRvT0gqWyUpPSEjOiQhMjorW04lenUrZiEjPjckJCEyZD1QdS9XVic9ISM7JCEwPD4iZT0xYHohIzw3JCQhMC8zOyc+QFc9ISM5JCEyKD5AN1J2V0M1ISM9NyQkITJCWCE0UVI6Qz0hIzskITJrXSIpcHE8VUYiISM9NyQkITI9VSUpb1glKVshPSEjOyQhMncyWycpZStAYCIhIz03JCQhMlgkcFFQTzAleSIhIzskITFgSygqZT84Rz0hIzw3JCQhMiYqKil6Zk4rVXciISM7JCEyRXZiJFJLYENAISM9NyQkITEvMzs3ZElWPCEjOiQhMShRKVE7TSopW0MhIzw3JCQhMiQpcFJ6LSJSQzwhIzskITIuW28lKT1bN3YjISM9NyQkITFEXStoblsuPCEjOiQhMkIoUVddOGAjNCQhIz03JCQhMiQqKil6ZjZrTW8iISM7JCExVy55KT0kKVJVJCEjPDckJCEyYztMbT8hXGo7ISM7JCEyWTthPDVWbXYkISM9NyQkITJFXy80UUZFayIhIzskITE8cmJtUW0uVCEjPDckJCEyJz5SeWM+VEI7ISM7JCExMkssQSJwMFUlISM8NyQkITI7TnFTdEtQZyIhIzskITJYJlFJQSZSLHUlISM9NyQkITFaJHBRYC8/ZSIhIzokITE7JW8ucihSJTMmISM8NyQkITIjMzxNRzlMaTohIzskITIwKiozblxOZVEmISM9NyQkITJUI1snSCo+QFU6ISM7JCEwUUpoYms6byYhIzs3JCQhMmI4RmEvXjxfIiEjOyQhMG0nUWkoKXptZiEjOzckJCEyaktsSVhWSF0iISM7JCEyL0F3UV4iKkhAJyEjPTckJCExO0trb14qR1siISM6JCExQWUvKXlYaVgnISM8NyQkITJqS2xJXCoqSFkiISM7JCExVnR1V3d1dm0hIzw3JCQhMThFXy90clQ5ISM6JCExYjo3TUhyJClvISM8NyQkITJvUHZdcE9IVSIhIzskITFbZigzXFI+LyghIzw3JCQhMWhBWHF4RSw5ISM6JCExKEchXCo9SEI+KCEjPDckJCEyWSJIZU9LciJRIiEjOyQhMTcxJT5mUWdIKCEjPDckJCEyLTA1PzlSP1AiISM7JCExa3BVaCgqUk50ISM8NyQkITJlPVB1L2xCTyIhIzskIS5HOCUpKVttdCEjOTckJCEyIylwUnpHaT5OIiEjOyQhMHJKd3Z5LlIoISM7NyQkITIxQFUlRyZmOk0iISM7JCExOXhiRTwwL3UhIzw3JCQhMjI/UyEzckxPOCEjOyQhMVpeUUh3JnBTKCEjPDckJCEyMj5Rd285NkwiISM7JCExJVw+PnVnclMoISM8NyQkITIzPU9zRSMqZUsiISM7JCExVj55TCQ9WVMoISM8NyQkITI0PE1vJSlwMUsiISM7JCExLVBmdXdHKlIoISM8NyQkITExN0MpZW02SiIhIzokITEnKipILmUlSCNRKCEjPDckJCEyN0NbJ0hMbSw4ISM7JCExJD1mc3JwY04oISM8NyQkITJsSmpFRHo5RyIhIzskITFHX0RVUCpmRSghIzw3JCQhMmU6SmljInloNyEjOyQhMSQpPT0+JzNKOCghIzw3JCQhMiNlO0xtIUgvQyIhIzskITFOO1goW2BkJHAhIzw3JCQhMkRWJ0c8SyY+QSIhIzskITEiW0hcVVchPW4hIzw3JCQhMlYjWydILkwyPyIhIzskITFtJj1OJDRwNmshIzw3JCQhMkVnP1QlXHkhPSIhIzskITFgYEYjNGZqMSchIzw3JCQhMjdJZz9gSDU7IiEjOyQhMTBIZ3pXP25jISM8NyQkITIxNkFXU2U3OSIhIzskITEjSHRIZ2YlM18hIzw3JCQhMkxrR2Q1JDRANiEjOyQhMDhhQyVSM3hZISM7NyQkITJObk1wQT0oKjQiISM7JCEvJmUnKVI8Ni8lISM6NyQkITJWITQ9YyY+LDMiISM7JCEyYypmS0UleSgqUSQhIz03JCQhMmxNcFFOWS8yIiEjOyQhMi55I2YjKSpHTi8kISM9NyQkITIoKXlkOjp0MjEiISM7JCEyTzYjbygpR2EhbyMhIz03JCQhMVB1W2RFVl01ISM6JCEyd1Ipek03cXRBISM9NyQkITJfMzxNOyM0UzUhIzskITJ4KD1MJT0jNFo9ISM9NyQkITJEXClwelR4SDUhIzskITIlekhUXSZ5OFMiISM9NyQkITIpKiopemY+YyU+NSEjOyQhMEIxbyRwQmAkKiEjPDckJCEwJioqKXo0Ryg0NSEjOSQhMTA2Mz1NKClwWiEjPTckJCEjNSEiIiQiIiEhIiItJSZDT0xPUkc2JyUkUkdCRyQiKUMpZXElISIpJCIiISEiIiQiKCc+IVwmISIpLSUrX0FUVFJJQlVURUc2Iy8lJ3NvdXJjZUclLG1hdGhkZWZhdWx0Ry0lJ0NVUlZFU0c2JDdgeDckJCEjXSEiIiQiIiEhIiI3JCQhMnZcKiopeiZwKnlcISM7JCIiISEiIjckJCExJjQ+UTdyMSdcISM6JCIiISEiIjckJCExMDQ9J2YjNFNcISM6JCIiISEiIjckJCExPU5xZ3dQPlwhIzokIiIhISIiNyQkITEkXClwejZ3KSpbISM6JCIiISEiIjckJCExb05yaXFrelshIzokIiIhISIiNyQkITFWJjM8XWIpZlshIzokIiIhISIiNyQkITJiLTA1LyhRUlshIzskIiIhISIiNyQkITJEZDlIQSUpKj1bISM7JCIiISEiIjckJCExPE1vO3UqenolISM6JCIiISEiIjckJCExZTtMRUFeelohIzokIiIhISIiNyQkITEwNT8hRy0oZVohIzokIiIhISIiNyQkITIwO0trKW8heXQlISM7JCIiISEiIjckJCExb05yLS5uPFohIzokIiIhISIiNyQkITEqKXlkYlZRKnAlISM6JCIiISEiIjckJCExJiopeWRmU3duJSEjOiQiIiEhIiI3JCQhMXhhNHoyQWZZISM6JCIiISEiIjckJCExTW9PYFR6UFkhIzokIiIhISIiNyQkITF2XCoqZXojKT1ZISM6JCIiISEiIjckJCExVyopeVAhPiEpZiUhIzokIiIhISIiNyQkITEpZj5SLS8jeVghIzokIiIhISIiNyQkITEjUnljOEh2YiUhIzokIiIhISIiNyQkITJsTnJVOFYmUVghIzskIiIhISIiNyQkITFyVCRvO2shPVghIzokIiIhISIiNyQkITImemU8dkF6J1wlISM7JCIiISEiIjckJCExdVomNC52I3lXISM6JCIiISEiIjckJCExKVwqKikqKmVGZVchIzokIiIhISIiNyQkITE6SWdTW2hQVyEjOiQiIiEhIiI3JCQhMUJZI1wtLXVUJSEjOiQiIiEhIiI3JCQhMWhAViczWHlSJSEjOiQiIiEhIiI3JCQhMTpJZ1MvOHdWISM6JCIiISEiIjckJCExUXdfbCk9bU4lISM6JCIiISEiIjckJCExaUJaJTQneU5WISM6JCIiISEiIjckJCExKW9Qdl0zcEolISM6JCIiISEiIjckJCEwKFJ6PS5GJ0glISM5JCIiISEiIjckJCEyJip5ZDpSXm9GJSEjOyQiIiEhIiI3JCQhMUtrRzxJYmNVISM6JCIiISEiIjckJCExYzZCWXdxT1UhIzokIiIhISIiNyQkITFbJjQ+UUpmQCUhIzokIiIhISIiNyQkITFeLTBxOCNmPiUhIzokIiIhISIiNyQkITAyOUdDZWE8JSEjOSQiIiEhIiI3JCQhMTpJZ2dYO2JUISM6JCIiISEiIjckJCExZDhGdW5eT1QhIzokIiIhISIiNyQkITFwT3QxVjk6VCEjOiQiIiEhIiI3JCQhMURcKXBeR2c0JSEjOiQiIiEhIiI3JCQhMV8vNCk0WmMyJSEjOiQiIiEhIiI3JCQhMCp6ZnolUmgwJSEjOSQiIiEhIiI3JCQhMTI5R3coeVcuJSEjOiQiIiEhIiI3JCQhMChSeik+QWQsJSEjOSQiIiEhIiI3JCQhMiYqKXlkOkxWJSpSISM7JCIiISEiIjckJCExVCNbJzQzLnZSISM6JCIiISEiIjckJCEyWCRwUTx2IVEmUiEjOyQiIiEhIiI3JCQhMU9yVTBhXE5SISM6JCIiISEiIjckJCExJz1QdS9TWSJSISM6JCIiISEiIjckJCEyLi4xNyFbXCUqUSEjOyQiIiEhIiI3JCQhMlgpb1A6Rk91USEjOyQiIiEhIiI3JCQhMmxIZj1wL1YmUSEjOyQiIiEhIiI3JCQhMmtFYDFATl0kUSEjOyQiIiEhIiI3JCQhMXpkOiJSL1UiUSEjOiQiIiEhIiI3JCQhMlB1Wyg0Nk4leiQhIzskIiIhISIiNyQkITFbJ0hmWWNNeCQhIzokIiIhISIiNyQkITFWJjM8eVRYdiQhIzokIiIhISIiNyQkITIncFF4OXZqTFAhIzskIiIhISIiNyQkITFXKFsocFtoOFAhIzokIiIhISIiNyQkITIoND9TZzRrJHAkISM7JCIiISEiIjckJCExbkxuTSJ5Rm4kISM6JCIiISEiIjckJCEyUHdfMHJpTmwkISM7JCIiISEiIjckJCEyZD5SeVskKVFqJCEjOyQiIiEhIiI3JCQhMSI+UXdHYkBoJCEjOiQiIiEhIiI3JCQhMWAwNiM9I1sjZiQhIzokIiIhISIiNyQkITIkb090WUZPc04hIzskIiIhISIiNyQkITInemY+KnosPmIkISM7JCIiISEiIjckJCEyLzxNbz8lNExOISM7JCIiISEiIjckJCEyMDE3QyNmLzhOISM7JCIiISEiIjckJCExclQkb0NdSlwkISM6JCIiISEiIjckJCExZDlIZSFvPVokISM6JCIiISEiIjckJCEyOUFXKVt1M2BNISM7JCIiISEiIjckJCEyYjVAVV89OVYkISM7JCIiISEiIjckJCExZjxOISpSJz1UJCEjOiQiIiEhIiI3JCQhMC4xNyFlXiNSJCEjOSQiIiEhIiI3JCQhMmMwNkFHNTxQJCEjOyQiIiEhIiI3JCQhMTpJZysxIzNOJCEjOiQiIiEhIiI3JCQhMmAzPE0zOT1MJCEjOyQiIiEhIiI3JCQhMjI7S2srSTtKJCEjOyQiIiEhIiI3JCQhKktLPkgkISIpJCIiISEiIjckJCEyRl0rLCMpejBGJCEjOyQiIiEhIiI3JCQhMXdfMHJSNV9LISM6JCIiISEiIjckJCEyJW9PdCd5JCkzQiQhIzskIiIhISIiNyQkITFaJSopeXBONEAkISM6JCIiISEiIjckJCExWSJIZUchPSI+JCEjOiQiIiEhIiI3JCQhMlomND5lIjQ5PCQhIzskIiIhISIiNyQkITJ1WyhcZlFDXkohIzskIiIhISIiNyQkITJ3Xi4yKSpvKUhKISM7JCIiISEiIjckJCExXChcKjQuRjVKISM6JCIiISEiIjckJCEyTGpFYCFSIzQ0JCEjOyQiIiEhIiI3JCQhMCRmPTxIQ3FJISM5JCIiISEiIjckJCEyTnVbKFxwZ1xJISM7JCIiISEiIjckJCEydmU8TiVcM0pJISM7JCIiISEiIjckJCEyakdkOUhXIjRJISM7JCIiISEiIjckJCEyOkdjN1AmeSEqSCEjOyQiIiEhIiI3JCQhMSp6Zj5iNyRwSCEjOiQiIiEhIiI3JCQhMk1sSWgjKT0pW0ghIzskIiIhISIiNyQkITI4RF0rUD8wJEghIzskIiIhISIiNyQkITAxN0MlPSUqNEghIzkkIiIhISIiNyQkITJNbk1wIXBBKilHISM7JCIiISEiIjckJCEyJFsnSGZVNSdvRyEjOyQiIiEhIiI3JCQhMUNaJSozalxcRyEjOiQiIiEhIiI3JCQhMSlwUnp1LyhIRyEjOiQiIiEhIiI3JCQhMSI9T3NHTyM0RyEjOiQiIiEhIiI3JCQhMUhkOXBNJCkpeSMhIzokIiIhISIiNyQkITF0WCJIbVl5dyMhIzokIiIhISIiNyQkITE5R2NzOU9cRiEjOiQiIiEhIiI3JCQhMWhAVkU6YkdGISM6JCIiISEiIjckJCEya0pqRThjd3EjISM7JCIiISEiIjckJCEyTXNXKlsmPnZvIyEjOyQiIiEhIiI3JCQhMmIvND1nTCNwRSEjOyQiIiEhIiI3JCQhMi4wNT8lKSpbWkUhIzskIiIhISIiNyQkITJMakVgLXEhSEUhIzskIiIhISIiNyQkITIoKil6ZipSVndnIyEjOyQiIiEhIiI3JCQhMi84RV8/eCcpZSMhIzskIiIhISIiNyQkITIxNT9TR295YyMhIzskIiIhISIiNyQkITJQdl0sRmAhW0QhIzskIiIhISIiNyQkITJ4YTQ+UXl0XyMhIzskIiIhISIiNyQkITJCXi0wUSNSM0QhIzskIiIhISIiNyQkITJuS2xJVDh6WyMhIzskIiIhISIiNyQkITFOcVNAOmttQyEjOiQiIiEhIiI3JCQhMiRIZj14VTdbQyEjOyQiIiEhIiI3JCQhMk1sSWg5RCJHQyEjOyQiIiEhIiI3JCQhMXJUJG8za3VTIyEjOiQiIiEhIiI3JCQhMih5ZDpyN0QoUSMhIzskIiIhISIiNyQkITJtSmpFTCVwbkIhIzskIiIhISIiNyQkITIyPE1vb3pmTSMhIzskIiIhISIiNyQkITElemU8Nm9rSyMhIzokIiIhISIiNyQkITJ2Xi4yTU5jSSMhIzskIiIhISIiNyQkITJXJSlvUHZkbkcjISM7JCIiISEiIjckJCExRV4tbCY+aEUjISM6JCIiISEiIjckJCEyWCUqKXlQMXFZQSEjOyQiIiEhIiI3JCQhMSllPE5FLWtBIyEjOiQiIiEhIiI3JCQhMjtKaUMqb2IxQSEjOyQiIiEhIiI3JCQhMkxxUyJHMXkmPSMhIzskIiIhISIiNyQkITEyOUc7MXhsQCEjOiQiIiEhIiI3JCQhMmtBWCEqWzJgOSMhIzskIiIhISIiNyQkITIxPE1vIVEsREAhIzskIiIhISIiNyQkITE4RF0/Z08xQCEjOiQiIiEhIiI3JCQhMlgjWydIYiQqXDMjISM7JCIiISEiIjckJCEwMztLd3hlMSMhIzkkIiIhISIiNyQkITEzO0tXalxYPyEjOiQiIiEhIiI3JCQhMmM5SGVzKSlmLSMhIzskIiIhISIiNyQkITFqRF5BIUdWKyMhIzokIiIhISIiNyQkITJlN0RdV3JiKT4hIzskITFhSExOKVt6UiUhI0A3JCQhMmEvND1jI0drPiEjOyQhMWVdMT15JFFWJyEjPzckJCExKFJ6ZTAhKVslPiEjOiQhMiU+XEBiIzNqRyMhIz83JCQhMjM0PU93Y08jPiEjOyQhMU9SMSRcbTQmZSEjPjckJCEyOEhlO2xXYCE+ISM7JCEyVCZcRXFvLXo1ISM+NyQkITFVJG9PSCpbJSk9ISM6JCEyJlspW1lmTXQpPSEjPjckJCEyZD1QdS9XVic9ISM7JCEyVzNfKTN2I1IlSCEjPjckJCEwLzM7Jz5AVz0hIzkkITImeVtqRF5qIUglISM+NyQkITJCWCE0UVI6Qz0hIzskITFuL1c7PidSJGYhIz03JCQhMj1VJSlvWCUpWyE9ISM7JCEybG1HQ1liOiF5ISM+NyQkITJYJHBRUE8wJXkiISM7JCExXyY0cFhMUSwiISM8NyQkITImKiopemZOK1V3IiEjOyQhMUFfSCQ+UW1FIiEjPDckJCExLzM7N2RJVjwhIzokITIoRyllSjRFSmMiISM9NyQkITIkKXBSei0iUkM8ISM7JCEyX19DJ1xaJG8mPSEjPTckJCExRF0raG5bLjwhIzokITJ2MjViN1FyPyMhIz03JCQhMiQqKil6ZjZrTW8iISM7JCEydCN5NHopM2BjIyEjPTckJCEyYztMbT8hXGo7ISM7JCEyO3BZKGZka1RIISM9NyQkITJFXy80UUZFayIhIzskITIneXcrKzRUXkwhIz03JCQhMic+UnljPlRCOyEjOyQhMVFkZyMpSE9TUCEjPDckJCEyO05xU3RLUGciISM7JCEydjA1Y2A+azklISM9NyQkITFaJHBRYC8/ZSIhIzokITEiKSpcV11yISpmJSEjPDckJCEyIzM8TUc5TGk6ISM7JCEyRCcqeWldeSMzXSEjPTckJCEyVCNbJ0gqPkBVOiEjOyQhMkVTWloocFtAYSEjPTckJCEyYjhGYS9ePF8iISM7JCExbWNFcihvOCRlISM8NyQkITJqS2xJWFZIXSIhIzskITF0ckcyaWYlPichIzw3JCQhMTtLa29eKkdbIiEjOiQhMTRCI3ohNCFIYychIzw3JCQhMmpLbElcKipIWSIhIzskITFsNSdRKlxaL3AhIzw3JCQhMThFXy90clQ5ISM6JCExQXRAKDNbIlFzISM8NyQkITJvUHZdcE9IVSIhIzskITEwKVtJJVIoNF0oISM8NyQkITFoQVhxeEUsOSEjOiQhMTdgY3I5QWl4ISM8NyQkITJZIkhlT0tyIlEiISM7JCExVj5Da1gqWyZ6ISM8NyQkITJlPVB1L2xCTyIhIzskITE6XksneSNHLCIpISM8NyQkITIjKXBSekdpPk4iISM7JCExIikpUkJ6NTA7KSEjPDckJCEyMUBVJUcmZjpNIiEjOyQhMDZlMW8+YT8pISM7NyQkITIyP1MhM3JMTzghIzskITEmKltEJClIU0EjKSEjPDckJCEyMj5Rd285NkwiISM7JCEwMSNRTk9lTiMpISM7NyQkITIzPU9zRSMqZUsiISM7JCExJik9XjQpKipbQykhIzw3JCQhMjQ8TW8lKXAxSyIhIzskITFQUWkmPSJIXSMpISM8NyQkITImKW9QdkA9ZkoiISM7JCExKm9wIWZwdF4jKSEjPDckJCExMTdDKWVtNkoiISM6JCEvaiJbKT0lKVwjKSEjOjckJCEyT3NXKmVcVDE4ISM7JCExd2U0d1JjVyMpISM8NyQkITI3Q1snSExtLDghIzskITEqZXA3U2llQikhIzw3JCQhMil5ZDoiSHI6SCIhIzskITFrOydII1IlZT8pISM8NyQkITJsSmpFRHo5RyIhIzskITEuSnEkZVUpZiIpISM8NyQkITJlOkppYyJ5aDchIzskITEiR3YqcHB3QSEpISM8NyQkITIjZTtMbSFIL0MiISM7JCExdz8hXCtfOSF5ISM8NyQkITJEVidHPEsmPkEiISM7JCEwYyZvYTNCWnYhIzs3JCQhMlYjWydILkwyPyIhIzskITEoKT5BXnAtIz0oISM8NyQkITJFZz9UJVx5IT0iISM7JCExLyQpNHYlSGx3JyEjPDckJCEyN0lnP2BINTsiISM7JCExVWwnenYlKWVHJyEjPDckJCEyMTZBV1NlNzkiISM7JCExPUVIWyhSanQmISM8NyQkITJMa0dkNSQ0QDYhIzskITF6bllYOEcxXiEjPDckJCEyTm5NcEE9KCo0IiEjOyQhMW49LlVIc2pWISM8NyQkITJWITQ9YyY+LDMiISM7JCExLV1jQXEleWgkISM8NyQkITJsTXBRTlkvMiIhIzskITF6XTNHanNGSyEjPDckJCEyKCl5ZDo6dDIxIiEjOyQhMkJ1I2VAdWtCRyEjPTckJCExUHVbZEVWXTUhIzokITJ1RzppI1Ihb1AjISM9NyQkITJfMzxNOyM0UzUhIzskITFWNjxVIjNfIj4hIzw3JCQhMkRcKXB6VHhINSEjOyQhMm9HXCEpej0xVyIhIz03JCQhMikqKil6Zj5jJT41ISM7JCExaiVbQzhNIkcmKiEjPTckJCEwJioqKXo0Ryg0NSEjOSQhMTxXbDZDUDpbISM9NyQkISM1ISIiJCIiISEiIi0lJkNPTE9SRzYnJSRSR0JHJCIiISEiIiQiKCc+IVwmISIpJCIpQyllcSUhIiktJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUnQ1VSVkVTRzYkN1x4NyQkISNdISIiJCIiISEiIjckJCEydlwqKil6JnAqeVwhIzskIiIhISIiNyQkITEmND5RN3IxJ1whIzokIiIhISIiNyQkITEwND0nZiM0U1whIzokIiIhISIiNyQkITE9TnFnd1A+XCEjOiQiIiEhIiI3JCQhMSRcKXB6NncpKlshIzokIiIhISIiNyQkITFvTnJpcWt6WyEjOiQiIiEhIiI3JCQhMVYmMzxdYilmWyEjOiQiIiEhIiI3JCQhMmItMDUvKFFSWyEjOyQiIiEhIiI3JCQhMkRkOUhBJSkqPVshIzskIiIhISIiNyQkITE8TW87dSp6eiUhIzokIiIhISIiNyQkITFlO0xFQV56WiEjOiQiIiEhIiI3JCQhMTA1PyFHLShlWiEjOiQiIiEhIiI3JCQhMjA7S2spbyF5dCUhIzskIiIhISIiNyQkITFvTnItLm48WiEjOiQiIiEhIiI3JCQhMSopeWRiVlEqcCUhIzokIiIhISIiNyQkITEmKil5ZGZTd24lISM6JCIiISEiIjckJCExeGE0ejJBZlkhIzokIiIhISIiNyQkITFNb09gVHpQWSEjOiQiIiEhIiI3JCQhMXZcKipleiMpPVkhIzokIiIhISIiNyQkITFXKil5UCE+ISlmJSEjOiQiIiEhIiI3JCQhMSlmPlItLyN5WCEjOiQiIiEhIiI3JCQhMSNSeWM4SHZiJSEjOiQiIiEhIiI3JCQhMmxOclU4ViZRWCEjOyQiIiEhIiI3JCQhMXJUJG87ayE9WCEjOiQiIiEhIiI3JCQhMiZ6ZTx2QXonXCUhIzskIiIhISIiNyQkITF1WiY0LnYjeVchIzokIiIhISIiNyQkITEpXCoqKSoqZUZlVyEjOiQiIiEhIiI3JCQhMTpJZ1NbaFBXISM6JCIiISEiIjckJCExQlkjXC0tdVQlISM6JCIiISEiIjckJCExaEBWJzNYeVIlISM6JCIiISEiIjckJCExOklnUy84d1YhIzokIiIhISIiNyQkITFRd19sKT1tTiUhIzokIiIhISIiNyQkITFpQlolNCd5TlYhIzokIiIhISIiNyQkITEpb1B2XTNwSiUhIzokIiIhISIiNyQkITAoUno9LkYnSCUhIzkkIiIhISIiNyQkITImKnlkOlJeb0YlISM7JCIiISEiIjckJCExS2tHPEliY1UhIzokIiIhISIiNyQkITFjNkJZd3FPVSEjOiQiIiEhIiI3JCQhMVsmND5RSmZAJSEjOiQiIiEhIiI3JCQhMV4tMHE4I2Y+JSEjOiQiIiEhIiI3JCQhMDI5R0NlYTwlISM5JCIiISEiIjckJCExOklnZ1g7YlQhIzokIiIhISIiNyQkITFkOEZ1bl5PVCEjOiQiIiEhIiI3JCQhMXBPdDFWOTpUISM6JCIiISEiIjckJCExRFwpcF5HZzQlISM6JCIiISEiIjckJCExXy80KTRaYzIlISM6JCIiISEiIjckJCEwKnpmeiVSaDAlISM5JCIiISEiIjckJCExMjlHdyh5Vy4lISM6JCIiISEiIjckJCEwKFJ6KT5BZCwlISM5JCIiISEiIjckJCEyJiopeWQ6TFYlKlIhIzskIiIhISIiNyQkITFUI1snNDMudlIhIzokIiIhISIiNyQkITJYJHBRPHYhUSZSISM7JCIiISEiIjckJCExT3JVMGFcTlIhIzokIiIhISIiNyQkITEnPVB1L1NZIlIhIzokIiIhISIiNyQkITIuLjE3IVtcJSpRISM7JCIiISEiIjckJCEyWClvUDpGT3VRISM7JCIiISEiIjckJCEybEhmPXAvViZRISM7JCIiISEiIjckJCEya0VgMUBOXSRRISM7JCIiISEiIjckJCExemQ6IlIvVSJRISM6JCIiISEiIjckJCEyUHVbKDQ2TiV6JCEjOyQiIiEhIiI3JCQhMVsnSGZZY014JCEjOiQiIiEhIiI3JCQhMVYmMzx5VFh2JCEjOiQiIiEhIiI3JCQhMidwUXg5dmpMUCEjOyQiIiEhIiI3JCQhMVcoWyhwW2g4UCEjOiQiIiEhIiI3JCQhMig0P1NnNGskcCQhIzskIiIhISIiNyQkITFuTG5NInlGbiQhIzokIiIhISIiNyQkITJQd18wcmlObCQhIzskIiIhISIiNyQkITJkPlJ5WyQpUWokISM7JCIiISEiIjckJCExIj5Rd0diQGgkISM6JCIiISEiIjckJCExYDA2Iz0jWyNmJCEjOiQiIiEhIiI3JCQhMiRvT3RZRk9zTiEjOyQiIiEhIiI3JCQhMid6Zj4qeiw+YiQhIzskIiIhISIiNyQkITIvPE1vPyU0TE4hIzskIiIhISIiNyQkITIwMTdDI2YvOE4hIzskIiIhISIiNyQkITFyVCRvQ11KXCQhIzokIiIhISIiNyQkITFkOUhlIW89WiQhIzokIiIhISIiNyQkITI5QVcpW3UzYE0hIzskIiIhISIiNyQkITJiNUBVXz05ViQhIzskIiIhISIiNyQkITFmPE4hKlInPVQkISM6JCIiISEiIjckJCEwLjE3IWVeI1IkISM5JCIiISEiIjckJCEyYzA2QUc1PFAkISM7JCIiISEiIjckJCExOklnKzEjM04kISM6JCIiISEiIjckJCEyYDM8TTM5PUwkISM7JCIiISEiIjckJCEyMjtLaytJO0okISM7JCIiISEiIjckJCEqS0s+SCQhIikkIiIhISIiNyQkITJGXSssIyl6MEYkISM7JCIiISEiIjckJCExd18wclI1X0shIzokIiIhISIiNyQkITIlb090J3kkKTNCJCEjOyQiIiEhIiI3JCQhMVolKil5cE40QCQhIzokIiIhISIiNyQkITFZIkhlRyE9Ij4kISM6JCIiISEiIjckJCEyWiY0PmUiNDk8JCEjOyQiIiEhIiI3JCQhMnVbKFxmUUNeSiEjOyQiIiEhIiI3JCQhMndeLjIpKm8pSEohIzskIiIhISIiNyQkITFcKFwqNC5GNUohIzokIiIhISIiNyQkITJMakVgIVIjNDQkISM7JCIiISEiIjckJCEwJGY9PEhDcUkhIzkkIiIhISIiNyQkITJOdVsoXHBnXEkhIzskIiIhISIiNyQkITJ2ZTxOJVwzSkkhIzskIiIhISIiNyQkITJqR2Q5SFciNEkhIzskIiIhISIiNyQkITI6R2M3UCZ5ISpIISM7JCIyLnYkUnJhNllBISNCNyQkITEqemY+YjckcEghIzokIjAlKnBVTzw2KnohIz83JCQhMk1sSWgjKT0pW0ghIzskIjFUYEBwOGZ1TiEjPzckJCEyOERdK1A/MCRIISM7JCIxMTc5d2dDXicpISM/NyQkITAxN0MlPSUqNEghIzkkIjIoPTEpcFw8USI9ISM/NyQkITJNbk1wIXBBKilHISM7JCIxVGxIKFs2a0MkISM+NyQkITIkWydIZlU1J29HISM7JCIxMCR5bFsnMzJfISM+NyQkITFDWiUqM2pcXEchIzokIjFMNEppUnFRdiEjPjckJCExKXBSenUvKEhHISM6JCIyRCQ9Uiw+d1w1ISM+NyQkITEiPU9zR08jNEchIzokIjIjZVQtLyJbX1QiISM+NyQkITFIZDlwTSQpKXkjISM6JCIydCMqSDQpPW5SPSEjPjckJCExdFgiSG1ZeXcjISM6JCIxJFJsYU1ldUwjISM9NyQkITE5R2NzOU9cRiEjOiQiMXBnKD4lbz9ERyEjPTckJCExaEBWRTpiR0YhIzokIjIoWzVUVzA3RU0hIz43JCQhMmtKakU4Y3dxIyEjOyQiMXd4U0FLMiEzJSEjPTckJCEyTXNXKlsmPnZvIyEjOyQiMUIpKj5uKil6X1ohIz03JCQhMmIvND1nTCNwRSEjOyQiMnYmKVJIJlJ4JVImISM+NyQkITIuMDU/JSkqW1pFISM7JCIxYTRVI2Y3Jio9JyEjPTckJCEyTGpFYC1xIUhFISM7JCIxKHpXKVI2LCQpbyEjPTckJCEyKCopemYqUlZ3ZyMhIzskIjE5VWYzeXMveCEjPTckJCEyLzhFXz94JyllIyEjOyQiMTprVTluKXpWKSEjPTckJCEyMTU/U0dveWMjISM7JCIxeE0vWTEpKlIjKiEjPTckJCEyUHZdLEZgIVtEISM7JCIxR0UtL0hhIyoqKiEjPTckJCEyeGE0PlF5dF8jISM7JCIyLC4heXAkcGMyIiEjPTckJCEyQl4tMFEjUjNEISM7JCIwIzMuYXY1VjYhIzs3JCQhMm5LbElUOHpbIyEjOyQiMiJISSVRQCoqPkAiISM9NyQkITFOcVNAOmttQyEjOiQiMVx1QiwhPiR5NyEjPDckJCEyJEhmPXhVN1tDISM7JCIyYnI6N0AmKTNMIiEjPTckJCEyTWxJaDlEIkdDISM7JCIyJykpMzMncEc5USIhIz03JCQhMXJUJG8za3VTIyEjOiQiMiV5JikpUkcnKWZVIiEjPTckJCEyKHlkOnI3RChRIyEjOyQiMio9LnR2JzM3WSIhIz03JCQhMm1KakVMJXBuQiEjOyQiMiMpeUdLS3NtWyIhIz03JCQhMjI8TW9vemZNIyEjOyQiMldhajxjOlVdIiEjPTckJCExJXplPDZva0sjISM6JCIyYVVMPHIqcDQ6ISM9NyQkITJ2Xi4yTU5jSSMhIzskIjI5XHIhWycqPi86ISM9NyQkITJXJSlvUHZkbkcjISM7JCIxJipmOWhsailbIiEjPDckJCExRV4tbCY+aEUjISM6JCIyN20tTkUrKGY5ISM9NyQkITJYJSopeVAxcVlBISM7JCIyMWpgXzYyM1UiISM9NyQkITEpZTxORS1rQSMhIzokIjFfJilwOylceU8iISM8NyQkITI7SmlDKm9iMUEhIzskIjIzXnkjKT4+UUkiISM9NyQkITJMcVMiRzF5Jj0jISM7JCIyXElWRGxBUUEiISM9NyQkITEyOUc7MXhsQCEjOiQiMipSdikpKik+Uk02ISM9NyQkITJrQVghKlsyYDkjISM7JCIyWFE8ayNmbUk1ISM9NyQkITIxPE1vIVEsREAhIzskIjFwXDJ2cSEqZiIqISM9NyQkITE4RF0/Z08xQCEjOiQiMS0hKSp6NGB3KykhIz03JCQhMlgjWydIYiQqXDMjISM7JCIxJW9zdEspKil5bCEjPTckJCEwMztLd3hlMSMhIzkkIjFgJyk+XGRyNl8hIz03JCQhMTM7S1dqXFg/ISM6JCIyTi9mXGAhM3NPISM+NyQkITJjOUhlcykpZi0jISM7JCIxJTNFeTVaNzgjISM9NyQkITFqRF5BIUdWKyMhIzokIjFSXFMpUnkmKWYkISM+NyQkITJlN0RdV3JiKT4hIzskITJGcG10ZHVdQCIhIz43JCQhMmEvND1jI0drPiEjOyQhMXpGZmhnPSkzJCEjPTckJCExKFJ6ZTAhKVslPiEjOiQhMWZwaGxbREZcISM9NyQkITIzND1Pd2NPIz4hIzskITJsNCRbKUdfSDgoISM+NyQkITI4SGU7bFdgIT4hIzskITEzSWNFR0RKIyohIz03JCQhMVUkb09IKlslKT0hIzokITJXUl5rImYqcD0iISM9NyQkITJkPVB1L1dWJz0hIzskITInKil5Ol85NnA5ISM9NyQkITAvMzsnPkBXPSEjOSQhMVs6b1F5M3o8ISM8NyQkITJCWCE0UVI6Qz0hIzskITIuP2AiZiFwajYjISM9NyQkITI9VSUpb1glKVshPSEjOyQhMjNWNHdLS3FZIyEjPTckJCEyWCRwUVBPMCV5IiEjOyQhMU55PTskM1ooRyEjPDckJCEyJioqKXpmTitVdyIhIzskITE4IkhWK3omKkckISM8NyQkITEvMzs3ZElWPCEjOiQhMTxyVy0/Iz52JCEjPDckJCEyJClwUnotIlJDPCEjOyQhMSVlUlFAcTQ+JSEjPDckJCExRF0raG5bLjwhIzokITFKZWJUIiopZXAlISM8NyQkITIkKiopemY2a01vIiEjOyQhMmwkZmlQb2ImPiYhIz03JCQhMmM7TG0/IVxqOyEjOyQhMVhmc3l6JWZxJiEjPDckJCEyRV8vNFFGRWsiISM7JCEyd1psendqdUMnISM9NyQkITInPlJ5Yz5UQjshIzskITF0PCdSV3UnXG4hIzw3JCQhMjtOcVN0S1BnIiEjOyQhMWZRVydIKjNqcyEjPDckJCExWiRwUWAvP2UiISM6JCExLShvZyJlVkJ5ISM8NyQkITIjMzxNRzlMaTohIzskITBEJzQlKjNzPiQpISM7NyQkITJUI1snSCo+QFU6ISM7JCExRiZvUCYqUTYiKSkhIzw3JCQhMmI4RmEvXjxfIiEjOyQhMSRSUyg9NXQpRyohIzw3JCQhMmpLbElYVkhdIiEjOyQhMTpBZiJRKD0uKCohIzw3JCQhMTtLa29eKkdbIiEjOiQhMnZeWHpBKlI2NSEjPDckJCEyaktsSVwqKkhZIiEjOyQhMig9UG8xOFxbNSEjPDckJCExOEVfL3RyVDkhIzokITJgaWtmJzRgJDMiISM8NyQkITJvUHZdcE9IVSIhIzskITIpKj5iN3YpKSo0NiEjPDckJCExaEFYcXhFLDkhIzokITJvM0Q0VmFaOCIhIzw3JCQhMlkiSGVPS3IiUSIhIzskITE5RSMpKUhAODoiISM7NyQkITItMDU/OVI/UCIhIzskITJsKyFvYDJOZDYhIzw3JCQhMmU9UHUvbEJPIiEjOyQhMT5uRSQqKXk9OyIhIzs3JCQhMVUlKW9uTztkOCEjOiQhMVQpUU4pZm5qNiEjOzckJCEyIylwUnpHaT5OIiEjOyQhMmMtOzcjeSxsNiEjPDckJCEyVyY0PjM0d1k4ISM7JCEyeHomXF5zKmU7IiEjPDckJCEyMUBVJUcmZjpNIiEjOyQhMlkkeipmRTJqOyIhIzw3JCQhMjI/UyEzckxPOCEjOyQhMjdVVEp3Umk7IiEjPDckJCEyMj5Rd285NkwiISM7JCEyWncielZgb2w2ISM8NyQkITIzPU9zRSMqZUsiISM7JCEyanQqcClRUFk7IiEjPDckJCEyNDxNbyUpcDFLIiEjOyQhMnVtMG9XKjNqNiEjPDckJCExMTdDKWVtNkoiISM6JCEyQSYqXCxhcCplNiEjPDckJCEyN0NbJ0hMbSw4ISM7JCEyJEdtS1NxOGA2ISM8NyQkITJsSmpFRHo5RyIhIzskITJtUTBYVTlcOCIhIzw3JCQhMmU6SmljInloNyEjOyQhMjx5Pic+TkQ0NiEjPDckJCEyI2U7TG0hSC9DIiEjOyQhMiQ+UWkuJXlCMiIhIzw3JCQhMkRWJ0c8SyY+QSIhIzskITIieSVvR1MjcEs1ISM8NyQkITJWI1snSC5MMj8iISM7JCEwKWU7S0toIXkqISM7NyQkITJFZz9UJVx5IT0iISM7JCEwMDxFaUsheSIqISM7NyQkITI3SWc/YEg1OyIhIzskITFyIj1keCY0J1wpISM8NyQkITIxNkFXU2U3OSIhIzskITF6PyNbRFwjSHghIzw3JCQhMkxrR2Q1JDRANiEjOyQhMUonZVQkcFFobyEjPDckJCEyTm5NcEE9KCo0IiEjOyQhMSp6MiwqbzxcZSEjPDckJCEyViE0PWMmPiwzIiEjOyQhMk4vbEBdSi8lWyEjPTckJCEyKCl5ZDo6dDIxIiEjOyQhMU16MSY9JlJzUCEjPDckJCEyXzM8TTsjNFM1ISM7JCExKnkmNGcjZWViIyEjPDckJCEyKSoqKXpmPmMlPjUhIzskITJIZSJ6K1lvcTchIz03JCQhIzUhIiIkIiIhISIiLSUmQ09MT1JHNiclJFJHQkckIihoPiFIISIoJCIpQyllcSUhIikkIiIhISIiLSUrX0FUVFJJQlVURUc2Iy8lJ3NvdXJjZUclLG1hdGhkZWZhdWx0Ry0lJ0NVUlZFU0c2JDdceDckJCEjXSEiIiQiIiEhIiI3JCQhMnZcKiopeiZwKnlcISM7JCIiISEiIjckJCExJjQ+UTdyMSdcISM6JCIiISEiIjckJCExMDQ9J2YjNFNcISM6JCIiISEiIjckJCExPU5xZ3dQPlwhIzokIiIhISIiNyQkITEkXClwejZ3KSpbISM6JCIiISEiIjckJCExb05yaXFrelshIzokIiIhISIiNyQkITFWJjM8XWIpZlshIzokIiIhISIiNyQkITJiLTA1LyhRUlshIzskIiIhISIiNyQkITJEZDlIQSUpKj1bISM7JCIiISEiIjckJCExPE1vO3UqenolISM6JCIiISEiIjckJCExZTtMRUFeelohIzokIiIhISIiNyQkITEwNT8hRy0oZVohIzokIiIhISIiNyQkITIwO0trKW8heXQlISM7JCIiISEiIjckJCExb05yLS5uPFohIzokIiIhISIiNyQkITEqKXlkYlZRKnAlISM6JCIiISEiIjckJCExJiopeWRmU3duJSEjOiQiIiEhIiI3JCQhMXhhNHoyQWZZISM6JCIiISEiIjckJCExTW9PYFR6UFkhIzokIiIhISIiNyQkITF2XCoqZXojKT1ZISM6JCIiISEiIjckJCExVyopeVAhPiEpZiUhIzokIiIhISIiNyQkITEpZj5SLS8jeVghIzokIiIhISIiNyQkITEjUnljOEh2YiUhIzokIiIhISIiNyQkITJsTnJVOFYmUVghIzskIiIhISIiNyQkITFyVCRvO2shPVghIzokIiIhISIiNyQkITImemU8dkF6J1wlISM7JCIiISEiIjckJCExdVomNC52I3lXISM6JCIiISEiIjckJCExKVwqKikqKmVGZVchIzokIiIhISIiNyQkITE6SWdTW2hQVyEjOiQiIiEhIiI3JCQhMUJZI1wtLXVUJSEjOiQiIiEhIiI3JCQhMWhAViczWHlSJSEjOiQiIiEhIiI3JCQhMTpJZ1MvOHdWISM6JCIiISEiIjckJCExUXdfbCk9bU4lISM6JCIiISEiIjckJCExaUJaJTQneU5WISM6JCIiISEiIjckJCExKW9Qdl0zcEolISM6JCIiISEiIjckJCEwKFJ6PS5GJ0glISM5JCIiISEiIjckJCEyJip5ZDpSXm9GJSEjOyQiIiEhIiI3JCQhMUtrRzxJYmNVISM6JCIiISEiIjckJCExYzZCWXdxT1UhIzokIiIhISIiNyQkITFbJjQ+UUpmQCUhIzokIiIhISIiNyQkITFeLTBxOCNmPiUhIzokIiIhISIiNyQkITAyOUdDZWE8JSEjOSQiIiEhIiI3JCQhMTpJZ2dYO2JUISM6JCIiISEiIjckJCExZDhGdW5eT1QhIzokIiIhISIiNyQkITFwT3QxVjk6VCEjOiQiIiEhIiI3JCQhMURcKXBeR2c0JSEjOiQiIiEhIiI3JCQhMV8vNCk0WmMyJSEjOiQiIiEhIiI3JCQhMCp6ZnolUmgwJSEjOSQiIiEhIiI3JCQhMTI5R3coeVcuJSEjOiQiIiEhIiI3JCQhMChSeik+QWQsJSEjOSQiIiEhIiI3JCQhMiYqKXlkOkxWJSpSISM7JCIiISEiIjckJCExVCNbJzQzLnZSISM6JCIiISEiIjckJCEyWCRwUTx2IVEmUiEjOyQiIiEhIiI3JCQhMU9yVTBhXE5SISM6JCIiISEiIjckJCExJz1QdS9TWSJSISM6JCIiISEiIjckJCEyLi4xNyFbXCUqUSEjOyQiIiEhIiI3JCQhMlgpb1A6Rk91USEjOyQiIiEhIiI3JCQhMmxIZj1wL1YmUSEjOyQiIiEhIiI3JCQhMmtFYDFATl0kUSEjOyQiIiEhIiI3JCQhMXpkOiJSL1UiUSEjOiQiIiEhIiI3JCQhMlB1Wyg0Nk4leiQhIzskIiIhISIiNyQkITFbJ0hmWWNNeCQhIzokIiIhISIiNyQkITFWJjM8eVRYdiQhIzokIiIhISIiNyQkITIncFF4OXZqTFAhIzskIiIhISIiNyQkITFXKFsocFtoOFAhIzokIiIhISIiNyQkITIoND9TZzRrJHAkISM7JCIiISEiIjckJCExbkxuTSJ5Rm4kISM6JCIiISEiIjckJCEyUHdfMHJpTmwkISM7JCIiISEiIjckJCEyZD5SeVskKVFqJCEjOyQiIiEhIiI3JCQhMSI+UXdHYkBoJCEjOiQiIiEhIiI3JCQhMWAwNiM9I1sjZiQhIzokIiIhISIiNyQkITIkb090WUZPc04hIzskIiIhISIiNyQkITInemY+KnosPmIkISM7JCIiISEiIjckJCEyLzxNbz8lNExOISM7JCIiISEiIjckJCEyMDE3QyNmLzhOISM7JCIiISEiIjckJCExclQkb0NdSlwkISM6JCIiISEiIjckJCExZDlIZSFvPVokISM6JCIiISEiIjckJCEyOUFXKVt1M2BNISM7JCIiISEiIjckJCEyYjVAVV89OVYkISM7JCIiISEiIjckJCExZjxOISpSJz1UJCEjOiQiIiEhIiI3JCQhMC4xNyFlXiNSJCEjOSQiIiEhIiI3JCQhMmMwNkFHNTxQJCEjOyQiIiEhIiI3JCQhMTpJZysxIzNOJCEjOiQiIiEhIiI3JCQhMmAzPE0zOT1MJCEjOyQiIiEhIiI3JCQhMjI7S2srSTtKJCEjOyQiIiEhIiI3JCQhKktLPkgkISIpJCIiISEiIjckJCEyRl0rLCMpejBGJCEjOyQiIiEhIiI3JCQhMXdfMHJSNV9LISM6JCIiISEiIjckJCEyJW9PdCd5JCkzQiQhIzskIiIhISIiNyQkITFaJSopeXBONEAkISM6JCIiISEiIjckJCExWSJIZUchPSI+JCEjOiQiIiEhIiI3JCQhMlomND5lIjQ5PCQhIzskIiIhISIiNyQkITJ1WyhcZlFDXkohIzskIiIhISIiNyQkITJ3Xi4yKSpvKUhKISM7JCIiISEiIjckJCExXChcKjQuRjVKISM6JCIiISEiIjckJCEyTGpFYCFSIzQ0JCEjOyQiIiEhIiI3JCQhMCRmPTxIQ3FJISM5JCIiISEiIjckJCEyTnVbKFxwZ1xJISM7JCIiISEiIjckJCEydmU8TiVcM0pJISM7JCIiISEiIjckJCEyakdkOUhXIjRJISM7JCIiISEiIjckJCEyOkdjN1AmeSEqSCEjOyQiMEIkKUdJVSt2JyEjQjckJCExKnpmPmI3JHBIISM6JCIxKHBFYkMlM2V5ISNBNyQkITJNbEloIyk9KVtIISM7JCIyJUdpZTwhcEx3JiEjQTckJCEyOERdK1A/MCRIISM7JCIyI2ZuQT9bXms9ISNANyQkITAxN0MlPSUqNEghIzkkIjF0KVxkaHokeVwhIz83JCQhMk1uTXAhcEEqKUchIzskIjJZd01gcjNrMiIhIz83JCQhMiRbJ0hmVTUnb0chIzskIjJgYzxiXEQzLCMhIz83JCQhMUNaJSozalxcRyEjOiQiMSRHUSZ5NSd6RiQhIz43JCQhMSlwUnp1LyhIRyEjOiQiMXpAXXY7T3NdISM+NyQkITEiPU9zR08jNEchIzokIjFlUVUpKlFFO3YhIz43JCQhMUhkOXBNJCkpeSMhIzokIjI4KCl6VFBFNDEiISM+NyQkITF0WCJIbVl5dyMhIzokIjFUWHVFPldfOSEjPTckJCExOUdjczlPXEYhIzokIjIuamxfS2U5Jz0hIz43JCQhMWhAVkU6YkdGISM6JCIyVnpQWjE9XFIjISM+NyQkITJrSmpFOGN3cSMhIzskIjFMJlxhLFR2KyQhIz03JCQhMk1zVypbJj52byMhIzskIjIlZjQ2c2A6b08hIz43JCQhMmIvND1nTCNwRSEjOyQiMSJmOjlxIypSSyUhIz03JCQhMi4wNT8lKSpbWkUhIzskIjFGTDg2Q1ptXiEjPTckJCEyTGpFYC1xIUhFISM7JCIxLHRYM15XRWYhIz03JCQhMigqKXpmKlJWd2cjISM7JCIxT1VleiYpemBvISM9NyQkITIvOEVfP3gnKWUjISM7JCIyd1cjNC9yaS54ISM+NyQkITIxNT9TR295YyMhIzskIjBOTWUnXCZcbCkhIzw3JCQhMlB2XSxGYCFbRCEjOyQiMShmOkgkPmVtJiohIz03JCQhMnhhND5ReXRfIyEjOyQiMkVPT1YhKlE0MCIhIz03JCQhMkJeLTBRI1IzRCEjOyQiMixqVkBya2E4IiEjPTckJCEybktsSVQ4elsjISM7JCIyLXg+TEwnKkhBIiEjPTckJCExTnFTQDprbUMhIzokIjIzOFwqZSc+JDM4ISM9NyQkITIkSGY9eFU3W0MhIzskIjJFY2wlW3NsdzghIz03JCQhMk1sSWg5RCJHQyEjOyQiMl9tZkMjPSdIVyIhIz03JCQhMXJUJG8za3VTIyEjOiQiMi0iNChRd2I+XSIhIz03JCQhMih5ZDpyN0QoUSMhIzskIjJBLCJlTTkzXDohIz03JCQhMm1KakVMJXBuQiEjOyQiMk0zM21pa09lIiEjPTckJCEyMjxNb296Zk0jISM7JCIyNy5bNUYzJDM7ISM9NyQkITElemU8Nm9rSyMhIzokIjFbIkhPbz50aCIhIzw3JCQhMnZeLjJNTmNJIyEjOyQiMSVwPiYpR3BEaCIhIzw3JCQhMlclKW9QdmRuRyMhIzskIjJXUClcOEIxJmYiISM9NyQkITFFXi1sJj5oRSMhIzokIjJ4J0cwPSJIOGMiISM9NyQkITJYJSopeVAxcVlBISM7JCIyKil6JGY1N2s6OiEjPTckJCExKWU8TkUta0EjISM6JCIyI2ZcNm1rZmA5ISM9NyQkITI7SmlDKm9iMUEhIzskIjIqZipcW010Ino4ISM9NyQkITJMcVMiRzF5Jj0jISM7JCIxXikpSEZXRShHIiEjPDckJCExMjlHOzF4bEAhIzokIjJZQT8qb18mZj0iISM9NyQkITJrQVghKlsyYDkjISM7JCIydSNcQEwlKkhxNSEjPTckJCEyMTxNbyFRLERAISM7JCIxTWhWUiQqPlklKiEjPTckJCExOERdP2dPMUAhIzokIjF6RVhiJ1tbPykhIz03JCQhMlgjWydIYiQqXDMjISM7JCIwX087VW1GcCchIzw3JCQhMDM7S3d4ZTEjISM5JCIxPVVlVypIMkYmISM9NyQkITEzO0tXalxYPyEjOiQiMmFZL3RPJHokcCQhIz43JCQhMmM5SGVzKSlmLSMhIzskIjFISSJHK0tkOCMhIz03JCQhMWpEXkEhR1YrIyEjOiQiMVsncDl6NCkpZiQhIz43JCQhMmU3RF1XcmIpPiEjOyQhMnJad3UnPis2NyEjPjckJCEyYS80PWMjR2s+ISM7JCExJmUmcGUzJ0cuJCEjPTckJCExKFJ6ZTAhKVslPiEjOiQhMjoqNFEmKlslUnUlISM+NyQkITIzND1Pd2NPIz4hIzskITF4eCJvUSdwKnAnISM9NyQkITI4SGU7bFdgIT4hIzskITEicHhPNEVzWykhIz03JCQhMVUkb09IKlslKT0hIzokITI6Umc+Qit1MSIhIz03JCQhMmQ9UHUvV1YnPSEjOyQhMlVkJW8uWCF5SCIhIz03JCQhMC8zOyc+QFc9ISM5JCExTERCInksMmIiISM8NyQkITJCWCE0UVI6Qz0hIzskITFjJiozaigpZUc9ISM8NyQkITI9VSUpb1glKVshPSEjOyQhMmAnR0VUV2dBQCEjPTckJCEyWCRwUVBPMCV5IiEjOyQhMVRDWzpCZXNDISM8NyQkITImKiopemZOK1V3IiEjOyQhMnUiPnJTIylvUUchIz03JCQhMS8zOzdkSVY8ISM6JCExIiopKlxtaykqZUshIzw3JCQhMiQpcFJ6LSJSQzwhIzskITE3N3VtYjlxTyEjPDckJCExRF0raG5bLjwhIzokITE4IlFyJyk9czolISM8NyQkITIkKiopemY2a01vIiEjOyQhMjsqelEvI1FQbCUhIz03JCQhMmM7TG0/IVxqOyEjOyQhMiUqR0MrMDtfPCYhIz03JCQhMkVfLzRRRkVrIiEjOyQhMTZIWkQhek51JiEjPDckJCEyJz5SeWM+VEI7ISM7JCExQC85UXIhUkcnISM8NyQkITI7TnFTdEtQZyIhIzskITE8NmE7QSEpW28hIzw3JCQhMVokcFFgLz9lIiEjOiQhMVpcZks3Mnp1ISM8NyQkITIjMzxNRzlMaTohIzskITE3Q15VdHBbISkhIzw3JCQhMlQjWydIKj5AVTohIzskITFUKioqPXBdR2kpISM8NyQkITJiOEZhL148XyIhIzskITE6Yj5qbzshPiohIzw3JCQhMmpLbElYVkhdIiEjOyQhMHZqP2d1KCpvKiEjOzckJCExO0trb14qR1siISM6JCEyczU6QzFuIj41ISM8NyQkITJqS2xJXCoqSFkiISM7JCEydVpHNix5XTEiISM8NyQkITE4RV8vdHJUOSEjOiQhMiY0bmxQUy00NiEjPDckJCEyb1B2XXBPSFUiISM7JCEyOGhpSiFcbVU2ISM8NyQkITFoQVhxeEUsOSEjOiQhMTZ5IipvKClvdTYhIzs3JCQhMlkiSGVPS3IiUSIhIzskITEpUlFgOHVtPiIhIzs3JCQhMi0wNT85Uj9QIiEjOyQhMkhNQE4wVVw/IiEjPDckJCEyZT1QdS9sQk8iISM7JCEyJip6J3lweFI2NyEjPDckJCEyIylwUnpHaT5OIiEjOyQhMjpOKlxkMUQ7NyEjPDckJCEyMUBVJUcmZjpNIiEjOyQhMndCSFMoRygpPTchIzw3JCQhMmM/VCM9JFsqUTghIzskITJfViEqZVl0Ij43ISM8NyQkITIyP1MhM3JMTzghIzskITJkSCRIJXBHJD43ISM8NyQkITJkPlJ5KmVzTDghIzskITIjKXpGQ25QJD43ISM8NyQkITIyPlF3bzk2TCIhIzskITJOSWYnUSYqPj43ISM8NyQkITIzPU9zRSMqZUsiISM7JCEyRW8hPTsneSU9NyEjPDckJCEyNDxNbyUpcDFLIiEjOyQhMjNeO2dhZnJAIiEjPDckJCExMTdDKWVtNkoiISM6JCEyNHMiUnVhPzg3ISM8NyQkITI3Q1snSExtLDghIzskITJNUGZ5JCo9cz8iISM8NyQkITJsSmpFRHo5RyIhIzskITJFKUcoPSY9ayg9IiEjPDckJCEyZTpKaWMieWg3ISM7JCExLkEzYiMqUmY2ISM7NyQkITIjZTtMbSFIL0MiISM7JCEyQ1NfTyYpKls9NiEjPDckJCEyRFYnRzxLJj5BIiEjOyQhMiQ9d2kjemNXMiIhIzw3JCQhMlYjWydILkwyPyIhIzskITJgJFIlZi40VCwiISM8NyQkITJFZz9UJVx5IT0iISM7JCEvNDpDMVshWyohIzo3JCQhMjdJZz9gSDU7IiEjOyQhMUdScz0peilSKCkhIzw3JCQhMjE2QVdTZTc5IiEjOyQhMSMzIXpIZCw7eiEjPDckJCEyTGtHZDUkNEA2ISM7JCExI1E/ZD89WSpwISM8NyQkITJObk1wQT0oKjQiISM7JCEyJmVjInBtW08kZiEjPTckJCEyViE0PWMmPiwzIiEjOyQhMmFYbEAtZCUqKVshIz03JCQhMigpeWQ6OnQyMSIhIzskITJha0g3aD5peiQhIz03JCQhMl8zPE07IzRTNSEjOyQhMSY9PTY0L05jIyEjPDckJCEyKSoqKXpmPmMlPjUhIzskITEjKXkjUnlkO0YiISM8NyQkISM1ISIiJCExXzcrKD4leSIpKSkhI0otJSZDT0xPUkc2JyUkUkdCRyQiKUVQSkMhIikkIilbdzZNISIpJCIobDxUJiEiKC0lK19BVFRSSUJVVEVHNiMvJSdzb3VyY2VHJSxtYXRoZGVmYXVsdEctJSdDVVJWRVNHNiQ3XHg3JCQhI10hIiIkIiIhISIiNyQkITJ2XCoqKXomcCp5XCEjOyQiIiEhIiI3JCQhMSY0PlE3cjEnXCEjOiQiIiEhIiI3JCQhMTA0PSdmIzRTXCEjOiQiIiEhIiI3JCQhMT1OcWd3UD5cISM6JCIiISEiIjckJCExJFwpcHo2dykqWyEjOiQiIiEhIiI3JCQhMW9Ocmlxa3pbISM6JCIiISEiIjckJCExViYzPF1iKWZbISM6JCIiISEiIjckJCEyYi0wNS8oUVJbISM7JCIiISEiIjckJCEyRGQ5SEElKSo9WyEjOyQiIiEhIiI3JCQhMTxNbzt1Knp6JSEjOiQiIiEhIiI3JCQhMWU7TEVBXnpaISM6JCIiISEiIjckJCExMDU/IUctKGVaISM6JCIiISEiIjckJCEyMDtLaylvIXl0JSEjOyQiIiEhIiI3JCQhMW9Oci0ubjxaISM6JCIiISEiIjckJCExKil5ZGJWUSpwJSEjOiQiIiEhIiI3JCQhMSYqKXlkZlN3biUhIzokIiIhISIiNyQkITF4YTR6MkFmWSEjOiQiIiEhIiI3JCQhMU1vT2BUelBZISM6JCIiISEiIjckJCExdlwqKmV6Iyk9WSEjOiQiIiEhIiI3JCQhMVcqKXlQIT4hKWYlISM6JCIiISEiIjckJCExKWY+Ui0vI3lYISM6JCIiISEiIjckJCExI1J5YzhIdmIlISM6JCIiISEiIjckJCEybE5yVThWJlFYISM7JCIiISEiIjckJCExclQkbztrIT1YISM6JCIiISEiIjckJCEyJnplPHZBeidcJSEjOyQiIiEhIiI3JCQhMXVaJjQudiN5VyEjOiQiIiEhIiI3JCQhMSlcKiopKiplRmVXISM6JCIiISEiIjckJCExOklnU1toUFchIzokIiIhISIiNyQkITFCWSNcLS11VCUhIzokIiIhISIiNyQkITFoQFYnM1h5UiUhIzokIiIhISIiNyQkITE6SWdTLzh3ViEjOiQiIiEhIiI3JCQhMVF3X2wpPW1OJSEjOiQiIiEhIiI3JCQhMWlCWiU0J3lOViEjOiQiIiEhIiI3JCQhMSlvUHZdM3BKJSEjOiQiIiEhIiI3JCQhMChSej0uRidIJSEjOSQiIiEhIiI3JCQhMiYqeWQ6Ul5vRiUhIzskIiIhISIiNyQkITFLa0c8SWJjVSEjOiQiIiEhIiI3JCQhMWM2Qll3cU9VISM6JCIiISEiIjckJCExWyY0PlFKZkAlISM6JCIiISEiIjckJCExXi0wcTgjZj4lISM6JCIiISEiIjckJCEwMjlHQ2VhPCUhIzkkIiIhISIiNyQkITE6SWdnWDtiVCEjOiQiIiEhIiI3JCQhMWQ4RnVuXk9UISM6JCIiISEiIjckJCExcE90MVY5OlQhIzokIiIhISIiNyQkITFEXClwXkdnNCUhIzokIiIhISIiNyQkITFfLzQpNFpjMiUhIzokIiIhISIiNyQkITAqemZ6JVJoMCUhIzkkIiIhISIiNyQkITEyOUd3KHlXLiUhIzokIiIhISIiNyQkITAoUnopPkFkLCUhIzkkIiIhISIiNyQkITImKil5ZDpMViUqUiEjOyQiIiEhIiI3JCQhMVQjWyc0My52UiEjOiQiIiEhIiI3JCQhMlgkcFE8diFRJlIhIzskIiIhISIiNyQkITFPclUwYVxOUiEjOiQiIiEhIiI3JCQhMSc9UHUvU1kiUiEjOiQiIiEhIiI3JCQhMi4uMTchW1wlKlEhIzskIiIhISIiNyQkITJYKW9QOkZPdVEhIzskIiIhISIiNyQkITJsSGY9cC9WJlEhIzskIiIhISIiNyQkITJrRWAxQE5dJFEhIzskIiIhISIiNyQkITF6ZDoiUi9VIlEhIzokIiIhISIiNyQkITJQdVsoNDZOJXokISM7JCIiISEiIjckJCExWydIZlljTXgkISM6JCIiISEiIjckJCExViYzPHlUWHYkISM6JCIiISEiIjckJCEyJ3BReDl2akxQISM7JCIiISEiIjckJCExVyhbKHBbaDhQISM6JCIiISEiIjckJCEyKDQ/U2c0ayRwJCEjOyQiIiEhIiI3JCQhMW5Mbk0ieUZuJCEjOiQiIiEhIiI3JCQhMlB3XzByaU5sJCEjOyQiIiEhIiI3JCQhMmQ+UnlbJClRaiQhIzskIiIhISIiNyQkITEiPlF3R2JAaCQhIzokIiIhISIiNyQkITFgMDYjPSNbI2YkISM6JCIiISEiIjckJCEyJG9PdFlGT3NOISM7JCIiISEiIjckJCEyJ3pmPip6LD5iJCEjOyQiIiEhIiI3JCQhMi88TW8/JTRMTiEjOyQiIiEhIiI3JCQhMjAxN0MjZi84TiEjOyQiIiEhIiI3JCQhMXJUJG9DXUpcJCEjOiQiIiEhIiI3JCQhMWQ5SGUhbz1aJCEjOiQiIiEhIiI3JCQhMjlBVylbdTNgTSEjOyQiIiEhIiI3JCQhMmI1QFVfPTlWJCEjOyQiIiEhIiI3JCQhMWY8TiEqUic9VCQhIzokIiIhISIiNyQkITAuMTchZV4jUiQhIzkkIiIhISIiNyQkITJjMDZBRzU8UCQhIzskIiIhISIiNyQkITE6SWcrMSMzTiQhIzokIiIhISIiNyQkITJgMzxNMzk9TCQhIzskIiIhISIiNyQkITIyO0trK0k7SiQhIzskIiIhISIiNyQkISpLSz5IJCEiKSQiIiEhIiI3JCQhMkZdKywjKXowRiQhIzskIiIhISIiNyQkITF3XzByUjVfSyEjOiQiIiEhIiI3JCQhMiVvT3QneSQpM0IkISM7JCIiISEiIjckJCExWiUqKXlwTjRAJCEjOiQiIiEhIiI3JCQhMVkiSGVHIT0iPiQhIzokIiIhISIiNyQkITJaJjQ+ZSI0OTwkISM7JCIiISEiIjckJCEydVsoXGZRQ15KISM7JCIiISEiIjckJCEyd14uMikqbylISiEjOyQiIiEhIiI3JCQhMVwoXCo0LkY1SiEjOiQiIiEhIiI3JCQhMkxqRWAhUiM0NCQhIzskIiIhISIiNyQkITAkZj08SENxSSEjOSQiIiEhIiI3JCQhMk51WyhccGdcSSEjOyQiIiEhIiI3JCQhMnZlPE4lXDNKSSEjOyQiIiEhIiI3JCQhMmpHZDlIVyI0SSEjOyQiIiEhIiI3JCQhMjpHYzdQJnkhKkghIzskIjFEJkhlYjNYJz4hI0Q3JCQhMSp6Zj5iNyRwSCEjOiQiMSVIWCZvKWUjZiIpISNCNyQkITJNbEloIyk9KVtIISM7JCIxJDNPISpbWSoqeSohI0E3JCQhMjhEXStQPzAkSCEjOyQiMWksR2FEJXpBJSEjQDckJCEwMTdDJT0lKjRIISM5JCIyMzklKkd2R11WIiEjQDckJCEyTW5NcCFwQSopRyEjOyQiMFptLSQ+JTN1JCEjPjckJCEyJFsnSGZVNSdvRyEjOyQiMVohUjRsSUY3KSEjPzckJCExQ1olKjNqXFxHISM6JCIxdTwrVjIzKVsiISM+NyQkITEpcFJ6dS8oSEchIzokIjElMzVYJm9tYEQhIz43JCQhMSI9T3NHTyM0RyEjOiQiMV9gJylmcT9dVCEjPjckJCExSGQ5cE0kKSl5IyEjOiQiMC49elRWcU0nISM9NyQkITF0WCJIbVl5dyMhIzokIjB3IWZqZiMzTSohIz03JCQhMTlHY3M5T1xGISM6JCIxKVJkdyE0cm03ISM9NyQkITFoQFZFOmJHRiEjOiQiMnlCSCEzZiVbcyIhIz43JCQhMmtKakU4Y3dxIyEjOyQiMTYyOkxEXHlBISM9NyQkITJNc1cqWyY+dm8jISM7JCIyJ2U3dT5dXi1IISM+NyQkITJiLzQ9Z0wjcEUhIzskIjJFNVkjKmUmPVhOISM+NyQkITIuMDU/JSkqW1pFISM7JCIwWShlUSdSIypSJSEjPDckJCEyTGpFYC1xIUhFISM7JCIxZVdwbVMwJD4mISM9NyQkITIoKil6ZipSVndnIyEjOyQiMHNcJEd2QCg9JyEjPDckJCEyLzhFXz94JyllIyEjOyQiMSZvVFgueCQ+ciEjPTckJCEyMTU/U0dveWMjISM7JCIxS3NCb0BEJD0pISM9NyQkITJQdl0sRmAhW0QhIzskIjFsKDRKNTwqPiMqISM9NyQkITJ4YTQ+UXl0XyMhIzskIjI3SyUpZV0mb0k1ISM9NyQkITJCXi0wUSNSM0QhIzskIjB2ODBWKT1INiEjOzckJCEybktsSVQ4elsjISM7JCIyJkdsIT5TQz9CIiEjPTckJCExTnFTQDprbUMhIzokIjFrZVRiTCZHTCIhIzw3JCQhMiRIZj14VTdbQyEjOyQiMSJvIWYlKTQmUVQiISM8NyQkITJNbEloOUQiR0MhIzskIjJRTioqZVRpQ1wiISM9NyQkITFyVCRvM2t1UyMhIzokIjJcLjpXJT1BaTohIz03JCQhMih5ZDpyN0QoUSMhIzskIjIxUEAib0FmPDshIz03JCQhMm1KakVMJXBuQiEjOyQiMiZlSSJISGV4bCIhIz03JCQhMjI8TW9vemZNIyEjOyQiMm0iM3ZDJipwJm8iISM9NyQkITElemU8Nm9rSyMhIzokIjJGejFYW3RdcCIhIz03JCQhMnZeLjJNTmNJIyEjOyQiMl9dQzVvTiIpbyIhIz03JCQhMlclKW9QdmRuRyMhIzskIjI8KWU0MkRlbTshIz03JCQhMUVeLWwmPmhFIyEjOiQiMEFRLkxXbGkiISM7NyQkITJYJSopeVAxcVlBISM7JCIyYT1mZ09bTmQiISM9NyQkITEpZTxORS1rQSMhIzokIjItLzt5VVRIXSIhIz03JCQhMjtKaUMqb2IxQSEjOyQiMkxQbkxeXig+OSEjPTckJCEyTHFTIkcxeSY9IyEjOyQiMkRddyYqNCd6PTghIz03JCQhMTI5RzsxeGxAISM6JCIyLUk7a3glUTQ3ISM9NyQkITJrQVghKlsyYDkjISM7JCIyUCslbz9DWiczIiEjPTckJCEyMTxNbyFRLERAISM7JCIxcl5RSWA0XCYqISM9NyQkITE4RF0/Z08xQCEjOiQiMFIlPmFkVm0jKSEjPDckJCEyWCNbJ0hiJCpcMyMhIzskIi48QSxqPXMnISM6NyQkITAzO0t3eGUxIyEjOSQiMUxhTG5CbSNHJiEjPTckJCExMztLV2pcWD8hIzokIjJkUnhCWyIqb3AkISM+NyQkITJjOUhlcykpZi0jISM7JCIxWz1CNl01T0AhIz03JCQhMWpEXkEhR1YrIyEjOiQiMjohSEZhPCIpKWYkISM/NyQkITJlN0RdV3JiKT4hIzskITInPihcTW82M0AiISM+NyQkITJhLzQ9YyNHaz4hIzskITInUVdDIioqKmZFSSEjPjckJCExKFJ6ZTAhKVslPiEjOiQhMSM+OyRbZWQ3WiEjPTckJCEyMzQ9T3djTyM+ISM7JCExOUVEY1dKKmYnISM9NyQkITI4SGU7bFdgIT4hIzskITE+aS9sI0h4RikhIz03JCQhMVUkb09IKlslKT0hIzokITIyZzosZV9zLSIhIz03JCQhMmQ9UHUvV1YnPSEjOyQhMmxzTSR5bCE9QiIhIz03JCQhMC8zOyc+QFc9ISM5JCEyIlwqKWYhNDQ/WCIhIz03JCQhMkJYITRRUjpDPSEjOyQhMlUnZjpkT2IicCIhIz03JCQhMj1VJSlvWCUpWyE9ISM7JCEyJTNaJykqUnhbJT4hIz03JCQhMlgkcFFQTzAleSIhIzskITFrSCkzQnQpW0EhIzw3JCQhMiYqKil6Zk4rVXciISM7JCEyWk0tKm9cc3JEISM9NyQkITEvMzs3ZElWPCEjOiQhMigqKT0/aFYmKlxIISM9NyQkITIkKXBSei0iUkM8ISM7JCExJ3B1MGchXEdMISM8NyQkITFEXStoblsuPCEjOiQhMXBXInBTRSEpeSQhIzw3JCQhMiQqKil6ZjZrTW8iISM7JCExJXAqKXAmW2ZvVSEjPDckJCEyYztMbT8hXGo7ISM7JCEyd2dzeW9vZXklISM9NyQkITJFXy80UUZFayIhIzskITFDdFoiSGBMTyYhIzw3JCQhMic+UnljPlRCOyEjOyQhMV5JbzQ1aUNmISM8NyQkITI7TnFTdEtQZyIhIzskITEsQ3FbQzlCbCEjPDckJCExWiRwUWAvP2UiISM6JCExPlxxaCM0UT8oISM8NyQkITIjMzxNRzlMaTohIzskITFYIyplYDFgSHkhIzw3JCQhMlQjWydIKj5AVTohIzskITFFJSlbKHAoR3AlKSEjPDckJCEyYjhGYS9ePF8iISM7JCExa3AocG1jJDQiKiEjPDckJCEyaktsSVhWSF0iISM7JCExJ3AvRE1kKHknKiEjPDckJCExO0trb14qR1siISM6JCEydmAkPTsuYUQ1ISM8NyQkITJqS2xJXCoqSFkiISM7JCEyJ1F1aiM+Ryd5NSEjPDckJCExOEVfL3RyVDkhIzokITJreWpIQyFvSDYhIzw3JCQhMm9Qdl1wT0hVIiEjOyQhMm9OSm5UbylvNiEjPDckJCExaEFYcXhFLDkhIzokITJoU1RiIUhAMTchIzw3JCQhMlkiSGVPS3IiUSIhIzskITJHYHMnW0slPUIiISM8NyQkITItMDU/OVI/UCIhIzskITJKSiNSJVt1OUMiISM8NyQkITJlPVB1L2xCTyIhIzskITIpKUdiJDQ9KipbNyEjPDckJCEyIylwUnpHaT5OIiEjOyQhMTRzIT1sWFlEIiEjOzckJCEyMUBVJUcmZjpNIiEjOyQhMjJGMDgtO3hEIiEjPDckJCEyYz9UIz0kWypROCEjOyQhMk9NJikpb1QyZTchIzw3JCQhMjI/UyEzckxPOCEjOyQhMSZSZTo3bCNlNyEjOzckJCEyZD5SeSplc0w4ISM7JCEyJzQicDY4KUdlNyEjPDckJCEyMj5Rd285NkwiISM7JCEydG50SVxVImU3ISM8NyQkITIzPU9zRSMqZUsiISM7JCEyJ3luR3JFTWQ3ISM8NyQkITI0PE1vJSlwMUsiISM7JCEyKSp6KipRKTMnZUQiISM8NyQkITExN0MpZW02SiIhIzokITJHJlJpPj9TXjchIzw3JCQhMjdDWydITG0sOCEjOyQhMih5K1ckPWBZQyIhIzw3JCQhMmxKakVEejlHIiEjOyQhMkYnb0MjKTNvQTchIzw3JCQhMmU6SmljInloNyEjOyQhMmt3TT9MUzc+IiEjPDckJCEyI2U7TG0hSC9DIiEjOyQhMjFnRC4pKWVoOSIhIzw3JCQhMkRWJ0c8SyY+QSIhIzskITJvXSU+QlY6KTQiISM8NyQkITJWI1snSC5MMj8iISM7JCEyVDFmSic9Nkw1ISM8NyQkITJFZz9UJVx5IT0iISM7JCExIlsjR3p5bEYnKiEjPDckJCEyN0lnP2BINTsiISM7JCExamBuclo0WykpISM8NyQkITIxNkFXU2U3OSIhIzskITF2JFtSZWIvKnohIzw3JCQhMkxrR2Q1JDRANiEjOyQhMT4pKmYrKTM3LyghIzw3JCQhMk5uTXBBPSgqNCIhIzskITJrJ1EpNGZsJmVmISM9NyQkITJWITQ9YyY+LDMiISM7JCExOUhObypHOCFcISM8NyQkITIoKXlkOjp0MjEiISM7JCExbkQmMyR5bytRISM8NyQkITJfMzxNOyM0UzUhIzskITIkUTRPMTRaa0QhIz03JCQhMikqKil6Zj5jJT41ISM7JCEyZUxwb3k9PEYiISM9NyQkISM1ISIiJCEyLjpTTzU5ZTEiISNJLSUmQ09MT1JHNiclJFJHQkckIilDKWVxJSEiKSQiIiEhIiIkIikkKWVxVyEiKS0lK19BVFRSSUJVVEVHNiMvJSdzb3VyY2VHJSxtYXRoZGVmYXVsdEctJSdDVVJWRVNHNiQ3anc3JCQhI10hIiIkIiIhISIiNyQkITJ2XCoqKXomcCp5XCEjOyQiIiEhIiI3JCQhMSY0PlE3cjEnXCEjOiQiIiEhIiI3JCQhMTA0PSdmIzRTXCEjOiQiIiEhIiI3JCQhMT1OcWd3UD5cISM6JCIiISEiIjckJCExJFwpcHo2dykqWyEjOiQiIiEhIiI3JCQhMW9Ocmlxa3pbISM6JCIiISEiIjckJCExViYzPF1iKWZbISM6JCIiISEiIjckJCEyYi0wNS8oUVJbISM7JCIiISEiIjckJCEyRGQ5SEElKSo9WyEjOyQiIiEhIiI3JCQhMTxNbzt1Knp6JSEjOiQiIiEhIiI3JCQhMWU7TEVBXnpaISM6JCIiISEiIjckJCExMDU/IUctKGVaISM6JCIiISEiIjckJCEyMDtLaylvIXl0JSEjOyQiIiEhIiI3JCQhMW9Oci0ubjxaISM6JCIiISEiIjckJCExKil5ZGJWUSpwJSEjOiQiIiEhIiI3JCQhMSYqKXlkZlN3biUhIzokIiIhISIiNyQkITF4YTR6MkFmWSEjOiQiIiEhIiI3JCQhMU1vT2BUelBZISM6JCIiISEiIjckJCExdlwqKmV6Iyk9WSEjOiQiIiEhIiI3JCQhMVcqKXlQIT4hKWYlISM6JCIiISEiIjckJCExKWY+Ui0vI3lYISM6JCIiISEiIjckJCExI1J5YzhIdmIlISM6JCIiISEiIjckJCEybE5yVThWJlFYISM7JCIiISEiIjckJCExclQkbztrIT1YISM6JCIiISEiIjckJCEyJnplPHZBeidcJSEjOyQiIiEhIiI3JCQhMXVaJjQudiN5VyEjOiQiIiEhIiI3JCQhMSlcKiopKiplRmVXISM6JCIiISEiIjckJCExOklnU1toUFchIzokIiIhISIiNyQkITFCWSNcLS11VCUhIzokIiIhISIiNyQkITFoQFYnM1h5UiUhIzokIiIhISIiNyQkITE6SWdTLzh3ViEjOiQiIiEhIiI3JCQhMVF3X2wpPW1OJSEjOiQiIiEhIiI3JCQhMWlCWiU0J3lOViEjOiQiIiEhIiI3JCQhMSlvUHZdM3BKJSEjOiQiIiEhIiI3JCQhMChSej0uRidIJSEjOSQiIiEhIiI3JCQhMiYqeWQ6Ul5vRiUhIzskIiIhISIiNyQkITFLa0c8SWJjVSEjOiQiIiEhIiI3JCQhMWM2Qll3cU9VISM6JCIiISEiIjckJCExWyY0PlFKZkAlISM6JCIiISEiIjckJCExXi0wcTgjZj4lISM6JCIiISEiIjckJCEwMjlHQ2VhPCUhIzkkIiIhISIiNyQkITE6SWdnWDtiVCEjOiQiIiEhIiI3JCQhMWQ4RnVuXk9UISM6JCIiISEiIjckJCExcE90MVY5OlQhIzokIiIhISIiNyQkITFEXClwXkdnNCUhIzokIiIhISIiNyQkITFfLzQpNFpjMiUhIzokIiIhISIiNyQkITAqemZ6JVJoMCUhIzkkIiIhISIiNyQkITEyOUd3KHlXLiUhIzokIiIhISIiNyQkITAoUnopPkFkLCUhIzkkIiIhISIiNyQkITImKil5ZDpMViUqUiEjOyQhMlFSQyVweCNcKT0hI0U3JCQhMVQjWyc0My52UiEjOiQhMVYtRVgmeU5NKCEjQjckJCEyWCRwUTx2IVEmUiEjOyQhMUQheXkuWCRRIikhI0E3JCQhMU9yVTBhXE5SISM6JCExQyVmXnRyeSVIISNANyQkITEnPVB1L1NZIlIhIzokITFoLU9bQilbYSkhI0A3JCQhMi4uMTchW1wlKlEhIzskITJqXClmcUt4Jyk9ISNANyQkITJYKW9QOkZPdVEhIzskITFLcCYpUi0jZmUkISM/NyQkITJsSGY9cC9WJlEhIzskITFGQXE1Oi9DaCEjPzckJCEya0VgMUBOXSRRISM7JCExQ0x0JVJ6a14qISM/NyQkITF6ZDoiUi9VIlEhIzokITJ3NFxmJz5fUjkhIz83JCQhMlB1Wyg0Nk4leiQhIzskITIzQmxdaUpZLiMhIz83JCQhMVsnSGZZY014JCEjOiQhMi9aeERDKSkqM0chIz83JCQhMVYmMzx5VFh2JCEjOiQhMm5JW04jbzNaTyEjPzckJCEyJ3BReDl2akxQISM7JCEyRGBQKSpRMiJHWiEjPzckJCExVyhbKHBbaDhQISM6JCExJnozZVVKXiJmISM+NyQkITIoND9TZzRrJHAkISM7JCExemtHYk9XVXMhIz43JCQhMW5Mbk0ieUZuJCEjOiQhMS84XCNHTUN4KSEjPjckJCEyUHdfMHJpTmwkISM7JCEyJFJBViY9eipINSEjPjckJCEyZD5SeVskKVFqJCEjOyQhMi8+S2pmbm0+IiEjPjckJCExIj5Rd0diQGgkISM6JCExN1kmPltWMVIiISM9NyQkITFgMDYjPSNbI2YkISM6JCEyM2llalA8SWQiISM+NyQkITIkb090WUZPc04hIzskITFQYUNeUm5qPCEjPTckJCEyJ3pmPip6LD5iJCEjOyQhMWBTJjMyQCJmPiEjPTckJCEyLzxNbz8lNExOISM7JCExczp0PmhnUEAhIz03JCQhMjAxN0MjZi84TiEjOyQhMHM5aDFQUUsjISM8NyQkITFyVCRvQ11KXCQhIzokITFeQUgkUmM7XSMhIz03JCQhMWQ5SGUhbz1aJCEjOiQhMkIybXVmSDNvIyEjPjckJCEyOUFXKVt1M2BNISM7JCEyRSZlM2YnM24jRyEjPjckJCEyYjVAVV89OVYkISM7JCEyRiUqM2gkW2R4SCEjPjckJCExZjxOISpSJz1UJCEjOiQhMTdrSWhkJ1w0JCEjPTckJCEwLjE3IWVeI1IkISM5JCEyJjRMQFoiUjc+JCEjPjckJCEyYzA2QUc1PFAkISM7JCExNyJHQy5uLkYkISM9NyQkITE6SWcrMSMzTiQhIzokITE4K19dN0BBTCEjPTckJCEyYDM8TTM5PUwkISM7JCEyazo+TiFbeVZMISM+NyQkITIyO0trK0k7SiQhIzskITFveWpDW3RRTCEjPTckJCEqS0s+SCQhIikkITF0ViZIayU9MEwhIz03JCQhMkZdKywjKXowRiQhIzskITJrYVNwXFdqQiQhIz43JCQhMXdfMHJSNV9LISM6JCEyLiVHaWQ4WVxKISM+NyQkITIlb090J3kkKTNCJCEjOyQhMlhxWWBAJHo9SSEjPjckJCExWiUqKXlwTjRAJCEjOiQhMigzeXh1emxtRyEjPjckJCExWSJIZUchPSI+JCEjOiQhMmQrJFs9OT4qbyMhIz43JCQhMlomND5lIjQ5PCQhIzskITFDTXdvRFMnWyMhIz03JCQhMnVbKFxmUUNeSiEjOyQhMUwjcCIpPU5iRCMhIz03JCQhMndeLjIpKm8pSEohIzskITJPVixiTkBvKT4hIz43JCQhMVwoXCo0LkY1SiEjOiQhMiQpUm1veUQ3cyIhIz43JCQhMkxqRWAhUiM0NCQhIzskITJvKyplM19aVjkhIz43JCQhMCRmPTxIQ3FJISM5JCEyKHlWZ1F0PEs2ISM+NyQkITJOdVsoXHBnXEkhIzskITBUbmZ1JFEmNCkhIz03JCQhMnZlPE4lXDNKSSEjOyQhMW03RXdUQD5eISM+NyQkITJqR2Q5SFciNEkhIzskITJWJXpcImZJIz46ISM/NyQkITI6R2M3UCZ5ISpIISM7JCIxY1ciPVRDL2EiISM+NyQkITEqemY+YjckcEghIzokIjEtPUBCdE9zXiEjPjckJCEyTWxJaCMpPSlbSCEjOyQiMW5xIioqKilvP3QpISM+NyQkITI4RF0rUD8wJEghIzskIjJ3dyFcWSZ5XT8iISM+NyQkITAxN0MlPSUqNEghIzkkIjJQekFsbVdOZyIhIz43JCQhMk1uTXAhcEEqKUchIzskIjJkdWZeKmVEVj8hIz43JCQhMiRbJ0hmVTUnb0chIzskIjF6dWciPmg+YCMhIz03JCQhMUNaJSozalxcRyEjOiQiMU1yZUk6UlRJISM9NyQkITEpcFJ6dS8oSEchIzokIjIlXCFcNXM0Z2okISM+NyQkITEiPU9zR08jNEchIzokIjJORXFOOj1ATCUhIz43JCQhMUhkOXBNJCkpeSMhIzokIjFhKW9vKmUnZTYmISM9NyQkITF0WCJIbVl5dyMhIzokIi8oPXMuczktJyEjOzckJCExOUdjczlPXEYhIzokIjAqKTR2eCtfIXAhIzw3JCQhMWhAVkU6YkdGISM6JCIxYlU2Zm54Jyp6ISM9NyQkITJrSmpFOGN3cSMhIzskIjFSYnptIUhLPiohIz03JCQhMk1zVypbJj52byMhIzskIjFXZFYlXChmVjUhIzw3JCQhMmIvND1nTCNwRSEjOyQiMlRGeWFqNE07IiEjPTckJCEyLjA1PyUpKltaRSEjOyQiMkEocF4mKltQODghIz03JCQhMkxqRWAtcSFIRSEjOyQiMk4jeXBHIlxjVyIhIz03JCQhMigqKXpmKlJWd2cjISM7JCIxSF4lPVdMUmciISM8NyQkITIvOEVfP3gnKWUjISM7JCIyJHlBaFpDVlk8ISM9NyQkITIxNT9TR295YyMhIzskIjIlNGl1NV5ULj4hIz03JCQhMlB2XSxGYCFbRCEjOyQiMS1bRElAYV4/ISM8NyQkITJ4YTQ+UXl0XyMhIzskIjJPJip5bUZlQz8jISM9NyQkITJCXi0wUSNSM0QhIzskIjJteiMqKWVjd05CISM9NyQkITJuS2xJVDh6WyMhIzskIjInKVtZQXd3O1ojISM9NyQkITFOcVNAOmttQyEjOiQiMiZcKTRmZlc8ZyMhIz03JCQhMiRIZj14VTdbQyEjOyQiMGokKj0oKXpQcSMhIzs3JCQhMk1sSWg5RCJHQyEjOyQiMllPKUdPJDQuIUchIz03JCQhMXJUJG8za3VTIyEjOiQiMTk2MnNLNiQpRyEjPDckJCEyKHlkOnI3RChRIyEjOyQiMiUqKSkzazstYyVIISM9NyQkITJtSmpFTCVwbkIhIzskIjFPRlYhKUgwKClIISM8NyQkITIyPE1vb3pmTSMhIzskIjEsUyUqKkd0JjRJISM8NyQkITElemU8Nm9rSyMhIzokIjJ1JD4uYS1hMkkhIz03JCQhMnZeLjJNTmNJIyEjOyQiMjpzJSpRJDQ5IilIISM9NyQkITJXJSlvUHZkbkcjISM7JCIyRSQ+bDBRME5IISM9NyQkITFFXi1sJj5oRSMhIzokIjFBTDltIVItJ0chIzw3JCQhMlglKil5UDFxWUEhIzskIjEjKil5YGtPbHcjISM8NyQkITEpZTxORS1rQSMhIzokIjJZTTRqKD50V0UhIz03JCQhMjtKaUMqb2IxQSEjOyQiMiMpZW9kJ2VsLUQhIz03JCQhMkxxUyJHMXkmPSMhIzskIjFbeCc0aDAwTCMhIzw3JCQhMTI5RzsxeGxAISM6JCIxa15YN2NEVkAhIzw3JCQhMmtBWCEqWzJgOSMhIzskIjEpKj1DM15aSj4hIzw3JCQhMjE8TW8hUSxEQCEjOyQiMjFFayVvTydHcSIhIz03JCQhMThEXT9nTzFAISM6JCIyJylHam9wZCF5OSEjPTckJCEyWCNbJ0hiJCpcMyMhIzskIjEnZTZkaVpdPyIhIzw3JCQhMDM7S3d4ZTEjISM5JCIxdDsvdWZ1KFsqISM9NyQkITEzO0tXalxYPyEjOiQiMShSU0xbLCZbbSEjPTckJCEyYzlIZXMpKWYtIyEjOyQiMSw/Uy9RO1dRISM9NyQkITFqRF5BIUdWKyMhIzokIjEjZjhrQVh5WichIz43JCQhMmU3RF1XcmIpPiEjOyQhMmp0Y15WcCZ6QCEjPjckJCEyYS80PWMjR2s+ISM7JCExREsnKilHWT1YJiEjPTckJCExKFJ6ZTAhKVslPiEjOiQhMU5zdiI0RzVdKSEjPTckJCEyMzQ9T3djTyM+ISM7JCEyQk1fIno/JEg+IiEjPTckJCEyOEhlO2xXYCE+ISM7JCEydlN1OC8pbylcIiEjPTckJCExVSRvT0gqWyUpPSEjOiQhMjIzd1QiKmU0Jz0hIz03JCQhMmQ9UHUvV1YnPSEjOyQhMkspUV8hWyIqekEjISM9NyQkITAvMzsnPkBXPSEjOSQhMiUpKVJzXiJmVmgjISM9NyQkITJCWCE0UVI6Qz0hIzskITIkej1ZdmM9QEkhIz03JCQhMj1VJSlvWCUpWyE9ISM7JCExJVEkSGsiKVJNTSEjPDckJCEyWCRwUVBPMCV5IiEjOyQhMVU7SCVIbXIhUiEjPDckJCEyJioqKXpmTitVdyIhIzskITFET1AxQGokUSUhIzw3JCQhMS8zOzdkSVY8ISM6JCExJEcmKWUhXEY3XCEjPDckJCEyJClwUnotIlJDPCEjOyQhMTBKYXFbLjlhISM8NyQkITFEXStoblsuPCEjOiQhMTNfRnFAViMqZiEjPDckJCEyJCoqKXpmNmtNbyIhIzskITFQSmFqVExubCEjPDckJCEyYztMbT8hXGo7ISM7JCExNFJkTiskeTooISM8NyQkITJFXy80UUZFayIhIzskITF4NFEpKnpGKXkoISM8NyQkITInPlJ5Yz5UQjshIzskITAmKio9UjxrdyQpISM7NyQkITI7TnFTdEtQZyIhIzskITEtdF95ZGkiKSopISM8NyQkITFaJHBRYC8/ZSIhIzokITEwIWVEQE1iayohIzw3JCQhMiMzPE1HOUxpOiEjOyQhMmhiOWZMOk8tIiEjPDckJCEyVCNbJ0gqPkBVOiEjOyQhMiopR1AmZSRwQTMiISM8NyQkITJiOEZhL148XyIhIzskITFVZydHQFokUjYhIzs3JCQhMmpLbElYVkhdIiEjOyQhMjJoRE96VSkpPSIhIzw3JCQhMTtLa29eKkdbIiEjOiQhMmNQZyJSU3VQNyEjPDckJCEyaktsSVwqKkhZIiEjOyQhMidcXEt3VmciRyIhIzw3JCQhMThFXy90clQ5ISM6JCEyR2k8JlEmW0RLIiEjPDckJCEyb1B2XXBPSFUiISM7JCEyJCk+YS9bIylHTiIhIzw3JCQhMWhBWHF4RSw5ISM6JCEyPSNHI3pLbS5RIiEjPDckJCEyWSJIZU9LciJRIiEjOyQhMSdvb09YQndSIiEjOzckJCEyLTA1PzlSP1AiISM7JCExKnlSJCpRU0xTIiEjOzckJCEyZT1QdS9sQk8iISM7JCEyTFAhR0IkNHJTIiEjPDckJCExVSUpb25PO2Q4ISM6JCEyZFI1PyczSjM5ISM8NyQkITIjKXBSekdpPk4iISM7JCEyTkJ1LiRcIyozOSEjPDckJCEyVyY0PjM0d1k4ISM7JCEyYVBnX29WKjM5ISM8NyQkITIxQFUlRyZmOk0iISM7JCEyeWdsPWpmJDM5ISM8NyQkITIyPlF3bzk2TCIhIzskITE3ZyVmc1BgUyIhIzs3JCQhMjQ8TW8lKXAxSyIhIzskITFEJWU9Ry4pKlIiISM7NyQkITExN0MpZW02SiIhIzokITJhJTNbWVthI1IiISM8NyQkITI3Q1snSExtLDghIzskITJCWWxPRE9KUSIhIzw3JCQhMmxKakVEejlHIiEjOyQhMiQqSCdRKGYvZk4iISM8NyQkITJlOkppYyJ5aDchIzskITF1OSEzNClvPjghIzs3JCQhMiNlO0xtIUgvQyIhIzskITIjZXpBLy5kcDchIzw3JCQhMkRWJ0c8SyY+QSIhIzskITIyZGRlcygzPDchIzw3JCQhMlYjWydILkwyPyIhIzskITIqM2cmW2BvazkiISM8NyQkITJFZz9UJVx5IT0iISM7JCEybSpSaEAieiwyIiEjPDckJCEyN0lnP2BINTsiISM7JCExckYrTF09YSkqISM8NyQkITIxNkFXU2U3OSIhIzskITFNJzRHbCFHPCopISM8NyQkITJMa0dkNSQ0QDYhIzskITE5JVxRZHNUKHkhIzw3JCQhMk5uTXBBPSgqNCIhIzskITEoSFxYJSkqendtISM8NyQkITJWITQ9YyY+LDMiISM7JCExWWEieUgoZitiISM8NyQkITIoKXlkOjp0MjEiISM7JCExeTNFRCdbLkYlISM8NyQkITJfMzxNOyM0UzUhIzskITIxaiU+YXpwJClHISM9NyQkITIpKiopemY+YyU+NSEjOyQhMjMjKlFAb3EwViIhIz03JCQhIzUhIiIkIiIhISIiLSUmQ09MT1JHNiclJFJHQkckIiIhISIiJCIpQyllcSUhIikkIilHJ286JSEiKS0lK19BVFRSSUJVVEVHNiMvJSdzb3VyY2VHJSxtYXRoZGVmYXVsdEctJSdDVVJWRVNHNiQ3XHg3JCQhI10hIiIkIiIhISIiNyQkITJ2XCoqKXomcCp5XCEjOyQiIiEhIiI3JCQhMSY0PlE3cjEnXCEjOiQiIiEhIiI3JCQhMTA0PSdmIzRTXCEjOiQiIiEhIiI3JCQhMT1OcWd3UD5cISM6JCIiISEiIjckJCExJFwpcHo2dykqWyEjOiQiIiEhIiI3JCQhMW9Ocmlxa3pbISM6JCIiISEiIjckJCExViYzPF1iKWZbISM6JCIiISEiIjckJCEyYi0wNS8oUVJbISM7JCIiISEiIjckJCEyRGQ5SEElKSo9WyEjOyQiIiEhIiI3JCQhMTxNbzt1Knp6JSEjOiQiIiEhIiI3JCQhMWU7TEVBXnpaISM6JCIiISEiIjckJCExMDU/IUctKGVaISM6JCIiISEiIjckJCEyMDtLaylvIXl0JSEjOyQiIiEhIiI3JCQhMW9Oci0ubjxaISM6JCIiISEiIjckJCExKil5ZGJWUSpwJSEjOiQiIiEhIiI3JCQhMSYqKXlkZlN3biUhIzokIiIhISIiNyQkITF4YTR6MkFmWSEjOiQiIiEhIiI3JCQhMU1vT2BUelBZISM6JCIiISEiIjckJCExdlwqKmV6Iyk9WSEjOiQiIiEhIiI3JCQhMVcqKXlQIT4hKWYlISM6JCIiISEiIjckJCExKWY+Ui0vI3lYISM6JCIiISEiIjckJCExI1J5YzhIdmIlISM6JCIiISEiIjckJCEybE5yVThWJlFYISM7JCIiISEiIjckJCExclQkbztrIT1YISM6JCIiISEiIjckJCEyJnplPHZBeidcJSEjOyQiIiEhIiI3JCQhMXVaJjQudiN5VyEjOiQiIiEhIiI3JCQhMSlcKiopKiplRmVXISM6JCIiISEiIjckJCExOklnU1toUFchIzokIiIhISIiNyQkITFCWSNcLS11VCUhIzokIiIhISIiNyQkITFoQFYnM1h5UiUhIzokIiIhISIiNyQkITE6SWdTLzh3ViEjOiQiIiEhIiI3JCQhMVF3X2wpPW1OJSEjOiQiIiEhIiI3JCQhMWlCWiU0J3lOViEjOiQiIiEhIiI3JCQhMSlvUHZdM3BKJSEjOiQiIiEhIiI3JCQhMChSej0uRidIJSEjOSQiIiEhIiI3JCQhMiYqeWQ6Ul5vRiUhIzskIiIhISIiNyQkITFLa0c8SWJjVSEjOiQiIiEhIiI3JCQhMWM2Qll3cU9VISM6JCIiISEiIjckJCExWyY0PlFKZkAlISM6JCIiISEiIjckJCExXi0wcTgjZj4lISM6JCIiISEiIjckJCEwMjlHQ2VhPCUhIzkkIiIhISIiNyQkITE6SWdnWDtiVCEjOiQiIiEhIiI3JCQhMWQ4RnVuXk9UISM6JCIiISEiIjckJCExcE90MVY5OlQhIzokIiIhISIiNyQkITFEXClwXkdnNCUhIzokIiIhISIiNyQkITFfLzQpNFpjMiUhIzokIiIhISIiNyQkITAqemZ6JVJoMCUhIzkkIiIhISIiNyQkITEyOUd3KHlXLiUhIzokIiIhISIiNyQkITAoUnopPkFkLCUhIzkkIiIhISIiNyQkITImKil5ZDpMViUqUiEjOyQhMWg1T0Q/OC1bISNENyQkITFUI1snNDMudlIhIzokITBraGNNNXJ4JiEjQjckJCEyWCRwUTx2IVEmUiEjOyQhMUhXJyopKlInKVw3ISNBNyQkITFPclUwYVxOUiEjOiQhMUR2JD00bj9AJyEjQTckJCExJz1QdS9TWSJSISM6JCEydSVcIzNCKypRQiEjQTckJCEyLi4xNyFbXCUqUSEjOyQhMjEuJjNrRV9qaSEjQTckJCEyWClvUDpGT3VRISM7JCExM1NqMjYnKipRIiEjPzckJCEybEhmPXAvViZRISM7JCEyWzwrIVstIiopcCMhI0A3JCQhMmtFYDFATl0kUSEjOyQhMDl1JCkqKSlbZFkhIz43JCQhMXpkOiJSL1UiUSEjOiQhMWN2cTBUbm54ISM/NyQkITJQdVsoNDZOJXokISM7JCEyQ247LXVdLj4iISM/NyQkITFbJ0hmWWNNeCQhIzokITIpeSlSKFtrc3E8ISM/NyQkITFWJjM8eVRYdiQhIzokITFgQjkvLHZTQyEjPjckJCEyJ3BReDl2akxQISM7JCExKG9XREBxZU4kISM+NyQkITFXKFsocFtoOFAhIzokITE5NT5xKEhVVCUhIz43JCQhMig0P1NnNGskcCQhIzskITBLMSplI3A+bCYhIz03JCQhMW5Mbk0ieUZuJCEjOiQhMWEieSllTiN5OCghIz43JCQhMlB3XzByaU5sJCEjOyQhMTkmM0w8RFVuKSEjPjckJCEyZD5SeVskKVFqJCEjOyQhMlojM05vPENTNSEjPjckJCExIj5Rd0diQGgkISM6JCEyOEc+KmZmNVo3ISM+NyQkITFgMDYjPSNbI2YkISM6JCEyMTZxJltVVVk5ISM+NyQkITIkb090WUZPc04hIzskITFaKHpsJVwxZjshIz03JCQhMid6Zj4qeiw+YiQhIzskITI7TW0jPlYjNCk9ISM+NyQkITIvPE1vPyU0TE4hIzskITJ1NCk+OkdXJzMjISM+NyQkITIwMTdDI2YvOE4hIzskITIkSDJfMm1PLkIhIz43JCQhMXJUJG9DXUpcJCEjOiQhMXMoUkM/RENeIyEjPTckJCExZDlIZSFvPVokISM6JCExVT9RZUhgQ0YhIz03JCQhMjlBVylbdTNgTSEjOyQhMmotRmwoUSZ6KkchIz43JCQhMmI1QFVfPTlWJCEjOyQhL0ckPSNIZXhJISM7NyQkITFmPE4hKlInPVQkISM6JCExayxPSGc9PEshIz03JCQhMC4xNyFlXiNSJCEjOSQhMShbN3JKIT5KTCEjPTckJCEyYzA2QUc1PFAkISM7JCExJnokPj00M0NNISM9NyQkITE6SWcrMSMzTiQhIzokITExbHBILydRWyQhIz03JCQhMmAzPE0zOT1MJCEjOyQhMjJCJylvVXZ1XSQhIz43JCQhMjI7S2srSTtKJCEjOyQhMihmPlZNLVMqXCQhIz43JCQhKktLPkgkISIpJCEyKVwoZi8xKD1lTSEjPjckJCEyRl0rLCMpejBGJCEjOyQhMjoiRzpbd2J3TCEjPjckJCExd18wclI1X0shIzokITJQIypScnNbY0YkISM+NyQkITIlb090J3kkKTNCJCEjOyQhMjooKilcVWRkRUohIz43JCQhMVolKil5cE40QCQhIzokITJOWmFLIzMsY0ghIz43JCQhMVkiSGVHIT0iPiQhIzokITE6I29yOy8udyMhIz03JCQhMlomND5lIjQ5PCQhIzskITI8eDxOIm9EU0QhIz43JCQhMnVbKFxmUUNeSiEjOyQhMWY6XjMmek9IIyEjPTckJCEyd14uMikqbylISiEjOyQhMSplVHd3STYsIyEjPTckJCExXChcKjQuRjVKISM6JCEyQCplSyNScGR0IiEjPjckJCEyTGpFYCFSIzQ0JCEjOyQhMmMkM3UkKmU7XjkhIz43JCQhMCRmPTxIQ3FJISM5JCEyQiFvWFZpS042ISM+NyQkITJOdVsoXHBnXEkhIzskITExNHhDYk0vIikhIz43JCQhMnZlPE4lXDNKSSEjOyQhMVcpUjsqeXc/XiEjPjckJCEyakdkOUhXIjRJISM7JCEyQ3ZpMDBVIz46ISM/NyQkITI6R2M3UCZ5ISpIISM7JCIyWk8jM1JyS1M6ISM/NyQkITEqemY+YjckcEghIzokIjFXT1osJzM/OyYhIz43JCQhMk1sSWgjKT0pW0ghIzskIjFMJVJ4YCZwaCcpISM+NyQkITI4RF0rUD8wJEghIzskIjJMSSpcZi8oUT0iISM+NyQkITAxN0MlPSUqNEghIzkkIjIwLk5td0A5YiIhIz43JCQhMk1uTXAhcEEqKUchIzskIjIjKj1aJDRJJSpSPiEjPjckJCEyJFsnSGZVNSdvRyEjOyQiMCNSNlI/bGJCISM8NyQkITFDWiUqM2pcXEchIzokIjJiJGVsVHk0eUYhIz43JCQhMSlwUnp1LyhIRyEjOiQiMS4kUXclZl1sSyEjPTckJCExIj1Pc0dPIzRHISM6JCIxMXh1QG0ncCRRISM9NyQkITFIZDlwTSQpKXkjISM6JCIxLClmejAoKSkpWyUhIz03JCQhMXRYIkhtWXl3IyEjOiQiMUgkW2xRZSplXyEjPTckJCExOUdjczlPXEYhIzokIjInPit4JG89Li4nISM+NyQkITFoQFZFOmJHRiEjOiQiMncnPk8oKTQ0NnEhIz43JCQhMmtKakU4Y3dxIyEjOyQiMUdyS0kiKXk/IikhIz03JCQhMk1zVypbJj52byMhIzskIjFFTzo2cHE0JCohIz03JCQhMmIvND1nTCNwRSEjOyQiMmRWK04qZiUpWzUhIz03JCQhMi4wNT8lKSpbWkUhIzskIjImekRZSFFeKzchIz03JCQhMkxqRWAtcSFIRSEjOyQiMmlMOU5BbXhMIiEjPTckJCEyKCopemYqUlZ3ZyMhIzskIjJCdmdzU3llXSIhIz03JCQhMi84RV8/eCcpZSMhIzskIjIvSClISiUpW2c7ISM9NyQkITIxNT9TR295YyMhIzskIjEqemEnXHAtTT0hIzw3JCQhMlB2XSxGYCFbRCEjOyQiMnlAJzRVc2ErPyEjPTckJCEyeGE0PlF5dF8jISM7JCIxRD0vQF9tc0AhIzw3JCQhMkJeLTBRI1IzRCEjOyQiMmw+T0I6TGxLIyEjPTckJCEybktsSVQ4elsjISM7JCIyUDRdNj1kXFsjISM9NyQkITFOcVNAOmttQyEjOiQiMmFSYFUvTXlqIyEjPTckJCEyJEhmPXhVN1tDISM7JCIyMl46dlIjXGVGISM9NyQkITJNbEloOUQiR0MhIzskIjJfJGZ4Q2E3dEchIz03JCQhMXJUJG8za3VTIyEjOiQiMlZJaVpfbDwoSCEjPTckJCEyKHlkOnI3RChRIyEjOyQiMksmNC8qZiNRWUkhIz03JCQhMm1KakVMJXBuQiEjOyQiMlFxRU8kZS8nNCQhIz03JCQhMjI8TW9vemZNIyEjOyQiMXJCaWFwVEJKISM8NyQkITElemU8Nm9rSyMhIzokIjIoKjNpXEE8PjckISM9NyQkITJ2Xi4yTU5jSSMhIzskIjI9Ozo1PStCNCQhIz03JCQhMlclKW9QdmRuRyMhIzskIjJ3IT1edjVFU0khIz03JCQhMUVeLWwmPmhFIyEjOiQiMlFMajdlcmgmSCEjPTckJCEyWCUqKXlQMXFZQSEjOyQiMjwmZT0xKj08JkchIz03JCQhMSllPE5FLWtBIyEjOiQiMicpKXp2QiI+dHIjISM9NyQkITI7SmlDKm9iMUEhIzskIjJkP0dXJHBNaUQhIz03JCQhMkxxUyJHMXkmPSMhIzskIjJELEp3Oiopb1AjISM9NyQkITEyOUc7MXhsQCEjOiQiMks9U3B3P3g8IyEjPTckJCEya0FYISpbMmA5IyEjOyQiMTJQLDtlRWI+ISM8NyQkITIxPE1vIVEsREAhIzskIjJEL041IikqKnpyIiEjPTckJCExOERdP2dPMUAhIzokIjIyenlkQzxyWyIhIz03JCQhMlgjWydIYiQqXDMjISM7JCIyWCcqM1x5RiQ0NyEjPTckJCEwMztLd3hlMSMhIzkkIjEuWWM1KClIMCYqISM9NyQkITEzO0tXalxYPyEjOiQiMUchKipSJillSWwnISM9NyQkITJjOUhlcykpZi0jISM7JCIxPGgqSF03WiVRISM9NyQkITFqRF5BIUdWKyMhIzokIjFmdS06IVx5WichIz43JCQhMmU3RF1XcmIpPiEjOyQhMnh0RyQzOlN6QCEjPjckJCEyYS80PWMjR2s+ISM7JCExVXk1RC9LWWEhIz03JCQhMShSemUwISlbJT4hIzokITEyKCpbNjpNdCUpISM9NyQkITIzND1Pd2NPIz4hIzskITF6IWZYR3NTPSIhIzw3JCQhMjhIZTtsV2AhPiEjOyQhMiNSd3Fxdz4hWyIhIz03JCQhMVUkb09IKlslKT0hIzokITAuKikqXFVfRD0hIzs3JCQhMmQ9UHUvV1YnPSEjOyQhMXlMS1I2dXBAISM8NyQkITAvMzsnPkBXPSEjOSQhMltMJGVFQERGRCEjPTckJCEyQlghNFFSOkM9ISM7JCEyQzQjKj5JUC0hSCEjPTckJCEyPVUlKW9YJSlbIT0hIzskITE3Wy1NWmB4SyEjPDckJCEyWCRwUVBPMCV5IiEjOyQhMFg7RXI9KDRQISM7NyQkITImKiopemZOK1V3IiEjOyQhMXklW0MrMyFbVCEjPDckJCExLzM7N2RJVjwhIzokITImcG1iJVs/JlJZISM9NyQkITIkKXBSei0iUkM8ISM7JCExNEZiR3NbN14hIzw3JCQhMURdK2huWy48ISM6JCExWF0mW3B6bG0mISM8NyQkITIkKiopemY2a01vIiEjOyQhMms2RmVILnVBJyEjPTckJCEyYztMbT8hXGo7ISM7JCEwT00mcCcpPTlvISM7NyQkITJFXy80UUZFayIhIzskITFQMlVodW9fdSEjPDckJCEyJz5SeWM+VEI7ISM7JCExL1M3ekVgZiEpISM8NyQkITI7TnFTdEtQZyIhIzskITBoaWtqJj4lcCkhIzs3JCQhMVokcFFgLz9lIiEjOiQhMSZcXVhnJmUtJSohIzw3JCQhMiMzPE1HOUxpOiEjOyQhMUpZUCRcclUrIiEjOzckJCEyVCNbJ0gqPkBVOiEjOyQhMlgsXF52OihvNSEjPDckJCEyYjhGYS9ePF8iISM7JCEycy12WiRbQEs2ISM8NyQkITJqS2xJWFZIXSIhIzskITJaenMyU3F5PSIhIzw3JCQhMTtLa29eKkdbIiEjOiQhMltzbSVHInBMQyIhIzw3JCQhMmpLbElcKipIWSIhIzskITJWcDFXKVFjJEgiISM8NyQkITE4RV8vdHJUOSEjOiQhMiQ9NClcKSl6Mk0iISM8NyQkITJvUHZdcE9IVSIhIzskITJ0YiJSSCo0Z1AiISM8NyQkITFoQVhxeEUsOSEjOiQhMi5YeV0hKSo9MzkhIzw3JCQhMlkiSGVPS3IiUSIhIzskITJfbSgqKj1TbUc5ISM8NyQkITItMDU/OVI/UCIhIzskITF4SF9JVWVOOSEjOzckJCEyZT1QdS9sQk8iISM7JCExMFZjXCxIUzkhIzs3JCQhMVUlKW9uTztkOCEjOiQhMldvUyN5VCk9VyIhIzw3JCQhMiMpcFJ6R2k+TiIhIzskITI5OFNpbzdHVyIhIzw3JCQhMlcmND4zNHdZOCEjOyQhMm1qJDRxejFWOSEjPDckJCEyMUBVJUcmZjpNIiEjOyQhMWEobzkkSGtVOSEjOzckJCEyMj9TITNyTE84ISM7JCExVXZvIz1EOlciISM7NyQkITIyPlF3bzk2TCIhIzskITJXblFpNjQoUjkhIzw3JCQhMjM9T3NFIyplSyIhIzskITJBPy44VSo9UDkhIzw3JCQhMjQ8TW8lKXAxSyIhIzskITIuXEgjPjknUlYiISM8NyQkITExN0MpZW02SiIhIzokITIoNGldXHVERTkhIzw3JCQhMjdDWydITG0sOCEjOyQhMjJtY1Yvd2hUIiEjPDckJCEybEpqRUR6OUciISM7JCEyQz0hSF0uJG9RIiEjPDckJCEyZTpKaWMieWg3ISM7JCEyN1lUQUkielo4ISM8NyQkITIjZTtMbSFIL0MiISM7JCEyPU8reUEiKlJIIiEjPDckJCEyRFYnRzxLJj5BIiEjOyQhMS5xUnNMK1E3ISM7NyQkITJWI1snSC5MMj8iISM7JCEyazFfYWZTSzsiISM8NyQkITJFZz9UJVx5IT0iISM7JCEyNyIpXFQ2cEozIiEjPDckJCEyN0lnP2BINTsiISM7JCExdShHPVwncFwqKiEjPDckJCEyMTZBV1NlNzkiISM7JCExTiQzYyI+KUgpKikhIzw3JCQhMkxrR2Q1JDRANiEjOyQhMGUmPlFRSDp6ISM7NyQkITJObk1wQT0oKjQiISM7JCEwaShmUTx6KXAnISM7NyQkITJWITQ9YyY+LDMiISM7JCExS1srImV2NV4mISM8NyQkITIoKXlkOjp0MjEiISM7JCEydzUqeTlCSHVVISM9NyQkITJfMzxNOyM0UzUhIzskITFmbHh0N2IlKUchIzw3JCQhMikqKil6Zj5jJT41ISM7JCExT2UlUV9DMVYiISM8NyQkISM1ISIiJCIxLTVnZHRVMHIhI0ktJSZDT0xPUkc2JyUkUkdCRyQiKDFadyQhIigkIikpPiFcRCEiKSQiKHZpbyYhIigtJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUnQ1VSVkVTRzYkN2F4NyQkISNdISIiJCIiISEiIjckJCEydlwqKil6JnAqeVwhIzskIiIhISIiNyQkITEmND5RN3IxJ1whIzokIiIhISIiNyQkITEwND0nZiM0U1whIzokIiIhISIiNyQkITE9TnFnd1A+XCEjOiQiIiEhIiI3JCQhMSRcKXB6NncpKlshIzokIiIhISIiNyQkITFvTnJpcWt6WyEjOiQiIiEhIiI3JCQhMVYmMzxdYilmWyEjOiQiIiEhIiI3JCQhMmItMDUvKFFSWyEjOyQiIiEhIiI3JCQhMkRkOUhBJSkqPVshIzskIiIhISIiNyQkITE8TW87dSp6eiUhIzokIiIhISIiNyQkITFlO0xFQV56WiEjOiQiIiEhIiI3JCQhMTA1PyFHLShlWiEjOiQiIiEhIiI3JCQhMjA7S2spbyF5dCUhIzskIiIhISIiNyQkITFvTnItLm48WiEjOiQiIiEhIiI3JCQhMSopeWRiVlEqcCUhIzokIiIhISIiNyQkITEmKil5ZGZTd24lISM6JCIiISEiIjckJCExeGE0ejJBZlkhIzokIiIhISIiNyQkITFNb09gVHpQWSEjOiQiIiEhIiI3JCQhMXZcKipleiMpPVkhIzokIiIhISIiNyQkITFXKil5UCE+ISlmJSEjOiQiIiEhIiI3JCQhMSlmPlItLyN5WCEjOiQiIiEhIiI3JCQhMSNSeWM4SHZiJSEjOiQiIiEhIiI3JCQhMmxOclU4ViZRWCEjOyQiIiEhIiI3JCQhMXJUJG87ayE9WCEjOiQiIiEhIiI3JCQhMiZ6ZTx2QXonXCUhIzskIiIhISIiNyQkITF1WiY0LnYjeVchIzokIiIhISIiNyQkITEpXCoqKSoqZUZlVyEjOiQiIiEhIiI3JCQhMTpJZ1NbaFBXISM6JCIiISEiIjckJCExQlkjXC0tdVQlISM6JCIiISEiIjckJCExaEBWJzNYeVIlISM6JCIiISEiIjckJCExOklnUy84d1YhIzokIiIhISIiNyQkITFRd19sKT1tTiUhIzokIiIhISIiNyQkITFpQlolNCd5TlYhIzokIiIhISIiNyQkITEpb1B2XTNwSiUhIzokIiIhISIiNyQkITAoUno9LkYnSCUhIzkkIiIhISIiNyQkITImKnlkOlJeb0YlISM7JCIiISEiIjckJCExS2tHPEliY1UhIzokIiIhISIiNyQkITFjNkJZd3FPVSEjOiQiIiEhIiI3JCQhMVsmND5RSmZAJSEjOiQiIiEhIiI3JCQhMV4tMHE4I2Y+JSEjOiQiIiEhIiI3JCQhMDI5R0NlYTwlISM5JCIiISEiIjckJCExOklnZ1g7YlQhIzokIiIhISIiNyQkITFkOEZ1bl5PVCEjOiQiIiEhIiI3JCQhMXBPdDFWOTpUISM6JCIiISEiIjckJCExRFwpcF5HZzQlISM6JCIiISEiIjckJCExXy80KTRaYzIlISM6JCIiISEiIjckJCEwKnpmeiVSaDAlISM5JCIiISEiIjckJCExMjlHdyh5Vy4lISM6JCIiISEiIjckJCEwKFJ6KT5BZCwlISM5JCIiISEiIjckJCEyJiopeWQ6TFYlKlIhIzskITFgJ3BkZV40PiUhI0I3JCQhMVQjWyc0My52UiEjOiQiMnl4JTNhISk9NjshI0I3JCQhMlgkcFE8diFRJlIhIzskITFDcCU9NlhvaighI0I3JCQhMU9yVTBhXE5SISM6JCIya2VRVS1mJ1E3ISNCNyQkITEnPVB1L1NZIlIhIzokITFLSD5AXkgkPichI0E3JCQhMi4uMTchW1wlKlEhIzskITJqXC1DMEY1KD0hI0E3JCQhMlgpb1A6Rk91USEjOyQhMWEsZVJzRFlgISNANyQkITJsSGY9cC9WJlEhIzskITFfTFBQaSpHPyIhIz83JCQhMmtFYDFATl0kUSEjOyQhMDMjKXl6NSxLIyEjPjckJCExemQ6IlIvVSJRISM6JCEvczE2X2JwVSEjPTckJCEyUHVbKDQ2TiV6JCEjOyQhMTpVNEwyVSY0KCEjPzckJCExWydIZlljTXgkISM6JCEyeUJjSDt5eDgiISM/NyQkITFWJjM8eVRYdiQhIzokITFQWnJXMk9qOyEjPjckJCEyJ3BReDl2akxQISM7JCExUDQ1NWYiZVUjISM+NyQkITFXKFsocFtoOFAhIzokITFNLCRcalMhXEwhIz43JCQhMig0P1NnNGskcCQhIzskITFXPk41LW96VyEjPjckJCExbkxuTSJ5Rm4kISM6JCExLFslKkgxJHkpZSEjPjckJCEyUHdfMHJpTmwkISM7JCExJ0gqUmU5MihSKCEjPjckJCEyZD5SeVskKVFqJCEjOyQhMXglcHdzXzo5KiEjPjckJCExIj5Rd0diQGgkISM6JCEyT0kqPmxVKSlHNiEjPjckJCExYDA2Iz0jWyNmJCEjOiQhMmpiUSQpKmVJUzghIz43JCQhMiRvT3RZRk9zTiEjOyQhMmlNdlF5VytkIiEjPjckJCEyJ3pmPip6LD5iJCEjOyQhMnonXElWXyVRIj0hIz43JCQhMi88TW8/JTRMTiEjOyQhMUBPRDQrRFU/ISM9NyQkITIwMTdDI2YvOE4hIzskITIxNFY3IWZfJkcjISM+NyQkITFyVCRvQ11KXCQhIzokITJlXVJGIzRdQEQhIz43JCQhMWQ5SGUhbz1aJCEjOiQhMV4kcHhQeEF3IyEjPTckJCEyOUFXKVt1M2BNISM7JCEyYiYpZlhfYyFmSCEjPjckJCEyYjVAVV89OVYkISM7JCExXkAyPlJvaUohIz03JCQhMWY8TiEqUic9VCQhIzokITE3X2IkZmMoPkwhIz03JCQhMC4xNyFlXiNSJCEjOSQhMlA0TlRIRnBXJCEjPjckJCEyYzA2QUc1PFAkISM7JCEyTSl6NDI7ZFtOISM+NyQkITE6SWcrMSMzTiQhIzokITI6c1A2WGw6aCQhIz43JCQhMmAzPE0zOT1MJCEjOyQhMi9UL3pEeEtqJCEjPjckJCEyMjtLaytJO0okISM7JCExY2llOz0qKT1PISM9NyQkISpLSz5IJCEiKSQhMm55aHE9a3ljJCEjPjckJCEyRl0rLCMpejBGJCEjOyQhLyo9WVVzQ1okISM7NyQkITF3XzByUjVfSyEjOiQhMXpBI1EhZUFlTCEjPTckJCEyJW9PdCd5JCkzQiQhIzskITE9cjtSeSZHPiQhIz03JCQhMVolKil5cE40QCQhIzokITJbZW1MaiNmMkkhIz43JCQhMVkiSGVHIT0iPiQhIzokITEySD5nVFApeiMhIz03JCQhMlomND5lIjQ5PCQhIzskITIzUjNIMEZuYyMhIz43JCQhMnVbKFxmUUNeSiEjOyQhMlY3ImVBRWE1QiEjPjckJCEyd14uMikqbylISiEjOyQhMj1zMnAsRzEtIyEjPjckJCExXChcKjQuRjVKISM6JCExJSk+Jyo9RnFTPCEjPTckJCEyTGpFYCFSIzQ0JCEjOyQhMilvcFJCU05gOSEjPjckJCEwJGY9PEhDcUkhIzkkITIsPilIKzwuTzYhIz43JCQhMk51WyhccGdcSSEjOyQhMVp3LSk0NGA1KSEjPjckJCEydmU8TiVcM0pJISM7JCExQjI4LVJZP14hIz43JCQhMmpHZDlIVyI0SSEjOyQhMm80JjNLL009OiEjPzckJCEyOkdjN1AmeSEqSCEjOyQiMkFHckZOSSthIiEjPzckJCExKnpmPmI3JHBIISM6JCIxMnIjKjNJamdeISM+NyQkITJNbEloIyk9KVtIISM7JCIxbVlZNydHK2wpISM+NyQkITI4RF0rUD8wJEghIzskIjFjVFBwYDV6NiEjPTckJCEwMTdDJT0lKjRIISM5JCIycyJHI3BsYWxgIiEjPjckJCEyTW5NcCFwQSopRyEjOyQiMkVbV1QjM2wvPiEjPjckJCEyJFsnSGZVNSdvRyEjOyQiMjc5LywwN2VHIyEjPjckJCExQ1olKjNqXFxHISM6JCIxemNDKCk+SWhFISM9NyQkITEpcFJ6dS8oSEchIzokIjJgSkdWKDMpUTMkISM+NyQkITEiPU9zR08jNEchIzokIjBabHJZejxkJCEjPDckJCExSGQ5cE0kKSl5IyEjOiQiMXpnOyI0Mm03JSEjPTckJCExdFgiSG1ZeXcjISM6JCIxeDFENCU9dXklISM9NyQkITE5R2NzOU9cRiEjOiQiMVlpUUhtR2dhISM9NyQkITFoQFZFOmJHRiEjOiQiMXJ3bTR1JFtMJyEjPTckJCEya0pqRThjd3EjISM7JCIxNklySHU1XnQhIz03JCQhMk1zVypbJj52byMhIzskIjE+IjNyOywuWikhIz03JCQhMmIvND1nTCNwRSEjOyQiMVtYazxAeDMnKiEjPTckJCEyLjA1PyUpKltaRSEjOyQiMjRwNz8hSDo2NiEjPTckJCEyTGpFYC1xIUhFISM7JCIyVj4nZlgkUS9EIiEjPTckJCEyKCopemYqUlZ3ZyMhIzskIjJzYktwOSN5QzkhIz03JCQhMi84RV8/eCcpZSMhIzskIjF5eFhRdEgpZSIhIzw3JCQhMjE1P1NHb3ljIyEjOyQiMTZSTjslZVx4IiEjPDckJCEyUHZdLEZgIVtEISM7JCIyc25IbzNKbiY+ISM9NyQkITJ4YTQ+UXl0XyMhIzskIjJYKnpUXlAhcDkjISM9NyQkITJCXi0wUSNSM0QhIzskIjFITjQlR0gmPUIhIzw3JCQhMm5LbElUOHpbIyEjOyQiMV9uTWFlWSdcIyEjPDckJCExTnFTQDprbUMhIzokIjIjUnJQPkIqKm9FISM9NyQkITIkSGY9eFU3W0MhIzskIjJqWlNOPkhhIUchIz03JCQhMk1sSWg5RCJHQyEjOyQiMmElbzRwLihcJEghIz03JCQhMXJUJG8za3VTIyEjOiQiMUUhPV5BOmcvJCEjPDckJCEyKHlkOnI3RChRIyEjOyQiMSQzIj0ocFEkSEohIzw3JCQhMm1KakVMJXBuQiEjOyQiMV8tX2wtJlI9JCEjPDckJCEyUHVbKDRxJG9OIyEjOyQiMSozKikpUW1qLUshIzw3JCQhMjI8TW9vemZNIyEjOyQiMEc8MUh5RkAkISM7NyQkITEjWydIKipRQU9CISM6JCIxVnpwOWdcOUshIzw3JCQhMSV6ZTw2b2tLIyEjOiQiMVJYVEQ2OzRLISM8NyQkITFjNkJFPDA7QiEjOiQiMUUrKG8iR20mPiQhIzw3JCQhMnZeLjJNTmNJIyEjOyQiMiZ6Oyo9T0tUPCQhIz03JCQhMlclKW9QdmRuRyMhIzskIjIyazxIIUchXDYkISM9NyQkITFFXi1sJj5oRSMhIzokIjJvcm1yLWw2LSQhIz03JCQhMlglKil5UDFxWUEhIzskIjJtIkglNEBLbSFIISM9NyQkITEpZTxORS1rQSMhIzokIjIjKlw4enpAOXcjISM9NyQkITI7SmlDKm9iMUEhIzskIjJNKFs6KzpHJ2YjISM9NyQkITJMcVMiRzF5Jj0jISM7JCIydUo5I0hwQSxDISM9NyQkITEyOUc7MXhsQCEjOiQiMkxIamsjW0QlPiMhIz03JCQhMmtBWCEqWzJgOSMhIzskIjJ0X3V5LjliJz4hIz03JCQhMjE8TW8hUSxEQCEjOyQiMihcd2I8R3VCPCEjPTckJCExOERdP2dPMUAhIzokIjIvJVspNGQvLFwiISM9NyQkITJYI1snSGIkKlwzIyEjOyQiMicqKT4uJio9WzU3ISM9NyQkITAzO0t3eGUxIyEjOSQiMV4hZnFSTiE0JiohIz03JCQhMTM7S1dqXFg/ISM6JCIxQ292W1B1YG0hIz03JCQhMmM5SGVzKSlmLSMhIzskIjFYP1Y4TXZXUSEjPTckJCExakReQSFHVisjISM6JCIxZFhIJG9weVonISM+NyQkITJlN0RdV3JiKT4hIzskITIlM1dbb09SekAhIz43JCQhMmEvND1jI0drPiEjOyQhMS8qPXkrZmNXJiEjPTckJCExKFJ6ZTAhKVslPiEjOiQhMUtAcykzUiRvJSkhIz03JCQhMjM0PU93Y08jPiEjOyQhMkciKXlkJ1whPj0iISM9NyQkITI4SGU7bFdgIT4hIzskITJCVCpwQTRxdTkhIz03JCQhMVUkb09IKlslKT0hIzokITI9cEImcGMnSCI9ISM9NyQkITJkPVB1L1dWJz0hIzskITJGKkcjKVJ6L1lAISM9NyQkITAvMzsnPkBXPSEjOSQhMVRtIz4zNnZbIyEjPDckJCEyQlghNFFSOkM9ISM7JCExKmYkKVs1SyVSRyEjPDckJCEyPVUlKW9YJSlbIT0hIzskITJDSGtSJnkyIz4kISM9NyQkITJYJHBRUE8wJXkiISM7JCExLDxAKkdcUGYkISM8NyQkITImKiopemZOK1V3IiEjOyQhMjlzYlc4PjIrJSEjPTckJCExLzM7N2RJVjwhIzokITIlPl5pLSEpKSplVyEjPTckJCEyJClwUnotIlJDPCEjOyQhMjszZmcwVk8hXCEjPTckJCExRF0raG5bLjwhIzokITE7TDxbP3pJYSEjPDckJCEyJCoqKXpmNmtNbyIhIzskITIxOEQjW0FIc2YhIz03JCQhMmM7TG0/IVxqOyEjOyQhMG9zUHpKIVtsISM7NyQkITJFXy80UUZFayIhIzskITE0eS0yOEwmPSghIzw3JCQhMic+UnljPlRCOyEjOyQhMDRVI0huRix5ISM7NyQkITI7TnFTdEtQZyIhIzskITEnSE5sWWBjWCkhIzw3JCQhMVokcFFgLz9lIiEjOiQhMTxuJkgqemIoPiohIzw3JCQhMiMzPE1HOUxpOiEjOyQhMS1mVEJVY3gpKiEjPDckJCEyVCNbJ0gqPkBVOiEjOyQhMlxcP25HWHEwIiEjPDckJCEyYjhGYS9ePF8iISM7JCEybmJPbC9UZzciISM8NyQkITJqS2xJWFZIXSIhIzskITExKGZEOEZxPSIhIzs3JCQhMTtLa29eKkdbIiEjOiQhMjRBWCpIPENbNyEjPDckJCEyaktsSVwqKkhZIiEjOyQhMSUqZiZmJyl5UUkiISM7NyQkITE4RV8vdHJUOSEjOiQhMXJvV0pnUGM4ISM7NyQkITJvUHZdcE9IVSIhIzskITItKlFFYTBmJlIiISM8NyQkITFoQVhxeEUsOSEjOiQhMTxLbjAneThWIiEjOzckJCEyWSJIZU9LciJRIiEjOyQhMkEySiNvcTJhOSEjPDckJCEyLTA1PzlSP1AiISM7JCEyTS0sJltmcmg5ISM8NyQkITJlPVB1L2xCTyIhIzskITJaUFk4XCYpb1kiISM8NyQkITFVJSlvbk87ZDghIzokITFjdy01VWlvOSEjOzckJCEyIylwUnpHaT5OIiEjOyQhMWM/PS5gaXA5ISM7NyQkITJpS2whKWZoJFw4ISM7JCEyJEcieTk7WilwOSEjPDckJCEyVyY0PjM0d1k4ISM7JCEyayslKj5CIykpcDkhIzw3JCQhMkVlOyQ9LTtXOCEjOyQhMlYiR3VLKUgocDkhIzw3JCQhMjFAVSVHJmY6TSIhIzskITIoKipIIzNNKlFwOSEjPDckJCEyMj9TITNyTE84ISM7JCEyOSpvbyhHTiJvOSEjPDckJCEyMj5Rd285NkwiISM7JCEyJTN3STVtNm05ISM8NyQkITIzPU9zRSMqZUsiISM7JCExJUgzKm8tTGo5ISM7NyQkITI0PE1vJSlwMUsiISM7JCEyJFsuKFs1dShmOSEjPDckJCExMTdDKWVtNkoiISM6JCEyRkpXKHpVS145ISM8NyQkITI3Q1snSExtLDghIzskITItZCN5LDRLUzkhIzw3JCQhMmxKakVEejlHIiEjOyQhMk0kcCZbbUYmMzkhIzw3JCQhMmU6SmljInloNyEjOyQhMGNDJGU3am04ISM6NyQkITIjZTtMbSFIL0MiISM7JCEyLy5rPj5pJTQ4ISM8NyQkITJEVidHPEsmPkEiISM7JCEyRSdvdDJJYF03ISM8NyQkITJWI1snSC5MMj8iISM7JCEyJHpXN0VfZHM2ISM8NyQkITJFZz9UJVx5IT0iISM7JCExMng8XkclKSozIiEjOzckJCEyN0lnP2BINTsiISM7JCExPFRENSRlVyoqKiEjPDckJCEyMTZBV1NlNzkiISM7JCExenNOdCFIMSwqISM8NyQkITJMa0dkNSQ0QDYhIzskITEneVE6JGVaSXohIzw3JCQhMk5uTXBBPSgqNCIhIzskITBhaGhiU2NxJyEjOzckJCEyViE0PWMmPiwzIiEjOyQhMSxtSTJYdjhiISM8NyQkITIoKXlkOjp0MjEiISM7JCExQztaJz50XUYlISM8NyQkITJfMzxNOyM0UzUhIzskITFhdmwkPmxZKUchIzw3JCQhMikqKil6Zj5jJT41ISM7JCEyTyQ9bSUzRzFWIiEjPTckJCEjNSEiIiQiMS00JT1pJSlbUichI0gtJSZDT0xPUkc2JyUkUkdCRyQiIiEhIiIkIihoPiFIISIoJCIpQyllcSUhIiktJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUnQ1VSVkVTRzYkN194NyQkISNdISIiJCIiISEiIjckJCEydlwqKil6JnAqeVwhIzskIiIhISIiNyQkITEmND5RN3IxJ1whIzokIiIhISIiNyQkITEwND0nZiM0U1whIzokIiIhISIiNyQkITE9TnFnd1A+XCEjOiQiIiEhIiI3JCQhMSRcKXB6NncpKlshIzokIiIhISIiNyQkITFvTnJpcWt6WyEjOiQiIiEhIiI3JCQhMVYmMzxdYilmWyEjOiQiIiEhIiI3JCQhMmItMDUvKFFSWyEjOyQiIiEhIiI3JCQhMkRkOUhBJSkqPVshIzskIiIhISIiNyQkITE8TW87dSp6eiUhIzokIiIhISIiNyQkITFlO0xFQV56WiEjOiQiIiEhIiI3JCQhMTA1PyFHLShlWiEjOiQiIiEhIiI3JCQhMjA7S2spbyF5dCUhIzskIiIhISIiNyQkITFvTnItLm48WiEjOiQiIiEhIiI3JCQhMSopeWRiVlEqcCUhIzokIiIhISIiNyQkITEmKil5ZGZTd24lISM6JCIiISEiIjckJCExeGE0ejJBZlkhIzokIiIhISIiNyQkITFNb09gVHpQWSEjOiQiIiEhIiI3JCQhMXZcKipleiMpPVkhIzokIiIhISIiNyQkITFXKil5UCE+ISlmJSEjOiQiIiEhIiI3JCQhMSlmPlItLyN5WCEjOiQiIiEhIiI3JCQhMSNSeWM4SHZiJSEjOiQiIiEhIiI3JCQhMmxOclU4ViZRWCEjOyQiIiEhIiI3JCQhMXJUJG87ayE9WCEjOiQiIiEhIiI3JCQhMiZ6ZTx2QXonXCUhIzskIiIhISIiNyQkITF1WiY0LnYjeVchIzokIiIhISIiNyQkITEpXCoqKSoqZUZlVyEjOiQiIiEhIiI3JCQhMTpJZ1NbaFBXISM6JCIiISEiIjckJCExQlkjXC0tdVQlISM6JCIiISEiIjckJCExaEBWJzNYeVIlISM6JCIiISEiIjckJCExOklnUy84d1YhIzokIiIhISIiNyQkITFRd19sKT1tTiUhIzokIiIhISIiNyQkITFpQlolNCd5TlYhIzokIiIhISIiNyQkITEpb1B2XTNwSiUhIzokIiIhISIiNyQkITAoUno9LkYnSCUhIzkkIiIhISIiNyQkITImKnlkOlJeb0YlISM7JCIiISEiIjckJCExS2tHPEliY1UhIzokIiIhISIiNyQkITFjNkJZd3FPVSEjOiQiIiEhIiI3JCQhMVsmND5RSmZAJSEjOiQiIiEhIiI3JCQhMV4tMHE4I2Y+JSEjOiQiIiEhIiI3JCQhMDI5R0NlYTwlISM5JCIiISEiIjckJCExOklnZ1g7YlQhIzokIiIhISIiNyQkITFkOEZ1bl5PVCEjOiQiIiEhIiI3JCQhMXBPdDFWOTpUISM6JCIiISEiIjckJCExRFwpcF5HZzQlISM6JCIiISEiIjckJCExXy80KTRaYzIlISM6JCIiISEiIjckJCEwKnpmeiVSaDAlISM5JCIiISEiIjckJCExMjlHdyh5Vy4lISM6JCIiISEiIjckJCEwKFJ6KT5BZCwlISM5JCIiISEiIjckJCEyJiopeWQ6TFYlKlIhIzskITEuIzNmIVtSbV0hI0A3JCQhMVQjWyc0My52UiEjOiQiMCMzNCRIKFJlTiEjPjckJCEyWCRwUTx2IVEmUiEjOyQhMlohKSpIZG9nOTYhI0A3JCQhMU9yVTBhXE5SISM6JCExdm9IYTEjXGQjISM/NyQkITEnPVB1L1NZIlIhIzokITB2b0gvV15MIiEjPjckJCEyLi4xNyFbXCUqUSEjOyQhMW9yJTM9b1omUiEjPzckJCEyWClvUDpGT3VRISM7JCEyPF4qKnBCUTFFIiEjQDckJCEybEhmPXAvViZRISM7JCEwZkhgX3g4YyQhIz43JCQhMmtFYDFATl0kUSEjOyQhMih6VHl5KXlAeSIhI0A3JCQhMXpkOiJSL1UiUSEjOiQhMjlwMypvbHYwUSEjQDckJCEyUHVbKDQ2TiV6JCEjOyQhMTFSK3o0V0QjKSEjPzckJCExWydIZlljTXgkISM6JCExJypmUj0vYDsiKiEjPzckJCExViYzPHlUWHYkISM6JCEyJypmKjNCKUdvQCIhIz83JCQhMidwUXg5dmpMUCEjOyQhMm9yJTNWKnpoaCIhIz83JCQhMVcoWyhwW2g4UCEjOiQhMld0eEApSFlgRCEjPzckJCEyKDQ/U2c0ayRwJCEjOyQhMVcpUmV0IjRMTCEjPjckJCExbkxuTSJ5Rm4kISM6JCExLzxQOm15KipcISM+NyQkITJQd18wcmlObCQhIzskITFyeSIzIVwoM04nISM+NyQkITJkPlJ5WyQpUWokISM7JCExJlFXIz4kWycpMykhIz43JCQhMSI+UXdHYkBoJCEjOiQhMkxNOStyclQtIiEjPjckJCExYDA2Iz0jWyNmJCEjOiQhMihHV1QhcEI4RSIhIz43JCQhMiRvT3RZRk9zTiEjOyQhMVJEZyN6QDhdIiEjPTckJCEyJ3pmPip6LD5iJCEjOyQhMiQ+KVIqR1c8WzwhIz43JCQhMi88TW8/JTRMTiEjOyQhMncrKlFAP24oKj4hIz43JCQhMjAxN0MjZi84TiEjOyQhMHVrRnJpTUYjISM8NyQkITFyVCRvQ11KXCQhIzokITJQL15vVF0iUkQhIz43JCQhMWQ5SGUhbz1aJCEjOiQhMSY+UE0leUo8RyEjPTckJCEyOUFXKVt1M2BNISM7JCEyQTBtbkdIMS0kISM+NyQkITJiNUBVXz05ViQhIzskITJjV3YncCslKkdLISM+NyQkITFmPE4hKlInPVQkISM6JCExPFxULlVsPU0hIz03JCQhMC4xNyFlXiNSJCEjOSQhMi87ZT5BNVNhJCEjPjckJCEyYzA2QUc1PFAkISM7JCExKEh0dT0meltPISM9NyQkITE6SWcrMSMzTiQhIzokITJRZkxwJjM+QVAhIz43JCQhMmAzPE0zOT1MJCEjOyQhMVdZQyhwT1J0JCEjPTckJCEyMjtLaytJO0okISM7JCEwdmxnJmVzO1AhIzw3JCQhKktLPkgkISIpJCEwSC5IPSg9UE8hIzw3JCQhMkZdKywjKXowRiQhIzskITBrQClbVj1TTiEjPDckJCExd18wclI1X0shIzokITJlbiNcblFrMU0hIz43JCQhMiVvT3QneSQpM0IkISM7JCExIypIc1EmM2xDJCEjPTckJCExWiUqKXlwTjRAJCEjOiQhMjgiNHRNcTBFSSEjPjckJCExWSJIZUchPSI+JCEjOiQhMmMhUjlhZ3g8RyEjPjckJCEyWiY0PmUiNDk8JCEjOyQhMiV6c3pucE9zRCEjPjckJCEydVsoXGZRQ15KISM7JCEyVSxqKVJjMEJCISM+NyQkITJ3Xi4yKSpvKUhKISM7JCExWiN5WCcpXEstIyEjPTckJCExXChcKjQuRjVKISM6JCEyKWUhb19hcXRzIiEjPjckJCEyTGpFYCFSIzQ0JCEjOyQhMFUiSFxVbms5ISM8NyQkITAkZj08SENxSSEjOSQhMko0TyczPlNQNiEjPjckJCEyTnVbKFxwZ1xJISM7JCExLVMtSy91MiIpISM+NyQkITJ2ZTxOJVwzSkkhIzskITFqLiVvTzo8NyYhIz43JCQhMmpHZDlIVyI0SSEjOyQhMU55S2xRbW86ISM+NyQkITI6R2M3UCZ5ISpIISM7JCIyLXE8RCs1VGciISM/NyQkITEqemY+YjckcEghIzokIjBiUXc6L3o5JiEjPTckJCEyTWxJaCMpPSlbSCEjOyQiMXMzZVBoYFcnKSEjPjckJCEyOERdK1A/MCRIISM7JCIyVEBqRiJvYng2ISM+NyQkITAxN0MlPSUqNEghIzkkIjJ0Kz8zInBbUDohIz43JCQhMk1uTXAhcEEqKUchIzskIjI7VCUzOCtHJik9ISM+NyQkITIkWydIZlU1J29HISM7JCIyTnorMFFUV0QjISM+NyQkITFDWiUqM2pcXEchIzokIjItJjMpKkhHIVFnIyEjPjckJCExKXBSenUvKEhHISM6JCIxTW9VI0cvTCpIISM9NyQkITEiPU9zR08jNEchIzokIjJhdUtsPG5gVSQhIz43JCQhMUhkOXBNJCkpeSMhIzokIjF0TGhLKmY2IlIhIz03JCQhMXRYIkhtWXl3IyEjOiQiMWlBVGlOSCFcJSEjPTckJCExOUdjczlPXEYhIzokIjFfYiJHJEhzdl0hIz03JCQhMWhAVkU6YkdGISM6JCIyTiJwWnFyWWJlISM+NyQkITJrSmpFOGN3cSMhIzskIjEvbkpQIlE/eSchIz03JCQhMk1zVypbJj52byMhIzskIjFobHZRJCk9RHkhIz03JCQhMmIvND1nTCNwRSEjOyQiMTw0QUZvUjQqKSEjPTckJCEyLjA1PyUpKltaRSEjOyQiMmAsVkZDeSJRNSEjPTckJCEyTGpFYC1xIUhFISM7JCIyUSlwWTJHWng2ISM9NyQkITIoKil6ZipSVndnIyEjOyQiMmklKXp4KkhOYjghIz03JCQhMi84RV8/eCcpZSMhIzskIjJbIVItZl9VRDohIz03JCQhMjE1P1NHb3ljIyEjOyQiMkZDUUBSMklzIiEjPTckJCEyUHZdLEZgIVtEISM7JCIyZDUiUnImR3ciPiEjPTckJCEyeGE0PlF5dF8jISM7JCIxRENpbHUvQ0AhIzw3JCQhMkJeLTBRI1IzRCEjOyQiMllZUjRTWjdKIyEjPTckJCEybktsSVQ4elsjISM7JCIwQyNHRCVHcF0jISM7NyQkITFOcVNAOmttQyEjOiQiMjxUNjpuUW5wIyEjPTckJCEyJEhmPXhVN1tDISM7JCIyNyNSZCsyLVpHISM9NyQkITJNbEloOUQiR0MhIzskIjJZYz02JjM1KilIISM9NyQkITFyVCRvM2t1UyMhIzokIjJiQiI+RDI7NUohIz03JCQhMih5ZDpyN0QoUSMhIzskIjJGIj5wXy91Kj4kISM9NyQkITJtSmpFTCVwbkIhIzskIjFVWCYpKTQiM2RLISM8NyQkITJQdVsoNHEkb04jISM7JCIwLjpbPyopZUYkISM7NyQkITIyPE1vb3pmTSMhIzskIjFcczNqRTsmRyQhIzw3JCQhMSNbJ0gqKlFBT0IhIzokIjFVY3pNNU8mRyQhIzw3JCQhMSV6ZTw2b2tLIyEjOiQiL1AnSFlReUYkISM6NyQkITFjNkJFPDA7QiEjOiQiMVJ2V3I3U2hLISM8NyQkITJ2Xi4yTU5jSSMhIzskIjJYQShIRElUT0shIz03JCQhMlclKW9QdmRuRyMhIzskIjF0QklrWnNwSiEjPDckJCExRV4tbCY+aEUjISM6JCIyPCYpZjRyYGwxJCEjPTckJCEyWCUqKXlQMXFZQSEjOyQiMmBJJnBkQ0NWSCEjPTckJCExKWU8TkUta0EjISM6JCIxa11sLkYtKnkjISM8NyQkITI7SmlDKm9iMUEhIzskIjJgI1w9W1lKO0UhIz03JCQhMkxxUyJHMXkmPSMhIzskIjEkUTRPJj1VOUMhIzw3JCQhMTI5RzsxeGxAISM6JCIyQlE6IypwREM/IyEjPTckJCEya0FYISpbMmA5IyEjOyQiMlowZSFwIkgsKD4hIz03JCQhMjE8TW8hUSxEQCEjOyQiMlArU1ZGT2dzIiEjPTckJCExOERdP2dPMUAhIzokIjJ2XHdtMVc2XCIhIz03JCQhMlgjWydIYiQqXDMjISM7JCIyPGVeTFdPM0AiISM9NyQkITAzO0t3eGUxIyEjOSQiMFpMKFJJcjQmKiEjPDckJCExMztLV2pcWD8hIzokIjJYKDNgVyp6UmwnISM+NyQkITJjOUhlcykpZi0jISM7JCIyQkQsSmRNWyVRISM+NyQkITFqRF5BIUdWKyMhIzokIjEwWCEzenM3WichIz43JCQhMmU3RF1XcmIpPiEjOyQhMiZRM2BqTVV6QCEjPjckJCEyYS80PWMjR2s+ISM7JCExb2R4W3VlWGEhIz03JCQhMShSemUwISlbJT4hIzokITEnKipmVUsmUm4lKSEjPTckJCEyMzQ9T3djTyM+ISM7JCEyI2ZmTmNhTiI9IiEjPTckJCEyOEhlO2xXYCE+ISM7JCEyOSRbJFsqKTRJWiIhIz03JCQhMVUkb09IKlslKT0hIzokITJNcEFVMW4kMz0hIz03JCQhMmQ9UHUvV1YnPSEjOyQhMkN3T2NGJjRPQCEjPTckJCEwLzM7Jz5AVz0hIzkkITI8cz9iXiZ5b0MhIz03JCQhMkJYITRRUjpDPSEjOyQhMkYuKlI3Kyd5IUchIz03JCQhMj1VJSlvWCUpWyE9ISM7JCExTFohM00nKlI5JCEjPDckJCEyWCRwUVBPMCV5IiEjOyQhMSRRVjhaL01fJCEjPDckJCEyJioqKXpmTitVdyIhIzskITFhQEk0cWowUiEjPDckJCExLzM7N2RJVjwhIzokITFZKEciKikqemJMJSEjPDckJCEyJClwUnotIlJDPCEjOyQhMTlgPzYlcFV2JSEjPDckJCExRF0raG5bLjwhIzokITFbKillSj5mYV8hIzw3JCQhMiQqKil6ZjZrTW8iISM7JCEuMFNWcVh4JiEjOTckJCEyYztMbT8hXGo7ISM7JCEwdENkZVNeTCchIzs3JCQhMkVfLzRRRkVrIiEjOyQhMVJOU11JT2xwISM8NyQkITInPlJ5Yz5UQjshIzskITFLbkIqZm5TZSghIzw3JCQhMjtOcVN0S1BnIiEjOyQhMVcjcElXLjdEKSEjPDckJCExWiRwUWAvP2UiISM6JCExSE8jXFJvKT0hKiEjPDckJCEyIzM8TUc5TGk6ISM7JCExYSM0S3NcPnQqISM8NyQkITJUI1snSCo+QFU6ISM7JCEyXyhmRjh0bVk1ISM8NyQkITJiOEZhL148XyIhIzskITInel15RkBfPzYhIzw3JCQhMmpLbElYVkhdIiEjOyQhMkInUkQnKT1GJz0iISM8NyQkITE7S2tvXipHWyIhIzokITIoKTQsOGkrRUQiISM8NyQkITJqS2xJXCoqSFkiISM7JCEyWy5PJkdtMTg4ISM8NyQkITE4RV8vdHJUOSEjOiQhMktAXkVgYSxQIiEjPDckJCEyb1B2XXBPSFUiISM7JCEyJjRWO18zcjc5ISM8NyQkITFoQVhxeEUsOSEjOiQhMVtTRXFzTF45ISM7NyQkITJZIkhlT0tyIlEiISM7JCEyKClSODYlUWN2OSEjPDckJCEyLTA1PzlSP1AiISM7JCEyJz1QRD90ZSRbIiEjPDckJCEyZT1QdS9sQk8iISM7JCEyJHB3Ij4yKyopWyIhIzw3JCQhMVUlKW9uTztkOCEjOiQhLjZweT0xXCIhIzg3JCQhMiMpcFJ6R2k+TiIhIzskITEoKSlIKHlVYCJcIiEjOzckJCEyaUtsISlmaCRcOCEjOyQhMmAmWzsuJSpvIlwiISM8NyQkITJXJjQ+MzR3WTghIzskITIjR3YrOj9rIlwiISM8NyQkITJFZTskPS07VzghIzskITEmKnA/KCo9UiJcIiEjOzckJCEyMUBVJUcmZjpNIiEjOyQhMjJTY3d1UTRcIiEjPDckJCEyMj5Rd285NkwiISM7JCExJDREc1xwcVsiISM7NyQkITI0PE1vJSlwMUsiISM7JCEyYWlGc3E9Kno5ISM8NyQkITExN0MpZW02SiIhIzokITJKUFAya3MwWiIhIzw3JCQhMjdDWydITG0sOCEjOyQhMmR5NigzSWFlOSEjPDckJCEybEpqRUR6OUciISM7JCExRyR5Km8mW1VVIiEjOzckJCEyZTpKaWMieWg3ISM7JCEyamZGa2x1J3o4ISM8NyQkITIjZTtMbSFIL0MiISM7JCExUVQlPi0lZT44ISM7NyQkITJEVidHPEsmPkEiISM7JCEyQ0UpKUdqJUdlNyEjPDckJCEyViNbJ0guTDI/IiEjOyQhMng9InBBMCV6PCIhIzw3JCQhMkVnP1QlXHkhPSIhIzskITJyQiU0YlBRJDQiISM8NyQkITI3SWc/YEg1OyIhIzskITFed2xfQWgsNSEjOzckJCEyMTZBV1NlNzkiISM7JCEvPG1rT2tBISohIzo3JCQhMkxrR2Q1JDRANiEjOyQhMTlgS15XRU96ISM8NyQkITJObk1wQT0oKjQiISM7JCExdl47KD5WeXEnISM8NyQkITJWITQ9YyY+LDMiISM7JCExWy1vKnpoV14mISM8NyQkITIoKXlkOjp0MjEiISM7JCExUGo7KSpHQnZVISM8NyQkITJfMzxNOyM0UzUhIzskITJBOFZFKjNvJSlHISM9NyQkITIpKiopemY+YyU+NSEjOyQhMmMzLC9NRzFWIiEjPTckJCEjNSEiIiQhMSJbWzs4MDFUJCEjRy0lJkNPTE9SRzYnJSRSR0JHJCIpQyllcSUhIikkIilCUiEpSCEiKSQiIiEhIiItJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUnQ1VSVkVTRzYkN1x4NyQkISNdISIiJCIyKj1NSGBgSCVbIiEjRDckJCEydlwqKil6JnAqeVwhIzskIjIqPU1IYGBIJVsiISNENyQkITEmND5RN3IxJ1whIzokIjExKWV3VHl2XSIhI0I3JCQhMTA0PSdmIzRTXCEjOiQiMSd6blBWdXJnKiEjQjckJCExPU5xZ3dQPlwhIzokIjFmaVk8eSlSIVIhI0E3JCQhMSRcKXB6NncpKlshIzokIjJhJT0nSC43cDgiISNBNyQkITFvTnJpcWt6WyEjOiQiMmpIRkd1Jz00RCEjQTckJCExViYzPF1iKWZbISM6JCIxViMpKWV0JUcjKVwhI0A3JCQhMmItMDUvKFFSWyEjOyQiMVk/Nic9KVEqMyohI0A3JCQhMkRkOUhBJSkqPVshIzskIjIlKj5jI28mKUhDOiEjQDckJCExPE1vO3UqenolISM6JCIyWGtxRUFNR1UjISNANyQkITFlO0xFQV56WiEjOiQiMXJkKVtAU3RaJCEjPzckJCExMDU/IUctKGVaISM6JCIxbzllXGdSK10hIz83JCQhMjA7S2spbyF5dCUhIzskIjF4PihvcnVII3AhIz83JCQhMW9Oci0ubjxaISM6JCIxamNKVHg6dCIqISM/NyQkITEqKXlkYlZRKnAlISM6JCIyIypRZmZXKWZjNiEjPzckJCExJiopeWRmU3duJSEjOiQiMSMpKnlTcDJXWyIhIz43JCQhMXhhNHoyQWZZISM6JCIydGMiej5PJnl6IiEjPzckJCExTW9PYFR6UFkhIzokIjFhJ3oiUShvND8jISM+NyQkITF2XCoqZXojKT1ZISM6JCIxWC1xKClldillIyEjPjckJCExVyopeVAhPiEpZiUhIzokIjFZI1JDUmRDLyQhIz43JCQhMSlmPlItLyN5WCEjOiQiMGg/RjkpbyZcJCEjPTckJCExI1J5YzhIdmIlISM6JCIyPCspW1NlKkgpUiEjPzckJCEybE5yVThWJlFYISM7JCIyblJyZVRQZ1YlISM/NyQkITFyVCRvO2shPVghIzokIjFQJyllNVwhPiNcISM+NyQkITImemU8dkF6J1wlISM7JCIxOVtlVE9VOGEhIz43JCQhMXVaJjQudiN5VyEjOiQiMSlRd28jKnA9I2UhIz43JCQhMSlcKiopKiplRmVXISM6JCIxQUtvXzwuTWkhIz43JCQhMTpJZ1NbaFBXISM6JCIxeG08JVJmIj5tISM+NyQkITFCWSNcLS11VCUhIzokIjExKXpPJkdPWnAhIz43JCQhMWhAViczWHlSJSEjOiQiMTg1ZkRMIj5AKCEjPjckJCExOklnUy84d1YhIzokIjE3SSUqUUxFUHUhIz43JCQhMVF3X2wpPW1OJSEjOiQiMSh5JVwtJHpIZCghIz43JCQhMWlCWiU0J3lOViEjOiQiMTtgUlMzJlFrKCEjPjckJCExKW9Qdl0zcEolISM6JCIwZlU4WDsnUnchIz03JCQhMChSej0uRidIJSEjOSQiME9kPVdHJGZ2ISM9NyQkITImKnlkOlJeb0YlISM7JCIxa0B2ZWcmPVQoISM+NyQkITFLa0c8SWJjVSEjOiQiMU1jPXNXdyU9KCEjPjckJCExYzZCWXdxT1UhIzokIjEnSGQpWyJ6TSpvISM+NyQkITFbJjQ+UUpmQCUhIzokIjE5XSopUSM9JT5sISM+NyQkITFeLTBxOCNmPiUhIzokIjE0J29JJVJWKDQnISM+NyQkITAyOUdDZWE8JSEjOSQiMCUpXHA+IUc0YyEjPTckJCExOklnZ1g7YlQhIzokIjE7azE8Qjd2XSEjPjckJCExZDhGdW5eT1QhIzokIjFzbCwhZXhnYSUhIz43JCQhMXBPdDFWOTpUISM6JCIyZFszODQ6OyFSISM/NyQkITFEXClwXkdnNCUhIzokIjBULDU9ZmtIJCEjPTckJCExXy80KTRaYzIlISM6JCIxOSRSSSE0M0ZFISM+NyQkITAqemZ6JVJoMCUhIzkkIjImM21dcVdubj4hIz83JCQhMTI5R3coeVcuJSEjOiQiMkF5Qz1ARyg9NyEjPzckJCEwKFJ6KT5BZCwlISM5JCIyJVtJcmpbNyJmJiEjQDckJCEyJiopeWQ6TFYlKlIhIzskITJubjFTI3lxISo+ISNANyQkITFUI1snNDMudlIhIzokITFQXkFrZ21tKikhIz83JCQhMlgkcFE8diFRJlIhIzskITImPjx4InkjUm07ISM/NyQkITFPclUwYVxOUiEjOiQhMiN6bTZ5IkcqUkIhIz83JCQhMSc9UHUvU1kiUiEjOiQhMSJbXk1PMSFISiEjPjckJCEyLi4xNyFbXCUqUSEjOyQhME8+WURjRSRSISM9NyQkITJYKW9QOkZPdVEhIzskITJWRylHUHpTLlshIz83JCQhMmxIZj1wL1YmUSEjOyQhMSdvRDZLSTN4JiEjPjckJCEya0VgMUBOXSRRISM7JCExOFZEWS9VR28hIz43JCQhMXpkOiJSL1UiUSEjOiQhMWIjXFk0KnlgIikhIz43JCQhMlB1Wyg0Nk4leiQhIzskITA2MSdbeTlLJyohIz03JCQhMVsnSGZZY014JCEjOiQhMj0hUUUsJHBhOSIhIz43JCQhMVYmMzx5VFh2JCEjOiQhMiRRM3pnMSxQOCEjPjckJCEyJ3BReDl2akxQISM7JCEyJkcleU8iZW8hZSIhIz43JCQhMVcoWyhwW2g4UCEjOiQhMk5cbktbcXMlPSEjPjckJCEyKDQ/U2c0ayRwJCEjOyQhMCdSKik9X0FZQCEjPDckJCExbkxuTSJ5Rm4kISM6JCEyV3IiXCdHNktcIyEjPjckJCEyUHdfMHJpTmwkISM7JCExTXE9dFVrVUchIz03JCQhMmQ+UnlbJClRaiQhIzskITE3TUIpSFF2QSQhIz03JCQhMSI+UXdHYkBoJCEjOiQhMmohPUJOISp5ek8hIz43JCQhMWAwNiM9I1sjZiQhIzokITEqcFZid2ooM1QhIz03JCQhMiRvT3RZRk9zTiEjOyQhMCIqWyoqKilmL2MlISM8NyQkITInemY+KnosPmIkISM7JCExdyQpNGtBN0VdISM9NyQkITIvPE1vPyU0TE4hIzskITFtJFFhQGZHWCYhIz03JCQhMjAxN0MjZi84TiEjOyQhMSczJVF5KFsnKSplISM9NyQkITFyVCRvQ11KXCQhIzokITF5Lj5tPW1CaiEjPTckJCExZDlIZSFvPVokISM6JCEwaSpcbnR0XG4hIzw3JCQhMjlBVylbdTNgTSEjOyQhMS9OST5uWCQ0KCEjPTckJCEyYjVAVV89OVYkISM7JCEvPSIpemJiVnUhIzs3JCQhMWY8TiEqUic9VCQhIzokITAmM2RxNlE0eCEjPDckJCEwLjE3IWVeI1IkISM5JCExUG8jM3AkUj56ISM9NyQkITJjMDZBRzU8UCQhIzskITFXVkFkP2QhMykhIz03JCQhMTpJZysxIzNOJCEjOiQhMUJtKik9JSoqKnAiKSEjPTckJCEyYDM8TTM5PUwkISM7JCExTWBFRShSXj0pISM9NyQkITIyO0trK0k7SiQhIzskITFHcmEqeiM0SSIpISM9NyQkISpLSz5IJCEiKSQhMURbOS4nKipcKykhIz03JCQhMkZdKywjKXowRiQhIzskITE4YCdvXkgueighIz03JCQhMXdfMHJSNV9LISM6JCExLylwQSZbeVJ2ISM9NyQkITIlb090J3kkKTNCJCEjOyQhMCwoeVknUjQ9KCEjPDckJCExWiUqKXlwTjRAJCEjOiQhMW42KyFHayN5biEjPTckJCExWSJIZUchPSI+JCEjOiQhMSY+YnVaaTxLJyEjPTckJCEyWiY0PmUiNDk8JCEjOyQhMShmPE9JaUQiZSEjPTckJCEydVsoXGZRQ15KISM7JCEwXEtUL0RdQyYhIzw3JCQhMndeLjIpKm8pSEohIzskITFrJkciR2csKGYlISM9NyQkITFcKFwqNC5GNUohIzokITFIYyFwOk9vJ1IhIz03JCQhMkxqRWAhUiM0NCQhIzskITJtTiQqKkdAQDtMISM+NyQkITAkZj08SENxSSEjOSQhMidcI3pYNEBYZiMhIz43JCQhMk51WyhccGdcSSEjOyQhMlwmemIpZSM+Xz0hIz43JCQhMnZlPE4lXDNKSSEjOyQhMUhXOCVHJlJxNiEjPTckJCEyakdkOUhXIjRJISM7JCEyWTIkW1UhSERaJCEjPzckJCEyOkdjN1AmeSEqSCEjOyQiMUJfYGM2dT9OISM+NyQkITEqemY+YjckcEghIzokIjJmb0tNbHonejYhIz43JCQhMk1sSWgjKT0pW0ghIzskIjJvSVR5ekl5KD4hIz43JCQhMjhEXStQPzAkSCEjOyQiMkxWeTY3LSEpcCMhIz43JCQhMDE3QyU9JSo0SCEjOSQiMjA5XEdHeCo+TiEjPjckJCEyTW5NcCFwQSopRyEjOyQiMU4lPUU/anRPJSEjPTckJCEyJFsnSGZVNSdvRyEjOyQiMDI9XkUmKTRDJiEjPDckJCExQ1olKjNqXFxHISM6JCIxPWlkcF84KjMnISM9NyQkITEpcFJ6dS8oSEchIzokIjEpZmQoNGVzPXEhIz03JCQhMSI9T3NHTyM0RyEjOiQiMS4rRiM+cCNcISkhIz03JCQhMUhkOXBNJCkpeSMhIzokIjA9Lyg+PyYzOyohIzw3JCQhMXRYIkhtWXl3IyEjOiQiMi4kXFgpRylmUzUhIz03JCQhMTlHY3M5T1xGISM6JCIxMiFbIXk+dmY2ISM8NyQkITFoQFZFOmJHRiEjOiQiMWklUms1eF9JIiEjPDckJCEya0pqRThjd3EjISM7JCIyZG0jW3Z4JVJZIiEjPTckJCEyTXNXKlsmPnZvIyEjOyQiMjgrImYqRz8oRzshIz03JCQhMmIvND1nTCNwRSEjOyQiMidbIip5U1stKXkiISM9NyQkITIuMDU/JSkqW1pFISM7JCIyaj5GXlQzJSkpPiEjPTckJCEyTGpFYC1xIUhFISM7JCIxVkJxJzMyaTsjISM8NyQkITIoKil6ZipSVndnIyEjOyQiMl9aaSEpUSZHIVEjISM9NyQkITIvOEVfP3gnKWUjISM7JCIxMSJHcyVHOnVEISM8NyQkITIxNT9TR295YyMhIzskIjFLRlAnPnkoKXkjISM8NyQkITJQdl0sRmAhW0QhIzskIjItKFsnKWZcLyMqSCEjPTckJCEyeGE0PlF5dF8jISM7JCIxalIlRyV5Xyo+JCEjPDckJCEyQl4tMFEjUjNEISM7JCIxRFQtNEl1I1EkISM8NyQkITJuS2xJVDh6WyMhIzskIjElSEpyWXEqb04hIzw3JCQhMU5xU0A6a21DISM6JCIxWlh2UGgmZnUkISM8NyQkITIkSGY9eFU3W0MhIzskIjFIOlYjXDtLKVEhIzw3JCQhMk1sSWg5RCJHQyEjOyQiMT4uTiUqM3k1UyEjPDckJCExclQkbzNrdVMjISM6JCIxXiVcOm4/cDYlISM8NyQkITIoeWQ6cjdEKFEjISM7JCIwJVE+SiZcRj4lISM7NyQkITJtSmpFTCVwbkIhIzskIjE9QW4nNE52QiUhIzw3JCQhMlB1Wyg0cSRvTiMhIzskIjEib153TDgnXFUhIzw3JCQhMjI8TW9vemZNIyEjOyQiMTBhITNCZ0FEJSEjPDckJCExI1snSCoqUUFPQiEjOiQiMUIvJ1tRUmtDJSEjPDckJCExJXplPDZva0sjISM6JCIxQ1VaVSRbRkIlISM8NyQkITJ2Xi4yTU5jSSMhIzskIjBRWmdIZ288JSEjOzckJCEyVyUpb1B2ZG5HIyEjOyQiMSZIOzRPRlo0JSEjPDckJCExRV4tbCY+aEUjISM6JCIyWEUzLl5lNChSISM9NyQkITJYJSopeVAxcVlBISM7JCIxRT40J3pHRyNRISM8NyQkITEpZTxORS1rQSMhIzokIjFjUm0iXChST08hIzw3JCQhMjtKaUMqb2IxQSEjOyQiMVJCUEZJXUNNISM8NyQkITJMcVMiRzF5Jj0jISM7JCIyJW9lJ2VFbEw8JCEjPTckJCExMjlHOzF4bEAhIzokIjEiZiZIc2dTMEghIzw3JCQhMmtBWCEqWzJgOSMhIzskIjIvbiwtJj5RMkUhIz03JCQhMjE8TW8hUSxEQCEjOyQiMkUiKSlcLyZwLkgjISM9NyQkITE4RF0/Z08xQCEjOiQiMm5GVS1mXUIpPiEjPTckJCEyWCNbJ0hiJCpcMyMhIzskIjFoJVE5R1A/aCIhIzw3JCQhMDM7S3d4ZTEjISM5JCIyREsmZVp6N243ISM9NyQkITEzO0tXalxYPyEjOiQiMWROJSk9VXdwKSkhIz03JCQhMmM5SGVzKSlmLSMhIzskIjFbIlsuL3lnNyYhIz03JCQhMWpEXkEhR1YrIyEjOiQiMF5YJVJHN1AnKSEjPTckJCEyZTdEXVdyYik+ISM7JCEyYzhMNSlvI2UhSCEjPjckJCEyYS80PWMjR2s+ISM7JCExKHB4Q0RRM0UoISM9NyQkITEoUnplMCEpWyU+ISM6JCEyUCMpZTUmUkdINiEjPTckJCEyMzQ9T3djTyM+ISM7JCEyakdOJT5bJ29kIiEjPTckJCEyOEhlO2xXYCE+ISM7JCEyKHAlZkknKW8pbz4hIz03JCQhMVUkb09IKlslKT0hIzokITIuMWJLTlJIVSMhIz03JCQhMmQ9UHUvV1YnPSEjOyQhMi5YRWwjUSM0KEchIz03JCQhMC8zOyc+QFc9ISM5JCEydm1hNy93KkhMISM9NyQkITJCWCE0UVI6Qz0hIzskITFtNGpweC4sUSEjPDckJCEyPVUlKW9YJSlbIT0hIzskITFIVFRHTXZvVSEjPDckJCEyWCRwUVBPMCV5IiEjOyQhMFYyTF0qXCR6JSEjOzckJCEyJioqKXpmTitVdyIhIzskITJXOzNeViIzOWAhIz03JCQhMS8zOzdkSVY8ISM6JCExKilwbSEqSC8mKWUhIzw3JCQhMiQpcFJ6LSJSQzwhIzskITFrNjg6XSFIVSchIzw3JCQhMURdK2huWy48ISM6JCExUSVwWFgpSFNxISM8NyQkITIkKiopemY2a01vIiEjOyQhMURFVDwnb0hsKCEjPDckJCEyYztMbT8hXGo7ISM7JCExUChvPjJwREcpISM8NyQkITJFXy80UUZFayIhIzskITFcXmUoUio0YyopISM8NyQkITInPlJ5Yz5UQjshIzskITEyJGYjUj9WJ2UqISM8NyQkITI7TnFTdEtQZyIhIzskITIjKVIiR01ebEI1ISM8NyQkITFaJHBRYC8/ZSIhIzokITJBIipmZSc9QSY0IiEjPDckJCEyIzM8TUc5TGk6ISM7JCEya1kkPiJIXSFmNiEjPDckJCEyVCNbJ0gqPkBVOiEjOyQhMnBRLGEsSkRBIiEjPDckJCEyYjhGYS9ePF8iISM7JCExSDFaRjtKJUciISM7NyQkITJqS2xJWFZIXSIhIzskITIoKUdlWClSelA4ISM8NyQkITE7S2tvXipHWyIhIzokITJGJ2Y2ODZVIVIiISM8NyQkITJqS2xJXCoqSFkiISM7JCEyLyRSJkdqdHNWIiEjPDckJCExOEVfL3RyVDkhIzokITFXIz1zU2IvWyIhIzs3JCQhMm9Qdl1wT0hVIiEjOyQhMnlycEIoKil6NjohIzw3JCQhMWhBWHF4RSw5ISM6JCExMlJ2ayIqPVI6ISM7NyQkITJ4ZTxOXSFcIlIiISM7JCEybEdBKHpzQls6ISM8NyQkITJZIkhlT0tyIlEiISM7JCEyRGAyKGUhPl5iIiEjPDckJCEyLTA1PzlSP1AiISM7JCEyL0EnWylIRyhmOiEjPDckJCEyZT1QdS9sQk8iISM7JCEyRFZNMTQpM2k6ISM8NyQkITFVJSlvbk87ZDghIzokITJVRF0kKWUyQ2MiISM8NyQkITIjKXBSekdpPk4iISM7JCEyKVE3RTNKMGk6ISM8NyQkITJXJjQ+MzR3WTghIzskITBcPUBWPDVjIiEjOjckJCEyMUBVJUcmZjpNIiEjOyQhMkddSCgqKVFIZjohIzw3JCQhMjI+UXdvOTZMIiEjOyQhMiVSKkdRQEpQYiIhIzw3JCQhMjQ8TW8lKXAxSyIhIzskITJoUyEqXCd6S1g6ISM8NyQkITI3Q1snSExtLDghIzskITJpMm1AY1hFXyIhIzw3JCQhMmxKakVEejlHIiEjOyQhMmJiQDwicCspWyIhIzw3JCQhMmU6SmljInloNyEjOyQhMlYhNDFKIypwVjkhIzw3JCQhMiNlO0xtIUgvQyIhIzskITIkb0goZj5aU1EiISM8NyQkITJEVidHPEsmPkEiISM7JCExTlUmbzpbR0siISM7NyQkITJWI1snSC5MMj8iISM7JCEyI1EnUXJbKSk9QyIhIzw3JCQhMkVnP1QlXHkhPSIhIzskITJvI2Uqb1RSZDoiISM8NyQkITI3SWc/YEg1OyIhIzskITJNNHFcR0w3MSIhIzw3JCQhMjE2QVdTZTc5IiEjOyQhMWsvaDdbPXomKiEjPDckJCEyTGtHZDUkNEA2ISM7JCExUW1GdlEqKVIlKSEjPDckJCEyTm5NcEE9KCo0IiEjOyQhMTMoPWxRW0c5KCEjPDckJCEyViE0PWMmPiwzIiEjOyQhMiU+UUltMiJvKGUhIz03JCQhMigpeWQ6OnQyMSIhIzskITEkZi8sSXkkZVghIzw3JCQhMl8zPE07IzRTNSEjOyQhMVtCJFFjcWwyJCEjPDckJCEyKSoqKXpmPmMlPjUhIzskITJcT2o4NmtmXyIhIz03JCQhIzUhIiIkIjEsMCEpeU9yX04hI0ktJSZDT0xPUkc2JyUkUkdCRyQiKHZpbyYhIigkIikpPiFcRCEiKSQiKGg+IUghIigtJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUlVklFV0c2JDskISNdISIiJCEjNSEiIiUoREVGQVVMVEctJiUmX0FYSVNHNiMiIiI2Jy0lK19HUklETElORVNHNiYtJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJiUmX0FYSVNHNiMiIiM2Jy0lK19HUklETElORVNHNiYtJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJStBWEVTTEFCRUxTRzYkLUkjbWlHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEieDYiLyUnZmFtaWx5R1EhNiIvJSVzaXplR1EjMTA2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EldHJ1ZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ2l0YWxpYzYiUSE2Ii0lJVJPT1RHNictJSlCT1VORFNfWEc2IyQiJFMiISIiLSUpQk9VTkRTX1lHNiMkIiNxISIiLSUtQk9VTkRTX1dJRFRIRzYjJCImZzkiISIiLSUuQk9VTkRTX0hFSUdIVEc2IyQiJUltISIiLSUpQ0hJTERSRU5HNiI=</Plot></Text-field> -</Output> -</Group> -<Group labelreference="L543" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -</Worksheet> \ No newline at end of file diff --git a/Docs/remeshing_formulas/formules_lambda.pdf b/Docs/remeshing_formulas/formules_lambda.pdf deleted file mode 100644 index 8e6bfe0760bbfbfc1f77c13162705a62043f535f..0000000000000000000000000000000000000000 Binary files a/Docs/remeshing_formulas/formules_lambda.pdf and /dev/null differ diff --git a/Docs/remeshing_formulas/formules_lambda.tex b/Docs/remeshing_formulas/formules_lambda.tex deleted file mode 100644 index 417387adb9914bb805390772c69eaceebeb88d97..0000000000000000000000000000000000000000 --- a/Docs/remeshing_formulas/formules_lambda.tex +++ /dev/null @@ -1,558 +0,0 @@ -\documentclass{scrartcl} - -\usepackage[utf8]{inputenc} -\usepackage{lmodern} -\usepackage[french]{babel} - -\usepackage{amssymb} -\usepackage{amsmath} -\usepackage{mathtools} -\mathtoolsset{mathic} -\usepackage{booktabs} -\usepackage{hyperref} -\usepackage[left=1cm,right=1cm]{geometry} - -\title{Calcul des formules $\Lambda_{n,k}$} - -\begin{document} -\maketitle -\tableofcontents{} - -\section{Génération des formules} -\label{sec:gener-des-form} - - -Les formules de remaillage de la forme $\Lambda_{n,k}$ sont des fonctions polynomiales par morceaux, symétriques, de support $]{ -n/2-1, n/2-1 }[$, de régularité $C^k$ qui conservent les $n$ premiers moments. La formule est donnée par morceaux sur les intervalles entiers par un polynôme $p_i$ de degré $2k+1$, soit $n+2$ polynômes. Les différentes formules générées sont résumées dans le tableau~\ref{tab:formulesRemaillage}. - - - - -Les contraintes sont les suivantes: -\begin{itemize} -\item Symétrie (seulement $n/2 + 1$ polynômes à chercher) - \begin{equation} - \label{eq:4} - \Lambda_{n,k} (x) = \Lambda_{n,k} (-x) - \end{equation} - \begin{equation} - \label{eq:7} - \Lambda_{n,k} = - \begin{cases} - p_i(x) & \text{ si } |x| \in [n/2-i ; n/2+1-i [\\ - 0 & \text{ sinon} - \end{cases} -\end{equation} - \begin{equation} - \label{eq:6} - p_i(x) = \sum_{j=0}^{2k+1}c_{i,j}x^j,\quad i=0,\dots , n/2 + 1 - \end{equation} -\item Raccords $C^k$ entre les polynômes -\item Conservation des moments discrets: - \begin{equation} - \label{eq:2} - \sum_{l=-N}^N l^q\Lambda_{n,k}(s-l) = s^q,\quad 0<s<1, q=0\dots n - \end{equation} -\end{itemize} -Ainsi, par ces contraintes, on obtient un système d'équations dont les inconnues sont les coefficients $c_{i,k}$. Le nombre d'équation est bien supérieur au nombre d'inconnues. - - -Remarque 1: pour chaque formule obtenue, les moments continus sont conservés: -\begin{equation} - \label{eq:3} - \int_{-\infty}^\infty x^q\Lambda_{n,k}(x) \mathrm{d}x = - \begin{cases} - 1 & \text{si } q = 0\\ - 0 & \text{sinon } - \end{cases} -\end{equation} - -Remarque 2: on obtient une formule exacte aux points de coordonnées entières: - \begin{equation} - \label{eq:5} - \Lambda_{n,k} (i) = \begin{cases} - 1 & \text{ si } i=0\\ - 0 & \text{sinon} - \end{cases},\quad i \in \lbrace -n/2+1,\dots, n/2-1 \rbrace - \end{equation} - -\begin{table}[h]\centering -\begin{tabular}{@{}lccccccc@{}} \toprule - & & Moments & Régularité & Nb points & Degré & Support \\ \midrule -$\Lambda_{2,1}=M'_4$ &\eqref{eq:lambda21} & 2 & $C^1$ & 4 & 3 & $[-2;2]$ \\ -$\Lambda_{2,2}$ &\eqref{eq:lambda22} & 2 & $C^2$ & 4 & 5 & $[-2;2]$ \\ -$\Lambda_{2,3}$ &\eqref{eq:lambda23} & 2 & $C^3$ & 4 & 7 & $[-2;2]$ \\ -$\Lambda_{2,4}$ &\eqref{eq:lambda24} & 2 & $C^4$ & 4 & 9 & $[-2;2]$ \\\midrule -$\Lambda_{4,2} = M'_6$ &\eqref{eq:lambda42} & 4 & $C^2$ & 6 & 5 & $[-3;3]$ \\ -$\Lambda_{4,3}$ &\eqref{eq:lambda43} & 4 & $C^3$ & 6 & 7 & $[-3;3]$ \\ -$\Lambda_{4,4}$ &\eqref{eq:lambda44} & 4 & $C^4$ & 6 & 9 & $[-3;3]$ \\\midrule -$\Lambda_{6,3}$ &\eqref{eq:lambda63} & 6 & $C^3$ & 8 & 7 & $[-4;4]$ \\ -$\Lambda_{6,4}$ &\eqref{eq:lambda64} & 6 & $C^4$ & 8 & 9 & $[-4;4]$ \\ -$\Lambda_{6,5}$ &\eqref{eq:lambda65} & 6 & $C^5$ & 8 & 11 & $[-4;4]$ \\ -$\Lambda_{6,6}$ &\eqref{eq:lambda66} & 6 & $C^6$ & 8 & 13 & $[-4;4]$ \\\midrule -$\Lambda_{8,4}$ &\eqref{eq:lambda84} & 8 & $C^4$ & 10 & 9 & $[-5;5]$ \\ \bottomrule - \end{tabular} - \caption{Caractéristiques des formules de remaillage. Le temps de calcul qualitatif est donné par itérations pour un problème 2D.} -\label{tab:formulesRemaillage} -\end{table} - -\section{Formules} -\label{sec:formules} - - - -\begin{equation} - \label{eq:lambda21} - M'_4 = \Lambda_{2,1}(x) = - \begin{cases} - 1-{5 \over 2}|x|^2+{3 \over 2}|x|^3 & 0\leqslant |x|<1\\ - 2-4|x|+{5 \over 2}|x|^2-{1 \over 2}|x|^3 & 1\leqslant |x|<2\\ - 0 & |x| \geqslant 2 - \end{cases} -\end{equation} - -\begin{equation} - \label{eq:lambda22} - \Lambda_{2,2}(x) = - \begin{cases} - 1-|x|^2-{9 \over 2}|x|^3+{15 \over 2}|x|^4-3|x|^5& 0\leqslant |x|<1\\ - -4+18|x|-29|x|^2+{43 \over 2}|x|^3-{15 \over 2}|x|^4+|x|^5& 1\leqslant |x|<2\\ - 0 & |x| \geqslant 2 - \end{cases} -\end{equation} -\begin{equation} - \label{eq:lambda23} - \Lambda_{2,3}(x) = - \begin{cases} - 1-x^2-15x^4+({75 \over 2})x^5-({63 \over 2})x^6+9x^7 & 0\leqslant |x|<1\\ - 32-168x+376x^2-460x^3+330x^4-({277 \over 2})x^5+({63 \over 2})x^6-3x^7 & 1\leqslant |x|<2\\ - 0 & |x| \geqslant 2 - \end{cases} -\end{equation} -\begin{equation} - \label{eq:lambda24} - \Lambda_{2,4}(x) = - \begin{cases} - 1-x^2-({105 \over 2})x^5+({357 \over 2})x^6-231x^7+135x^8-30x^9& 0\leqslant |x|<1\\ - -208+1432x-4304x^2+7420x^3-8085x^4+({11543 \over 2})x^5-({5397 \over 2})x^6+797x^7-135x^8+10x^9& 1\leqslant |x|<2\\ - 0 & |x| \geqslant 2 - \end{cases} -\end{equation} - -\begin{equation} - \label{eq:lambda42} - M'_6 = \Lambda_{4,2}(x) = - \begin{cases} - 1-{5 \over 4}|x|^2-{35 \over 12}|x|^3+{21 \over 4}|x|^4-{25 \over 12}|x|^5 & 0\leqslant |x|<1\\ - -4+{75 \over 4}|x|-{245 \over 8}|x|^2+{545 \over 24}|x|^3-{63 \over 8}|x|^4+{25 \over 24}|x|^5 & 1\leqslant |x|<2\\ - 18-{153 \over 4}|x|+{255 \over 8}|x|^2-{313 \over 24}|x|^3+{21 \over 8}|x|^4-{5 \over 24}|x|^5 & 2\leqslant |x|<3\\ - 0 & |x| \geqslant 3 - \end{cases} -\end{equation} - -\begin{equation} - \label{eq:lambda43} - \Lambda_{4,3}(x) = - \begin{cases} - 1-{5 \over 4}|x|^2-{28 \over 3}|x|^4+{145 \over 6}|x|^5-{245 \over 12}|x|^6+{35 \over 6}|x|^7 & 0\leqslant |x|<1\\ - 31-{1945 \over 12}|x|+{2905 \over 8}|x|^2-{5345 \over 12}|x|^3+{1281 \over 4}|x|^4-{1615 \over 12}|x|^5+{245 \over 8}|x|^6-{35 \over 12}|x|^7 & 1\leqslant |x|<2\\ - -297+{3501 \over 4}|x|-{8775 \over 8}|x|^2+{3029 \over 4}|x|^3-{3731 \over 12}|x|^4+{911 \over 12}|x|^5-{245 \over 24}|x|^6+{7 \over 12}|x|^7 & 2\leqslant |x|<3\\ - 0 & |x| \geqslant 3 - \end{cases} -\end{equation} - -\begin{equation} - \label{eq:lambda44} - \Lambda_{4,4}(x) = - \begin{cases} - 1-{5 \over 4}|x|^2+{1 \over 4}|x|^4-{100 \over 3}|x|^5+{455 \over 4}|x|^6-{295 \over 2}|x|^7+{345 \over 4}|x|^8-{115 \over 6}|x|^9 & 0\leqslant |x|<1\\ - -199+{5485 \over 4}|x|-{32975 \over 8}|x|^2+{28425 \over 4}|x|^3-{61953 \over 8}|x|^4+{33175 \over 6}|x|^5& \\ \hspace{4.5cm} -{20685 \over 8}|x|^6+{3055 \over 4}|x|^7-{1035 \over 8}|x|^8+{115 \over 12}|x|^9 & 1\leqslant |x|<2\\ - 5913-{89235 \over 4}|x|+{297585 \over 8}|x|^2-{143895 \over 4}|x|^3+{177871 \over 8}|x|^4-{54641 \over 6}|x|^5& \\ \hspace{5cm} +{19775 \over 8}|x|^6-{1715 \over 4}|x|^7+{345 \over 8}|x|^8-{23 \over 12}|x|^9 & 2\leqslant |x|<3\\ - 0 & |x| \geqslant 3 - \end{cases} -\end{equation} - - -\begin{equation} - \label{eq:lambda63} - \Lambda_{6,3}(x) = - \begin{cases} - 1-{49 \over 36}|x|^2-{959 \over 144}|x|^4+{2569 \over 144}|x|^5-{727 \over 48}|x|^6+{623 \over 144}|x|^7& 0\leqslant |x|<1\\ - {138\over 5}-{8617 \over 60}|x|+{12873 \over 40}|x|^2-{791 \over 2}|x|^3+{4557 \over 16}|x|^4-{9583 \over 80}|x|^5+{2181 \over 80}|x|^6-{623 \over 240}|x|^7& 1\leqslant |x|<2\\ - -440+{25949 \over 20}|x|-{117131 \over 72}|x|^2+{2247 \over 2}|x|^3-{66437 \over 144}|x|^4+{81109 \over 720}|x|^5-{727 \over 48}|x|^6+{623 \over 720}|x|^7& 2\leqslant |x|<3\\ - {3632\over 5}-{7456 \over 5}|x|+{58786 \over 45}|x|^2-633|x|^3+{26383 \over 144}|x|^4-{22807 \over 720}|x|^5+{727 \over 240}|x|^6-{89 \over 720}|x|^7& 3\leqslant |x|<4\\ - 0 & |x| \geqslant 4 - \end{cases} -\end{equation} - -\begin{equation} - \label{eq:lambda64} - \Lambda_{6,4}(x) = - \begin{cases} - 1-{49 \over 36}|x|^2+{7 \over 18}|x|^4-{3521 \over 144}|x|^5+{12029 \over 144}|x|^6-{15617 \over 144}|x|^7+{1015 \over 16}|x|^8-{1015 \over 72}|x|^9& 0\leqslant |x|<1\\ - -{877\over5}+{72583 \over 60}|x|-{145467 \over 40}|x|^2+{18809 \over 3}|x|^3-{54663 \over 8}|x|^4+{390327 \over 80}|x|^5& \\ \hspace{6.5cm} -{182549 \over 80}|x|^6+{161777 \over 240}|x|^7-{1827 \over 16}|x|^8+{203 \over 24}|x|^9& 1\leqslant |x|<2\\ - 8695-{656131 \over 20}|x|+{3938809 \over 72}|x|^2-{158725 \over 3}|x|^3+{2354569 \over 72}|x|^4-{9644621 \over 720}|x|^5& \\ \hspace{6.5cm} +{523589 \over 144}|x|^6-{454097 \over 720}|x|^7+{1015 \over 16}|x|^8-{203 \over 72}|x|^9& 2\leqslant |x|<3\\ - -{142528\over5}+{375344 \over 5}|x|-{3942344 \over 45}|x|^2+{178394 \over 3}|x|^3-{931315 \over 36}|x|^4+{5385983 \over 720}|x|^5& \\ \hspace{6.5cm} -{1035149 \over 720}|x|^6+{127511 \over 720}|x|^7-{203 \over 16}|x|^8+{29 \over 72}|x|^9& 3\leqslant |x|<4\\ - 0 & |x| \geqslant 4 - \end{cases} -\end{equation} -\begin{equation} - \label{eq:lambda65} - \Lambda_{6,5}(x) = - \begin{cases} - 1-{49 \over 36}|x|^2+{7 \over 18}|x|^4-{701 \over 8}|x|^6+{54803 \over 144}|x|^7-{32165 \over 48}|x|^8+{9555 \over 16}|x|^9-{38731 \over 144}|x|^{10}+{3521 \over 72}|x|^{11}& 0\leqslant |x|<1\\ - 1233-{617533 \over 60}|x|+{1544613 \over 40}|x|^2-{515179 \over 6}|x|^3+{502579 \over 4}|x|^4-{3809911 \over 30}|x|^5& \\ \hspace{2.5cm} +{3618099 \over 40}|x|^6-{10894163 \over 240}|x|^7+{251685 \over 16}|x|^8-{172123 \over 48}|x|^9+{38731 \over 80}|x|^{10}-{3521 \over 120}|x|^{11}& 1\leqslant |x|<2\\ - -181439+{16709441 \over 20}|x|-{125352311 \over 72}|x|^2+{13002493 \over 6}|x|^3-{64445353 \over 36}|x|^4+{30912301 \over 30}|x|^5& \\ \hspace{2.5cm}-{3373567 \over 8}|x|^6+{88345523 \over 720}|x|^7-{1194095 \over 48}|x|^8+{160657 \over 48}|x|^9-{38731 \over 144}|x|^{10}+{3521 \over 360}|x|^{11}& 2\leqslant |x|<3\\ - 1188352-{19108864 \over 5}|x|+{250837216 \over 45}|x|^2-{14600752 \over 3}|x|^3+{25437902 \over 9}|x|^4-{17195278 \over 15}|x|^5& \\ \hspace{2.5cm}+{13253241 \over 40}|x|^6-{49136309 \over 720}|x|^7+{471205 \over 48}|x|^8-{45083 \over 48}|x|^9+{38731 \over 720}|x|^{10}-{503 \over 360}|x|^{11}& 3\leqslant |x|<4\\ - 0 & |x| \geqslant 4 - \end{cases} -\end{equation} -\begin{equation} - \label{eq:lambda66} - \Lambda_{6,6}(x) = - \begin{cases} -1-{49 \over 36}|x|^2+{7 \over 18}|x|^4-{1 \over 36}|x|^6-{46109 \over 144}|x|^7+{81361 \over 48}|x|^8-{544705 \over 144}|x|^9+{655039 \over 144}|x|^{10}& \\ \hspace{9cm} -{223531 \over 72}|x|^{11}+{81991 \over 72}|x|^{12}-{6307 \over 36}|x|^{13} & 0\leqslant |x|<1\\ --{44291 \over 5}+{1745121 \over 20}|x|-{15711339 \over 40}|x|^2+{32087377 \over 30}|x|^3-{7860503 \over 4}|x|^4+{38576524 \over 15}|x|^5& \\ \hspace{2.5cm} -{24659323 \over 10}|x|^6+{84181657 \over 48}|x|^7-{74009313 \over 80}|x|^8+{17159513 \over 48}|x|^9-{7870247 \over 80}|x|^{10}& \\ \hspace{9cm} +{438263 \over 24}|x|^{11}-{81991 \over 40}|x|^{12}+{6307 \over 60}|x|^{13}& 1\leqslant |x|<2\\ -3905497-{424679647 \over 20}|x|+{3822627865 \over 72}|x|^2-{2424839767 \over 30}|x|^3+{3009271097 \over 36}|x|^4-{930168127 \over 15}|x|^5& \\ \hspace{2.5cm} +{305535494 \over 9}|x|^6-{9998313437 \over 720}|x|^7+{203720335 \over 48}|x|^8-{137843153 \over 144}|x|^9+{22300663 \over 144}|x|^{10}& \\ \hspace{9cm} -{6126883 \over 360}|x|^{11}+{81991 \over 72}|x|^{12}-{6307 \over 180}|x|^{13}& 2\leqslant |x|<3\\ --{255622144\over 5}+{971097344 \over 5}|x|-{15295867328 \over 45}|x|^2+{5442932656 \over 15}|x|^3-{2372571796 \over 9}|x|^4+{2064517469 \over 15}|x|^5& \\ \hspace{2.5cm} -{9563054381 \over 180}|x|^6+{2210666335 \over 144}|x|^7-{796980541 \over 240}|x|^8+{76474979 \over 144}|x|^9-{43946287 \over 720}|x|^{10}& \\ \hspace{9cm} +{343721 \over 72}|x|^{11}-{81991 \over 360}|x|^{12}+{901 \over 180}|x|^{13}& 3\leqslant |x|<4\\ - 0 & |x| \geqslant 4 - \end{cases} -\end{equation} - - -\begin{equation} - \label{eq:lambda84} - \Lambda_{8,4}(x) = - \begin{cases} - 1-{205 \over 144}x^2+{91 \over 192}x^4-{6181 \over 320}x^5+{6337 \over 96}x^6-{2745 \over 32}x^7+{28909 \over 576}x^8-{3569 \over 320}x^9& 0\leqslant |x|<1\\ - -154+{12757 \over 12}x-{230123 \over 72}x^2+{264481 \over 48}x^3-{576499 \over 96}x^4+{686147 \over 160}x^5& \\ \hspace{6cm}-{96277 \over 48}x^6+{14221 \over 24}x^7-{28909 \over 288}x^8+{3569 \over 480}x^9& 1\leqslant |x|<2\\ -{68776\over7}-{1038011 \over 28}x+{31157515 \over 504}x^2-{956669 \over 16}x^3+{3548009 \over 96}x^4-{2422263 \over 160}x^5& \\ \hspace{6cm}+{197255 \over 48}x^6-{19959 \over 28}x^7+{144545 \over 2016}x^8-{3569 \over 1120}x^9& 2\leqslant |x|<3\\ - -56375+{8314091 \over 56}x-{49901303 \over 288}x^2+{3763529 \over 32}x^3-{19648027 \over 384}x^4+{9469163 \over 640}x^5& \\ \hspace{6cm}-{545977 \over 192}x^6+{156927 \over 448}x^7-{28909 \over 1152}x^8+{3569 \over 4480}x^9& 3\leqslant |x|<4\\ - {439375\over7}-{64188125 \over 504}x+{231125375 \over 2016}x^2-{17306975 \over 288}x^3+{7761805 \over 384}x^4-{2895587 \over 640}x^5& \\ \hspace{6cm}+{129391 \over 192}x^6-{259715 \over 4032}x^7+{28909 \over 8064}x^8-{3569 \over 40320}x^9& 4\leqslant |x|<5\\ - 0 & |x| \geqslant 5 - \end{cases} -\end{equation} - -\begin{equation} - \label{eq:m8prime} - M'_8(x) = - \begin{cases} -{5 \over 48}x^7-{11 \over 32}x^6+{7 \over 8}x^4-{35 \over 24}x^2+{151 \over 168} & 0\leqslant |x|<1\\ -{103 \over 112}-{7 \over 30}x-{7 \over 16}x^2-{7 \over 3}x^3+{63 \over 16}x^4-{7 \over 3}x^5+{99 \over 160}x^6-{1 \over 16}x^7 & 1\leqslant |x|<2\\ --{139 \over 336}+{217 \over 30}x-{805 \over 48}x^2+{49 \over 3}x^3-{133 \over 16}x^4+{7 \over 3}x^5-{11 \over 32}x^6+{1 \over 48}x^7 & 2\leqslant |x|<3\\ -{128 \over 21}-{256 \over 15}x+{56 \over 3}x^2-{32 \over 3}x^3+{7 \over 2}x^4-{2 \over 3}x^5+{11 \over 160}x^6-{1 \over 336}x^7& 3\leqslant |x|<4\\ - 0 & |x| \geqslant 4 - \end{cases} -\end{equation} - - - -\begin{figure}[htbp] - \centering - \includegraphics[width=\linewidth]{./resume_lambdastar.png} - \caption{$\Lambda_{n,k}$} -\label{fig:lambdaStar} -\end{figure} - - - -\begin{figure}[htbp] - \centering - \includegraphics[width=\linewidth]{./resume_lambdastar_detail.png} - \caption{$\Lambda_{n,k}$, détail} -\label{fig:lambdaStarDetail} -\end{figure} - - -\section{Code} -\label{sec:code} -\verb|y| est la distance entre la particule et son plus proche point de grille, de coordonnée inférieure à la position de la particule. Les poids sont données dans l'ordre croissant des point de grille du support. - -\paragraph{$\Lambda_{2,1}$} -{\footnotesize -\begin{verbatim} -w[0] = (y * (y * (-y + 2.) - 1.)) / 2. -w[1] = (y * y * (3. * y - 5.) + 2.) / 2. -w[2] = (y * (y * (-3. * y + 4.) + 1.)) / 2. -w[3] = (y * y * (y - 1.)) / 2. -\end{verbatim}} - -\paragraph{$\Lambda_{2,2}$} -{\footnotesize -\begin{verbatim} -w[0] = (y * (y * (y * (y * (2. * y - 5.) + 3.) + 1.) - 1.)) / 2. -w[1] = (y * y * (y * (y * (-6. * y + 15.) - 9.) - 2.) + 2.) / 2. -w[2] = (y * (y * (y * (y * (6. * y - 15.) + 9.) + 1.) + 1.)) / 2. -w[3] = (y * y * y * (y * (-2. * y + 5.) - 3.)) / 2. -\end{verbatim}} - -\paragraph{$\Lambda_{2,3}$} -{\footnotesize -\begin{verbatim} -w[0] = (y * (y * (y * y * (y * (y * (-6. * y + 21.) - 25.) + 10.) + 1.) - 1.)) / 2. -w[1] = (y * y * (y * y * (y * (y * (18. * y - 63.) + 75.) - 30.) - 2.) + 2.) / 2. -w[2] = (y * (y * (y * y * (y * (y * (-18. * y + 63.) - 75.) + 30.) + 1.) + 1.)) / 2. -w[3] = (y * y * y * y * (y * (y * (6. * y - 21.) + 25.) - 10.)) / 2. -\end{verbatim}} - -\paragraph{$\Lambda_{2,4}$} -{\footnotesize -\begin{verbatim} -w[0] = (y * (y * (y * y * y * (y * (y * (y * (20. * y - 90.) + 154.) - 119.) + 35.) + 1.) - 1.)) / 2. -w[1] = (y * y * (y * y * y * (y * (y * (y * (-60. * y + 270.) - 462.) + 357.) - 105.) - 2.) + 2.) / 2. -w[2] = (y * (y * (y * y * y * (y * (y * (y * (60. * y - 270.) + 462.) - 357.) + 105.) + 1.) + 1.)) / 2. -w[3] = (y * y * y * y * y * (y * (y * (y * (-20. * y + 90.) - 154.) + 119.) - 35.)) / 2. -\end{verbatim}} - -\paragraph{$\Lambda_{4,2}$} -{\footnotesize -\begin{verbatim} -w[0] = (y * (y * (y * (y * (-5. * y + 13.) - 9.) - 1.) + 2.)) / 24. -w[1] = (y * (y * (y * (y * (25. * y - 64.) + 39.) + 16.) - 16.)) / 24. -w[2] = (y * y * (y * (y * (-50. * y + 126.) - 70.) - 30.) + 24.) / 24. -w[3] = (y * (y * (y * (y * (50. * y - 124.) + 66.) + 16.) + 16.)) / 24. -w[4] = (y * (y * (y * (y * (-25. * y + 61.) - 33.) - 1.) - 2.)) / 24. -w[5] = (y * y * y * (y * (5. * y - 12.) + 7.)) / 24. -\end{verbatim}} - -\paragraph{$\Lambda_{4,3}$} -{\footnotesize -\begin{verbatim} -w[0] = (y * (y * (y * (y * (y * (y * (14. * y - 49.) + 58.) - 22.) - 2.) - 1.) + 2.)) / 24. -w[1] = (y * (y * (y * (y * (y * (y * (-70. * y + 245.) - 290.) + 111.) + 4.) + 16.) - 16.)) / 24. -w[2] = (y * y * (y * y * (y * (y * (140. * y - 490.) + 580.) - 224.) - 30.) + 24.) / 24. -w[3] = (y * (y * (y * (y * (y * (y * (-140. * y + 490.) - 580.) + 226.) - 4.) + 16.) + 16.)) / 24. -w[4] = (y * (y * (y * (y * (y * (y * (70. * y - 245.) + 290.) - 114.) + 2.) - 1.) - 2.)) / 24. -w[5] = (y * y * y * y * (y * (y * (-14. * y + 49.) - 58.) + 23.)) / 24. -\end{verbatim}} - -\paragraph{$\Lambda_{4,4}$} -{\footnotesize -\begin{verbatim} -w[0] = (y * (y * (y * (y * (y * (y * (y * (y * (-46. * y + 207.) - 354.) + 273.) - 80.) + 1.) - 2.) - - 1.) + 2.)) / 24. -w[1] = (y * (y * (y * (y * (y * (y * (y * (y * (230. * y - 1035.) + 1770.) - 1365.) + 400.) - 4.) + 4.) - + 16.) - 16.)) / 24. -w[2] = (y * y * (y * y * (y * (y * (y * (y * (-460. * y + 2070.) - 3540.) + 2730.) - 800.) + 6.) - 30.) - + 24.) / 24. -w[3] = (y * (y * (y * (y * (y * (y * (y * (y * (460. * y - 2070.) + 3540.) - 2730.) + 800.) - 4.) - 4.) - + 16.) + 16.)) / 24. -w[4] = (y * (y * (y * (y * (y * (y * (y * (y * (-230. * y + 1035.) - 1770.) + 1365.) - 400.) + 1.) + 2.) - - 1.) - 2.)) / 24. -w[5] = (y * y * y * y * y * (y * (y * (y * (46. * y - 207.) + 354.) - 273.) + 80.)) / 24. -\end{verbatim}} - -\paragraph{$\Lambda_{6,3}$} -{\footnotesize -\begin{verbatim} -w[0] = (y * (y * (y * (y * (y * (y * (-89. * y + 312.) - 370.) + 140.) + 15.) + 4.) - 12.)) / 720. -w[1] = (y * (y * (y * (y * (y * (y * (623. * y - 2183.) + 2581.) - 955.) - 120.) - 54.) + 108.)) / 720. -w[2] = (y * (y * (y * (y * (y * (y * (-1869. * y + 6546.) - 7722.) + 2850.) + 195.) + 540.) - 540.)) / 720. -w[3] = (y * y * (y * y * (y * (y * (3115. * y - 10905.) + 12845.) - 4795.) - 980.) + 720.) / 720. -w[4] = (y * (y * (y * (y * (y * (y * (-3115. * y + 10900.) - 12830.) + 4880.) - 195.) + 540.) + 540.)) / 720. -w[5] = (y * (y * (y * (y * (y * (y * (1869. * y - 6537.) + 7695.) - 2985.) + 120.) - 54.) - 108.)) / 720. -w[6] = (y * (y * (y * (y * (y * (y * (-623. * y + 2178.) - 2566.) + 1010.) - 15.) + 4.) + 12.)) / 720. -w[7] = (y * y * y * y * (y * (y * (89. * y - 311.) + 367.) - 145.)) / 720. -\end{verbatim}} - -\paragraph{$\Lambda_{6,4}$} -{\footnotesize -\begin{verbatim} -w[0] = (y * (y * (y * (y * (y * (y * (y * (y * (290. * y - 1305.) + 2231.) - 1718.) + 500.) - 5.) + 15.) - + 4.) - 12.)) / 720. -w[1] = (y * (y * (y * (y * (y * (y * (y * (y * (-2030. * y + 9135.) - 15617.) + 12027.) - 3509.) + 60.) - - 120.) - 54.) + 108.)) / 720. -w[2] = (y * (y * (y * (y * (y * (y * (y * (y * (6090. * y - 27405.) + 46851.) - 36084.) + 10548.) - 195.) - + 195.) + 540.) - 540.)) / 720. -w[3] = (y * y * (y * y * (y * (y * (y * (y * (-10150. * y + 45675.) - 78085.) + 60145.) - 17605.) + 280.) - - 980.) + 720.) / 720. -w[4] = (y * (y * (y * (y * (y * (y * (y * (y * (10150. * y - 45675.) + 78085.) - 60150.) + 17620.) - 195.) - - 195.) + 540.) + 540.)) / 720. -w[5] = (y * (y * (y * (y * (y * (y * (y * (y * (-6090. * y + 27405.) - 46851.) + 36093.) - 10575.) + 60.) - + 120.) - 54.) - 108.)) / 720. -w[6] = (y * (y * (y * (y * (y * (y * (y * (y * (2030. * y - 9135.) + 15617.) - 12032.) + 3524.) - 5.) - 15.) - + 4.) + 12.)) / 720. -w[7] = (y * y * y * y * y * (y * (y * (y * (-290. * y + 1305.) - 2231.) + 1719.) - 503.)) / 720. -\end{verbatim}} - -\paragraph{$\Lambda_{6,5}$} -{\footnotesize -\begin{verbatim} -w[0] = (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (-1006. * y + 5533.) - 12285.) + 13785.) - 7829.) - + 1803.) - 3.) - 5.) + 15.) + 4.) - 12.)) / 720. -w[1] = (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (7042. * y - 38731.) + 85995.) - 96495.) + 54803.) - - 12620.) + 12.) + 60.) - 120.) - 54.) + 108.)) / 720. -w[2] = (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (-21126. * y + 116193.) - 257985.) + 289485.) - - 164409.) + 37857.) - 15.) - 195.) + 195.) + 540.) - 540.)) / 720. -w[3] = (y * y * (y * y * (y * y * (y * (y * (y * (y * (35210. * y - 193655.) + 429975.) - 482475.) + 274015.) - - 63090.) + 280.) - 980.) + 720.) / 720. -w[4] = (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (-35210. * y + 193655.) - 429975.) + 482475.) - - 274015.) + 63085.) + 15.) - 195.) - 195.) + 540.) + 540.)) / 720. -w[5] = (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (21126. * y - 116193.) + 257985.) - 289485.) - + 164409.) - 37848.) - 12.) + 60.) + 120.) - 54.) - 108.)) / 720. -w[6] = (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (-7042. * y + 38731.) - 85995.) + 96495.) - 54803.) - + 12615.) + 3.) - 5.) - 15.) + 4.) + 12.)) / 720. -w[7] = (y * y * y * y * y * y * (y * (y * (y * (y * (1006. * y - 5533.) + 12285.) - 13785.) + 7829.) - - 1802.)) / 720. -\end{verbatim}} - -\paragraph{$\Lambda_{6,6}$} -{\footnotesize -\begin{verbatim} -w[0] = (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (3604. * y - 23426.) + 63866.) - - 93577.) + 77815.) - 34869.) + 6587.) + 1.) - 3.) - 5.) + 15.) + 4.) - 12.)) / 720. -w[1] = (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (-25228. * y + 163982.) - 447062.) - + 655039.) - 544705.) + 244083.) - 46109.) - 6.) + 12.) + 60.) - 120.) - 54.) + 108.)) / 720. -w[2] = (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (75684. * y - 491946.) + 1341186.) - - 1965117.) + 1634115.) - 732249.) + 138327.) + 15.) - 15.) - 195.) + 195.) + 540.) - 540.)) / 720. -w[3] = (y * y * (y * y * (y * y * (y * (y * (y * (y * (y * (y * (-126140. * y + 819910.) - 2235310.) - + 3275195.) - 2723525.) + 1220415.) - 230545.) - 20.) + 280.) - 980.) + 720.) / 720. -w[4] = (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (126140. * y - 819910.) + 2235310.) - - 3275195.) + 2723525.) - 1220415.) + 230545.) + 15.) + 15.) - 195.) - 195.) + 540.) + 540.)) / 720. -w[5] = (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (-75684. * y + 491946.) - 1341186.) - + 1965117.) - 1634115.) + 732249.) - 138327.) - 6.) - 12.) + 60.) + 120.) - 54.) - 108.)) / 720. -w[6] = (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (y * (25228. * y - 163982.) + 447062.) - - 655039.) + 544705.) - 244083.) + 46109.) + 1.) + 3.) - 5.) - 15.) + 4.) + 12.)) / 720. -w[7] = (y * y * y * y * y * y * y * (y * (y * (y * (y * (y * (-3604. * y + 23426.) - 63866.) + 93577.) - - 77815.) + 34869.) - 6587.)) / 720. -\end{verbatim}} - -\paragraph{$\Lambda_{8,4}$} -{\footnotesize -\begin{verbatim} -w[0] = (y * (y * (y * (y * (y * (y * (y * (y * (-3569. * y + 16061.) - 27454.) + 21126.) - 6125.) - + 49.) - 196.) - 36.) + 144.)) / 40320. -w[1] = (y * (y * (y * (y * (y * (y * (y * (y * (32121. * y - 144548.) + 247074.) - 190092.) - + 55125.) - 672.) + 2016.) + 512.) - 1536.)) / 40320. -w[2] = (y * (y * (y * (y * (y * (y * (y * (y * (-128484. * y + 578188.) - 988256.) + 760312.) - - 221060.) + 4732.) - 9464.) - 4032.) + 8064.)) / 40320. -w[3] = (y * (y * (y * (y * (y * (y * (y * (y * (299796. * y - 1349096.) + 2305856.) - 1774136.) - + 517580.) - 13664.) + 13664.) + 32256.) - 32256.)) / 40320. -w[4] = (y * y * (y * y * (y * (y * (y * (y * (-449694. * y + 2023630.) - 3458700.) + 2661540.) - - 778806.) + 19110.) - 57400.) + 40320.) / 40320. -w[5] = (y * (y * (y * (y * (y * (y * (y * (y * (449694. * y - 2023616.) + 3458644.) - 2662016.) - + 780430.) - 13664.) - 13664.) + 32256.) + 32256.)) / 40320. -w[6] = (y * (y * (y * (y * (y * (y * (y * (y * (-299796. * y + 1349068.) - 2305744.) + 1775032.) - - 520660.) + 4732.) + 9464.) - 4032.) - 8064.)) / 40320. -w[7] = (y * (y * (y * (y * (y * (y * (y * (y * (128484. * y - 578168.) + 988176.) - 760872.) - + 223020.) - 672.) - 2016.) + 512.) + 1536.)) / 40320. -w[8] = (y * (y * (y * (y * (y * (y * (y * (y * (-32121. * y + 144541.) - 247046.) + 190246.) - - 55685.) + 49.) + 196.) - 36.) - 144.)) / 40320. -w[9] = (y * y * y * y * y * (y * (y * (y * (3569. * y - 16060.) + 27450.) - 21140.) + 6181.)) / 40320. -\end{verbatim}} - -\paragraph{$M'_8$} -{\footnotesize -\begin{verbatim} -w[0] = (y * (y * (y * (y * (y * (y * (-10. * y + 21.) + 28.) - 105.) + 70.) + 35.) - 56.) + 17.) / 3360. -w[1] = (y * (y * (y * (y * (y * (y * (70. * y - 175.) - 140.) + 770.) - 560.) - 350.) + 504.) - 102.) / 3360. -w[2] = (y * (y * (y * (y * (y * (y * (-210. * y + 609.) + 224.) - 2135.) + 910.) + 2765.) - 2520.) + 255.) / 3360. -w[3] = (y * y * (y * y * (y * y * (350. * y - 1155.) + 2940.) - 4900.) + 3020.) / 3360. -w[4] = (y * (y * (y * (y * (y * (y * (-350. * y + 1295.) - 420.) - 2135.) - 910.) + 2765.) + 2520.) + 255.) / 3360. -w[5] = (y * (y * (y * (y * (y * (y * (210. * y - 861.) + 532.) + 770.) + 560.) - 350.) - 504.) - 102.) / 3360. -w[6] = (y * (y * (y * (y * (y * (y * (-70. * y + 315.) - 280.) - 105.) - 70.) + 35.) + 56.) + 17.) / 3360. -w[7] = (y * y * y * y * y * (y * (10. * y - 49.) + 56.)) / 3360. -\end{verbatim}} - - - -\section{Essai de formules avec diffusion} -\label{sec:form-Lambda2k-avec-diff} - - - -\begin{table}[h]\centering -\begin{tabular}{@{}lcccccccc@{}} \toprule - & & Moments & Régularité & Nb points & Degré & Support & Temps (python)\\ \midrule -$\tilde{\Lambda}_{2,1}\sim \Lambda_{2,1} + \text{diffusion}$ &\eqref{eq:lambda21diffusion} & 2 & $C^1$ & 4 & 3 & $[-2;2]$ &\\ -$\tilde{\Lambda}_{2,2}\sim \Lambda_{2,2} + \text{diffusion}$ &\eqref{eq:lambda22diffusion} & 2 & $C^2$ & 4 & 5 & $[-2;2]$ & \\ \bottomrule - \end{tabular} - \caption{Caractéristiques des formules de remaillage avec diffusion} -\label{tab:formulesRemaillageDiffusion} -\end{table} - -On pose $f = {\nu dt\over dx^2}$. Les contraintes sont modifiées pour dépendre de $f$ (la symétrie et la régularité de la fonction restent inchangées): -\begin{itemize} -\item Conservation des moments discrets: - \begin{equation} - \label{eq:2} - \sum_{l=-2}^2 l^q\tilde{\Lambda}_{2,k}(s-l) =\begin{cases} - s^q + 2f & \text{ si } q=2\\ - s^q & \text{ sinon} - \end{cases},\quad 0<s<1, q=0, \dots, 2 - \end{equation} -\item Diffusion nulle: - \begin{equation} - \label{eq:4} - \left . \tilde{\Lambda}_{2,k} (x) \right |_{f=0} = \Lambda_{2,k} (x) - \end{equation} - Sous l'hypothèse de dépendance linéaire en $f$, les polynômes définissant la formule avec diffusion sont pris de la forme: - \begin{equation} - \label{eq:5} - p_i(x) = \sum_{j=0}^{2k+1}(c_{i,j} + f\tilde{c}_{i,j})x^j,\quad i=0,\dots , n/2 + 1 - \end{equation} - Les coefficients $c_{i,j}$ sont les coefficient obtenus pour la formule sans diffusion, reste à déterminer les $\tilde{c}_{i,j}$. -\end{itemize} - -Remarque 1: les moments continus deviennent: -\begin{equation} - \label{eq:3} - \int_{-\infty}^\infty x^q\tilde{\Lambda}_{2,k}(x) \mathrm{d}x = - \begin{cases} - 1 & \text{si } q = 0\\ - 2f & \text{si } q = 2\\ - 0 & \text{sinon } - \end{cases},\quad q=0, \dots, 2 -\end{equation} - -Remarque 2: l'exactitude aux points de coordonnées entières devient: - \begin{equation} - \label{eq:5} - \tilde{\Lambda}_{2,k} (i) = \begin{cases} - 1 - 2f & \text{ si } i=0\\ - f & \text{ si } i=-1\\ - 0 & \text{ sinon} - \end{cases},\quad i = -2, \dots, 0 - \end{equation} - -On obtient les formules suivantes: - -\paragraph{$\tilde{\Lambda}_{2,1}$} -\label{sec:tildelambda_2-1} -\begin{equation} - \label{eq:lambda21diffusion} - \tilde{\Lambda}_{2,1}(x) = - \begin{cases} - 1-2f+(-{5\over2}+9f)|x|^2-(-{3\over2}+6f)|x|^3 & 0\leqslant |x|<1\\ - 2-4f-(4-12f)|x|+({5\over2}-9f)|x|^2-({1\over2}-2f)|x|^3 & 1\leqslant |x|<2\\ - 0 & |x| \geqslant 2 - \end{cases} -\end{equation} -{\footnotesize -\begin{verbatim} -w[0] = f + (-1 + (2 - 6 * f + (-1 + 4 * f) * y) * y) * y / 2; -w[1] = 1 - 2 * f + (-5 + 18 * f + (3 - 12 * f) * y) * y * y / 2; -w[2] = f + (1 + (4 - 18 * f + (-3 + 12 * f) * y) * y) * y / 2; -w[3] = (-1 + 6 * f + (1 - 4 * f) * y) * y * y / 2; -\end{verbatim}} - - -\paragraph{$\tilde{\Lambda}_{2,2}$} -\label{sec:tildelambda_2-2} -\begin{equation} - \label{eq:lambda22diffusion} - \tilde{\Lambda}_{2,2}(x) = - \begin{cases} - 1-2f-x^2-({9 \over 2}-30f)x^3+({15 \over 2}-45f)x^4-(3-18f)x^5 & 0\leqslant |x|<1\\ - -4+32f-(-18+120f)x+(-29+180f)x^2-(-{43 \over 2}+130f)x^3& \\ \hspace{6cm} +(-{15 \over 2}+45f)x^4-(-1+6f)x^5& 1\leqslant |x|<2\\ - 0 & |x| \geqslant 2 - \end{cases} -\end{equation} -{\footnotesize -\begin{verbatim} -w[0] = f + (-1 + (1 + (-20 * f + 3 + (30 * f - 5 + (2 - 12 * f) * y) * y) * y) * y) * y / 2; -w[1] = 1 - 2 * f + (-2 + (-9 + 60 * f + (15 - 90 * f + (-6 + 36 * f) * y) * y) * y) * y * y / 2; -w[2] = f + (1 + (1 + (-60 * f + 9 + (90 * f - 15 + (-36 * f + 6) * y) * y) * y) * y) * y / 2; -w[3] = (20 * f - 3 + (-30 * f + 5 + (12 * f - 2) * y) * y) * y * y * y) / 2; -\end{verbatim}} - -\end{document} diff --git a/Docs/remeshing_formulas/m6prime_formula.mw b/Docs/remeshing_formulas/m6prime_formula.mw deleted file mode 100644 index e634086cd055a07e49154889b9f215aaa755b5ff..0000000000000000000000000000000000000000 --- a/Docs/remeshing_formulas/m6prime_formula.mw +++ /dev/null @@ -1,437 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<Worksheet> -<Version major="16" minor="0"/> -<Label-Scheme value="2" prefix=""/> -<View-Properties presentation="false"></View-Properties> -<MapleNet-Properties elisiondigitsbefore="100" labelling="true" indentamount="4" elisiontermsthreshold="10000" ansi="false" errorbreak="1" useclientjvm="true" echo="1" imaginaryunit="I" labelwidth="20" contextmenusize="automatic" plotdriver="opengl" elisiondigitsafter="100" plotoutput="terminal" helpbrowser="standard" rtablesize="10" elisiontermsbefore="100" elisiondigitsthreshold="10000" typesetting="standard" plotdevice="inline" verboseproc="1" showassumed="1" errorcursor="false" longdelim="true" plotoptions="" quiet="false" elisiontermsafter="100" screenwidth="79" preplot="" prettyprint="3" displayprecision="-1" screenpixelheight="1050" warnlevel="3" screenheight="25" latexwidth="6.0" postplot="" prompt="> " ShowLabels="true"/> -<Styles><Font name="Ordered List 1" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 2" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 3" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Ordered List 5" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Author" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Annotation Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Warning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Caption Reference" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input Placeholder" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[200,0,200]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="true"/> -<Font name="Maple Plot" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Code" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Line Printed Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text Output" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Diagnostic" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[40,120,40]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Inert Output" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[144,144,144]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Normal" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,128,128]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Maple Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Dash Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Math" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Maple Input" background="[255,255,255]" bold="true" executable="true" family="Courier New" foreground="[255,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Output" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="2D Input" background="[255,255,255]" bold="false" executable="true" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkError" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Header and Footer" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="10" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Error" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[255,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Title" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 1" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="18" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Text" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Bullet Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 4" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Equation Label" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 3" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="true" opaque="false" readonly="false" size="14" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="Heading 2" background="[255,255,255]" bold="true" executable="false" family="Times New Roma" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="16" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="HyperlinkWarning" background="[255,255,255]" bold="false" executable="false" family="Courier New" foreground="[0,0,255]" italic="false" opaque="false" readonly="true" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Dictionary Hyperlink" background="[255,255,255]" bold="false" executable="false" family="Times New Roma" foreground="[147,0,15]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="true" placeholder="false"/> -<Font name="Caption Text" background="[255,255,255]" bold="true" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Font name="List Item" background="[255,255,255]" bold="false" executable="false" family="Times New Roman" foreground="[0,0,0]" italic="false" opaque="false" readonly="false" size="12" subscript="false" superscript="false" underline="false" placeholder="false"/> -<Layout name="Ordered List 1" alignment="left" bullet="numeric" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 2" alignment="left" bullet="alphabetic" firstindent="0" leftmargin="36" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 3" alignment="left" bullet="roman" firstindent="0" leftmargin="72" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 4" alignment="left" bullet="ALPHABETIC" firstindent="0" leftmargin="108" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Ordered List 5" alignment="left" bullet="ROMAN" firstindent="0" leftmargin="144" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="-1" bulletsuffix=""/> -<Layout name="Author" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="8" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Warning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Annotation Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Plot" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Line Printed Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Text Output" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="newline" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Diagnostic" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="any" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Normal" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Maple Output" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.3" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Dash Item" alignment="left" bullet="dash" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkError" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Error" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Title" alignment="centred" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="12" spacebelow="12" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 1" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="4" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Bullet Item" alignment="left" bullet="dot" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 4" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 3" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="Heading 2" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="8" spacebelow="2" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="HyperlinkWarning" alignment="left" bullet="none" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="0" spacebelow="0" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Layout name="List Item" alignment="left" bullet="indent" firstindent="0" leftmargin="0" rightmargin="0" linespacing="0.0" spaceabove="3" spacebelow="3" linebreak="space" pagebreak-before="false" initial="0" bulletsuffix=""/> -<Pencil-style name="Pencil 5" pen-color="[255,0,0]" pen-height="5.0" pen-width="5.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 4" pen-color="[0,0,255]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 3" pen-color="[0,0,0]" pen-height="3.0" pen-width="3.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 2" pen-color="[0,0,255]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Pencil-style name="Pencil 1" pen-color="[0,0,0]" pen-height="1.0" pen-width="1.0" pen-opacity="1.0"/> -<Highlighter-style name="Highlighter 2" pen-color="[255,204,0]" pen-height="14.0" pen-width="14.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 1" pen-color="[255,153,255]" pen-height="12.0" pen-width="8.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 4" pen-color="[0,255,255]" pen-height="32.0" pen-width="32.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 3" pen-color="[51,255,0]" pen-height="24.0" pen-width="24.0" pen-opacity="0.8"/> -<Highlighter-style name="Highlighter 5" pen-color="[255,255,0]" pen-height="48.0" pen-width="48.0" pen-opacity="0.8"/> -</Styles> -<Task-table> - <Task-category name="<default>"> - </Task-category> -</Task-table> -<Task> -</Task> -<Group labelreference="L1" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L2" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Calcul de la formule de remaillage $M'_6$</Text-field> -<Text-field style="Text" layout="Normal"></Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8">D\303\251claration des polyn\303\264mes:</Font></Text-field> -</Input> -</Group> -<Group labelreference="L3" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="p[0] := proc (x) options operator, arrow; sum(c[0, i]*x^i, i = 0 .. 5) end proc; 1; p[1] := proc (x) options operator, arrow; sum(c[1, i]*x^i, i = 0 .. 5) end proc; 1; p[2] := proc (x) options operator, arrow; sum(c[2, i]*x^i, i = 0 .. 5) end proc; 1; p[3] := proc (x) options operator, arrow; p[2](-x) end proc; 1; p[4] := proc (x) options operator, arrow; p[1](-x) end proc; 1; p[5] := proc (x) options operator, arrow; p[0](-x) end proc" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZqbi1JJW1zdWJHRiQ2JS1JI21pR0YkNiVRInBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2JS1JI21uR0YkNiRRIjBGJy9GNlEnbm9ybWFsRidGMkY1LyUvc3Vic2NyaXB0c2hpZnRHRj0tSSNtb0dGJDYtUSomY29sb25lcTtGJ0Y+LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZILyUpc3RyZXRjaHlHRkgvJSpzeW1tZXRyaWNHRkgvJShsYXJnZW9wR0ZILyUubW92YWJsZWxpbWl0c0dGSC8lJ2FjY2VudEdGSC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRlctRkM2LVEifkYnRj5GRkZJRktGTUZPRlFGUy9GVlEmMC4wZW1GJy9GWUZobi1GLzYlUSJ4RidGMkY1RlotRkM2LVEoJnNyYXJyO0YnRj5GRkZJRktGTUZPRlFGU0ZnbkZpbkZaLUYvNiVRJHN1bUYnRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYtLUYsNiUtRi82JVEiY0YnRjJGNS1GIzYmRjotRkM2LVEiLEYnRj5GRi9GSkY0RktGTUZPRlFGU0Znbi9GWVEsMC4zMzMzMzMzZW1GJy1GLzYlUSJpRidGMkY1Rj5GQC1GQzYtUScmc2RvdDtGJ0Y+RkZGSUZLRk1GT0ZRRlNGZ25GaW4tSSVtc3VwR0YkNiVGam4tRiM2JUZaRmVwRj4vJTFzdXBlcnNjcmlwdHNoaWZ0R0Y9Rl9wRlpGZXAtRkM2LVEiPUYnRj5GRkZJRktGTUZPRlFGU0ZVRlhGOi1GQzYtUSMuLkYnRj5GRkZJRktGTUZPRlFGUy9GVlEsMC4yMjIyMjIyZW1GJ0Zpbi1GOzYkUSI1RidGPkY+Rj4tRkM2LVEiO0YnRj5GRkZicEZLRk1GT0ZRRlNGZ25GWC1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0Zobi8lJmRlcHRoR0Zlci8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GYXI2JkZjckZmckZoci9GW3NRJWF1dG9GJy1GLDYlRi4tRiM2JC1GOzYkUSIxRidGPkY+RkBGQkZaRmpuRlpGXW9GWkZgby1GZG82JC1GIzYtLUYsNiVGam8tRiM2JkZlc0ZfcEZlcEY+RkBGaHBGW3FGX3BGWkZlcEZicUY6RmVxRmpxRj5GPkZdckZgckZdcy1GLDYlRi4tRiM2JC1GOzYkUSIyRidGPkY+RkBGQkZaRmpuRlpGXW9GWkZgby1GZG82JC1GIzYtLUYsNiVGam8tRiM2JkZkdEZfcEZlcEY+RkBGaHBGW3FGX3BGWkZlcEZicUY6RmVxRmpxRj5GPkZdckZgckZdcy1GLDYlRi4tRiM2JS1GOzYkUSIzRidGPkYyRjVGQEZCRmpuRl1vLUYsNiVGLi1GIzYlRmR0RjJGNUZALUZkbzYkLUYjNiYtRkM2LVEqJnVtaW51czA7RidGPkZGRklGS0ZNRk9GUUZTRmhxL0ZZRmlxRmpuLyUrZXhlY3V0YWJsZUdGSEY+Rj5GXXJGYHJGXXMtRiw2JUYuLUYjNiUtRjs2JFEiNEYnRj5GMkY1RkBGQkZqbkZdby1GLDYlRi4tRiM2JUZlc0YyRjVGQEZqdUZdckZgckZdcy1GLDYlRi4tRiM2JUZqcUYyRjVGQEZCRmpuRl1vRitGanVGYnZGPg==">Qy0+JkkicEc2IjYjIiIhZio2I0kieEdGJkYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLUkkc3VtRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YmNiQqJiZJImNHRiY2JEYoSSJpR0YmIiIiKTkkRjlGOi9GOTtGKCIiJkYmRiZGJkY6PiZGJTYjRjpmKkYqRiZGLEYmLUYwNiQqJiZGNzYkRjpGOUY6RjtGOkY9RiZGJkYmRjo+JkYlNiMiIiNmKkYqRiZGLEYmLUYwNiQqJiZGNzYkRkxGOUY6RjtGOkY9RiZGJkYmRjo+JkYlNiMiIiRmKkYqRiZGLEYmLUZKNiMsJEY8ISIiRiZGJkYmRjo+JkYlNiMiIiVmKkYqRiZGLEYmLUZBRllGJkYmRiZGOj4mRiU2I0Y/ZipGKkYmRixGJi1GJEZZRiZGJkYm</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMEYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R0Y9LUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZm4tRiM2KC1GLzYlUSJ4RidGMkY1LUZJNi1RKCYjODU5NDtGJ0Y+RkxGTkZQRlJGVEZWRlgvRmVuUSYwLjBlbUYnL0ZobkZiby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZJNi1RJiZTdW07RidGPkZMRk4vRlFGNEZSL0ZVRjQvRldGNEZYRmFvL0ZoblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRkk2LVEiPUYnRj5GTEZORlBGUkZURlZGWEZaRmduRjpGQEZDRj4tRjs2JFEiNUYnRj5GWC8lLGFjY2VudHVuZGVyR0ZFLUknbXNwYWNlR0YkNiYvJSdoZWlnaHRHUSYwLjBleEYnLyUmd2lkdGhHUSQ1LjBGJy8lJmRlcHRoR0ZjcS8lKmxpbmVicmVha0dRJWF1dG9GJy1GIzYmLUYsNiUtRi82JVEiY0YnRjJGNS1GIzYoRjotRkk2LVEiLEYnRj5GTC9GT0Y0RlBGUkZURlZGWEZhby9GaG5RLDAuMzMzMzMzM2VtRidGY3BGQEZDRj5GRi1GSTYtUTEmSW52aXNpYmxlVGltZXM7RidGPkZMRk5GUEZSRlRGVkZYRmFvRmNvLUklbXN1cEdGJDYlRltvRmNwLyUxc3VwZXJzY3JpcHRzaGlmdEdGPUY+RkBGQ0Y+RkBGQ0Y+RkBGQ0Y+">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlNiQqJiZJImNHRiU2JCIiIUkiaUdGJSIiIik5JEY0RjUvRjQ7RjMiIiZGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GOzYkUSI1RidGPkZZLyUsYWNjZW50dW5kZXJHRkUtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdRJDUuMEYnLyUmZGVwdGhHRmZxLyUqbGluZWJyZWFrR1ElYXV0b0YnLUYjNiYtRiw2JS1GLzYlUSJjRidGMkY1LUYjNihGOi1GSjYtUSIsRidGPkZNL0ZQRjRGUUZTRlVGV0ZZRmJvL0ZpblEsMC4zMzMzMzMzZW1GJ0ZkcEZARkNGPkZGLUZKNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y+Rk1GT0ZRRlNGVUZXRllGYm9GZG8tSSVtc3VwR0YkNiVGXG9GZHAvJTFzdXBlcnNjcmlwdHNoaWZ0R0ZIRj5GQEZDRj5GQEZDRj5GQEZDRj4=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlNiQqJiZJImNHRiU2JCIiIkkiaUdGJUYzKTkkRjRGMy9GNDsiIiEiIiZGJUYlRiU=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiMkYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUkrbXVuZGVyb3ZlckdGJDYnLUZKNi1RJiZTdW07RidGPkZNRk8vRlJGNEZTL0ZWRjQvRlhGNEZZRmJvL0ZpblEsMC4xNjY2NjY3ZW1GJy1GIzYoLUYvNiVRImlGJ0YyRjUtRko2LVEiPUYnRj5GTUZPRlFGU0ZVRldGWUZlbkZobi1GOzYkRkhGPkZARkNGPi1GOzYkUSI1RidGPkZZLyUsYWNjZW50dW5kZXJHRkUtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdRJDUuMEYnLyUmZGVwdGhHRmZxLyUqbGluZWJyZWFrR1ElYXV0b0YnLUYjNiYtRiw2JS1GLzYlUSJjRidGMkY1LUYjNihGOi1GSjYtUSIsRidGPkZNL0ZQRjRGUUZTRlVGV0ZZRmJvL0ZpblEsMC4zMzMzMzMzZW1GJ0ZkcEZARkNGPkZGLUZKNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y+Rk1GT0ZRRlNGVUZXRllGYm9GZG8tSSVtc3VwR0YkNiVGXG9GZHAvJTFzdXBlcnNjcmlwdHNoaWZ0R0ZIRj5GQEZDRj5GQEZDRj5GQEZDRj4=">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc3VtRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlNiQqJiZJImNHRiU2JCIiI0kiaUdGJSIiIik5JEY0RjUvRjQ7IiIhIiImRiVGJUYl</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiM0YnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUYsNiVGLi1GIzYmLUY7NiRRIjJGJ0Y+RkBGQ0Y+RkYtRko2LVEwJkFwcGx5RnVuY3Rpb247RidGPkZNRk9GUUZTRlVGV0ZZRmJvRmRvLUkobWZlbmNlZEdGJDYkLUYjNiYtRiM2Jy1GSjYtUSomdW1pbnVzMDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSwwLjIyMjIyMjJlbUYnL0ZpbkZccUZcb0ZARkNGPkZARkNGPkY+RkBGQ0Y+RkBGQ0Y+RkBGQ0Y+">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLSZJInBHRiU2IyIiIzYjLCQ5JCEiIkYlRiVGJQ==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiNEYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUYsNiVGLi1GIzYmLUY7NiRRIjFGJ0Y+RkBGQ0Y+RkYtRko2LVEwJkFwcGx5RnVuY3Rpb247RidGPkZNRk9GUUZTRlVGV0ZZRmJvRmRvLUkobWZlbmNlZEdGJDYkLUYjNiYtRiM2Jy1GSjYtUSomdW1pbnVzMDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSwwLjIyMjIyMjJlbUYnL0ZpbkZccUZcb0ZARkNGPkZARkNGPkY+RkBGQ0Y+RkBGQ0Y+RkBGQ0Y+">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLSZJInBHRiU2IyIiIjYjLCQ5JCEiIkYlRiVGJQ==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEicEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUkjbW5HRiQ2JFEiNUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdRJmZhbHNlRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y+LyUmZmVuY2VHRkUvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1GLzYlUSJ4RidGMkY1LUZKNi1RKCYjODU5NDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZjby1GIzYoLUYsNiVGLi1GIzYmLUY7NiRGSEY+RkBGQ0Y+RkYtRko2LVEwJkFwcGx5RnVuY3Rpb247RidGPkZNRk9GUUZTRlVGV0ZZRmJvRmRvLUkobWZlbmNlZEdGJDYkLUYjNiYtRiM2Jy1GSjYtUSomdW1pbnVzMDtGJ0Y+Rk1GT0ZRRlNGVUZXRlkvRmZuUSwwLjIyMjIyMjJlbUYnL0ZpbkZbcUZcb0ZARkNGPkZARkNGPkY+RkBGQ0Y+RkBGQ0Y+RkBGQ0Y+">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLSZJInBHRiU2IyIiITYjLCQ5JCEiIkYlRiVGJQ==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L6" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8">D\303\251finition de $M'_6$:</Font></Text-field> -</Input> -</Group> -<Group labelreference="L4" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="P := proc (x) options operator, arrow; piecewise(x < -3, 0, x < -2, p[0](x), x < -1, p[1](x), x < 0, p[2](x), x < 1, p[3](x), x < 2, p[4](x), x < 3, p[5](x), 3 <= x, 0) end proc;" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYrLUkjbWlHRiQ2JVEiUEYnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictSSNtb0dGJDYtUSomY29sb25lcTtGJ0YyLyUmZmVuY2VHRjEvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGMS8lKnN5bW1ldHJpY0dGMS8lKGxhcmdlb3BHRjEvJS5tb3ZhYmxlbGltaXRzR0YxLyUnYWNjZW50R0YxLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGSS1GLDYlUSJ4RidGL0YyLUY2Ni1RKCZzcmFycjtGJ0YyRjlGO0Y9Rj9GQUZDRkUvRkhRJjAuMGVtRicvRktGUy1GLDYlUSpwaWVjZXdpc2VGJy9GMFEldHJ1ZUYnL0YzUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzZqby1GLDYjUSFGJy1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0ZTLyUmZGVwdGhHRmNvLyUqbGluZWJyZWFrR1EobmV3bGluZUYnLUZfbzYmRmFvRmRvRmZvL0Zpb1ElYXV0b0YnRkwtRjY2LVEiPEYnRjJGOUY7Rj1GP0ZBRkNGRUZHRkotRjY2LVEqJnVtaW51czA7RidGMkY5RjtGPUY/RkFGQ0ZFL0ZIUSwwLjIyMjIyMjJlbUYnL0ZLRmZwLUkjbW5HRiQ2JFEiM0YnRjItRjY2LVEiLEYnRjJGOS9GPEZZRj1GP0ZBRkNGRUZSL0ZLUSwwLjMzMzMzMzNlbUYnLUZpcDYkUSIwRidGMkZccS1GNjYtUSJ+RidGMkY5RjtGPUY/RkFGQ0ZFRlJGVEZeb0ZbcC1GLDYlRk5GWEZaRl9wRmJwLUZpcDYkUSIyRidGMkZccS1JJW1zdWJHRiQ2JS1GLDYlUSJwRidGL0YyLUYjNiVGYnFGWEZaLyUvc3Vic2NyaXB0c2hpZnRHRmRxLUZnbjYkLUYjNiVGaHEvJStleGVjdXRhYmxlR0YxRjJGMkZccUZeb0ZbcEZocUZfcEZicC1GaXA2JFEiMUYnRjJGXHEtRl5yNiUtRiw2JUZickZYRlotRiM2JUZdc0ZYRlpGZXJGZ3JGXHFGXm9GW3BGaHFGX3BGYnFGXHEtRl5yNiVGYnMtRiM2JUZqcUZYRlpGZXJGZ3JGXHFGXm9GW3BGaHFGX3BGXXNGXHEtRl5yNiVGYnMtRiM2JUZocEZYRlpGZXJGZ3JGXHFGXm9GW3BGaHFGX3BGanFGXHEtRl5yNiVGYnMtRiM2JS1GaXA2JFEiNEYnRjJGWEZaRmVyRmdyRlxxRl5vRltwRmhxRl9wRmhwRlxxRmVxLUZecjYlRmJzLUYjNiUtRmlwNiRRIjVGJ0YyRlhGWkZlckZnckZccUZeb0ZbcEZocS1GNjYtUS8mR3JlYXRlckVxdWFsO0YnRjJGOUY7Rj1GP0ZBRkNGRUZHRkpGaHBGXHFGZXFGYnFGW3NGMkYyLUY2Ni1RIjtGJ0YyRjlGX3FGPUY/RkFGQ0ZFRlJGSkZbc0Yy">QyQ+SSJQRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzYyMjkkISIkIiIhMkYxISIjLSZJInBHRiU2I0YzNiNGMTJGMSEiIi0mRjg2IyIiIkY6MkYxRjMtJkY4NiMiIiNGOjJGMUZALSZGODYjIiIkRjoyRjFGRS0mRjg2IyIiJUY6MkYxRkotJkY4NiMiIiZGOjFGSkYxRjNGJUYlRiVGQA==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiUEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRiM2KC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCYjODU5NDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GWC1GIzYoLUYsNiVRKnBpZWNld2lzZUYnRi9GMi1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGV0ZZLUkobWZlbmNlZEdGJDYkLUYjNkQtRiM2KEZRLUY2Ni1RIjxGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlxwLUkjbW5HRiQ2JFEiM0YnRjlGOS8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGVy9GTlEsMC4zMzMzMzMzZW1GJy1GX3A2JFEiMEYnRjlGZ3AtRiM2KEZRRmNvLUYjNiVGaG8tRl9wNiRRIjJGJ0Y5RjlGYnBGZXBGOUZncC1GIzYoLUklbXN1YkdGJDYlLUYsNiVRInBGJ0YvRjItRiM2JkZdcUZicEZlcEY5LyUvc3Vic2NyaXB0c2hpZnRHRl9xRmluLUZdbzYkLUYjNiZGUUZicEZlcEY5RjlGYnBGZXBGOUZncC1GIzYoRlFGY28tRiM2JUZoby1GX3A2JFEiMUYnRjlGOUZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2JkZbc0ZicEZlcEY5RmFyRmluRmNyRmJwRmVwRjlGZ3AtRiM2KEZRRmNvRl1xRmJwRmVwRjlGZ3AtRiM2KC1GanE2JUZcci1GIzYmRmRxRmJwRmVwRjlGYXJGaW5GY3JGYnBGZXBGOUZncC1GIzYoRlFGY29GW3NGYnBGZXBGOUZncC1GIzYoLUZqcTYlRlxyLUYjNiZGXnBGYnBGZXBGOUZhckZpbkZjckZicEZlcEY5RmdwLUYjNihGUUZjb0ZkcUZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2Ji1GX3A2JFEiNEYnRjlGYnBGZXBGOUZhckZpbkZjckZicEZlcEY5RmdwLUYjNihGUUZjb0ZecEZicEZlcEY5RmdwLUYjNigtRmpxNiVGXHItRiM2Ji1GX3A2JFEiNUYnRjlGYnBGZXBGOUZhckZpbkZjckZicEZlcEY5RmdwLUYjNihGXnAtRjY2LVElJmxlO0YnRjlGO0Y+RkBGQkZERkZGSEZKRk1GUUZicEZlcEY5RmdwRl1xRmJwRmVwRjlGOUZicEZlcEY5RmJwRmVwRjlGYnBGZXBGOQ==">Zio2I0kieEc2IkYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkqcGllY2V3aXNlRyUqcHJvdGVjdGVkRzYyMjkkISIkIiIhMkYuISIjLSZJInBHRiU2I0YwNiNGLjJGLiEiIi0mRjU2IyIiIkY3MkYuRjAtJkY1NiMiIiNGNzJGLkY9LSZGNTYjIiIkRjcyRi5GQi0mRjU2IyIiJUY3MkYuRkctJkY1NiMiIiZGNzFGR0YuRjBGJUYlRiU=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L8" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8">Continuit\303\251 :</Font></Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8">C0 est assur\303\251 entre p_2 et p_3 car p_3(x)=p_2(-x), idem pour C2.</Font></Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8">Les conditions de continuit\303\251 entre les p_i, i \134in {3,4,5} sont redondantes car la formule est sym\303\251trique.</Font></Text-field> -</Input> -</Group> -<Group labelreference="L5" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C0 := {seq(eval(p[j](x), x = j-3+1) = eval(p[j+1](x), x = j-3+1), j = 0 .. 1)}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbW9HRiQ2LVEifkYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNC8lKXN0cmV0Y2h5R0Y0LyUqc3ltbWV0cmljR0Y0LyUobGFyZ2VvcEdGNC8lLm1vdmFibGVsaW1pdHNHRjQvJSdhY2NlbnRHRjQvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZDLUkjbWlHRiQ2JVEjQzBGJy8lJ2l0YWxpY0dRJXRydWVGJy9GMFEnaXRhbGljRictRiw2LVEqJmNvbG9uZXE7RidGL0YyRjVGN0Y5RjtGPUY/L0ZCUSwwLjI3Nzc3NzhlbUYnL0ZFRlMtSShtZmVuY2VkR0YkNiYtRiM2JS1GRzYlUSRzZXFGJ0ZKRk0tRlY2JC1GIzYuLUZHNiVRJWV2YWxGJ0ZKRk0tRlY2JC1GIzYtLUklbXN1YkdGJDYlLUZHNiVRInBGJ0ZKRk0tRiM2JC1GRzYlUSJqRidGSkZNRi8vJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GVjYkLUYjNiQtRkc2JVEieEYnRkpGTUYvRi8tRiw2LVEiLEYnRi9GMi9GNkZMRjdGOUY7Rj1GP0ZBL0ZFUSwwLjMzMzMzMzNlbUYnRmRwLUYsNi1RIj1GJ0YvRjJGNUY3RjlGO0Y9Rj9GUkZURmpvLUYsNi1RKCZtaW51cztGJ0YvRjJGNUY3RjlGO0Y9Rj8vRkJRLDAuMjIyMjIyMmVtRicvRkVGZHEtSSNtbkdGJDYkUSIzRidGLy1GLDYtUSIrRidGL0YyRjVGN0Y5RjtGPUY/RmNxRmVxLUZncTYkUSIxRidGL0YvRi9GXXFGW28tRlY2JC1GIzYtLUZjbzYlRmVvLUYjNiZGam9GanFGXXJGL0ZdcEZgcEZncEZkcEZdcUZqb0ZgcUZmcUZqcUZdckYvRi9GZ3BGam9GXXEtRmdxNiRGX3BGLy1GLDYtUSMuLkYnRi9GMkY1RjdGOUY7Rj1GP0ZjcUZERl1yRi9GL0YvRi8vJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnLUYsNi1RIjpGJ0YvRjJGNUY3RjlGO0Y9Rj9GUkZULyUrZXhlY3V0YWJsZUdGNEYv">QyQ+SSNDMEc2IjwjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS9GNS1JIitHRik2JCwmRjMiIiIhIiRGO0Y7LUYtNiQtJkYxNiMsJkYzRjtGO0Y7RjRGNi9GMzsiIiFGOyEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L7" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C1 := {seq(eval(diff(p[j](x), x), x = j-3+1) = eval(diff(p[j+1](x), x), x = j-3+1), j = 0 .. 2)}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYmLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi8tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwRjlGOUZocEZlcC1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZbcC1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmdxLUkjbW5HRiQ2JFEiM0YnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZmcUZocS1GanE2JFEiMUYnRjkvJStleGVjdXRhYmxlR0Y9RjlGOUZgcUZlbi1GUDYkLUYjNi1GXG8tRlA2JC1GIzYnLUZkbzYlRmZvLUYjNiZGW3BGXXJGYHJGOUZecEZhcEZocEZlcEY5RjlGaHBGZXBGYHFGW3BGY3FGaXFGXXJGYHJGOUY5RmhwRltwRmBxLUZqcTYkRmBwRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkhGZnEvRk5GXXEtRmpxNiRRIjJGJ0Y5RmNyRjlGOUZjckY5RjkvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmNyRjk=">QyQ+SSNDMUc2IjwjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJUY4L0Y4LUkiK0dGKTYkLCZGNiIiIiEiJEY+Rj4tRi02JC1GMDYkLSZGNDYjLCZGNkY+Rj5GPkY3RjhGOS9GNjsiIiEiIiMhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L9" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="C2 := {seq(eval(diff(p[j](x), `$`(x, 2)), x = j-3+1) = eval(diff(p[j+1](x), `$`(x, 2)), x = j-3+1), j = 0 .. 1)}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjQzJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYlLUYsNiVRJHNlcUYnRi9GMi1GUDYkLUYjNi4tRiw2JVElZXZhbEYnRi9GMi1GUDYkLUYjNi0tRiw2JVElZGlmZkYnRi9GMi1GUDYkLUYjNiktSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUYsNiVRImpGJ0YvRjJGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmVwLUY2Ni1RIiRGJ0Y5RjtGPkZARkJGREZGRkhGXHEvRk5GXXEtSSNtbkdGJDYkUSIyRidGOUY5RjlGaHBGZXAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GW3AtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfci1GZXE2JFEiM0YnRjktRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZeckZgci1GZXE2JFEiMUYnRjlGOUY5RmhxRmVuLUZQNiQtRiM2LUZcby1GUDYkLUYjNiktRmRvNiVGZm8tRiM2JkZbcEZkckZnckY5Rl5wRmFwRmhwRmVwRmBxRmRxRjlGOUZocEZlcEZocUZbcEZbckZhckZkckZnckY5RjlGaHBGW3BGaHEtRmVxNiRGYHBGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZeckZjcUZnckY5RjlGOUY5LyUlb3BlbkdRInxmckYnLyUmY2xvc2VHUSJ8aHJGJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS8lK2V4ZWN1dGFibGVHRj1GOQ==">QyQ+SSNDMkc2IjwjLUkkc2VxRyUqcHJvdGVjdGVkRzYkLy1JJWV2YWxHRik2JC1JJWRpZmZHRik2JC0mSSJwR0YlNiNJImpHRiU2I0kieEdGJS1JIiRHRik2JEY4IiIjL0Y4LUkiK0dGKTYkLCZGNiIiIiEiJEZCRkItRi02JC1GMDYkLSZGNDYjLCZGNkZCRkJGQkY3RjlGPS9GNjsiIiFGQiEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L16" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8">Valeurs nulles aux points de coordonn\303\251es enti\303\250res (et 1 en x=0) :</Font></Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8">On ne v\303\251rifie les contditions que pour les points de coordonn\303\251es n\303\251gatives, les autres sont v\303\251rifi\303\251es par d\303\251finition.</Font></Text-field> -</Input> -</Group> -<Group labelreference="L10" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="IP := {eval(P(x), x = -3) = 0, eval(P(x), x = -2) = 0, eval(P(x), x = -1) = 0, eval(P(x), x = 0) = 1}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjSVBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzY3LUYsNiVRJWV2YWxGJ0YvRjItRlA2JC1GIzYqLUYsNiVRIlBGJ0YvRjItRlA2JC1GIzYlLUYsNiVRInhGJ0YvRjIvJStleGVjdXRhYmxlR0Y9RjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRlxvLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkjbW5HRiQ2JFEiMEYnRjlGX29GOUY5RmlvLUZdcDYkUSIxRidGOUZhb0ZULUZQNiQtRiM2KkZlbi1GUDYkLUYjNiRGXG9GOUY5RmFvRlxvRmlvLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZfcUZgcEY5RjlGaW9GXHBGYW9GVC1GUDYkLUYjNipGZW5GZ3BGYW9GXG9GaW9GW3EtRl1wNiRRIjJGJ0Y5RjlGOUZpb0ZccEZhb0ZULUZQNiQtRiM2KkZlbkZncEZhb0Zcb0Zpb0ZbcS1GXXA2JFEiM0YnRjlGOUY5RmlvRlxwRl9vRjlGOS8lJW9wZW5HUSJ8ZnJGJy8lJmNsb3NlR1EifGhyRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GX29GOQ==">QyQ+SSNJUEc2IjwmLy1JJWV2YWxHJSpwcm90ZWN0ZWRHNiQtSSJQR0YlNiNJInhHRiUvRi8hIiQiIiEvLUYpNiRGLC9GLyEiI0YyLy1GKTYkRiwvRi8hIiJGMi8tRik2JEYsL0YvRjIiIiJGPA==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L26" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Conditions sur les moments:</Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8">Les moments impairs sont nuls par sym\303\251trie</Font></Text-field> -</Input> -</Group> -<Group labelreference="L11" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="M0 := {int(P(x), x = -3 .. 3) = 1}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEjTTBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSJ+RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHRkwtRjY2LVEqJmNvbG9uZXE7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjI3Nzc3NzhlbUYnL0ZORlMtSShtZmVuY2VkR0YkNiYtRiM2KC1GLDYlUSRpbnRGJ0YvRjItRlY2JC1GIzYtLUYsNiVRIlBGJ0YvRjItRlY2JC1GIzYlLUYsNiVRInhGJ0YvRjIvJStleGVjdXRhYmxlR0Y9RjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRidGYm8tRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZSRlQtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmRwLUkjbW5HRiQ2JFEiM0YnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkhGY3BGTUZmcEZlb0Y5RjlGXXAtRmdwNiRRIjFGJ0Y5RmVvRjlGOS8lJW9wZW5HUSJ8ZnJGJy8lJmNsb3NlR1EifGhyRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZSRlRGZW9GOQ==">QyQ+SSNNMEc2IjwjLy1JJGludEc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkLUkiUEdGJTYjSSJ4R0YlL0YxOyEiJCIiJCIiIiEiIg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L17" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="M2 := {int(x^2*P(x), x = -3 .. 3) = 0}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjTTJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYnLUYsNiVRJGludEYnRi9GMi1GUDYkLUYjNi4tSSVtc3VwR0YkNiUtRiw2JVEieEYnRi9GMi1GIzYlLUkjbW5HRiQ2JFEiMkYnRjlGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaG8tRiw2JVEiUEYnRi9GMi1GUDYkLUYjNiRGaG5GOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGZ28vRk5RLDAuMzMzMzMzM2VtRidGaG4tRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORl5xLUZebzYkUSIzRidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZdcUZpb0ZgcUY5RjlGZ3AtRl5vNiRGY29GOUY5RjkvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSNNMkc2IjwjLy1JJGludEc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkKiZJInhHRiUiIiMtSSJQR0YlNiNGLyIiIi9GLzshIiQiIiQiIiEhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L18" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="M4 := {int(x^4*P(x), x = -3 .. 3) = 0}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjTTRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYnLUYsNiVRJGludEYnRi9GMi1GUDYkLUYjNi4tSSVtc3VwR0YkNiUtRiw2JVEieEYnRi9GMi1GIzYlLUkjbW5HRiQ2JFEiNEYnRjlGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GaG8tRiw2JVEiUEYnRi9GMi1GUDYkLUYjNiRGaG5GOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGZ28vRk5RLDAuMzMzMzMzM2VtRidGaG4tRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORl5xLUZebzYkUSIzRidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZdcUZpb0ZgcUY5RjlGZ3AtRl5vNiRGY29GOUY5RjkvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSNNNEc2IjwjLy1JJGludEc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkKiZJInhHRiUiIiUtSSJQR0YlNiNGLyIiIi9GLzshIiQiIiQiIiEhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L29" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Condition au bord du support:</Text-field> -</Input> -</Group> -<Group labelreference="L19" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DEND := {eval(diff(p[0](x), x), x = -3) = 0}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVElREVOREYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GU0Y1LUkobWZlbmNlZEdGJDYmLUYjNigtRiw2JVElZXZhbEYnRi9GMi1GVjYkLUYjNiotRiw2JVElZGlmZkYnRi9GMi1GVjYkLUYjNictSSVtc3ViR0YkNiUtRiw2JVEicEYnRi9GMi1GIzYkLUkjbW5HRiQ2JFEiMEYnRjlGOS8lL3N1YnNjcmlwdHNoaWZ0R0ZdcC1GVjYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSEZKL0ZOUSwwLjMzMzMzMzNlbUYnRmRwRjlGOUZncEZkcC1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRlJGVC1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GZHEtRltwNiRRIjNGJ0Y5RjlGOUZdcUZqby8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRInxmckYnLyUmY2xvc2VHUSJ8aHJGJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRlJGVEZpcUY5">QyQ+SSVERU5ERzYiPCMvLUklZXZhbEclKnByb3RlY3RlZEc2JC1JJWRpZmZHRio2JC0mSSJwR0YlNiMiIiE2I0kieEdGJUY1L0Y1ISIkRjMhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L32" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Conditions sur les moments discrets:</Text-field> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8">On utilisera, pour la r\303\251solution, uniquement DM1,DM2 et DM3.</Font></Text-field> -</Input> -</Group> -<Group labelreference="L23" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="EM0 := {sum(eval(P(x), x = 1/2-l), l = -6 .. 6)-(1/2)^0 = 0}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEkRU0wRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2Ki1GLDYlUSRzdW1GJ0YvRjItRlA2JC1GIzYtLUYsNiVRJWV2YWxGJ0YvRjItRlA2JC1GIzYsLUYsNiVRIlBGJ0YvRjItRlA2JC1GIzYlLUYsNiVRInhGJ0YvRjIvJStleGVjdXRhYmxlR0Y9RjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmNvLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkmbWZyYWNHRiQ2KC1JI21uR0YkNiRRIjFGJ0Y5LUYjNiUtRmdwNiRRIjJGJ0Y5Ri9GMi8lLmxpbmV0aGlja25lc3NHRmlwLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmNxLyUpYmV2ZWxsZWRHRj0tRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZcci1GLDYlUSJsRidGL0YyRmZvRjlGOUZob0ZeckZgcC1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGW3JGXXItRmdwNiRRIjZGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRltyL0ZORl1wRmRyRmZvRjlGOUZocS1JJW1zdXBHRiQ2JS1GUDYkLUYjNiQtRmRwNihGZnAtRiM2JEZccUY5Rl9xRmFxRmRxRmZxRjlGOS1GIzYlLUZncDYkUSIwRidGOUYvRjIvJTFzdXBlcnNjcmlwdHNoaWZ0R0Zqc0ZgcEZoc0Zmb0Y5RjkvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRmZvRjk=">QyQ+SSRFTTBHNiI8Iy8sJi1JJHN1bUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkLUklZXZhbEdGLDYkLUkiUEdGJTYjSSJ4R0YlL0Y1LCYjIiIiIiIjRjlJImxHRiUhIiIvRjs7ISInIiInRjktSSJeR0YsNiRGOCIiIUY8RkRGPA==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L24" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="EM1 := {sum(l*(eval(P(x), x = 1/2-l)), l = -6 .. 6)-1/2 = 0}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEkRU0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2KS1GLDYlUSRzdW1GJ0YvRjItRlA2JC1GIzYuLUYsNiVRImxGJ0YvRjItRjY2LVEnJnNkb3Q7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORlxvLUYsNiVRJWV2YWxGJ0YvRjItRlA2JC1GIzYrLUYsNiVRIlBGJ0YvRjItRlA2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGW28vRk5RLDAuMzMzMzMzM2VtRidGXHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRiM2JC1GXHE2JFEiMkYnRjlGOS8lLmxpbmV0aGlja25lc3NHRl5xLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmhxLyUpYmV2ZWxsZWRHRj0tRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZhckZlbkY5RjlGX3BGZW5GZXAtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmByRmJyLUZccTYkUSI2RidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZgckZdb0ZmckY5RjlGXXItSSVtc3VwR0YkNiUtRlA2JC1GIzYkLUZpcDYoRltxLUYjNiVGYXFGL0YyRmRxRmZxRmlxRltyRjlGOS1GIzYlRltxRi9GMi8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGZXAtRlxxNiRGW3RGOUY5RjkvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRFTTFHNiI8Iy8sJi1JJHN1bUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkKiZJImxHRiUiIiItSSVldmFsR0YsNiQtSSJQR0YlNiNJInhHRiUvRjgsJiNGMSIiI0YxRjAhIiJGMS9GMDshIiciIidGMSNGPUY8RjEiIiFGPQ==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L25" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="EM2 := {sum(l^2*(eval(P(x), x = 1/2-l)), l = -6 .. 6)-(1/2)^2 = 0}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEkRU0yRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2KS1GLDYlUSRzdW1GJ0YvRjItRlA2JC1GIzYuLUklbXN1cEdGJDYlLUYsNiVRImxGJ0YvRjItRiM2JS1JI21uR0YkNiRRIjJGJ0Y5Ri9GMi8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRictRjY2LVEnJnNkb3Q7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmhvLUYsNiVRJWV2YWxGJ0YvRjItRlA2JC1GIzYrLUYsNiVRIlBGJ0YvRjItRlA2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGZ28vRk5RLDAuMzMzMzMzM2VtRidGaHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSZtZnJhY0dGJDYoLUZebzYkUSIxRidGOS1GIzYkRl1vRjkvJS5saW5ldGhpY2tuZXNzR0ZpcS8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zgci8lKWJldmVsbGVkR0Y9LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GaXJGaG5GOUY5RltxRmhuRmFxLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZockZqci1GXm82JFEiNkYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkhGaHJGaW9GXnNGOUY5RmVyLUZmbjYlLUZQNiQtRiM2JEZkcUY5RjlGanFGYW9GYXEtRl5vNiRGY29GOUY5RjkvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRFTTJHNiI8Iy8sJi1JJHN1bUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkKiZJImxHRiUiIiMtSSVldmFsR0YsNiQtSSJQR0YlNiNJInhHRiUvRjgsJiMiIiJGMUY8RjAhIiJGPC9GMDshIiciIidGPC1JIl5HRiw2JEY7RjFGPSIiIUY9</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L27" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="EM3 := {sum(l^3*(eval(P(x), x = 1/2-l)), l = -6 .. 6)-(1/2)^3 = 0}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEkRU0zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2KS1GLDYlUSRzdW1GJ0YvRjItRlA2JC1GIzYuLUklbXN1cEdGJDYlLUYsNiVRImxGJ0YvRjItRiM2JS1JI21uR0YkNiRRIjNGJ0Y5Ri9GMi8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRictRjY2LVEnJnNkb3Q7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmhvLUYsNiVRJWV2YWxGJ0YvRjItRlA2JC1GIzYrLUYsNiVRIlBGJ0YvRjItRlA2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGZ28vRk5RLDAuMzMzMzMzM2VtRidGaHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSZtZnJhY0dGJDYoLUZebzYkUSIxRidGOS1GIzYkLUZebzYkUSIyRidGOUY5LyUubGluZXRoaWNrbmVzc0dGaXEvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGY3IvJSliZXZlbGxlZEdGPS1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlxzRmhuRjlGOUZbcUZobkZhcS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGW3NGXXMtRl5vNiRRIjZGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRltzRmlvRmFzRjlGOUZoci1GZm42JS1GUDYkLUYjNiRGZHFGOUY5LUYjNiRGXW9GOUZhb0ZhcS1GXm82JEZjb0Y5RjlGOS8lJW9wZW5HUSJ8ZnJGJy8lJmNsb3NlR1EifGhyRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0vJStleGVjdXRhYmxlR0Y9Rjk=">QyQ+SSRFTTNHNiI8Iy8sJi1JJHN1bUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkKiZJImxHRiUiIiQtSSVldmFsR0YsNiQtSSJQR0YlNiNJInhHRiUvRjgsJiMiIiIiIiNGPEYwISIiRjwvRjA7ISInIiInRjwtSSJeR0YsNiRGO0YxRj4iIiFGPg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L28" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM0 := {sum(eval(P(x), x = 1/4-l), l = -6 .. 6)-(1/4)^0 = 0}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEkRE0wRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2KS1GLDYlUSRzdW1GJ0YvRjItRlA2JC1GIzYsLUYsNiVRJWV2YWxGJ0YvRjItRlA2JC1GIzYrLUYsNiVRIlBGJ0YvRjItRlA2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkgvRktRJjAuMGVtRicvRk5RLDAuMzMzMzMzM2VtRidGY28tRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRiM2JC1GZXA2JFEiNEYnRjlGOS8lLmxpbmV0aGlja25lc3NHRmdwLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmFxLyUpYmV2ZWxsZWRHRj0tRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZqcS1GLDYlUSJsRidGL0YyRjlGOUZmb0ZcckZecC1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGaXFGW3ItRmVwNiRRIjZGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRmlxL0ZORltwRmJyRjlGOUZmcS1JJW1zdXBHRiQ2JS1GUDYkLUYjNiRGYXBGOUY5LUYjNiQtRmVwNiRRIjBGJ0Y5RjkvJTFzdXBlcnNjcmlwdHNoaWZ0R0Zkc0ZecEZic0Y5RjkvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SSRETTBHNiI8Iy8sJi1JJHN1bUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkLUklZXZhbEdGLDYkLUkiUEdGJTYjSSJ4R0YlL0Y1LCYjIiIiIiIlRjlJImxHRiUhIiIvRjs7ISInIiInRjktSSJeR0YsNiRGOCIiIUY8RkRGPA==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L30" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM1 := {sum(l*(eval(P(x), x = 1/4-l)), l = -6 .. 6)-1/4 = 0}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEkRE0xRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2KS1GLDYlUSRzdW1GJ0YvRjItRlA2JC1GIzYuLUYsNiVRImxGJ0YvRjItRjY2LVEnJnNkb3Q7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORlxvLUYsNiVRJWV2YWxGJ0YvRjItRlA2JC1GIzYrLUYsNiVRIlBGJ0YvRjItRlA2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGW28vRk5RLDAuMzMzMzMzM2VtRidGXHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRjktRiM2JC1GXHE2JFEiNEYnRjlGOS8lLmxpbmV0aGlja25lc3NHRl5xLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmhxLyUpYmV2ZWxsZWRHRj0tRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZhckZlbkY5RjlGX3BGZW5GZXAtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmByRmJyLUZccTYkUSI2RidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZgckZdb0ZmckY5RjlGXXItSSVtc3VwR0YkNiUtRlA2JC1GIzYkRmhwRjlGOS1GIzYkRltxRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRmVwLUZccTYkRmdzRjlGOUY5LyUlb3BlbkdRInxmckYnLyUmY2xvc2VHUSJ8aHJGJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS8lK2V4ZWN1dGFibGVHRj1GOQ==">QyQ+SSRETTFHNiI8Iy8sJi1JJHN1bUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkKiZJImxHRiUiIiItSSVldmFsR0YsNiQtSSJQR0YlNiNJInhHRiUvRjgsJiNGMSIiJUYxRjAhIiJGMS9GMDshIiciIidGMSNGPUY8RjEiIiFGPQ==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L31" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM2 := {sum(l^2*(eval(P(x), x = 1/4-l)), l = -6 .. 6)-(1/4)^2 = 0}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEkRE0yRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2KS1GLDYlUSRzdW1GJ0YvRjItRlA2JC1GIzYuLUklbXN1cEdGJDYlLUYsNiVRImxGJ0YvRjItRiM2JS1JI21uR0YkNiRRIjJGJ0Y5Ri9GMi8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRictRjY2LVEnJnNkb3Q7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmhvLUYsNiVRJWV2YWxGJ0YvRjItRlA2JC1GIzYrLUYsNiVRIlBGJ0YvRjItRlA2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGZ28vRk5RLDAuMzMzMzMzM2VtRidGaHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSZtZnJhY0dGJDYoLUZebzYkUSIxRidGOS1GIzYkLUZebzYkUSI0RidGOUY5LyUubGluZXRoaWNrbmVzc0dGaXEvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGY3IvJSliZXZlbGxlZEdGPS1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlxzRmhuRjlGOUZbcUZobkZhcS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGW3NGXXMtRl5vNiRRIjZGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRltzRmlvRmFzRjlGOUZoci1GZm42JS1GUDYkLUYjNiRGZHFGOUY5LUYjNiRGXW9GOUZhb0ZhcS1GXm82JEZjb0Y5RjlGOS8lJW9wZW5HUSJ8ZnJGJy8lJmNsb3NlR1EifGhyRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0vJStleGVjdXRhYmxlR0Y9Rjk=">QyQ+SSRETTJHNiI8Iy8sJi1JJHN1bUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkKiZJImxHRiUiIiMtSSVldmFsR0YsNiQtSSJQR0YlNiNJInhHRiUvRjgsJiMiIiIiIiVGPEYwISIiRjwvRjA7ISInIiInRjwtSSJeR0YsNiRGO0YxRj4iIiFGPg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L33" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM3 := {sum(l^3*(eval(P(x), x = 1/4-l)), l = -6 .. 6)-(1/4)^3 = 0}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEkRE0zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2KS1GLDYlUSRzdW1GJ0YvRjItRlA2JC1GIzYuLUklbXN1cEdGJDYlLUYsNiVRImxGJ0YvRjItRiM2JS1JI21uR0YkNiRRIjNGJ0Y5Ri9GMi8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRictRjY2LVEnJnNkb3Q7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmhvLUYsNiVRJWV2YWxGJ0YvRjItRlA2JC1GIzYrLUYsNiVRIlBGJ0YvRjItRlA2JC1GIzYkLUYsNiVRInhGJ0YvRjJGOUY5LUY2Ni1RIixGJ0Y5RjsvRj9GMUZARkJGREZGRkhGZ28vRk5RLDAuMzMzMzMzM2VtRidGaHAtRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tSSZtZnJhY0dGJDYoLUZebzYkUSIxRidGOS1GIzYkLUZebzYkUSI0RidGOUY5LyUubGluZXRoaWNrbmVzc0dGaXEvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGY3IvJSliZXZlbGxlZEdGPS1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORlxzRmhuRjlGOUZbcUZobkZhcS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkhGW3NGXXMtRl5vNiRRIjZGJ0Y5LUY2Ni1RIy4uRidGOUY7Rj5GQEZCRkRGRkZIRltzRmlvRmFzRjlGOUZoci1GZm42JS1GUDYkLUYjNiRGZHFGOUY5LUYjNiRGXW9GOUZhb0ZhcS1GXm82JEZjb0Y5RjlGOS8lJW9wZW5HUSJ8ZnJGJy8lJmNsb3NlR1EifGhyRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0vJStleGVjdXRhYmxlR0Y9Rjk=">QyQ+SSRETTNHNiI8Iy8sJi1JJHN1bUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkKiZJImxHRiUiIiQtSSVldmFsR0YsNiQtSSJQR0YlNiNJInhHRiUvRjgsJiMiIiIiIiVGPEYwISIiRjwvRjA7ISInIiInRjwtSSJeR0YsNiRGO0YxRj4iIiFGPg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L40" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8">R\303\251solution du systeme</Font></Text-field> -</Input> -</Group> -<Group labelreference="L34" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="inconnues := {c[0, 0], c[0, 1], c[0, 2], c[0, 3], c[0, 4], c[0, 5], c[1, 0], c[1, 1], c[1, 2], c[1, 3], c[1, 4], c[1, 5], c[2, 0], c[2, 1], c[2, 2], c[2, 3], c[2, 4], c[2, 5]}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqaW5jb25udWVzRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2SC1JJW1zdWJHRiQ2JS1GLDYlUSJjRidGL0YyLUYjNictSSNtbkdGJDYkUSIwRidGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZOUSwwLjMzMzMzMzNlbUYnRmZuRi9GMi8lL3N1YnNjcmlwdHNoaWZ0R0ZpbkZqbi1GVTYlRlctRiM2JkZmbkZqbi1GZ242JFEiMUYnRjlGOUZib0Zqbi1GVTYlRlctRiM2JkZmbkZqbi1GZ242JFEiMkYnRjlGOUZib0Zqbi1GVTYlRlctRiM2JkZmbkZqbi1GZ242JFEiM0YnRjlGOUZib0Zqbi1GVTYlRlctRiM2JkZmbkZqbi1GZ242JFEiNEYnRjlGOUZib0Zqbi1GVTYlRlctRiM2JkZmbkZqbi1GZ242JFEiNUYnRjlGOUZib0Zqbi1GVTYlRlctRiM2JkZob0ZqbkZmbkY5RmJvRmpuLUZVNiVGVy1GIzYmRmhvRmpuRmhvRjlGYm9Gam4tRlU2JUZXLUYjNiZGaG9Gam5GX3BGOUZib0Zqbi1GVTYlRlctRiM2JkZob0ZqbkZmcEY5RmJvRmpuLUZVNiVGVy1GIzYmRmhvRmpuRl1xRjlGYm9Gam4tRlU2JUZXLUYjNiZGaG9Gam5GZHFGOUZib0Zqbi1GVTYlRlctRiM2JkZfcEZqbkZmbkY5RmJvRmpuLUZVNiVGVy1GIzYmRl9wRmpuRmhvRjlGYm9Gam4tRlU2JUZXLUYjNiZGX3BGam5GX3BGOUZib0Zqbi1GVTYlRlctRiM2JkZfcEZqbkZmcEY5RmJvRmpuLUZVNiVGVy1GIzYmRl9wRmpuRl1xRjlGYm9Gam4tRlU2JUZXLUYjNiZGX3BGam5GZHFGOUZiby1GLDYjUSFGJy8lK2V4ZWN1dGFibGVHRj1GOUY5LyUlb3BlbkdRInxmckYnLyUmY2xvc2VHUSJ8aHJGJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTUZqdEY5">QyQ+SSppbmNvbm51ZXNHNiI8NCZJImNHRiU2JCIiIUYqJkYoNiRGKiIiIiZGKDYkRioiIiMmRig2JEYqIiIkJkYoNiRGKiIiJSZGKDYkRioiIiYmRig2JEYtRiomRig2JEYtRi0mRig2JEYtRjAmRig2JEYtRjMmRig2JEYtRjYmRig2JEYtRjkmRig2JEYwRiomRig2JEYwRi0mRig2JEYwRjAmRig2JEYwRjMmRig2JEYwRjYmRig2JEYwRjkhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L35" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="conditions := `union`(IP, C0, C1, C2, M0, M2, M4, DM1, DM2, DM3, DEND):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYrLUkjbWlHRiQ2JVErY29uZGl0aW9uc0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GU0Y1LUYsNiVRKGB1bmlvbmBGJ0YvRjItSShtZmVuY2VkR0YkNiQtRiM2OC1GLDYlUSNJUEYnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRiw2JVEjQzBGJ0YvRjJGam4tRiw2JVEjQzFGJ0YvRjJGam4tRiw2JVEjQzJGJ0YvRjJGam4tRiw2JVEjTTBGJ0YvRjJGam4tRiw2JVEjTTJGJ0YvRjJGam4tRiw2JVEjTTRGJ0YvRjJGam4tRiw2JVEkRE0xRidGL0YyRmpuLUYsNiVRJERNMkYnRi9GMkZqbi1GLDYlUSRETTNGJ0YvRjJGam4tRiw2JVElREVOREYnRi9GMkY5RjktRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZSRlQvJStleGVjdXRhYmxlR0Y9Rjk=">QyQ+SStjb25kaXRpb25zRzYiLUkmdW5pb25HJSpwcm90ZWN0ZWRHNi1JI0lQR0YlSSNDMEdGJUkjQzFHRiVJI0MyR0YlSSNNMEdGJUkjTTJHRiVJI000R0YlSSRETTFHRiVJJERNMkdGJUkkRE0zR0YlSSVERU5ER0YlISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L36" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="solutions := solve(conditions, inconnues);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yNzc3Nzc4ZW1GJy9GTkZTLUYsNiVRJnNvbHZlRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNictRiw2JVErY29uZGl0aW9uc0YnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRiw2JVEqaW5jb25udWVzRidGL0YyLyUrZXhlY3V0YWJsZUdGPUY5RjktRjY2LVEiO0YnRjlGO0Zdb0ZARkJGREZGRkhGSkZURmNvRjk=">QyQ+SSpzb2x1dGlvbnNHNiItSSZzb2x2ZUdGJTYkSStjb25kaXRpb25zR0YlSSppbmNvbm51ZXNHRiUiIiI=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEqc29sdXRpb25zRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZILUYjNigtSSVtc3ViR0YkNiUtRiw2JVEiY0YnRi9GMi1GIzYoLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zobi8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LyUvc3Vic2NyaXB0c2hpZnRHRltvLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZpbjYkUSMxOEYnRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIxRidGOUZkb0Znb0Y5RmlvRltwLUkmbWZyYWNHRiQ2KC1GaW42JFEkMTUzRidGOS1GaW42JFEiNEYnRjkvJS5saW5ldGhpY2tuZXNzR0ZpcC8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZncS8lKWJldmVsbGVkR0Y9RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiMkYnRjlGZG9GZ29GOUZpb0ZbcC1GW3E2KC1GaW42JFEkMjU1RidGOS1GaW42JFEiOEYnRjlGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkUSIzRidGOUZkb0Znb0Y5RmlvRltwLUZbcTYoLUZpbjYkUSQzMTNGJ0Y5LUZpbjYkUSMyNEYnRjlGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvRmBxRmRvRmdvRjlGaW9GW3AtRltxNigtRmluNiRRIzIxRidGOUZqckZjcUZlcUZocUZqcUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjVGJ0Y5RmRvRmdvRjlGaW9GW3AtRltxNihGX3VGW3RGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdwRlxvRmhuRmRvRmdvRjlGaW9GW3AtRiM2JS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYHZGYHFGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GZ3BGZG9GZ29GOUZpb0ZbcC1GIzYnRlx2LUZbcTYoLUZpbjYkUSM3NUYnRjlGYHFGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3BGXG9GYnJGZG9GZ29GOUZpb0ZbcC1GIzYnRlx2LUZbcTYoLUZpbjYkUSQyNDVGJ0Y5RmpyRmNxRmVxRmhxRmpxRmRvRmdvRjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmdwRlxvRmNzRmRvRmdvRjlGaW9GW3AtRiM2J0Zcdi1GW3E2KC1GaW42JFEkNTQ1RidGOUZbdEZjcUZlcUZocUZqcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZncEZcb0ZgcUZkb0Znb0Y5RmlvRltwLUYjNidGXHYtRltxNigtRmluNiRRIzYzRidGOUZqckZjcUZlcUZocUZqcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZncEZcb0ZfdUZkb0Znb0Y5RmlvRltwLUYjNidGXHYtRltxNigtRmluNiRRIzI1RidGOUZbdEZjcUZlcUZocUZqcUZkb0Znb0Y5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0ZobkZkb0Znb0Y5RmlvRltwRmdwRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0ZncEZkb0Znb0Y5RmlvRltwRmhuRmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZickZcb0ZickZkb0Znb0Y5RmlvRltwLUYjNidGXHYtRltxNihGX3VGYHFGY3FGZXFGaHFGanFGZG9GZ29GOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGYnJGXG9GY3NGZG9GZ29GOUZpb0ZbcC1GW3E2KC1GaW42JFEjMzVGJ0Y5LUZpbjYkUSMxMkYnRjlGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmJyRlxvRmBxRmRvRmdvRjlGaW9GW3AtRltxNihGZnRGYHFGY3FGZXFGaHFGanFGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmJyRlxvRl91RmRvRmdvRjlGaW9GW3AtRltxNihGYHpGZFxsRmNxRmVxRmhxRmpxRmRvRmdvRjlGZG9GZ29GOUY5LyUlb3BlbkdRInxmckYnLyUmY2xvc2VHUSJ8aHJGJ0Zkb0Znb0Y5">PDQvJkkiY0c2IjYkIiIhRigiIz0vJkYlNiRGKCIiIiMiJGAiIiIlLyZGJTYkRigiIiMjIiRiIyIiKS8mRiU2JEYoIiIkIyIkOCQiI0MvJkYlNiRGKEYwIyIjQEY3LyZGJTYkRigiIiYjRkdGPi8mRiU2JEYtRighIiUvJkYlNiRGLUYtIyEjdkYwLyZGJTYkRi1GNCMhJFgjRjcvJkYlNiRGLUY7IyEkWCZGPi8mRiU2JEYtRjAjISNqRjcvJkYlNiRGLUZHIyEjREY+LyZGJTYkRjRGKEYtLyZGJTYkRjRGLUYoLyZGJTYkRjRGNCMhIiZGMC8mRiU2JEY0RjsjIiNOIiM3LyZGJTYkRjRGMCNGQ0YwLyZGJTYkRjRGRyMiI0RGYHA=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L42" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">On obtient donc la formule de remaillage suivante :</Text-field> -</Input> -</Group> -<Group labelreference="L37" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="M6prime(x) = eval(P(x), solutions);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEoTTZwcmltZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYlLUYsNiVRInhGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC1JI21vR0YkNi1RIj1GJ0ZALyUmZmVuY2VHRj8vJSpzZXBhcmF0b3JHRj8vJSlzdHJldGNoeUdGPy8lKnN5bW1ldHJpY0dGPy8lKGxhcmdlb3BHRj8vJS5tb3ZhYmxlbGltaXRzR0Y/LyUnYWNjZW50R0Y/LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGVi1GLDYlUSVldmFsRidGL0YyLUY2NiQtRiM2KC1GLDYlUSJQRidGL0YyLUY2NiQtRiM2JEY6RkBGQC1GQzYtUSIsRidGQEZGL0ZJRjFGSkZMRk5GUEZSL0ZVUSYwLjBlbUYnL0ZYUSwwLjMzMzMzMzNlbUYnLUZDNi1RIn5GJ0ZARkZGSEZKRkxGTkZQRlJGZW8vRlhGZm8tRiw2JVEqc29sdXRpb25zRidGL0YyRkBGQC1GQzYtUSI7RidGQEZGRmRvRkpGTEZORlBGUkZlb0ZXRj1GQA==">QyQvLUkoTTZwcmltZUc2IjYjSSJ4R0YmLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiZGJ0kqc29sdXRpb25zR0YmIiIi</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUYjNigtSSNtaUdGJDYlUShNNnByaW1lRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEwJkFwcGx5RnVuY3Rpb247RicvRjVRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y/LyUpc3RyZXRjaHlHRj8vJSpzeW1tZXRyaWNHRj8vJShsYXJnZW9wR0Y/LyUubW92YWJsZWxpbWl0c0dGPy8lJ2FjY2VudEdGPy8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHRk4tSShtZmVuY2VkR0YkNiQtRiM2Ji1GLjYlUSJ4RidGMUY0LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y/RjtGO0ZZRmZuRjstRjg2LVEiPUYnRjtGPUZARkJGREZGRkhGSi9GTVEsMC4yNzc3Nzc4ZW1GJy9GUEZcby1GIzYnLUY4Ni1RInxmckYnRjsvRj5GM0ZAL0ZDRjNGREZGRkhGSi9GTVEsMC4xNjY2NjY3ZW1GJy9GUEZmby1JJ210YWJsZUdGJDY8LUkkbXRyR0YkNictSSRtdGRHRiQ2KC1JI21uR0YkNiRRIjBGJ0Y7LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZncC8lK2dyb3VwYWxpZ25HRmdwLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRl5xLUZfcDYoLUYjNihGVi1GODYtUSI8RidGO0Y9RkBGQkZERkZGSEZKRltvRl1vLUYjNiUtRjg2LVEqJnVtaW51czA7RidGO0Y9RkBGQkZERkZGSEZKL0ZNUSwwLjIyMjIyMjJlbUYnL0ZQRl5yLUZicDYkUSIzRidGO0Y7RllGZm5GO0ZlcEZocEZqcEZccUZfcUZlcEZocEZqcC1GXHA2Jy1GX3A2KC1GIzYuLUZicDYkUSMxOEYnRjstRjg2LVEiK0YnRjtGPUZARkJGREZGRkhGSkZdckZfci1GIzYoLUkmbWZyYWNHRiQ2KC1GYnA2JFEkMTUzRidGOy1GYnA2JFEiNEYnRjsvJS5saW5ldGhpY2tuZXNzR0ZecS8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZedC8lKWJldmVsbGVkR0Y/LUY4Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y7Rj1GQEZCRkRGRkZIRkpGTEZPRlZGWUZmbkY7RlxzLUYjNigtRmJzNigtRmJwNiRRJDI1NUYnRjstRmJwNiRRIjhGJ0Y7RmpzRlx0Rl90RmF0RmN0LUklbXN1cEdGJDYlRlYtRmJwNiRRIjJGJ0Y7LyUxc3VwZXJzY3JpcHRzaGlmdEdGZHBGWUZmbkY7RlxzLUYjNigtRmJzNigtRmJwNiRRJDMxM0YnRjstRmJwNiRRIzI0RidGO0Zqc0ZcdEZfdEZhdEZjdC1GYXU2JUZWRmByRmZ1RllGZm5GO0Zccy1GIzYoLUZiczYoLUZicDYkUSMyMUYnRjtGXXVGanNGXHRGX3RGYXRGY3QtRmF1NiVGVkZnc0ZmdUZZRmZuRjtGXHMtRiM2KC1GYnM2KC1GYnA2JFEiNUYnRjtGX3ZGanNGXHRGX3RGYXRGY3QtRmF1NiVGVkZhd0ZmdUZZRmZuRjtGO0ZlcEZocEZqcEZccUZfcS1GX3A2KC1GIzYoRlZGZXEtRiM2JUZqcUZjdUY7RllGZm5GO0ZlcEZocEZqcEZccUZfcUZlcEZocEZqcC1GXHA2Jy1GX3A2KC1GIzYvRmpxRmdzLUY4Ni1RKCZtaW51cztGJ0Y7Rj1GQEZCRkRGRkZIRkpGXXJGX3ItRiM2KC1GYnM2KC1GYnA2JFEjNzVGJ0Y7RmdzRmpzRlx0Rl90RmF0RmN0RlZGWUZmbkY7RmJ4LUYjNigtRmJzNigtRmJwNiRRJDI0NUYnRjtGXXVGanNGXHRGX3RGYXRGY3RGYHVGWUZmbkY7RmJ4LUYjNigtRmJzNigtRmJwNiRRJDU0NUYnRjtGX3ZGanNGXHRGX3RGYXRGY3RGYnZGWUZmbkY7RmJ4LUYjNigtRmJzNigtRmJwNiRRIzYzRidGO0ZddUZqc0ZcdEZfdEZhdEZjdEZbd0ZZRmZuRjtGYngtRiM2KC1GYnM2KC1GYnA2JFEjMjVGJ0Y7Rl92RmpzRlx0Rl90RmF0RmN0RmR3RllGZm5GO0Y7RmVwRmhwRmpwRlxxRl9xLUZfcDYoLUYjNihGVkZlcS1GIzYlRmpxLUZicDYkRl5xRjtGO0ZZRmZuRjtGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRlxwNictRl9wNigtRiM2LEZeW2xGYngtRiM2KC1GYnM2KEZhd0Znc0Zqc0ZcdEZfdEZhdEZjdEZgdUZZRmZuRjtGXHMtRiM2KC1GYnM2KC1GYnA2JFEjMzVGJ0Y7LUZicDYkUSMxMkYnRjtGanNGXHRGX3RGYXRGY3RGYnZGWUZmbkY7RlxzLUYjNigtRmJzNihGaHZGZ3NGanNGXHRGX3RGYXRGY3RGW3dGWUZmbkY7RlxzLUYjNigtRmJzNihGZXpGYVxsRmpzRlx0Rl90RmF0RmN0RmR3RllGZm5GO0Y7RmVwRmhwRmpwRlxxRl9xLUZfcDYoLUYjNihGVkZlcUZhcEZZRmZuRjtGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRlxwNictRl9wNigtRiM2LEZeW2xGYnhGZltsRmJ4RmpbbEZcc0ZkXGxGYnhGaFxsRjtGZXBGaHBGanBGXHFGX3EtRl9wNigtRiM2KEZWRmVxRl5bbEZZRmZuRjtGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRlxwNictRl9wNigtRiM2L0ZqcUZnc0Zcc0ZleEZieEZceUZcc0ZjeUZieEZqeUZcc0ZhekY7RmVwRmhwRmpwRlxxRl9xLUZfcDYoLUYjNihGVkZlcUZjdUZZRmZuRjtGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRlxwNictRl9wNigtRiM2LkZpckZieEZfc0Zcc0ZmdEZieEZodUZcc0ZkdkZieEZdd0Y7RmVwRmhwRmpwRlxxRl9xLUZfcDYoLUYjNihGVkZlcUZgckZZRmZuRjtGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRlxwNidGXnAtRl9wNigtRiM2KEZgci1GODYtUSUmbGU7RidGO0Y9RkBGQkZERkZGSEZKRltvRl1vRlZGWUZmbkY7RmVwRmhwRmpwRlxxRl9xRmVwRmhwRmpwLyUmYWxpZ25HUSVheGlzRicvRmZwUSliYXNlbGluZUYnL0ZpcEZedC9GW3FRJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0YzLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGY2BsLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EkMmVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0ZeYWwvJSZmcmFtZUdGXmFsLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dGPy8lLWVxdWFsY29sdW1uc0dGPy8lLWRpc3BsYXlzdHlsZUdGPy8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR1EmMC44ZW1GJ0ZZRmZuRjtGWUZmbkY7">Ly1JKE02cHJpbWVHNiI2I0kieEdGJS1JKnBpZWNld2lzZUclKnByb3RlY3RlZEc2MjJGJyEiJCIiITJGJyEiIywuIiM9IiIiRicjIiRgIiIiJSokRiciIiMjIiRiIyIiKSokRiciIiQjIiQ4JCIjQyokRidGNiMiI0BGOyokRiciIiYjRkVGQDJGJyEiIiwuISIlRjNGJyMhI3ZGNkY3IyEkWCNGO0Y8IyEkWCZGQEZBIyEjakY7RkQjISNERkAyRidGLiwsRjNGM0Y3IyEiJkY2RjwjIiNOIiM3RkEjRkNGNkZEIyIjREZlbjJGJ0YzLCxGM0YzRjdGV0Y8IyEjTkZlbkZBRmZuRkQjRlRGZW4yRidGOCwuRkpGM0YnIyIjdkY2RjdGTUY8IyIkWCZGQEZBRlFGRCNGaG5GQDJGJ0Y9LC5GMkYzRicjISRgIkY2RjdGOUY8IyEkOCRGQEZBRkJGRCNGWEZAMUY9RidGLg==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L43" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal">Et les poids de remaillages:</Text-field> -</Input> -</Group> -<Group labelreference="L38" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="w[alpha] := expand(eval(eval(p[0](x), solutions), x = -y-2));" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZOLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEid0YnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictRiM2JS1GLzYlUSZhbHBoYUYnRjJGNS9GM1EldHJ1ZUYnL0Y2USdpdGFsaWNGJy8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RidGNS8lJmZlbmNlR0Y0LyUqc2VwYXJhdG9yR0Y0LyUpc3RyZXRjaHlHRjQvJSpzeW1tZXRyaWNHRjQvJShsYXJnZW9wR0Y0LyUubW92YWJsZWxpbWl0c0dGNC8lJ2FjY2VudEdGNC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRlgtRkU2LVEifkYnRjVGSEZKRkxGTkZQRlJGVC9GV1EmMC4wZW1GJy9GWkZpbi1GLzYlUSdleHBhbmRGJ0Y9Rj8tSShtZmVuY2VkR0YkNiQtRiM2Ji1GLzYlUSVldmFsRidGPUY/LUZfbzYkLUYjNi1GY28tRl9vNiQtRiM2KS1GLDYlLUYvNiVRInBGJ0Y9Rj8tRiM2JS1JI21uR0YkNiRGQ0Y1Rj1GP0ZBLUZfbzYkLUYjNiQtRi82JVEieEYnRj1GP0Y1RjUtRkU2LVEiLEYnRjVGSC9GS0Y+RkxGTkZQRlJGVEZobi9GWlEsMC4zMzMzMzMzZW1GJ0Zlbi1GLzYlUSpzb2x1dGlvbnNGJ0Y9Rj8vJStleGVjdXRhYmxlR0Y0RjVGNUZfcUZccS1GRTYtUSI9RidGNUZIRkpGTEZORlBGUkZURlZGWS1GRTYtUSomdW1pbnVzMDtGJ0Y1RkhGSkZMRk5GUEZSRlQvRldRLDAuMjIyMjIyMmVtRicvRlpGYXItRi82JVEieUYnRj1GP0Zdci1GZnA2JFEiMkYnRjVGaHFGNUY1RmhxRjVGNS1GRTYtUSI7RidGNUZIRmJxRkxGTkZQRlJGVEZobkZZLUknbXNwYWNlR0YkNiYvJSdoZWlnaHRHUSYwLjBleEYnLyUmd2lkdGhHRmluLyUmZGVwdGhHRmFzLyUqbGluZWJyZWFrR1EobmV3bGluZUYnLUYsNiVGLi1GIzYlLUYvNiVRJWJldGFGJ0YyRjVGPUY/RkFGREZlbkZbby1GX282JC1GIzYlRmNvLUZfbzYkLUYjNixGY28tRl9vNiQtRiM2KC1GLDYlRmBwLUYjNiQtRmZwNiRRIjFGJ0Y1RjVGQUZocEZfcUZlbkZlcUY1RjVGX3FGXHFGanFGXXJGY3ItRkU2LVEoJm1pbnVzO0YnRjVGSEZKRkxGTkZQRlJGVEZgckZickZgdUY1RjVGNUY1RmlyRlxzLUYsNiVGLi1GIzYlLUYvNiVRJmdhbW1hRidGMkY1Rj1GP0ZBRkRGZW5GW28tRl9vNiQtRiM2JUZjby1GX282JC1GIzYqRmNvLUZfbzYkLUYjNigtRiw2JUZgcC1GIzYkRmZyRjVGQUZocEZfcUZlbkZlcUY1RjVGX3FGXHFGanFGXXJGY3JGNUY1RjVGNUZpckZccy1GLDYlRi4tRiM2JS1GLzYlUSZkZWx0YUYnRjJGNUY9Rj9GQUZERmVuRltvLUZfbzYkLUYjNiVGY28tRl9vNiQtRiM2K0Zjby1GX282JC1GIzYoLUYsNiVGYHAtRiM2JC1GZnA2JFEiM0YnRjVGNUZBRmhwRl9xRmVuRmVxRjVGNUZfcUZccUZqcUZgdUZjdUZjckY1RjVGNUY1RmlyRlxzLUYsNiVGLi1GIzYlLUYvNiVRJGV0YUYnRjJGNUY9Rj9GQUZERmVuRltvLUZfbzYkLUYjNiVGY28tRl9vNiQtRiM2K0Zjby1GX282JC1GIzYoLUYsNiVGYHAtRiM2JC1GZnA2JFEiNEYnRjVGNUZBRmhwRl9xRmVuRmVxRjVGNUZfcUZccUZqcUZmckZjdUZjckY1RjVGNUY1RmlyRlxzLUYsNiVGLi1GIzYlLUYvNiVRJXpldGFGJ0YyRjVGPUY/RkFGREZlbkZbby1GX282JC1GIzYlRmNvLUZfbzYkLUYjNitGY28tRl9vNiQtRiM2KC1GLDYlRmBwLUYjNiQtRmZwNiRRIjVGJ0Y1RjVGQUZocEZfcUZlbkZlcUY1RjVGX3FGXHFGanFGZHhGY3VGY3JGNUY1RjVGNUZpckZlbkZocUY1">Qy4+Jkkid0c2IjYjSSZhbHBoYUdGJi1JJ2V4cGFuZEclKnByb3RlY3RlZEc2Iy1JJWV2YWxHRis2JC1GLjYkLSZJInBHRiY2IyIiITYjSSJ4R0YmSSpzb2x1dGlvbnNHRiYvRjgsJkkieUdGJiEiIiEiIyIiIkY/PiZGJTYjSSViZXRhR0YmLUYqNiMtRi42JC1GLjYkLSZGNDYjRj9GN0Y5L0Y4LCZGPEY9Rj1GP0Y/PiZGJTYjSSZnYW1tYUdGKy1GKjYjLUYuNiQtRi42JC0mRjQ2IyIiI0Y3RjkvRjgsJEY8Rj1GPz4mRiU2I0kmZGVsdGFHRiYtRio2Iy1GLjYkLUYuNiQtJkY0NiMiIiRGN0Y5L0Y4LCZGP0Y/RjxGPUY/PiZGJTYjSSRldGFHRiYtRio2Iy1GLjYkLUYuNiQtJkY0NiMiIiVGN0Y5L0Y4LCZGZm5GP0Y8Rj1GPz4mRiU2I0klemV0YUdGJi1GKjYjLUYuNiQtRi42JC0mRjQ2IyIiJkY3RjkvRjgsJkZmb0Y/RjxGPUY/</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEid0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUYvNiVRJyYjOTQ1O0YnL0YzUSZmYWxzZUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPkY/LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictSSNtb0dGJDYtUSM6PUYnRj8vJSZmZW5jZUdGPi8lKnNlcGFyYXRvckdGPi8lKXN0cmV0Y2h5R0Y+LyUqc3ltbWV0cmljR0Y+LyUobGFyZ2VvcEdGPi8lLm1vdmFibGVsaW1pdHNHRj4vJSdhY2NlbnRHRj4vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0Znbi1GIzYsLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRj8tRmJvNiRRIzEyRidGPy8lLmxpbmV0aGlja25lc3NHRmRvLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRlxwLyUpYmV2ZWxsZWRHRj4tRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RJjAuMGVtRicvRmluRmVwLUYvNiVRInlGJ0YyRjVGQUZERj8tRko2LVEoJm1pbnVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RLDAuMjIyMjIyMmVtRicvRmluRl5xLUYjNigtRl9vNihGYW8tRmJvNiRRIzI0RidGP0Zob0Zqb0ZdcEZfcEZhcC1JJW1zdXBHRiQ2JUZncC1GYm82JFEiMkYnRj8vJTFzdXBlcnNjcmlwdHNoaWZ0R0ZIRkFGREY/RmpwLUYjNigtRl9vNigtRmJvNiRRIjNGJ0Y/LUZibzYkUSI4RidGP0Zob0Zqb0ZdcEZfcEZhcC1GaHE2JUZncEZjckZdckZBRkRGPy1GSjYtUSIrRidGP0ZNRk9GUUZTRlVGV0ZZRl1xRl9xLUYjNigtRl9vNigtRmJvNiRRIzEzRidGP0ZkcUZob0Zqb0ZdcEZfcEZhcC1GaHE2JUZncC1GYm82JFEiNEYnRj9GXXJGQUZERj9GanAtRiM2KC1GX282KC1GYm82JFEiNUYnRj9GZHFGaG9Gam9GXXBGX3BGYXAtRmhxNiVGZ3BGXnRGXXJGQUZERj9GP0ZBRkRGPw==">LCxJInlHNiIjIiIiIiM3KiRGIyIiIyMhIiIiI0MqJEYjIiIkIyEiJCIiKSokRiMiIiUjIiM4RiwqJEYjIiImIyEiJkYs</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEid0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUYvNiVRJyYjOTQ2O0YnL0YzUSZmYWxzZUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPkY/LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictSSNtb0dGJDYtUSM6PUYnRj8vJSZmZW5jZUdGPi8lKnNlcGFyYXRvckdGPi8lKXN0cmV0Y2h5R0Y+LyUqc3ltbWV0cmljR0Y+LyUobGFyZ2VvcEdGPi8lLm1vdmFibGVsaW1pdHNHRj4vJSdhY2NlbnRHRj4vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0Znbi1GIzYtLUZKNi1RKiZ1bWludXMwO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RLDAuMjIyMjIyMmVtRicvRmluRmBvLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMkYnRj8tRmhvNiRRIjNGJ0Y/LyUubGluZXRoaWNrbmVzc0dRIjFGJy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZjcC8lKWJldmVsbGVkR0Y+LUZKNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y/Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZccS1GLzYlUSJ5RidGMkY1RkFGREY/LUZKNi1RIitGJ0Y/Rk1GT0ZRRlNGVUZXRllGX29GYW8tRiM2KEZkb0ZocC1JJW1zdXBHRiQ2JUZecUZnby8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGQUZERj9GYXEtRiM2KC1GZW82KC1GaG82JFEjMTNGJ0Y/LUZobzYkUSI4RidGP0ZecEZhcEZkcEZmcEZocC1GZ3E2JUZecUZbcEZpcUZBRkRGPy1GSjYtUSgmbWludXM7RidGP0ZNRk9GUUZTRlVGV0ZZRl9vRmFvLUYjNigtRmVvNihGYnJGW3BGXnBGYXBGZHBGZnBGaHAtRmdxNiVGXnEtRmhvNiRRIjRGJ0Y/RmlxRkFGREY/RmFxLUYjNigtRmVvNigtRmhvNiRRIzI1RidGPy1GaG82JFEjMjRGJ0Y/Rl5wRmFwRmRwRmZwRmhwLUZncTYlRl5xLUZobzYkUSI1RidGP0ZpcUZBRkRGP0Y/RkFGREY/">LCxJInlHNiIjISIjIiIkKiRGIyIiIyNGKUYnKiRGI0YnIyIjOCIiKSokRiMiIiUjISIpRicqJEYjIiImIyIjRCIjQw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEid0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUYvNiVRJyYjOTQ3O0YnL0YzUSZmYWxzZUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPkY/LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictSSNtb0dGJDYtUSM6PUYnRj8vJSZmZW5jZUdGPi8lKnNlcGFyYXRvckdGPi8lKXN0cmV0Y2h5R0Y+LyUqc3ltbWV0cmljR0Y+LyUobGFyZ2VvcEdGPi8lLm1vdmFibGVsaW1pdHNHRj4vJSdhY2NlbnRHRj4vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0Znbi1GIzYsLUkjbW5HRiQ2JFEiMUYnRj8tRko2LVEoJm1pbnVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RLDAuMjIyMjIyMmVtRicvRmluRmRvLUYjNigtSSZtZnJhY0dGJDYoLUZdbzYkUSI1RidGPy1GXW82JFEiNEYnRj8vJS5saW5ldGhpY2tuZXNzR0Zfby8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZlcC8lKWJldmVsbGVkR0Y+LUZKNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y/Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZecS1JJW1zdXBHRiQ2JS1GLzYlUSJ5RidGMkY1LUZdbzYkUSIyRidGPy8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGQUZERj9GYG8tRiM2KC1GaW82KC1GXW82JFEjMzVGJ0Y/LUZdbzYkUSMxMkYnRj9GYXBGY3BGZnBGaHBGanAtRmFxNiVGY3EtRl1vNiRRIjNGJ0Y/RmlxRkFGREY/LUZKNi1RIitGJ0Y/Rk1GT0ZRRlNGVUZXRllGY29GZW8tRiM2KC1GaW82KC1GXW82JFEjMjFGJ0Y/Rl5wRmFwRmNwRmZwRmhwRmpwLUZhcTYlRmNxRl5wRmlxRkFGREY/RmBvLUYjNigtRmlvNigtRl1vNiRRIzI1RidGP0ZickZhcEZjcEZmcEZocEZqcC1GYXE2JUZjcUZbcEZpcUZBRkRGP0Y/RkFGREY/">LCwiIiJGIyokSSJ5RzYiIiIjIyEiJiIiJSokRiUiIiQjISNOIiM3KiRGJUYqIyIjQEYqKiRGJSIiJiMhI0RGLw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEid0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUYvNiVRJyYjOTQ4O0YnL0YzUSZmYWxzZUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPkY/LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictSSNtb0dGJDYtUSM6PUYnRj8vJSZmZW5jZUdGPi8lKnNlcGFyYXRvckdGPi8lKXN0cmV0Y2h5R0Y+LyUqc3ltbWV0cmljR0Y+LyUobGFyZ2VvcEdGPi8lLm1vdmFibGVsaW1pdHNHRj4vJSdhY2NlbnRHRj4vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0Znbi1GIzYsLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMkYnRj8tRmJvNiRRIjNGJ0Y/LyUubGluZXRoaWNrbmVzc0dRIjFGJy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZdcC8lKWJldmVsbGVkR0Y+LUZKNi1RMSZJbnZpc2libGVUaW1lcztGJ0Y/Rk1GT0ZRRlNGVUZXRlkvRmZuUSYwLjBlbUYnL0ZpbkZmcC1GLzYlUSJ5RidGMkY1RkFGREY/LUZKNi1RIitGJ0Y/Rk1GT0ZRRlNGVUZXRlkvRmZuUSwwLjIyMjIyMjJlbUYnL0ZpbkZfcS1GIzYoRl5vRmJwLUklbXN1cEdGJDYlRmhwRmFvLyUxc3VwZXJzY3JpcHRzaGlmdEdGSEZBRkRGP0ZbcS1GIzYoLUZfbzYoLUZibzYkUSMxMUYnRj8tRmJvNiRRIjRGJ0Y/RmhvRltwRl5wRmBwRmJwLUZkcTYlRmhwRmVvRmZxRkFGREY/LUZKNi1RKCZtaW51cztGJ0Y/Rk1GT0ZRRlNGVUZXRllGXnFGYHEtRiM2KC1GX282KC1GYm82JFEjMzFGJ0Y/LUZibzYkUSI2RidGP0Zob0ZbcEZecEZgcEZicC1GZHE2JUZocEZfckZmcUZBRkRGP0ZbcS1GIzYoLUZfbzYoLUZibzYkUSMyNUYnRj8tRmJvNiRRIzEyRidGP0Zob0ZbcEZecEZgcEZicC1GZHE2JUZocC1GYm82JFEiNUYnRj9GZnFGQUZERj9GP0ZBRkRGPw==">LCxJInlHNiIjIiIjIiIkKiRGI0YmRiUqJEYjRicjIiM2IiIlKiRGI0YsIyEjSiIiJyokRiMiIiYjIiNEIiM3</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEid0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUYvNiVRJyYjOTUxO0YnL0YzUSZmYWxzZUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPkY/LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictSSNtb0dGJDYtUSM6PUYnRj8vJSZmZW5jZUdGPi8lKnNlcGFyYXRvckdGPi8lKXN0cmV0Y2h5R0Y+LyUqc3ltbWV0cmljR0Y+LyUobGFyZ2VvcEdGPi8lLm1vdmFibGVsaW1pdHNHRj4vJSdhY2NlbnRHRj4vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0Znbi1GIzYtLUZKNi1RKiZ1bWludXMwO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RLDAuMjIyMjIyMmVtRicvRmluRmBvLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRj8tRmhvNiRRIzEyRidGPy8lLmxpbmV0aGlja25lc3NHRmpvLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmJwLyUpYmV2ZWxsZWRHRj4tRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RJjAuMGVtRicvRmluRltxLUYvNiVRInlGJ0YyRjVGQUZERj8tRko2LVEoJm1pbnVzO0YnRj9GTUZPRlFGU0ZVRldGWUZfb0Zhby1GIzYoLUZlbzYoRmdvLUZobzYkUSMyNEYnRj9GXnBGYHBGY3BGZXBGZ3AtSSVtc3VwR0YkNiVGXXEtRmhvNiRRIjJGJ0Y/LyUxc3VwZXJzY3JpcHRzaGlmdEdGSEZBRkRGP0ZgcS1GIzYoLUZlbzYoLUZobzYkUSMxMUYnRj8tRmhvNiRRIjhGJ0Y/Rl5wRmBwRmNwRmVwRmdwLUZbcjYlRl1xLUZobzYkUSIzRidGP0ZgckZBRkRGPy1GSjYtUSIrRidGP0ZNRk9GUUZTRlVGV0ZZRl9vRmFvLUYjNigtRmVvNigtRmhvNiRRIzYxRidGP0ZncUZecEZgcEZjcEZlcEZncC1GW3I2JUZdcS1GaG82JFEiNEYnRj9GYHJGQUZERj9GYHEtRiM2KC1GZW82KC1GaG82JFEjMjVGJ0Y/RmdxRl5wRmBwRmNwRmVwRmdwLUZbcjYlRl1xLUZobzYkUSI1RidGP0ZgckZBRkRGP0Y/RkFGREY/">LCxJInlHNiIjISIiIiM3KiRGIyIiIyNGJiIjQyokRiMiIiQjISM2IiIpKiRGIyIiJSMiI2hGKyokRiMiIiYjISNERis=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEid0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUYvNiVRJyYjOTUwO0YnL0YzUSZmYWxzZUYnL0Y2USdub3JtYWxGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPkY/LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictSSNtb0dGJDYtUSM6PUYnRj8vJSZmZW5jZUdGPi8lKnNlcGFyYXRvckdGPi8lKXN0cmV0Y2h5R0Y+LyUqc3ltbWV0cmljR0Y+LyUobGFyZ2VvcEdGPi8lLm1vdmFibGVsaW1pdHNHRj4vJSdhY2NlbnRHRj4vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0Znbi1GIzYoLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiN0YnRj8tRmJvNiRRIzI0RidGPy8lLmxpbmV0aGlja25lc3NHUSIxRicvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGXXAvJSliZXZlbGxlZEdGPi1GSjYtUTEmSW52aXNpYmxlVGltZXM7RidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEmMC4wZW1GJy9GaW5GZnAtSSVtc3VwR0YkNiUtRi82JVEieUYnRjJGNS1GYm82JFEiM0YnRj8vJTFzdXBlcnNjcmlwdHNoaWZ0R0ZIRkFGREY/LUZKNi1RKCZtaW51cztGJ0Y/Rk1GT0ZRRlNGVUZXRlkvRmZuUSwwLjIyMjIyMjJlbUYnL0ZpbkZncS1GIzYoLUZfbzYoLUZibzYkRmpvRj8tRmJvNiRRIjJGJ0Y/RmhvRltwRl5wRmBwRmJwLUZpcDYlRltxLUZibzYkUSI0RidGP0ZhcUZBRkRGPy1GSjYtUSIrRidGP0ZNRk9GUUZTRlVGV0ZZRmZxRmhxLUYjNigtRl9vNigtRmJvNiRRIjVGJ0Y/RmVvRmhvRltwRl5wRmBwRmJwLUZpcDYlRltxRl5zRmFxRkFGREY/Rj9GQUZERj8=">LCgqJEkieUc2IiIiJCMiIigiI0MqJEYkIiIlIyEiIiIiIyokRiQiIiYjRjBGKQ==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L46" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="hw[alpha] := (1/24)*convert(24*w[alpha], horner, y);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZYLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEjaHdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2JC1GLzYlUSZhbHBoYUYnL0YzUSZmYWxzZUYnL0Y2USdub3JtYWxGJ0Y/LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictSSNtb0dGJDYtUSomY29sb25lcTtGJ0Y/LyUmZmVuY2VHRj4vJSpzZXBhcmF0b3JHRj4vJSlzdHJldGNoeUdGPi8lKnN5bW1ldHJpY0dGPi8lKGxhcmdlb3BHRj4vJS5tb3ZhYmxlbGltaXRzR0Y+LyUnYWNjZW50R0Y+LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGWC1GLzYlUShjb252ZXJ0RidGMkY1LUkobWZlbmNlZEdGJDYkLUYjNistSSNtbkdGJDYkUSMyNEYnRj8tRkU2LVEnJnNkb3Q7RidGP0ZIRkpGTEZORlBGUkZUL0ZXUSYwLjBlbUYnL0ZaRmVvLUZFNi1RIn5GJ0Y/RkhGSkZMRk5GUEZSRlRGZG9GZm8tRiw2JS1GLzYlUSJ3RidGPUY/LUYjNiVGOkYyRjVGQS1GRTYtUSIsRidGP0ZIL0ZLRjRGTEZORlBGUkZURmRvL0ZaUSwwLjMzMzMzMzNlbUYnLUYvNiVRJ2hvcm5lckYnRjJGNUZhcC1GLzYlUSJ5RidGMkY1Rj9GP0Zhby1GaW42JC1GIzYlLUkmbWZyYWNHRiQ2KC1GXm82JFEiMUYnRj8tRiM2JUZdb0YyRjUvJS5saW5ldGhpY2tuZXNzR0ZmcS8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zdci8lKWJldmVsbGVkR0Y+LyUrZXhlY3V0YWJsZUdGPkY/Rj8tRkU2LVEiO0YnRj9GSEZkcEZMRk5GUEZSRlRGZG9GWS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0Zlby8lJmRlcHRoR0Zccy8lKmxpbmVicmVha0dRKG5ld2xpbmVGJ0Znby1GLDYlRi4tRiM2JC1GLzYlUSViZXRhRidGPUY/Rj9GQUZERmVuLUZpbjYkLUYjNitGXW9GYW9GZ28tRiw2JUZccC1GIzYlRmhzRjJGNUZBRmFwRmdwRmFwRmpwRj9GP0Zhby1GaW42JC1GIzYkLUZicTYoRmRxLUYjNiRGXW9GP0ZpcUZbckZeckZgckY/Rj9GZHJGZ3JGZ28tRiw2JUYuLUYjNiQtRi82JVEmZ2FtbWFGJ0Y9Rj9GP0ZBRkRGZW4tRmluNiQtRiM2Ky1GXm82JFEjMTJGJ0Y/RmFvRmdvLUYsNiVGXHAtRiM2JUZfdUYyRjVGQUZhcEZncEZhcEZqcEY/Rj9GYW8tRmluNiQtRiM2JC1GYnE2KEZkcS1GIzYkRmZ1Rj9GaXFGW3JGXnJGYHJGP0Y/RmRyRmdyRmdvLUYsNiVGLi1GIzYkLUYvNiVRJmRlbHRhRidGPUY/Rj9GQUZERmVuLUZpbjYkLUYjNitGZnVGYW9GZ28tRiw2JUZccC1GIzYlRml2RjJGNUZBRmFwRmdwRmFwRmpwRj9GP0Zhb0ZddkZkckZnckZnby1GLDYlRi4tRiM2JC1GLzYlUSRldGFGJ0Y9Rj9GP0ZBRkRGZW4tRmluNiQtRiM2K0Zdb0Zhb0Znby1GLDYlRlxwLUYjNiVGaHdGMkY1RkFGYXBGZ3BGYXBGanBGP0Y/RmFvRmN0RmRyRmdyRmdvLUYsNiVGLi1GIzYkLUYvNiVRJXpldGFGJ0Y9Rj9GP0ZBRkRGZW4tRmluNiQtRiM2K0Zdb0Zhb0Znby1GLDYlRlxwLUYjNiVGZ3hGMkY1RkFGYXBGZ3BGYXBGanBGP0Y/RmFvRmN0RmRyRmJyRj8=">Qy4+JkkjaHdHNiI2I0kmYWxwaGFHRiYsJC1JKGNvbnZlcnRHJSpwcm90ZWN0ZWRHNiUsJCZJIndHRiZGJyIjQ0knaG9ybmVyR0YmSSJ5R0YmIyIiIkYxRjU+JkYlNiNJJWJldGFHRiYsJC1GKzYlLCQmRjBGOEYxRjJGM0Y0RjU+JkYlNiNJJmdhbW1hR0YsLCQtRis2JSwkJkYwRkEiIzdGMkYzI0Y1RkhGNT4mRiU2I0kmZGVsdGFHRiYsJC1GKzYlLCQmRjBGTEZIRjJGM0ZJRjU+JkYlNiNJJGV0YUdGJiwkLUYrNiUsJCZGMEZVRjFGMkYzRjRGNT4mRiU2I0klemV0YUdGJiwkLUYrNiUsJCZGMEZobkYxRjJGM0Y0RjU=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEjaHdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ji1GLzYlUScmIzk0NTtGJy9GM1EmZmFsc2VGJy9GNlEnbm9ybWFsRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj5GPy8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y/LyUmZmVuY2VHRj4vJSpzZXBhcmF0b3JHRj4vJSlzdHJldGNoeUdGPi8lKnN5bW1ldHJpY0dGPi8lKGxhcmdlb3BHRj4vJS5tb3ZhYmxlbGltaXRzR0Y+LyUnYWNjZW50R0Y+LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1JJm1mcmFjR0YkNigtSSNtbkdGJDYkUSIxRidGPy1GYG82JFEjMjRGJ0Y/LyUubGluZXRoaWNrbmVzc0dGYm8vJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGam8vJSliZXZlbGxlZEdGPi1GSjYtUTEmSW52aXNpYmxlVGltZXM7RidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEmMC4wZW1GJy9GaW5GY3AtRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZgbzYkUSIyRidGPy1GSjYtUSIrRidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEsMC4yMjIyMjIyZW1GJy9GaW5GY3EtRiM2Ji1GaHA2JC1GIzYnLUZKNi1RKiZ1bWludXMwO0YnRj9GTUZPRlFGU0ZVRldGWUZicUZkcUZfb0ZfcS1GIzYmLUZocDYkLUYjNidGW3ItRmBvNiRRIjlGJ0Y/Rl9xLUYjNiYtRmhwNiQtRiM2Ji1GYG82JFEjMTNGJ0Y/LUZKNi1RKCZtaW51cztGJ0Y/Rk1GT0ZRRlNGVUZXRllGYnFGZHEtRiM2Ji1GYG82JFEiNUYnRj9GX3AtRi82JVEieUYnRjJGNUY/Rj9GP0ZfcEZoc0Y/Rj9GP0ZfcEZoc0Y/Rj9GP0ZfcEZoc0Y/Rj9GP0ZfcEZoc0Y/RkFGREY/RkFGREY/">LCQqJiwmIiIjIiIiKiYsJiEiIkYmKiYsJiEiKkYmKiYsJiIjOEYmSSJ5RzYiISImRiZGMEYmRiZGJkYwRiZGJkYmRjBGJkYmRiZGMEYmI0YmIiND</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEjaHdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ji1GLzYlUScmIzk0NjtGJy9GM1EmZmFsc2VGJy9GNlEnbm9ybWFsRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj5GPy8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y/LyUmZmVuY2VHRj4vJSpzZXBhcmF0b3JHRj4vJSlzdHJldGNoeUdGPi8lKnN5bW1ldHJpY0dGPi8lKGxhcmdlb3BHRj4vJS5tb3ZhYmxlbGltaXRzR0Y+LyUnYWNjZW50R0Y+LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1JJm1mcmFjR0YkNigtSSNtbkdGJDYkUSIxRidGPy1GYG82JFEjMjRGJ0Y/LyUubGluZXRoaWNrbmVzc0dGYm8vJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGam8vJSliZXZlbGxlZEdGPi1GSjYtUTEmSW52aXNpYmxlVGltZXM7RidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEmMC4wZW1GJy9GaW5GY3AtRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUZKNi1RKiZ1bWludXMwO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RLDAuMjIyMjIyMmVtRicvRmluRmBxLUZgbzYkUSMxNkYnRj8tRko2LVEiK0YnRj9GTUZPRlFGU0ZVRldGWUZfcUZhcS1GIzYmLUZocDYkLUYjNiZGYnFGZXEtRiM2Ji1GaHA2JC1GIzYmLUZgbzYkUSMzOUYnRj9GZXEtRiM2Ji1GaHA2JC1GIzYnRlxxLUZgbzYkUSM2NEYnRj9GZXEtRiM2Ji1GYG82JFEjMjVGJ0Y/Rl9wLUYvNiVRInlGJ0YyRjVGP0Y/Rj9GX3BGZXNGP0Y/Rj9GX3BGZXNGP0Y/Rj9GX3BGZXNGP0Y/Rj9GX3BGZXNGP0ZBRkRGP0ZBRkRGPw==">LCQqJiwmISM7IiIiKiYsJiIjO0YmKiYsJiIjUkYmKiYsJiEja0YmSSJ5RzYiIiNERiZGMEYmRiZGJkYwRiZGJkYmRjBGJkYmRiZGMEYmI0YmIiND</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEjaHdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ji1GLzYlUScmIzk0NztGJy9GM1EmZmFsc2VGJy9GNlEnbm9ybWFsRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj5GPy8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y/LyUmZmVuY2VHRj4vJSpzZXBhcmF0b3JHRj4vJSlzdHJldGNoeUdGPi8lKnN5bW1ldHJpY0dGPi8lKGxhcmdlb3BHRj4vJS5tb3ZhYmxlbGltaXRzR0Y+LyUnYWNjZW50R0Y+LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2Ji1JI21uR0YkNiRRIjFGJ0Y/LUZKNi1RIitGJ0Y/Rk1GT0ZRRlNGVUZXRlkvRmZuUSwwLjIyMjIyMjJlbUYnL0ZpbkZkby1GIzYoLUkmbWZyYWNHRiQ2KEZcby1GXW82JFEjMTJGJ0Y/LyUubGluZXRoaWNrbmVzc0dGX28vJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGYnAvJSliZXZlbGxlZEdGPi1GSjYtUTEmSW52aXNpYmxlVGltZXM7RidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEmMC4wZW1GJy9GaW5GW3EtRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUZKNi1RKiZ1bWludXMwO0YnRj9GTUZPRlFGU0ZVRldGWUZjb0Zlby1GXW82JFEjMTVGJ0Y/RmBvLUYjNiYtRmBxNiQtRiM2J0ZkcS1GXW82JFEjMzVGJ0Y/RmBvLUYjNiYtRmBxNiQtRiM2Ji1GXW82JFEjNjNGJ0Y/LUZKNi1RKCZtaW51cztGJ0Y/Rk1GT0ZRRlNGVUZXRllGY29GZW8tRiM2Ji1GXW82JFEjMjVGJ0Y/RmdwLUYvNiVRInlGJ0YyRjVGP0Y/Rj9GZ3BGZHNGP0Y/Rj9GZ3BGZHNGP0Y/Rj9GZ3AtSSVtc3VwR0YkNiVGZHMtRl1vNiRRIjJGJ0Y/LyUxc3VwZXJzY3JpcHRzaGlmdEdGSEY/RkFGREY/Rj9GQUZERj8=">LCYiIiJGIyomLCYhIzpGIyomLCYhI05GIyomLCYiI2pGI0kieUc2IiEjREYjRi1GI0YjRiNGLUYjRiNGI0YtIiIjI0YjIiM3</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEjaHdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ji1GLzYlUScmIzk0ODtGJy9GM1EmZmFsc2VGJy9GNlEnbm9ybWFsRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj5GPy8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y/LyUmZmVuY2VHRj4vJSpzZXBhcmF0b3JHRj4vJSlzdHJldGNoeUdGPi8lKnN5bW1ldHJpY0dGPi8lKGxhcmdlb3BHRj4vJS5tb3ZhYmxlbGltaXRzR0Y+LyUnYWNjZW50R0Y+LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1JJm1mcmFjR0YkNigtSSNtbkdGJDYkUSIxRidGPy1GYG82JFEjMTJGJ0Y/LyUubGluZXRoaWNrbmVzc0dGYm8vJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGam8vJSliZXZlbGxlZEdGPi1GSjYtUTEmSW52aXNpYmxlVGltZXM7RidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEmMC4wZW1GJy9GaW5GY3AtRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZgbzYkUSI4RidGPy1GSjYtUSIrRidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEsMC4yMjIyMjIyZW1GJy9GaW5GY3EtRiM2Ji1GaHA2JC1GIzYmRlxxRl9xLUYjNiYtRmhwNiQtRiM2Ji1GYG82JFEjMzNGJ0Y/Rl9xLUYjNiYtRmhwNiQtRiM2Jy1GSjYtUSomdW1pbnVzMDtGJ0Y/Rk1GT0ZRRlNGVUZXRllGYnFGZHEtRmBvNiRRIzYyRidGP0ZfcS1GIzYmLUZgbzYkUSMyNUYnRj9GX3AtRi82JVEieUYnRjJGNUY/Rj9GP0ZfcEZlc0Y/Rj9GP0ZfcEZlc0Y/Rj9GP0ZfcEZlc0Y/Rj9GP0ZfcEZlc0Y/RkFGREY/RkFGREY/">LCQqJiwmIiIpIiIiKiYsJkYlRiYqJiwmIiNMRiYqJiwmISNpRiZJInlHNiIiI0RGJkYvRiZGJkYmRi9GJkYmRiZGL0YmRiZGJkYvRiYjRiYiIzc=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEjaHdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ji1GLzYlUScmIzk1MTtGJy9GM1EmZmFsc2VGJy9GNlEnbm9ybWFsRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj5GPy8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y/LyUmZmVuY2VHRj4vJSpzZXBhcmF0b3JHRj4vJSlzdHJldGNoeUdGPi8lKnN5bW1ldHJpY0dGPi8lKGxhcmdlb3BHRj4vJS5tb3ZhYmxlbGltaXRzR0Y+LyUnYWNjZW50R0Y+LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1JJm1mcmFjR0YkNigtSSNtbkdGJDYkUSIxRidGPy1GYG82JFEjMjRGJ0Y/LyUubGluZXRoaWNrbmVzc0dGYm8vJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGam8vJSliZXZlbGxlZEdGPi1GSjYtUTEmSW52aXNpYmxlVGltZXM7RidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEmMC4wZW1GJy9GaW5GY3AtRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYnLUZKNi1RKiZ1bWludXMwO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RLDAuMjIyMjIyMmVtRicvRmluRmBxLUZgbzYkUSIyRidGPy1GSjYtUSIrRidGP0ZNRk9GUUZTRlVGV0ZZRl9xRmFxLUYjNiYtRmhwNiQtRiM2J0ZccUZfb0ZlcS1GIzYmLUZocDYkLUYjNidGXHEtRmBvNiRRIzMzRidGP0ZlcS1GIzYmLUZocDYkLUYjNiYtRmBvNiRRIzYxRidGPy1GSjYtUSgmbWludXM7RidGP0ZNRk9GUUZTRlVGV0ZZRl9xRmFxLUYjNiYtRmBvNiRRIzI1RidGP0ZfcC1GLzYlUSJ5RidGMkY1Rj9GP0Y/Rl9wRmhzRj9GP0Y/Rl9wRmhzRj9GP0Y/Rl9wRmhzRj9GP0Y/Rl9wRmhzRj9GQUZERj9GQUZERj8=">LCQqJiwmISIjIiIiKiYsJiEiIkYmKiYsJiEjTEYmKiYsJiIjaEYmSSJ5RzYiISNERiZGMEYmRiZGJkYwRiZGJkYmRjBGJkYmRiZGMEYmI0YmIiND</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEjaHdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ji1GLzYlUScmIzk1MDtGJy9GM1EmZmFsc2VGJy9GNlEnbm9ybWFsRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj5GPy8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y/LyUmZmVuY2VHRj4vJSpzZXBhcmF0b3JHRj4vJSlzdHJldGNoeUdGPi8lKnN5bW1ldHJpY0dGPi8lKGxhcmdlb3BHRj4vJS5tb3ZhYmxlbGltaXRzR0Y+LyUnYWNjZW50R0Y+LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2KC1JJm1mcmFjR0YkNigtSSNtbkdGJDYkUSIxRidGPy1GYG82JFEjMjRGJ0Y/LyUubGluZXRoaWNrbmVzc0dGYm8vJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGam8vJSliZXZlbGxlZEdGPi1GSjYtUTEmSW52aXNpYmxlVGltZXM7RidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEmMC4wZW1GJy9GaW5GY3AtRiM2Ji1JKG1mZW5jZWRHRiQ2JC1GIzYmLUZgbzYkUSI3RidGPy1GSjYtUSIrRidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEsMC4yMjIyMjIyZW1GJy9GaW5GY3EtRiM2Ji1GaHA2JC1GIzYnLUZKNi1RKiZ1bWludXMwO0YnRj9GTUZPRlFGU0ZVRldGWUZicUZkcS1GYG82JFEjMTJGJ0Y/Rl9xLUYjNiYtRmBvNiRRIjVGJ0Y/Rl9wLUYvNiVRInlGJ0YyRjVGP0Y/Rj9GX3BGZnJGP0Y/Rj9GX3AtSSVtc3VwR0YkNiVGZnItRmBvNiRRIjNGJ0Y/LyUxc3VwZXJzY3JpcHRzaGlmdEdGSEY/RkFGREY/RkFGREY/">LCQqJiwmIiIoIiIiKiYsJiEjN0YmSSJ5RzYiIiImRiZGKkYmRiZGJkYqIiIkI0YmIiND</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L50" drawlabel="true"> -<Input> -<Text-field style="Text" layout="Normal"><Font encoding="UTF-8">R\303\251solution pour une formule avec diffusion (coefficient de diffusion = d)</Font></Text-field> -<Text-field style="Text" layout="Normal"><Equation executable="false" style="2D Math" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYkLUkjbWlHRiQ2I1EhRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYn">JSFH</Equation><Equation executable="false" style="2D Math" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYkLUkjbWlHRiQ2I1EhRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYn">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L55" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="M2Diffusion := {int(x^2*P(x), x = -3 .. 3) = d}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEsTTJEaWZmdXNpb25GJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzYnLUYsNiVRJGludEYnRi9GMi1GUDYkLUYjNi4tSSVtc3VwR0YkNiUtRiw2JVEieEYnRi9GMi1GIzYkLUkjbW5HRiQ2JFEiMkYnRjlGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRictRjY2LVEnJnNkb3Q7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORmhvLUYsNiVRIlBGJ0YvRjItRlA2JC1GIzYkRmhuRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRmdvL0ZOUSwwLjMzMzMzMzNlbUYnRmhuLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZecS1GXm82JFEiM0YnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkhGXXFGaW9GYHFGOUY5RmdwLUYsNiVRImRGJ0YvRjJGOUY5LyUlb3BlbkdRInxmckYnLyUmY2xvc2VHUSJ8aHJGJy1GNjYtUSI6RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS8lK2V4ZWN1dGFibGVHRj1GOQ==">QyQ+SSxNMkRpZmZ1c2lvbkc2IjwjLy1JJGludEc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkKiZJInhHRiUiIiMtSSJQR0YlNiNGLyIiIi9GLzshIiQiIiRJImRHRiUhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L57" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="EM2Diffusion := {sum(l^2*(eval(P(x), x = 1/2-l)), l = -6 .. 6)-(1/2)^2 = d}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEtRU0yRGlmZnVzaW9uRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2KS1GLDYlUSRzdW1GJ0YvRjItRlA2JC1GIzYuLUklbXN1cEdGJDYlLUYsNiVRImxGJ0YvRjItRiM2JC1JI21uR0YkNiRRIjJGJ0Y5RjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnLUY2Ni1RJyZzZG90O0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZoby1GLDYlUSVldmFsRidGL0YyLUZQNiQtRiM2Ky1GLDYlUSJQRidGL0YyLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRmdvL0ZOUSwwLjMzMzMzMzNlbUYnRmhwLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkmbWZyYWNHRiQ2KC1GXm82JFEiMUYnRjlGW28vJS5saW5ldGhpY2tuZXNzR0ZpcS8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zeci8lKWJldmVsbGVkR0Y9LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GZ3JGaG5GOUY5RltxRmhuRmFxLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSEZmckZoci1GXm82JFEiNkYnRjktRjY2LVEjLi5GJ0Y5RjtGPkZARkJGREZGRkhGZnJGaW9GXHNGOUY5RmNyLUZmbjYlLUZQNiQtRiM2JEZkcUY5RjlGW29GYW9GYXEtRiw2JVEiZEYnRi9GMkY5RjkvJSVvcGVuR1EifGZyRicvJSZjbG9zZUdRInxockYnLUY2Ni1RIjpGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLyUrZXhlY3V0YWJsZUdGPUY5">QyQ+SS1FTTJEaWZmdXNpb25HNiI8Iy8sJi1JJHN1bUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkKiZJImxHRiUiIiMtSSVldmFsR0YsNiQtSSJQR0YlNiNJInhHRiUvRjgsJiMiIiJGMUY8RjAhIiJGPC9GMDshIiciIidGPC1JIl5HRiw2JEY7RjFGPUkiZEdGJUY9</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L58" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="DM2Diffusion := {sum(l^2*(eval(P(x), x = 1/4-l)), l = -6 .. 6)-(1/4)^2 = d}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEtRE0yRGlmZnVzaW9uRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtZmVuY2VkR0YkNiYtRiM2KS1GLDYlUSRzdW1GJ0YvRjItRlA2JC1GIzYuLUklbXN1cEdGJDYlLUYsNiVRImxGJ0YvRjItRiM2JC1JI21uR0YkNiRRIjJGJ0Y5RjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnLUY2Ni1RJyZzZG90O0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZoby1GLDYlUSVldmFsRidGL0YyLUZQNiQtRiM2Ky1GLDYlUSJQRidGL0YyLUZQNiQtRiM2JC1GLDYlUSJ4RidGL0YyRjlGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRmdvL0ZOUSwwLjMzMzMzMzNlbUYnRmhwLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUkmbWZyYWNHRiQ2KC1GXm82JFEiMUYnRjktRiM2JC1GXm82JFEiNEYnRjlGOS8lLmxpbmV0aGlja25lc3NHRmlxLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmNyLyUpYmV2ZWxsZWRHRj0tRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZcc0ZobkY5RjlGW3FGaG5GYXEtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRltzRl1zLUZebzYkUSI2RidGOS1GNjYtUSMuLkYnRjlGO0Y+RkBGQkZERkZGSEZbc0Zpb0Zhc0Y5RjlGaHItRmZuNiUtRlA2JC1GIzYkRmRxRjlGOUZbb0Zhb0ZhcS1GLDYlUSJkRidGL0YyRjlGOS8lJW9wZW5HUSJ8ZnJGJy8lJmNsb3NlR1EifGhyRictRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZKRk0vJStleGVjdXRhYmxlR0Y9Rjk=">QyQ+SS1ETTJEaWZmdXNpb25HNiI8Iy8sJi1JJHN1bUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkKiZJImxHRiUiIiMtSSVldmFsR0YsNiQtSSJQR0YlNiNJInhHRiUvRjgsJiMiIiIiIiVGPEYwISIiRjwvRjA7ISInIiInRjwtSSJeR0YsNiRGO0YxRj5JImRHRiVGPg==</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L53" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="inconnues := {c[0, 0], c[0, 1], c[0, 2], c[0, 3], c[0, 4], c[0, 5], c[1, 0], c[1, 1], c[1, 2], c[1, 3], c[1, 4], c[1, 5], c[2, 0], c[2, 1], c[2, 2], c[2, 3], c[2, 4], c[2, 5]}:" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2I1EhRictSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdRJjAuMGVtRicvJSZkZXB0aEdGNC8lKmxpbmVicmVha0dRJWF1dG9GJy1GLDYlUSppbmNvbm51ZXNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GRFEnbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRk4vJSlzdHJldGNoeUdGTi8lKnN5bW1ldHJpY0dGTi8lKGxhcmdlb3BHRk4vJS5tb3ZhYmxlbGltaXRzR0ZOLyUnYWNjZW50R0ZOLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tSShtZmVuY2VkR0YkNiYtRiM2SC1JJW1zdWJHRiQ2JS1GLDYlUSJjRidGQEZDLUYjNictSSNtbkdGJDYkUSIwRidGSi1GRzYtUSIsRidGSkZML0ZQRkJGUUZTRlVGV0ZZL0ZmbkY3L0ZpblEsMC4zMzMzMzMzZW1GJ0Znb0ZARkMvJS9zdWJzY3JpcHRzaGlmdEdGam9GW3AtRmBvNiVGYm8tRiM2JkZnb0ZbcC1GaG82JFEiMUYnRkpGSkZicEZbcC1GYG82JUZiby1GIzYmRmdvRltwLUZobzYkUSIyRidGSkZKRmJwRltwLUZgbzYlRmJvLUYjNiZGZ29GW3AtRmhvNiRRIjNGJ0ZKRkpGYnBGW3AtRmBvNiVGYm8tRiM2JkZnb0ZbcC1GaG82JFEiNEYnRkpGSkZicEZbcC1GYG82JUZiby1GIzYmRmdvRltwLUZobzYkUSI1RidGSkZKRmJwRltwLUZgbzYlRmJvLUYjNiZGaHBGW3BGZ29GSkZicEZbcC1GYG82JUZiby1GIzYmRmhwRltwRmhwRkpGYnBGW3AtRmBvNiVGYm8tRiM2JkZocEZbcEZfcUZKRmJwRltwLUZgbzYlRmJvLUYjNiZGaHBGW3BGZnFGSkZicEZbcC1GYG82JUZiby1GIzYmRmhwRltwRl1yRkpGYnBGW3AtRmBvNiVGYm8tRiM2JkZocEZbcEZkckZKRmJwRltwLUZgbzYlRmJvLUYjNiZGX3FGW3BGZ29GSkZicEZbcC1GYG82JUZiby1GIzYmRl9xRltwRmhwRkpGYnBGW3AtRmBvNiVGYm8tRiM2JkZfcUZbcEZfcUZKRmJwRltwLUZgbzYlRmJvLUYjNiZGX3FGW3BGZnFGSkZicEZbcC1GYG82JUZiby1GIzYmRl9xRltwRl1yRkpGYnBGW3AtRmBvNiVGYm8tRiM2JkZfcUZbcEZkckZKRmJwRisvJStleGVjdXRhYmxlR0ZORkpGSi8lJW9wZW5HUSJ8ZnJGJy8lJmNsb3NlR1EifGhyRictRkc2LVEiOkYnRkpGTEZPRlFGU0ZVRldGWUZlbkZobkZndUZK">QyQ+SSppbmNvbm51ZXNHNiI8NCZJImNHRiU2JCIiIUYqJkYoNiRGKiIiIiZGKDYkRioiIiMmRig2JEYqIiIkJkYoNiRGKiIiJSZGKDYkRioiIiYmRig2JEYtRiomRig2JEYtRi0mRig2JEYtRjAmRig2JEYtRjMmRig2JEYtRjYmRig2JEYtRjkmRig2JEYwRiomRig2JEYwRi0mRig2JEYwRjAmRig2JEYwRjMmRig2JEYwRjYmRig2JEYwRjkhIiI=</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L56" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">JSFH</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L51" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="conditionsdiffusion := `union`(IP, C0, C1, C2, M0, M2Diffusion, M4, DM1, DM2Diffusion, DM3, DEND):" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYrLUkjbWlHRiQ2JVE0Y29uZGl0aW9uc2RpZmZ1c2lvbkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIn5GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGTC1GNjYtUSomY29sb25lcTtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjc3Nzc3OGVtRicvRk5GU0Y1LUYsNiVRKGB1bmlvbmBGJ0YvRjItSShtZmVuY2VkR0YkNiQtRiM2OC1GLDYlUSNJUEYnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRiw2JVEjQzBGJ0YvRjJGam4tRiw2JVEjQzFGJ0YvRjJGam4tRiw2JVEjQzJGJ0YvRjJGam4tRiw2JVEjTTBGJ0YvRjJGam4tRiw2JVEsTTJEaWZmdXNpb25GJ0YvRjJGam4tRiw2JVEjTTRGJ0YvRjJGam4tRiw2JVEkRE0xRidGL0YyRmpuLUYsNiVRLURNMkRpZmZ1c2lvbkYnRi9GMkZqbi1GLDYlUSRETTNGJ0YvRjJGam4tRiw2JVElREVOREYnRi9GMkY5RjktRjY2LVEiOkYnRjlGO0Y+RkBGQkZERkZGSEZSRlQvJStleGVjdXRhYmxlR0Y9Rjk=">QyQ+STRjb25kaXRpb25zZGlmZnVzaW9uRzYiLUkmdW5pb25HJSpwcm90ZWN0ZWRHNi1JI0lQR0YlSSNDMEdGJUkjQzFHRiVJI0MyR0YlSSNNMEdGJUksTTJEaWZmdXNpb25HRiVJI000R0YlSSRETTFHRiVJLURNMkRpZmZ1c2lvbkdGJUkkRE0zR0YlSSVERU5ER0YlISIi</Equation></Text-field> -</Input> -</Group> -<Group labelreference="L52" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="solutionsdiffusion := solve(conditionsdiffusion, inconnues);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEzc29sdXRpb25zZGlmZnVzaW9uRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUY2Ni1RKiZjb2xvbmVxO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yNzc3Nzc4ZW1GJy9GTkZTLUYsNiVRJnNvbHZlRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNictRiw2JVE0Y29uZGl0aW9uc2RpZmZ1c2lvbkYnRi9GMi1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRiw2JVEqaW5jb25udWVzRidGL0YyLyUrZXhlY3V0YWJsZUdGPUY5RjktRjY2LVEiO0YnRjlGO0Zdb0ZARkJGREZGRkhGSkZURmNvRjk=">QyQ+STNzb2x1dGlvbnNkaWZmdXNpb25HNiItSSZzb2x2ZUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkSTRjb25kaXRpb25zZGlmZnVzaW9uR0YlSSppbmNvbm51ZXNHRiUiIiI=</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEzc29sdXRpb25zZGlmZnVzaW9uRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1mZW5jZWRHRiQ2Ji1GIzZILUYjNigtSSVtc3ViR0YkNiUtRiw2JVEiY0YnRi9GMi1GIzYoLUkjbW5HRiQ2JFEiMEYnRjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJ0Zobi8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5LyUvc3Vic2NyaXB0c2hpZnRHRltvLUY2Ni1RIj1GJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUYjNiYtRmluNiRRIzE4RidGOS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmdwLUYjNigtSSZtZnJhY0dGJDYoLUZpbjYkUSc2NTc5NDdGJ0Y5LUZpbjYkUSQ0MjBGJ0Y5LyUubGluZXRoaWNrbmVzc0dRIjFGJy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0ZpcS8lKWJldmVsbGVkR0Y9LUY2Ni1RMSZJbnZpc2libGVUaW1lcztGJ0Y5RjtGPkZARkJGREZGRkhGYG8vRk5GYW8tRiw2JVEiZEYnRi9GMkZkb0Znb0Y5RjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmhuRlxvLUZpbjYkRmZxRjlGZG9GZ29GOUZpb0ZbcC1GIzYmLUZccTYoLUZpbjYkUSQxNTNGJ0Y5LUZpbjYkUSI0RidGOUZkcUZncUZqcUZcckZjcC1GIzYoLUZccTYoLUZpbjYkUSkyNDEwNTQxM0YnRjktRmluNiRRJTc1NjBGJ0Y5RmRxRmdxRmpxRlxyRl5yRmJyRmRvRmdvRjlGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjJGJ0Y5RmRvRmdvRjlGaW9GW3AtRiM2Ji1GXHE2KC1GaW42JFEkMjU1RidGOS1GaW42JFEiOEYnRjlGZHFGZ3FGanFGXHJGY3AtRiM2KC1GXHE2KC1GaW42JFEpNTg0ODQ0MTNGJ0Y5LUZpbjYkUSYyMjY4MEYnRjlGZHFGZ3FGanFGXHJGXnJGYnJGZG9GZ29GOUY5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcby1GaW42JFEiM0YnRjlGZG9GZ29GOUZpb0ZbcC1GIzYmLUZccTYoLUZpbjYkUSQzMTNGJ0Y5LUZpbjYkUSMyNEYnRjlGZHFGZ3FGanFGXHJGY3AtRiM2KC1GXHE2KC1GaW42JFEpNzA0NjkwODFGJ0Y5LUZpbjYkUSY2ODA0MEYnRjlGZHFGZ3FGanFGXHJGXnJGYnJGZG9GZ29GOUY5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZobkZcb0Zkc0Zkb0Znb0Y5RmlvRltwLUYjNiYtRlxxNigtRmluNiRRIzIxRidGOUZhdUZkcUZncUZqcUZcckZjcC1GIzYoLUZccTYoLUZpbjYkUSgyODExMjExRidGOS1GaW42JFEmMTM2MDhGJ0Y5RmRxRmdxRmpxRlxyRl5yRmJyRmRvRmdvRjlGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGaG5GXG8tRmluNiRRIjVGJ0Y5RmRvRmdvRjlGaW9GW3AtRiM2Ji1GXHE2KEZoeUZed0ZkcUZncUZqcUZcckZjcC1GIzYoLUZccTYoLUZpbjYkUSc1NTY5ODdGJ0Y5LUZpbjYkUSYzNDAyMEYnRjlGZHFGZ3FGanFGXHJGXnJGYnJGZG9GZ29GOUY5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZbc0Zcb0ZobkZkb0Znb0Y5RmlvRltwLUYjNictRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIRmZwRmhwRmRzLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkhGZnBGaHAtRiM2KC1GXHE2KC1GaW42JFEnMzQ4OTczRidGOS1GaW42JFElMzc4MEYnRjlGZHFGZ3FGanFGXHJGXnJGYnJGZG9GZ29GOUY5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZbc0Zcb0Zbc0Zkb0Znb0Y5RmlvRltwLUYjNidGYVtsLUZccTYoLUZpbjYkUSM3NUYnRjlGZHNGZHFGZ3FGanFGXHJGZFtsLUYjNigtRlxxNigtRmluNiRRKDQ3MTM5MTFGJ0Y5Rl95RmRxRmdxRmpxRlxyRl5yRmJyRmRvRmdvRjlGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGW3NGXG9GZ3RGZG9GZ29GOUZpb0ZbcC1GIzYnRmFbbC1GXHE2KC1GaW42JFEkMjQ1RidGOUZhdUZkcUZncUZqcUZcckZkW2wtRiM2KC1GXHE2KC1GaW42JFEpMTE2Mjg3MzlGJ0Y5Rlt2RmRxRmdxRmpxRlxyRl5yRmJyRmRvRmdvRjlGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGW3NGXG9GZHZGZG9GZ29GOUZpb0ZbcC1GIzYnRmFbbC1GXHE2KC1GaW42JFEkNTQ1RidGOUZed0ZkcUZncUZqcUZcckZkW2wtRiM2KC1GXHE2KC1GaW42JFEnNzI0MjUzRidGOS1GaW42JFElMTk0NEYnRjlGZHFGZ3FGanFGXHJGXnJGYnJGZG9GZ29GOUY5RmRvRmdvRjlGXG8tRiM2KC1GVzYlRlktRiM2KEZbc0Zcb0Zkc0Zkb0Znb0Y5RmlvRltwLUYjNidGYVtsLUZccTYoLUZpbjYkUSM2M0YnRjlGYXVGZHFGZ3FGanFGXHJGZFtsLUYjNigtRlxxNigtRmluNiRRJzU5OTY1OUYnRjktRmluNiRRJTQ1MzZGJ0Y5RmRxRmdxRmpxRlxyRl5yRmJyRmRvRmdvRjlGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGW3NGXG9GaHlGZG9GZ29GOUZpb0ZbcC1GIzYnRmFbbC1GXHE2KC1GaW42JFEjMjVGJ0Y5Rl53RmRxRmdxRmpxRlxyRmRbbC1GIzYoLUZccTYoLUZpbjYkUSc2MjIxMDNGJ0Y5RmZ6RmRxRmdxRmpxRlxyRl5yRmJyRmRvRmdvRjlGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3RGXG9GaG5GZG9GZ29GOUZpb0ZbcEZbc0Zkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3RGXG9GW3NGZG9GZ29GOUZpb0ZbcEZobkZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3RGXG9GZ3RGZG9GZ29GOUZpb0ZbcC1GIzYnRmFbbC1GXHE2KEZoeUZkc0ZkcUZncUZqcUZcckZkW2wtRiM2KC1GXHE2KC1GaW42JFElODk2M0YnRjktRmluNiRRJTEyNjBGJ0Y5RmRxRmdxRmpxRlxyRl5yRmJyRmRvRmdvRjlGOUZkb0Znb0Y5RlxvLUYjNigtRlc2JUZZLUYjNihGZ3RGXG9GZHZGZG9GZ29GOUZpb0ZbcC1GIzYmLUZccTYoLUZpbjYkUSMzNUYnRjktRmluNiRRIzEyRidGOUZkcUZncUZqcUZcckZkW2wtRiM2KC1GXHE2KC1GaW42JFEmMTg2MTBGJ0Y5LUZpbjYkUSUxNzAxRidGOUZkcUZncUZqcUZcckZeckZickZkb0Znb0Y5RjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmd0RlxvRmRzRmRvRmdvRjlGaW9GW3AtRiM2Ji1GXHE2KEZleEZkc0ZkcUZncUZqcUZcckZkW2wtRiM2KC1GXHE2KC1GaW42JFEmMTIxOTdGJ0Y5LUZpbjYkUSU2ODA0RidGOUZkcUZncUZqcUZcckZeckZickZkb0Znb0Y5RjlGZG9GZ29GOUZcby1GIzYoLUZXNiVGWS1GIzYoRmd0RlxvRmh5RmRvRmdvRjlGaW9GW3AtRiM2Ji1GXHE2KEZhYmxGaGVsRmRxRmdxRmpxRlxyRmNwLUYjNigtRlxxNigtRmluNiRRJjM0NjA3RidGOS1GaW42JFEmMTcwMTBGJ0Y5RmRxRmdxRmpxRlxyRl5yRmJyRmRvRmdvRjlGOUZkb0Znb0Y5RmRvRmdvRjlGOS8lJW9wZW5HUSJ8ZnJGJy8lJmNsb3NlR1EifGhyRidGZG9GZ29GOQ==">PDQvJkkiY0c2IjYkIiIhRigsJiIjPSIiIkkiZEdGJiMiJ1p6bCIkPyUvJkYlNiRGKEYrLCYjIiRgIiIiJUYrRiwjIik4YTVDIiVndi8mRiU2JEYoIiIjLCYjIiRiIyIiKUYrRiwjIik4V1tlIiYhb0EvJkYlNiRGKCIiJCwmIyIkOCQiI0NGK0YsIyIpIjNwLygiJlMhby8mRiU2JEYoRjYsJiMiI0BGQUYrRiwjIig2NyJHIiYzTyIvJkYlNiRGKCIiJiwmI0ZmbkZMRitGLCMiJygpcGIiJj9TJC8mRiU2JEYrRigsJiEiJUYrRiwjISd0KlskIiUheSQvJkYlNiRGK0YrLCYjISN2RjZGK0YsIyEoNlJyJUZYLyZGJTYkRitGPSwmIyEkWCNGQUYrRiwjISlSKEc7IkZELyZGJTYkRitGSCwmIyEkWCZGTEYrRiwjISdgVXMiJVc+LyZGJTYkRitGNiwmIyEjakZBRitGLCMhJ2YnKmYiJU9YLyZGJTYkRitGZm4sJiMhI0RGTEYrRiwjIScuQGlGW28vJkYlNiRGPUYoRisvJkYlNiRGPUYrRigvJkYlNiRGPUY9LCYjISImRjZGK0YsIyElaiopIiVnNy8mRiU2JEY9RkgsJiMiI04iIzdGK0YsIyEmNSc9IiUsPC8mRiU2JEY9RjYsJiNGVUY2RitGLCMhJig+NyIlL28vJkYlNiRGPUZmbiwmIyIjREZjc0YrRiwjIiYyWSQiJjVxIg==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L39" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="M6prime(x) = eval(P(x), solutionsdiffusion);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEoTTZwcmltZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYkLUYsNiVRInhGJ0YvRjIvRjNRJ25vcm1hbEYnRj0tSSNtb0dGJDYtUSI9RidGPS8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGRS8lKXN0cmV0Y2h5R0ZFLyUqc3ltbWV0cmljR0ZFLyUobGFyZ2VvcEdGRS8lLm1vdmFibGVsaW1pdHNHRkUvJSdhY2NlbnRHRkUvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZULUYsNiVRJWV2YWxGJ0YvRjItRjY2JC1GIzYoLUYsNiVRIlBGJ0YvRjJGNS1GQDYtUSIsRidGPUZDL0ZHRjFGSEZKRkxGTkZQL0ZTUSYwLjBlbUYnL0ZWUSwwLjMzMzMzMzNlbUYnLUZANi1RIn5GJ0Y9RkNGRkZIRkpGTEZORlBGX28vRlZGYG8tRiw2JVEzc29sdXRpb25zZGlmZnVzaW9uRidGL0YyRj1GPS1GQDYtUSI7RidGPUZDRl5vRkhGSkZMRk5GUEZfb0ZVLyUrZXhlY3V0YWJsZUdGRUY9">QyQvLUkoTTZwcmltZUc2IjYjSSJ4R0YmLUklZXZhbEclKnByb3RlY3RlZEc2JC1JIlBHRiZGJ0kzc29sdXRpb25zZGlmZnVzaW9uR0YmIiIi</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUYjNigtSSNtaUdGJDYlUShNNnByaW1lRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEwJkFwcGx5RnVuY3Rpb247RicvRjVRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y/LyUpc3RyZXRjaHlHRj8vJSpzeW1tZXRyaWNHRj8vJShsYXJnZW9wR0Y/LyUubW92YWJsZWxpbWl0c0dGPy8lJ2FjY2VudEdGPy8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHRk4tSShtZmVuY2VkR0YkNiQtRiM2Ji1GLjYlUSJ4RidGMUY0LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y/RjtGO0ZZRmZuRjstRjg2LVEiPUYnRjtGPUZARkJGREZGRkhGSi9GTVEsMC4yNzc3Nzc4ZW1GJy9GUEZcby1GIzYnLUY4Ni1RInxmckYnRjsvRj5GM0ZAL0ZDRjNGREZGRkhGSi9GTVEsMC4xNjY2NjY3ZW1GJy9GUEZmby1JJ210YWJsZUdGJDY8LUkkbXRyR0YkNictSSRtdGRHRiQ2KC1JI21uR0YkNiRRIjBGJ0Y7LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0ZncC8lK2dyb3VwYWxpZ25HRmdwLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRl5xLUZfcDYoLUYjNihGVi1GODYtUSI8RidGO0Y9RkBGQkZERkZGSEZKRltvRl1vLUYjNiUtRjg2LVEqJnVtaW51czA7RidGO0Y9RkBGQkZERkZGSEZKL0ZNUSwwLjIyMjIyMjJlbUYnL0ZQRl5yLUZicDYkUSIzRidGO0Y7RllGZm5GO0ZlcEZocEZqcEZccUZfcUZlcEZocEZqcC1GXHA2Jy1GX3A2KC1GIzYwLUZicDYkUSMxOEYnRjstRjg2LVEiK0YnRjtGPUZARkJGREZGRkhGSkZdckZfci1GIzYoLUkmbWZyYWNHRiQ2KC1GYnA2JFEnNjU3OTQ3RidGOy1GYnA2JFEkNDIwRidGOy8lLmxpbmV0aGlja25lc3NHRl5xLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRl50LyUpYmV2ZWxsZWRHRj8tRjg2LVExJkludmlzaWJsZVRpbWVzO0YnRjtGPUZARkJGREZGRkhGSkZMRk8tRi42JVEiZEYnRjFGNEZZRmZuRjtGXHMtRiM2Ji1GUjYkLUYjNiYtRmJzNigtRmJwNiRRJDE1M0YnRjstRmJwNiRRIjRGJ0Y7RmpzRlx0Rl90RmF0RlxzLUYjNigtRmJzNigtRmJwNiRRKTI0MTA1NDEzRidGOy1GYnA2JFElNzU2MEYnRjtGanNGXHRGX3RGYXRGY3RGZnRGWUZmbkY7RjtGO0ZjdEZWRjtGXHMtRiM2Ji1GUjYkLUYjNiYtRmJzNigtRmJwNiRRJDI1NUYnRjstRmJwNiRRIjhGJ0Y7RmpzRlx0Rl90RmF0RlxzLUYjNigtRmJzNigtRmJwNiRRKTU4NDg0NDEzRidGOy1GYnA2JFEmMjI2ODBGJ0Y7RmpzRlx0Rl90RmF0RmN0RmZ0RllGZm5GO0Y7RjtGY3QtSSVtc3VwR0YkNiVGVi1GYnA2JFEiMkYnRjsvJTFzdXBlcnNjcmlwdHNoaWZ0R0ZkcEY7RlxzLUYjNiYtRlI2JC1GIzYmLUZiczYoLUZicDYkUSQzMTNGJ0Y7LUZicDYkUSMyNEYnRjtGanNGXHRGX3RGYXRGXHMtRiM2KC1GYnM2KC1GYnA2JFEpNzA0NjkwODFGJ0Y7LUZicDYkUSY2ODA0MEYnRjtGanNGXHRGX3RGYXRGY3RGZnRGWUZmbkY7RjtGO0ZjdC1Ganc2JUZWRmByRl94RjtGXHMtRiM2Ji1GUjYkLUYjNiYtRmJzNigtRmJwNiRRIzIxRidGO0Zcd0Zqc0ZcdEZfdEZhdEZccy1GIzYoLUZiczYoLUZicDYkUSgyODExMjExRidGOy1GYnA2JFEmMTM2MDhGJ0Y7RmpzRlx0Rl90RmF0RmN0RmZ0RllGZm5GO0Y7RjtGY3QtRmp3NiVGVkZkdUZfeEY7RlxzLUYjNiYtRlI2JC1GIzYmLUZiczYoLUZicDYkUSI1RidGO0ZceUZqc0ZcdEZfdEZhdEZccy1GIzYoLUZiczYoLUZicDYkUSc1NTY5ODdGJ0Y7LUZicDYkUSYzNDAyMEYnRjtGanNGXHRGX3RGYXRGY3RGZnRGWUZmbkY7RjtGO0ZjdC1Ganc2JUZWRmpbbEZfeEY7RjtGZXBGaHBGanBGXHFGX3EtRl9wNigtRiM2KEZWRmVxLUYjNiVGanFGXHhGO0ZZRmZuRjtGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRlxwNictRl9wNigtRiM2MUZqcUZkdS1GODYtUSgmbWludXM7RidGO0Y9RkBGQkZERkZGSEZKRl1yRl9yLUYjNigtRmJzNigtRmJwNiRRJzM0ODk3M0YnRjstRmJwNiRRJTM3ODBGJ0Y7RmpzRlx0Rl90RmF0RmN0RmZ0RllGZm5GO0Zccy1GIzYmLUZSNiQtRiM2J0ZqcS1GYnM2KC1GYnA2JFEjNzVGJ0Y7RmR1RmpzRlx0Rl90RmF0RmVdbC1GIzYoLUZiczYoLUZicDYkUSg0NzEzOTExRidGO0ZdW2xGanNGXHRGX3RGYXRGY3RGZnRGWUZmbkY7RjtGO0ZjdEZWRjtGXHMtRiM2Ji1GUjYkLUYjNidGanEtRmJzNigtRmJwNiRRJDI0NUYnRjtGXHdGanNGXHRGX3RGYXRGZV1sLUYjNigtRmJzNigtRmJwNiRRKTExNjI4NzM5RidGO0Zmd0Zqc0ZcdEZfdEZhdEZjdEZmdEZZRmZuRjtGO0Y7RmN0Rml3RjtGXHMtRiM2Ji1GUjYkLUYjNidGanEtRmJzNigtRmJwNiRRJDU0NUYnRjtGXHlGanNGXHRGX3RGYXRGZV1sLUYjNigtRmJzNigtRmJwNiRRJzcyNDI1M0YnRjstRmJwNiRRJTE5NDRGJ0Y7RmpzRlx0Rl90RmF0RmN0RmZ0RllGZm5GO0Y7RjtGY3RGaXlGO0Zccy1GIzYmLUZSNiQtRiM2J0ZqcS1GYnM2KC1GYnA2JFEjNjNGJ0Y7Rlx3RmpzRlx0Rl90RmF0RmVdbC1GIzYoLUZiczYoLUZicDYkUSc1OTk2NTlGJ0Y7LUZicDYkUSU0NTM2RidGO0Zqc0ZcdEZfdEZhdEZjdEZmdEZZRmZuRjtGO0Y7RmN0RmBbbEY7RlxzLUYjNiYtRlI2JC1GIzYnRmpxLUZiczYoLUZicDYkUSMyNUYnRjtGXHlGanNGXHRGX3RGYXRGZV1sLUYjNigtRmJzNigtRmJwNiRRJzYyMjEwM0YnRjtGZFxsRmpzRlx0Rl90RmF0RmN0RmZ0RllGZm5GO0Y7RjtGY3RGZ1xsRjtGO0ZlcEZocEZqcEZccUZfcS1GX3A2KC1GIzYoRlZGZXEtRiM2JUZqcS1GYnA2JEZecUY7RjtGWUZmbkY7RmVwRmhwRmpwRlxxRl9xRmVwRmhwRmpwLUZccDYnLUZfcDYoLUYjNixGaGRsRlxzLUYjNiYtRlI2JC1GIzYnRmpxLUZiczYoRmpbbEZkdUZqc0ZcdEZfdEZhdEZlXWwtRiM2KC1GYnM2KC1GYnA2JFElODk2M0YnRjstRmJwNiRRJTEyNjBGJ0Y7RmpzRlx0Rl90RmF0RmN0RmZ0RllGZm5GO0Y7RjtGY3RGaXdGO0Zccy1GIzYmLUZSNiQtRiM2Ji1GYnM2KC1GYnA2JFEjMzVGJ0Y7LUZicDYkUSMxMkYnRjtGanNGXHRGX3RGYXRGZV1sLUYjNigtRmJzNigtRmJwNiRRJjE4NjEwRidGOy1GYnA2JFElMTcwMUYnRjtGanNGXHRGX3RGYXRGY3RGZnRGWUZmbkY7RjtGO0ZjdEZpeUY7RlxzLUYjNiYtRlI2JC1GIzYmLUZiczYoRmN6RmR1RmpzRlx0Rl90RmF0RmVdbC1GIzYoLUZiczYoLUZicDYkUSYxMjE5N0YnRjstRmJwNiRRJTY4MDRGJ0Y7RmpzRlx0Rl90RmF0RmN0RmZ0RllGZm5GO0Y7RjtGY3RGYFtsRjtGXHMtRiM2Ji1GUjYkLUYjNiYtRmJzNihGaGNsRl1nbEZqc0ZcdEZfdEZhdEZccy1GIzYoLUZiczYoLUZicDYkUSYzNDYwN0YnRjstRmJwNiRRJjE3MDEwRidGO0Zqc0ZcdEZfdEZhdEZjdEZmdEZZRmZuRjtGO0Y7RmN0RmdcbEY7RjtGZXBGaHBGanBGXHFGX3EtRl9wNigtRiM2KEZWRmVxRmFwRllGZm5GO0ZlcEZocEZqcEZccUZfcUZlcEZocEZqcC1GXHA2Jy1GX3A2KC1GIzYsRmhkbEZcc0ZgZWxGZV1sRmJmbEZcc0ZqZ2xGZV1sRlxpbEY7RmVwRmhwRmpwRlxxRl9xLUZfcDYoLUYjNihGVkZlcUZoZGxGWUZmbkY7RmVwRmhwRmpwRlxxRl9xRmVwRmhwRmpwLUZccDYnLUZfcDYoLUYjNjFGanFGZHVGZV1sRmhdbEZlXWxGYl5sRlxzRmRfbEZlXWxGZmBsRlxzRltibEZlXWxGYGNsRjtGZXBGaHBGanBGXHFGX3EtRl9wNigtRiM2KEZWRmVxRlx4RllGZm5GO0ZlcEZocEZqcEZccUZfcUZlcEZocEZqcC1GXHA2Jy1GX3A2KC1GIzYwRmlyRlxzRl9zRmVdbEZpdEZcc0ZhdkZlXWxGYXhGXHNGW3pGZV1sRmJbbEY7RmVwRmhwRmpwRlxxRl9xLUZfcDYoLUYjNihGVkZlcUZgckZZRmZuRjtGZXBGaHBGanBGXHFGX3FGZXBGaHBGanAtRlxwNidGXnAtRl9wNigtRiM2KEZgci1GODYtUSUmbGU7RidGO0Y9RkBGQkZERkZGSEZKRltvRl1vRlZGWUZmbkY7RmVwRmhwRmpwRlxxRl9xRmVwRmhwRmpwLyUmYWxpZ25HUSVheGlzRicvRmZwUSliYXNlbGluZUYnL0ZpcEZedC9GW3FRJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0YzLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGZV1tLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EkMmVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0ZgXm0vJSZmcmFtZUdGYF5tLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dGPy8lLWVxdWFsY29sdW1uc0dGPy8lLWRpc3BsYXlzdHlsZUdGPy8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR1EmMC44ZW1GJ0ZZRmZuRjtGWUZmbkY7">Ly1JKE02cHJpbWVHNiI2I0kieEdGJS1JKnBpZWNld2lzZUclKnByb3RlY3RlZEc2MjJGJyEiJCIiITJGJyEiIywwIiM9IiIiSSJkR0YlIyInWnpsIiQ/JSomLCYjIiRgIiIiJUYzRjQjIik4YTVDIiVndkYzRidGM0YzKiYsJiMiJGIjIiIpRjNGNCMiKThXW2UiJiFvQUYzRiciIiNGMyomLCYjIiQ4JCIjQ0YzRjQjIikiM3AvKCImUyFvRjNGJyIiJEYzKiYsJiMiI0BGREYzRjQjIig2NyJHIiYzTyJGM0YnRjxGMyomLCYjIiImRk1GM0Y0IyInKClwYiImP1MkRjNGJ0ZmbkYzMkYnISIiLDAhIiVGM0Y0IyEndCpbJCIlIXkkKiYsJiMhI3ZGPEYzRjQjISg2UnIlRlhGM0YnRjNGMyomLCYjISRYI0ZERjNGNCMhKVIoRzsiRkdGM0YnRkhGMyomLCYjISRYJkZNRjNGNCMhJ2BVcyIlVz5GM0YnRlFGMyomLCYjISNqRkRGM0Y0IyEnZicqZiIlT1hGM0YnRjxGMyomLCYjISNERk1GM0Y0IyEnLkBpRmluRjNGJ0ZmbkYzMkYnRi4sLEYzRjMqJiwmIyEiJkY8RjNGNCMhJWoqKSIlZzdGM0YnRkhGMyomLCYjIiNOIiM3RjNGNCMhJjUnPSIlLDxGM0YnRlFGMyomLCYjRlVGPEYzRjQjISYoPjciJS9vRjNGJ0Y8RjMqJiwmIyIjREZeckYzRjQjIiYyWSQiJjVxIkYzRidGZm5GMzJGJ0YzLCxGM0YzRmNxRjNGanFGW29GYnJGM0ZockZbbzJGJ0ZILDBGXW9GM0Y0Rl5vRmFvRltvRmdvRjNGXXBGW29GZHBGM0ZbcUZbbzJGJ0ZRLDBGMkYzRjRGNUY4RltvRkBGM0ZJRltvRlJGM0ZZRltvMUZRRidGLg==</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L48" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="dw[alpha] := expand(eval(eval(p[0](x), solutionsdiffusion), x = -y-2));" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZOLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEjZHdGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLUYjNiQtRi82JVEmYWxwaGFGJ0YyRjVGNS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RidGNS8lJmZlbmNlR0Y0LyUqc2VwYXJhdG9yR0Y0LyUpc3RyZXRjaHlHRjQvJSpzeW1tZXRyaWNHRjQvJShsYXJnZW9wR0Y0LyUubW92YWJsZWxpbWl0c0dGNC8lJ2FjY2VudEdGNC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRlQtRkE2LVEifkYnRjVGREZGRkhGSkZMRk5GUC9GU1EmMC4wZW1GJy9GVkZlbi1GLzYlUSdleHBhbmRGJy9GM1EldHJ1ZUYnL0Y2USdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYlLUYvNiVRJWV2YWxGJ0ZqbkZcby1GX282JC1GIzYsRmNvLUZfbzYkLUYjNigtRiw2JS1GLzYlUSJwRidGam5GXG8tRiM2JC1JI21uR0YkNiRGP0Y1RjVGPS1GX282JC1GIzYkLUYvNiVRInhGJ0ZqbkZcb0Y1RjUtRkE2LVEiLEYnRjVGRC9GR0Zbb0ZIRkpGTEZORlBGWi9GVlEsMC4zMzMzMzMzZW1GJ0ZXLUYvNiVRM3NvbHV0aW9uc2RpZmZ1c2lvbkYnRmpuRlxvRjVGNUZfcUZccS1GQTYtUSI9RidGNUZERkZGSEZKRkxGTkZQRlJGVS1GQTYtUSomdW1pbnVzMDtGJ0Y1RkRGRkZIRkpGTEZORlAvRlNRLDAuMjIyMjIyMmVtRicvRlZGX3ItRi82JVEieUYnRmpuRlxvRltyLUZmcDYkUSIyRidGNUY1RjVGNUY1LUZBNi1RIjtGJ0Y1RkRGYnFGSEZKRkxGTkZQRlpGVS1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0Zlbi8lJmRlcHRoR0Zfcy8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GLDYlRi4tRiM2JC1GLzYlUSViZXRhRidGMkY1RjVGPUZARldGZ24tRl9vNiQtRiM2JUZjby1GX282JC1GIzYsRmNvLUZfbzYkLUYjNigtRiw2JUZgcC1GIzYkLUZmcDYkUSIxRidGNUY1Rj1GaHBGX3FGV0ZlcUY1RjVGX3FGXHFGaHFGW3JGYXItRkE2LVEoJm1pbnVzO0YnRjVGREZGRkhGSkZMRk5GUEZeckZgckZedUY1RjVGNUY1RmdyRmpyLUYsNiVGLi1GIzYkLUYvNiVRJmdhbW1hRidGMkY1RjVGPUZARldGZ24tRl9vNiQtRiM2JUZjby1GX282JC1GIzYqRmNvLUZfbzYkLUYjNigtRiw2JUZgcC1GIzYkRmRyRjVGPUZocEZfcUZXRmVxRjVGNUZfcUZccUZocUZbckZhckY1RjVGNUY1RmdyRmpyLUYsNiVGLi1GIzYkLUYvNiVRJmRlbHRhRidGMkY1RjVGPUZARldGZ24tRl9vNiQtRiM2JUZjby1GX282JC1GIzYrRmNvLUZfbzYkLUYjNigtRiw2JUZgcC1GIzYkLUZmcDYkUSIzRidGNUY1Rj1GaHBGX3FGV0ZlcUY1RjVGX3FGXHFGaHFGXnVGYXVGYXJGNUY1RjVGNUZnckZqci1GLDYlRi4tRiM2JC1GLzYlUSRldGFGJ0YyRjVGNUY9RkBGV0Znbi1GX282JC1GIzYlRmNvLUZfbzYkLUYjNitGY28tRl9vNiQtRiM2KC1GLDYlRmBwLUYjNiQtRmZwNiRRIjRGJ0Y1RjVGPUZocEZfcUZXRmVxRjVGNUZfcUZccUZocUZkckZhdUZhckY1RjVGNUY1RmdyRmpyLUYsNiVGLi1GIzYkLUYvNiVRJXpldGFGJ0YyRjVGNUY9RkBGV0Znbi1GX282JC1GIzYlRmNvLUZfbzYkLUYjNitGY28tRl9vNiQtRiM2KC1GLDYlRmBwLUYjNiQtRmZwNiRRIjVGJ0Y1RjVGPUZocEZfcUZXRmVxRjVGNUZfcUZccUZocUZieEZhdUZhckY1RjVGNUY1RmdyRlcvJStleGVjdXRhYmxlR0Y0RjU=">Qy4+JkkjZHdHNiI2I0kmYWxwaGFHRiYtSSdleHBhbmRHJSpwcm90ZWN0ZWRHNiMtSSVldmFsR0YrNiQtRi42JC0mSSJwR0YmNiMiIiE2I0kieEdGJkkzc29sdXRpb25zZGlmZnVzaW9uR0YmL0Y4LCZJInlHRiYhIiIhIiMiIiJGPz4mRiU2I0klYmV0YUdGJi1GKjYjLUYuNiQtRi42JC0mRjQ2I0Y/RjdGOS9GOCwmRjxGPUY9Rj9GPz4mRiU2I0kmZ2FtbWFHRistRio2Iy1GLjYkLUYuNiQtJkY0NiMiIiNGN0Y5L0Y4LCRGPEY9Rj8+JkYlNiNJJmRlbHRhR0YmLUYqNiMtRi42JC1GLjYkLSZGNDYjIiIkRjdGOS9GOCwmRj9GP0Y8Rj1GPz4mRiU2I0kkZXRhR0YmLUYqNiMtRi42JC1GLjYkLSZGNDYjIiIlRjdGOS9GOCwmRmZuRj9GPEY9Rj8+JkYlNiNJJXpldGFHRiYtRio2Iy1GLjYkLUYuNiQtJkY0NiMiIiZGN0Y5L0Y4LCZGZm9GP0Y8Rj1GPw==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEjZHdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ji1GLzYlUScmIzk0NTtGJy9GM1EmZmFsc2VGJy9GNlEnbm9ybWFsRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj5GPy8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y/LyUmZmVuY2VHRj4vJSpzZXBhcmF0b3JHRj4vJSlzdHJldGNoeUdGPi8lKnN5bW1ldHJpY0dGPi8lKGxhcmdlb3BHRj4vJS5tb3ZhYmxlbGltaXRzR0Y+LyUnYWNjZW50R0Y+LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2Ny1GSjYtUSomdW1pbnVzMDtGJ0Y/Rk1GT0ZRRlNGVUZXRlkvRmZuUSwwLjIyMjIyMjJlbUYnL0ZpbkZgby1GIzYoLUkmbWZyYWNHRiQ2KC1JI21uR0YkNiRRIjNGJ0Y/LUZobzYkUSI4RidGPy8lLmxpbmV0aGlja25lc3NHUSIxRicvJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGY3AvJSliZXZlbGxlZEdGPi1GSjYtUTEmSW52aXNpYmxlVGltZXM7RidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEmMC4wZW1GJy9GaW5GXHEtSSVtc3VwR0YkNiUtRi82JVEieUYnRjJGNUZnby8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGQUZERj8tRko2LVEiK0YnRj9GTUZPRlFGU0ZVRldGWUZfb0Zhby1GIzYoLUZlbzYoLUZobzYkUSMxM0YnRj8tRmhvNiRRIzI0RidGP0ZecEZhcEZkcEZmcEZocC1GX3E2JUZhcS1GaG82JFEiNEYnRj9GZHFGQUZERj8tRko2LVEoJm1pbnVzO0YnRj9GTUZPRlFGU0ZVRldGWUZfb0Zhby1GIzYoLUZlbzYoLUZobzYkUSI1RidGP0ZgckZecEZhcEZkcEZmcEZocC1GX3E2JUZhcUZfc0ZkcUZBRkRGP0ZmcS1GIzYoLUZlbzYoLUZobzYkRmBwRj8tRmhvNiRRIzEyRidGP0ZecEZhcEZkcEZmcEZocEZhcUZBRkRGP0Zoci1GIzYoLUZlbzYoLUZobzYkUSUxNDExRidGPy1GaG82JFElMTA4MEYnRj9GXnBGYXBGZHBGZnBGaHAtRiM2Ji1GLzYlUSJkRidGMkY1RmhwRmFxRj9GQUZERj9GZnEtRiM2KC1GZW82KC1GaG82JFEnODY2MTUzRidGPy1GaG82JFEmNjgwNDBGJ0Y/Rl5wRmFwRmRwRmZwRmhwLUYjNiZGaXRGaHAtRl9xNiVGYXEtRmhvNiRRIjJGJ0Y/RmRxRj9GQUZERj9GaHItRiM2KC1GZW82KC1GaG82JFEnODU5ODY3RidGPy1GaG82JFEmMjI2ODBGJ0Y/Rl5wRmFwRmRwRmZwRmhwLUYjNiZGaXRGaHBGXnFGP0ZBRkRGP0ZmcS1GIzYoLUZlbzYoLUZobzYkUSY2NDgwN0YnRj8tRmhvNiRRJTE1MTJGJ0Y/Rl5wRmFwRmRwRmZwRmhwLUYjNiZGaXRGaHBGY3JGP0ZBRkRGP0Zoci1GIzYoLUZlbzYoLUZobzYkUSc1NTY5ODdGJ0Y/LUZobzYkUSYzNDAyMEYnRj9GXnBGYXBGZHBGZnBGaHAtRiM2JkZpdEZocEZic0Y/RkFGREY/RmhyLUYjNigtRmVvNihGaHNGYHJGXnBGYXBGZHBGZnBGaHBGaHVGQUZERj9GP0ZBRkRGPw==">LDYqJEkieUc2IiIiJCMhIiQiIikqJEYkIiIlIyIjOCIjQyokRiQiIiYjISImRi5GJCMiIiIiIzcqJkkiZEdGJUY0RiRGNCMhJTY5IiUhMyIqJkY3RjRGJCIiIyMiJ2BoJykiJlMhbyomRjdGNEYkRiYjISduKWYpIiYhb0EqJkY3RjRGJEYrIyImMlsnIiU3OiomRjdGNEYkRjAjIScoKXBiIiY/UyQqJEYkRjwjISIiRi4=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEjZHdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ji1GLzYlUScmIzk0NjtGJy9GM1EmZmFsc2VGJy9GNlEnbm9ybWFsRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj5GPy8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y/LyUmZmVuY2VHRj4vJSpzZXBhcmF0b3JHRj4vJSlzdHJldGNoeUdGPi8lKnN5bW1ldHJpY0dGPi8lKGxhcmdlb3BHRj4vJS5tb3ZhYmxlbGltaXRzR0Y+LyUnYWNjZW50R0Y+LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2Ni1GIzYoLUkmbWZyYWNHRiQ2KC1JI21uR0YkNiRRIzEzRidGPy1GYm82JFEiOEYnRj8vJS5saW5ldGhpY2tuZXNzR1EiMUYnLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRl1wLyUpYmV2ZWxsZWRHRj4tRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RJjAuMGVtRicvRmluRmZwLUklbXN1cEdGJDYlLUYvNiVRInlGJ0YyRjUtRmJvNiRRIjNGJ0Y/LyUxc3VwZXJzY3JpcHRzaGlmdEdGSEZBRkRGPy1GSjYtUSgmbWludXM7RidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEsMC4yMjIyMjIyZW1GJy9GaW5GZ3EtRiM2KC1GX282KEZlb0ZecUZob0ZbcEZecEZgcEZicC1GaXA2JUZbcS1GYm82JFEiNEYnRj9GYXFGQUZERj8tRko2LVEiK0YnRj9GTUZPRlFGU0ZVRldGWUZmcUZocS1GIzYoLUZfbzYoLUZibzYkUSMyNUYnRj8tRmJvNiRRIzI0RidGP0Zob0ZbcEZecEZgcEZicC1GaXA2JUZbcS1GYm82JFEiNUYnRj9GYXFGQUZERj9GY3EtRiM2KC1GX282KC1GYm82JFEiMkYnRj9GXnFGaG9GW3BGXnBGYHBGYnBGW3FGQUZERj9GYnItRiM2KC1GX282KC1GYm82JFEkMTY5RidGPy1GYm82JFEkMTM1RidGP0Zob0ZbcEZecEZgcEZicC1GIzYmLUYvNiVRImRGJ0YyRjVGYnBGW3FGP0ZBRkRGP0ZjcS1GIzYoLUZfbzYoLUZibzYkUScxODM0NTFGJ0Y/LUZibzYkUSYzNDAyMEYnRj9GaG9GW3BGXnBGYHBGYnAtRiM2JkZndEZicC1GaXA2JUZbcUZoc0ZhcUY/RkFGREY/RmJyLUYjNigtRl9vNigtRmJvNiRRJzM2MjI3NUYnRj8tRmJvNiRRJjEzNjA4RidGP0Zob0ZbcEZecEZgcEZicC1GIzYmRmd0RmJwRmhwRj9GQUZERj9GY3EtRiM2KC1GX282KC1GYm82JFEmNzkyNTNGJ0Y/LUZibzYkUSUxOTQ0RidGP0Zob0ZbcEZecEZgcEZicC1GIzYmRmd0RmJwRl1yRj9GQUZERj9GYnItRiM2KC1GX282KC1GYm82JFEnNjIyMTAzRidGP0ZhdUZob0ZbcEZecEZgcEZicC1GIzYmRmd0RmJwRl9zRj9GQUZERj9GYnItRiM2KEZmc0ZicEZmdUZBRkRGP0Y/RkFGREY/">LDYqJEkieUc2IiIiJCMiIzgiIikqJEYkIiIlIyEiKUYmKiRGJCIiJiMiI0QiI0NGJCMhIiNGJiomSSJkR0YlIiIiRiRGNyMiJHAiIiROIiomRjZGN0YkIiIjIyEnXk09IiY/UyQqJkY2RjdGJEYmIyIndkFPIiYzTyIqJkY2RjdGJEYrIyEmYCN6IiVXPiomRjZGN0YkRi8jIicuQGlGPyokRiRGPCNGPEYm</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEjZHdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ji1GLzYlUScmIzk0NztGJy9GM1EmZmFsc2VGJy9GNlEnbm9ybWFsRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj5GPy8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y/LyUmZmVuY2VHRj4vJSpzZXBhcmF0b3JHRj4vJSlzdHJldGNoeUdGPi8lKnN5bW1ldHJpY0dGPi8lKGxhcmdlb3BHRj4vJS5tb3ZhYmxlbGltaXRzR0Y+LyUnYWNjZW50R0Y+LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2NC1JI21uR0YkNiRRIjFGJ0Y/LUZKNi1RKCZtaW51cztGJ0Y/Rk1GT0ZRRlNGVUZXRlkvRmZuUSwwLjIyMjIyMjJlbUYnL0ZpbkZkby1GIzYoLUkmbWZyYWNHRiQ2KC1GXW82JFEiNUYnRj8tRl1vNiRRIjRGJ0Y/LyUubGluZXRoaWNrbmVzc0dGX28vJStkZW5vbWFsaWduR1EnY2VudGVyRicvJSludW1hbGlnbkdGZXAvJSliZXZlbGxlZEdGPi1GSjYtUTEmSW52aXNpYmxlVGltZXM7RidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEmMC4wZW1GJy9GaW5GXnEtSSVtc3VwR0YkNiUtRi82JVEieUYnRjJGNS1GXW82JFEiMkYnRj8vJTFzdXBlcnNjcmlwdHNoaWZ0R0ZIRkFGREY/RmBvLUYjNigtRmlvNigtRl1vNiRRJTg5NjNGJ0Y/LUZdbzYkUSUxMjYwRidGP0ZhcEZjcEZmcEZocEZqcC1GIzYmLUYvNiVRImRGJ0YyRjVGanBGYHFGP0ZBRkRGP0Zgby1GIzYoLUZpbzYoLUZdbzYkUSMzNUYnRj8tRl1vNiRRIzEyRidGP0ZhcEZjcEZmcEZocEZqcC1GYXE2JUZjcS1GXW82JFEiM0YnRj9GaXFGQUZERj8tRko2LVEiK0YnRj9GTUZPRlFGU0ZVRldGWUZjb0Zlby1GIzYoLUZpbzYoLUZdbzYkUSYxODYxMEYnRj8tRl1vNiRRJTE3MDFGJ0Y/RmFwRmNwRmZwRmhwRmpwLUYjNiZGZ3JGanBGZHNGP0ZBRkRGP0Zpcy1GIzYoLUZpbzYoLUZdbzYkUSMyMUYnRj9GXnBGYXBGY3BGZnBGaHBGanAtRmFxNiVGY3FGXnBGaXFGQUZERj9GYG8tRiM2KC1GaW82KC1GXW82JFEmMTIxOTdGJ0Y/LUZdbzYkUSU2ODA0RidGP0ZhcEZjcEZmcEZocEZqcC1GIzYmRmdyRmpwRl91Rj9GQUZERj9GYG8tRiM2KC1GaW82KC1GXW82JFEjMjVGJ0Y/RmFzRmFwRmNwRmZwRmhwRmpwLUZhcTYlRmNxRltwRmlxRkFGREY/RmBvLUYjNigtRmlvNigtRl1vNiRRJjM0NjA3RidGPy1GXW82JFEmMTcwMTBGJ0Y/RmFwRmNwRmZwRmhwRmpwLUYjNiZGZ3JGanBGZHZGP0ZBRkRGP0Y/RkFGREY/">LDQiIiJGIyokSSJ5RzYiIiIjIyEiJiIiJSomSSJkR0YmRiNGJUYnIyElaiopIiVnNyokRiUiIiQjISNOIiM3KiZGLEYjRiVGMSMiJjUnPSIlLDwqJEYlRiojIiNARioqJkYsRiNGJUYqIyEmKD43IiUvbyokRiUiIiYjISNERjQqJkYsRiNGJUZBIyEmMlkkIiY1cSI=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEjZHdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ji1GLzYlUScmIzk0ODtGJy9GM1EmZmFsc2VGJy9GNlEnbm9ybWFsRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj5GPy8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y/LyUmZmVuY2VHRj4vJSpzZXBhcmF0b3JHRj4vJSlzdHJldGNoeUdGPi8lKnN5bW1ldHJpY0dGPi8lKGxhcmdlb3BHRj4vJS5tb3ZhYmxlbGltaXRzR0Y+LyUnYWNjZW50R0Y+LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2Ni1GIzYoLUkmbWZyYWNHRiQ2KC1JI21uR0YkNiRRIzExRidGPy1GYm82JFEiNEYnRj8vJS5saW5ldGhpY2tuZXNzR1EiMUYnLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRl1wLyUpYmV2ZWxsZWRHRj4tRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RJjAuMGVtRicvRmluRmZwLUklbXN1cEdGJDYlLUYvNiVRInlGJ0YyRjUtRmJvNiRRIjNGJ0Y/LyUxc3VwZXJzY3JpcHRzaGlmdEdGSEZBRkRGPy1GSjYtUSgmbWludXM7RidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEsMC4yMjIyMjIyZW1GJy9GaW5GZ3EtRiM2KC1GX282KC1GYm82JFEjMzFGJ0Y/LUZibzYkUSI2RidGP0Zob0ZbcEZecEZgcEZicC1GaXA2JUZbcUZlb0ZhcUZBRkRGPy1GSjYtUSIrRidGP0ZNRk9GUUZTRlVGV0ZZRmZxRmhxLUYjNigtRl9vNigtRmJvNiRRIzI1RidGPy1GYm82JFEjMTJGJ0Y/RmhvRltwRl5wRmBwRmJwLUZpcDYlRltxLUZibzYkUSI1RidGP0ZhcUZBRkRGP0Zlci1GIzYoLUZfbzYoLUZibzYkUSIyRidGP0ZecUZob0ZbcEZecEZgcEZicEZbcUZBRkRGP0ZjcS1GIzYoLUZfbzYoLUZibzYkUSQxNjlGJ0Y/LUZibzYkUSQxMzVGJ0Y/RmhvRltwRl5wRmBwRmJwLUYjNiYtRi82JVEiZEYnRjJGNUZicEZbcUY/RkFGREY/RmNxLUYjNigtRl9vNigtRmJvNiRRJzE4MzQ1MUYnRj8tRmJvNiRRJjM0MDIwRidGP0Zob0ZbcEZecEZgcEZicC1GIzYmRmp0RmJwLUZpcDYlRltxRlt0RmFxRj9GQUZERj9GZXItRiM2KC1GX282KC1GYm82JFElOTM5OEYnRj8tRmJvNiRRJDU2N0YnRj9GaG9GW3BGXnBGYHBGYnAtRiM2JkZqdEZicEZocEY/RkFGREY/RmNxLUYjNigtRl9vNigtRmJvNiRRJjI3MTM3RidGPy1GYm82JFElMjI2OEYnRj9GaG9GW3BGXnBGYHBGYnAtRiM2JkZqdEZicEZjckY/RkFGREY/RmVyLUYjNigtRl9vNigtRmJvNiRRJjM0NjA3RidGPy1GYm82JFEmMTcwMTBGJ0Y/RmhvRltwRl5wRmBwRmJwLUYjNiZGanRGYnBGYnNGP0ZBRkRGP0Zlci1GIzYoRmlzRmJwRml1RkFGREY/Rj9GQUZERj8=">LDYqJEkieUc2IiIiJCMiIzYiIiUqJEYkRikjISNKIiInKiRGJCIiJiMiI0QiIzdGJCMiIiNGJiomSSJkR0YlIiIiRiRGNyMhJHAiIiROIiomRjZGN0YkRjQjISdeTT0iJj9TJComRjZGN0YkRiYjIiUpUioiJG4mKiZGNkY3RiRGKSMhJlByIyIlb0EqJkY2RjdGJEYvIyImMlkkIiY1cSIqJEYkRjRGMw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEjZHdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ji1GLzYlUScmIzk1MTtGJy9GM1EmZmFsc2VGJy9GNlEnbm9ybWFsRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj5GPy8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y/LyUmZmVuY2VHRj4vJSpzZXBhcmF0b3JHRj4vJSlzdHJldGNoeUdGPi8lKnN5bW1ldHJpY0dGPi8lKGxhcmdlb3BHRj4vJS5tb3ZhYmxlbGltaXRzR0Y+LyUnYWNjZW50R0Y+LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2Ny1GSjYtUSomdW1pbnVzMDtGJ0Y/Rk1GT0ZRRlNGVUZXRlkvRmZuUSwwLjIyMjIyMjJlbUYnL0ZpbkZgby1GIzYoLUkmbWZyYWNHRiQ2KC1JI21uR0YkNiRRIzExRidGPy1GaG82JFEiOEYnRj8vJS5saW5ldGhpY2tuZXNzR1EiMUYnLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmNwLyUpYmV2ZWxsZWRHRj4tRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RJjAuMGVtRicvRmluRlxxLUklbXN1cEdGJDYlLUYvNiVRInlGJ0YyRjUtRmhvNiRRIjNGJ0Y/LyUxc3VwZXJzY3JpcHRzaGlmdEdGSEZBRkRGPy1GSjYtUSIrRidGP0ZNRk9GUUZTRlVGV0ZZRl9vRmFvLUYjNigtRmVvNigtRmhvNiRRIzYxRidGPy1GaG82JFEjMjRGJ0Y/Rl5wRmFwRmRwRmZwRmhwLUZfcTYlRmFxLUZobzYkUSI0RidGP0ZncUZBRkRGPy1GSjYtUSgmbWludXM7RidGP0ZNRk9GUUZTRlVGV0ZZRl9vRmFvLUYjNigtRmVvNigtRmhvNiRRIzI1RidGP0ZjckZecEZhcEZkcEZmcEZocC1GX3E2JUZhcS1GaG82JFEiNUYnRj9GZ3FGQUZERj9GW3MtRiM2KC1GZW82KC1GaG82JEZgcEY/LUZobzYkUSMxMkYnRj9GXnBGYXBGZHBGZnBGaHBGYXFGQUZERj9GaXEtRiM2KC1GZW82KC1GaG82JFElMTQxMUYnRj8tRmhvNiRRJTEwODBGJ0Y/Rl5wRmFwRmRwRmZwRmhwLUYjNiYtRi82JVEiZEYnRjJGNUZocEZhcUY/RkFGREY/RmlxLUYjNigtRmVvNigtRmhvNiRRJzg2NjE1M0YnRj8tRmhvNiRRJjY4MDQwRidGP0ZecEZhcEZkcEZmcEZocC1GIzYmRl91RmhwLUZfcTYlRmFxLUZobzYkUSIyRidGP0ZncUY/RkFGREY/RltzLUYjNigtRmVvNigtRmhvNiRRJjkwMjI5RidGPy1GaG82JFElMTk0NEYnRj9GXnBGYXBGZHBGZnBGaHAtRiM2JkZfdUZocEZecUY/RkFGREY/RmlxLUYjNigtRmVvNigtRmhvNiRRJzY4OTQzNUYnRj8tRmhvNiRRJjEzNjA4RidGP0ZecEZhcEZkcEZmcEZocC1GIzYmRl91RmhwRmZyRj9GQUZERj9GW3MtRiM2KC1GZW82KC1GaG82JFEnNjIyMTAzRidGPy1GaG82JFEmMzQwMjBGJ0Y/Rl5wRmFwRmRwRmZwRmhwLUYjNiZGX3VGaHBGZXNGP0ZBRkRGP0Zbcy1GIzYoLUZlbzYoRl50RmNyRl5wRmFwRmRwRmZwRmhwRl52RkFGREY/Rj9GQUZERj8=">LDYqJEkieUc2IiIiJCMhIzYiIikqJEYkIiIlIyIjaCIjQyokRiQiIiYjISNERi5GJCMhIiIiIzcqJkkiZEdGJSIiIkYkRjgjIiU2OSIlITMiKiZGN0Y4RiQiIiMjIidgaCcpIiZTIW8qJkY3RjhGJEYmIyEmSC0qIiVXPiomRjdGOEYkRisjIidOJSpvIiYzTyIqJkY3RjhGJEYwIyEnLkBpIiY/UyQqJEYkRj0jRjRGLg==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEjZHdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ji1GLzYlUScmIzk1MDtGJy9GM1EmZmFsc2VGJy9GNlEnbm9ybWFsRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj5GPy8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEjOj1GJ0Y/LyUmZmVuY2VHRj4vJSpzZXBhcmF0b3JHRj4vJSlzdHJldGNoeUdGPi8lKnN5bW1ldHJpY0dGPi8lKGxhcmdlb3BHRj4vJS5tb3ZhYmxlbGltaXRzR0Y+LyUnYWNjZW50R0Y+LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRiM2MC1GIzYoLUkmbWZyYWNHRiQ2KC1JI21uR0YkNiRRIjdGJ0Y/LUZibzYkUSMyNEYnRj8vJS5saW5ldGhpY2tuZXNzR1EiMUYnLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRl1wLyUpYmV2ZWxsZWRHRj4tRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RJjAuMGVtRicvRmluRmZwLUklbXN1cEdGJDYlLUYvNiVRInlGJ0YyRjUtRmJvNiRRIjNGJ0Y/LyUxc3VwZXJzY3JpcHRzaGlmdEdGSEZBRkRGPy1GSjYtUSgmbWludXM7RidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEsMC4yMjIyMjIyZW1GJy9GaW5GZ3EtRiM2KC1GX282KC1GYm82JEZqb0Y/LUZibzYkUSIyRidGP0Zob0ZbcEZecEZgcEZicC1GaXA2JUZbcS1GYm82JFEiNEYnRj9GYXFGQUZERj8tRko2LVEiK0YnRj9GTUZPRlFGU0ZVRldGWUZmcUZocS1GIzYoLUZfbzYoLUZibzYkUSI1RidGP0Zlb0Zob0ZbcEZecEZgcEZicC1GaXA2JUZbcUZec0ZhcUZBRkRGP0ZjcS1GIzYoLUZfbzYoLUZibzYkUSUxMjI1RidGPy1GYm82JFEkMTYyRidGP0Zob0ZbcEZecEZgcEZicC1GIzYmLUYvNiVRImRGJ0YyRjVGYnAtRmlwNiVGW3FGX3JGYXFGP0ZBRkRGP0Znci1GIzYoLUZfbzYoLUZibzYkUSgyMDU0MDgxRidGPy1GYm82JFEmNjgwNDBGJ0Y/RmhvRltwRl5wRmBwRmJwLUYjNiZGX3RGYnBGaHBGP0ZBRkRGP0ZjcS1GIzYoLUZfbzYoLUZibzYkUSc1MzA3MTFGJ0Y/LUZibzYkUSYxMzYwOEYnRj9GaG9GW3BGXnBGYHBGYnAtRiM2JkZfdEZicEZickY/RkFGREY/RmdyLUYjNigtRl9vNigtRmJvNiRRJzU1Njk4N0YnRj8tRmJvNiRRJjM0MDIwRidGP0Zob0ZbcEZecEZgcEZicC1GIzYmRl90RmJwRmFzRj9GQUZERj9GP0ZBRkRGPw==">LDAqJEkieUc2IiIiJCMiIigiI0MqJEYkIiIlIyEiIiIiIyokRiQiIiYjRjBGKSomSSJkR0YlIiIiRiRGLiMhJUQ3IiRpIiomRjNGNEYkRiYjIigiM2E/IiZTIW8qJkYzRjRGJEYrIyEnNjJgIiYzTyIqJkYzRjRGJEYwIyInKClwYiImP1Mk</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L49" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="hdw[alpha] := (1/24)*convert(24*dw[alpha], horner, y);" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZYLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEkaGR3RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUYjNiQtRi82JVEmYWxwaGFGJy9GM1EmZmFsc2VGJy9GNlEnbm9ybWFsRidGPy8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LVEqJmNvbG9uZXE7RidGPy8lJmZlbmNlR0Y+LyUqc2VwYXJhdG9yR0Y+LyUpc3RyZXRjaHlHRj4vJSpzeW1tZXRyaWNHRj4vJShsYXJnZW9wR0Y+LyUubW92YWJsZWxpbWl0c0dGPi8lJ2FjY2VudEdGPi8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRlgtRi82JVEoY29udmVydEYnRjJGNS1JKG1mZW5jZWRHRiQ2JC1GIzYrLUkjbW5HRiQ2JFEjMjRGJ0Y/LUZFNi1RJyZzZG90O0YnRj9GSEZKRkxGTkZQRlJGVC9GV1EmMC4wZW1GJy9GWkZlby1GRTYtUSJ+RidGP0ZIRkpGTEZORlBGUkZURmRvRmZvLUYsNiUtRi82JVEjZHdGJ0Y9Rj9GOEZBLUZFNi1RIixGJ0Y/RkgvRktGNEZMRk5GUEZSRlRGZG8vRlpRLDAuMzMzMzMzM2VtRictRi82JVEnaG9ybmVyRidGMkY1Rl9wLUYvNiVRInlGJ0YyRjVGP0Y/RmFvLUZpbjYkLUYjNiQtSSZtZnJhY0dGJDYoLUZebzYkUSIxRidGPy1GIzYkRl1vRj8vJS5saW5ldGhpY2tuZXNzR0ZkcS8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zbci8lKWJldmVsbGVkR0Y+Rj9GPy1GRTYtUSI7RidGP0ZIRmJwRkxGTkZQRlJGVEZkb0ZZLUknbXNwYWNlR0YkNiYvJSdoZWlnaHRHUSYwLjBleEYnLyUmd2lkdGhHRmVvLyUmZGVwdGhHRmhyLyUqbGluZWJyZWFrR1EobmV3bGluZUYnRmdvLUYsNiVGLi1GIzYkLUYvNiVRJWJldGFGJ0Y9Rj9GP0ZBRkRGZW4tRmluNiQtRiM2K0Zdb0Zhb0Znby1GLDYlRlxwRmJzRkFGX3BGZXBGX3BGaHBGP0Y/RmFvRltxRmByRmNyRmdvLUYsNiVGLi1GIzYkLUYvNiVRJmdhbW1hRidGPUY/Rj9GQUZERmVuLUZpbjYkLUYjNistRl5vNiRRIzEyRidGP0Zhb0Znby1GLDYlRlxwRl90RkFGX3BGZXBGX3BGaHBGP0Y/RmFvLUZpbjYkLUYjNiQtRmBxNihGYnEtRiM2JEZodEY/RmdxRmlxRlxyRl5yRj9GP0ZgckZjckZnby1GLDYlRi4tRiM2JC1GLzYlUSZkZWx0YUYnRj1GP0Y/RkFGREZlbi1GaW42JC1GIzYrRmh0RmFvRmdvLUYsNiVGXHBGZ3VGQUZfcEZlcEZfcEZocEY/Rj9GYW9GXXVGYHJGY3JGZ28tRiw2JUYuLUYjNiQtRi82JVEkZXRhRidGPUY/Rj9GQUZERmVuLUZpbjYkLUYjNitGXW9GYW9GZ28tRiw2JUZccEZkdkZBRl9wRmVwRl9wRmhwRj9GP0Zhb0ZbcUZgckZjckZnby1GLDYlRi4tRiM2JC1GLzYlUSV6ZXRhRidGPUY/Rj9GQUZERmVuLUZpbjYkLUYjNitGXW9GYW9GZ28tRiw2JUZccEZhd0ZBRl9wRmVwRl9wRmhwRj9GP0Zhb0ZbcUZgci8lK2V4ZWN1dGFibGVHRj5GPw==">Qy4+JkkkaGR3RzYiNiNJJmFscGhhR0YmLCQtSShjb252ZXJ0RyUqcHJvdGVjdGVkRzYlLCQmSSNkd0dGJkYnIiNDSSdob3JuZXJHRiZJInlHRiYjIiIiRjFGNT4mRiU2I0klYmV0YUdGJiwkLUYrNiUsJCZGMEY4RjFGMkYzRjRGNT4mRiU2I0kmZ2FtbWFHRiwsJC1GKzYlLCQmRjBGQSIjN0YyRjMjRjVGSEY1PiZGJTYjSSZkZWx0YUdGJiwkLUYrNiUsJCZGMEZMRkhGMkYzRklGNT4mRiU2I0kkZXRhR0YmLCQtRis2JSwkJkYwRlVGMUYyRjNGNEY1PiZGJTYjSSV6ZXRhR0YmLCQtRis2JSwkJkYwRmhuRjFGMkYzRjRGNQ==</Equation></Text-field> -</Input> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEkaGR3RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUYjNiYtRi82JVEnJiM5NDU7RicvRjNRJmZhbHNlRicvRjZRJ25vcm1hbEYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y+Rj8vJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1JI21vR0YkNi1RIzo9RidGPy8lJmZlbmNlR0Y+LyUqc2VwYXJhdG9yR0Y+LyUpc3RyZXRjaHlHRj4vJSpzeW1tZXRyaWNHRj4vJShsYXJnZW9wR0Y+LyUubW92YWJsZWxpbWl0c0dGPi8lJ2FjY2VudEdGPi8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRmduLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRj8tRmBvNiRRIzI0RidGPy8lLmxpbmV0aGlja25lc3NHRmJvLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmpvLyUpYmV2ZWxsZWRHRj4tRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RJjAuMGVtRicvRmluRmNwLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2KS1GSjYtUSomdW1pbnVzMDtGJ0Y/Rk1GT0ZRRlNGVUZXRlkvRmZuUSwwLjIyMjIyMjJlbUYnL0ZpbkZgcS1GIzYoLUZdbzYoLUZgbzYkUSUxNDExRidGPy1GYG82JFEjNDVGJ0Y/RmZvRmhvRltwRl1wRl9wLUYvNiVRImRGJ0YyRjVGQUZERj8tRko2LVEiK0YnRj9GTUZPRlFGU0ZVRldGWUZfcUZhcS1GYG82JFEiMkYnRj9GX3ItRiM2Ji1GaHA2JC1GIzYoLUYjNigtRl1vNigtRmBvNiRRJzg2NjE1M0YnRj8tRmBvNiRRJTI4MzVGJ0Y/RmZvRmhvRltwRl1wRl9wRlxyRkFGREY/LUZKNi1RKCZtaW51cztGJ0Y/Rk1GT0ZRRlNGVUZXRllGX3FGYXFGX29GX3ItRiM2Ji1GaHA2JC1GIzYpRlxxLUYjNigtRl1vNigtRmBvNiRRJzg1OTg2N0YnRj8tRmBvNiRRJDk0NUYnRj9GZm9GaG9GW3BGXXBGX3BGXHJGQUZERj9GZXMtRmBvNiRRIjlGJ0Y/Rl9yLUYjNiYtRmhwNiQtRiM2KC1GIzYoLUZdbzYoLUZgbzYkUSY2NDgwN0YnRj8tRmBvNiRRIzYzRidGP0Zmb0Zob0ZbcEZdcEZfcEZcckZBRkRGP0Zfci1GYG82JFEjMTNGJ0Y/Rl9yLUYjNiYtRmhwNiQtRiM2J0ZccS1GYG82JFEiNUYnRj9GZXMtRiM2KC1GXW82KC1GYG82JFEoMTExMzk3NEYnRj9GYnNGZm9GaG9GW3BGXXBGX3BGXHJGQUZERj9GP0Y/Rl9wLUYvNiVRInlGJ0YyRjVGP0Y/Rj9GX3BGXndGP0Y/Rj9GX3BGXndGP0Y/Rj9GX3BGXndGP0Y/Rj9GX3BGXndGP0ZBRkRGP0ZBRkRGPw==">LCQqJiwoSSJkRzYiIyElNjkiI1giIiMiIiIqJiwoRiUjIidgaCcpIiVORyEiIkYrKiYsKEYlIyEnbilmKSIkWCohIipGKyomLChGJSMiJjJbJyIjaiIjOEYrKiYsJiEiJkYrRiUjISh1UjYiRjBGK0kieUdGJkYrRitGK0ZDRitGK0YrRkNGK0YrRitGQ0YrRitGK0ZDRisjRisiI0M=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEkaGR3RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUYjNiYtRi82JVEnJiM5NDY7RicvRjNRJmZhbHNlRicvRjZRJ25vcm1hbEYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y+Rj8vJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1JI21vR0YkNi1RIzo9RidGPy8lJmZlbmNlR0Y+LyUqc2VwYXJhdG9yR0Y+LyUpc3RyZXRjaHlHRj4vJSpzeW1tZXRyaWNHRj4vJShsYXJnZW9wR0Y+LyUubW92YWJsZWxpbWl0c0dGPi8lJ2FjY2VudEdGPi8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRmduLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRj8tRmBvNiRRIzI0RidGPy8lLmxpbmV0aGlja25lc3NHRmJvLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmpvLyUpYmV2ZWxsZWRHRj4tRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RJjAuMGVtRicvRmluRmNwLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2KC1GIzYoLUZdbzYoLUZgbzYkUSUxMzUyRidGPy1GYG82JFEjNDVGJ0Y/RmZvRmhvRltwRl1wRl9wLUYvNiVRImRGJ0YyRjVGQUZERj8tRko2LVEoJm1pbnVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RLDAuMjIyMjIyMmVtRicvRmluRl1yLUZgbzYkUSMxNkYnRj8tRko2LVEiK0YnRj9GTUZPRlFGU0ZVRldGWUZcckZeci1GIzYmLUZocDYkLUYjNiktRko2LVEqJnVtaW51czA7RidGP0ZNRk9GUUZTRlVGV0ZZRlxyRl5yLUYjNigtRl1vNigtRmBvNiRRJzM2NjkwMkYnRj8tRmBvNiRRJTI4MzVGJ0Y/RmZvRmhvRltwRl1wRl9wRmZxRkFGREY/RmJyRl9yRmJyLUYjNiYtRmhwNiQtRiM2KC1GIzYoLUZdbzYoLUZgbzYkUSczNjIyNzVGJ0Y/LUZgbzYkUSQ1NjdGJ0Y/RmZvRmhvRltwRl1wRl9wRmZxRkFGREY/RmJyLUZgbzYkUSMzOUYnRj9GYnItRiM2Ji1GaHA2JC1GIzYpRltzLUYjNigtRl1vNigtRmBvNiRRJjc5MjUzRidGPy1GYG82JFEjODFGJ0Y/RmZvRmhvRltwRl1wRl9wRmZxRkFGREY/RmlxLUZgbzYkUSM2NEYnRj9GYnItRiM2Ji1GaHA2JC1GIzYmLUZgbzYkUSMyNUYnRj9GYnItRiM2KC1GXW82KC1GYG82JFEoMTI0NDIwNkYnRj9GZXNGZm9GaG9GW3BGXXBGX3BGZnFGQUZERj9GP0Y/Rl9wLUYvNiVRInlGJ0YyRjVGP0Y/Rj9GX3BGXndGP0Y/Rj9GX3BGXndGP0Y/Rj9GX3BGXndGP0Y/Rj9GX3BGXndGP0ZBRkRGP0ZBRkRGPw==">LCQqJiwoSSJkRzYiIyIlXzgiI1ghIzsiIiIqJiwoRiUjISctcE8iJU5HIiM7RisqJiwoRiUjIid2QU8iJG4mIiNSRisqJiwoRiUjISZgI3oiIyIpISNrRisqJiwmIiNERitGJSMiKDFVQyJGMEYrSSJ5R0YmRitGK0YrRkNGK0YrRitGQ0YrRitGK0ZDRitGK0YrRkNGKyNGKyIjQw==</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEkaGR3RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUYjNiYtRi82JVEnJiM5NDc7RicvRjNRJmZhbHNlRicvRjZRJ25vcm1hbEYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y+Rj8vJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1JI21vR0YkNi1RIzo9RidGPy8lJmZlbmNlR0Y+LyUqc2VwYXJhdG9yR0Y+LyUpc3RyZXRjaHlHRj4vJSpzeW1tZXRyaWNHRj4vJShsYXJnZW9wR0Y+LyUubW92YWJsZWxpbWl0c0dGPi8lJ2FjY2VudEdGPi8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRmduLUYjNiYtSSNtbkdGJDYkUSIxRidGPy1GSjYtUSIrRidGP0ZNRk9GUUZTRlVGV0ZZL0ZmblEsMC4yMjIyMjIyZW1GJy9GaW5GZG8tRiM2KC1JJm1mcmFjR0YkNihGXG8tRl1vNiRRIzEyRidGPy8lLmxpbmV0aGlja25lc3NHRl9vLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmJwLyUpYmV2ZWxsZWRHRj4tRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RJjAuMGVtRicvRmluRltxLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2KS1GSjYtUSomdW1pbnVzMDtGJ0Y/Rk1GT0ZRRlNGVUZXRllGY29GZW8tRl1vNiRRIzE1RidGPy1GSjYtUSgmbWludXM7RidGP0ZNRk9GUUZTRlVGV0ZZRmNvRmVvLUYjNigtRmlvNigtRl1vNiRRJTg5NjNGJ0Y/LUZdbzYkUSQxMDVGJ0Y/Rl5wRmBwRmNwRmVwRmdwLUYvNiVRImRGJ0YyRjVGQUZERj9GYG8tRiM2Ji1GYHE2JC1GIzYpRmRxLUZdbzYkUSMzNUYnRj9GYG8tRiM2KC1GaW82KC1GXW82JFEmNzQ0NDBGJ0Y/LUZdbzYkUSQ1NjdGJ0Y/Rl5wRmBwRmNwRmVwRmdwRmdyRkFGREY/RmBvLUYjNiYtRmBxNiQtRiM2KC1GXW82JFEjNjNGJ0Y/RmpxLUYjNigtRmlvNigtRl1vNiRRJjEyMTk3RidGP0Zqc0ZecEZgcEZjcEZlcEZncEZnckZBRkRGP0Zgby1GIzYmLUZgcTYkLUYjNidGZHEtRl1vNiRRIzI1RidGP0ZqcS1GIzYoLUZpbzYoLUZdbzYkUSY2OTIxNEYnRj8tRl1vNiRRJTI4MzVGJ0Y/Rl5wRmBwRmNwRmVwRmdwRmdyRkFGREY/Rj9GP0ZncC1GLzYlUSJ5RidGMkY1Rj9GP0Y/RmdwRmB2Rj9GP0Y/RmdwRmB2Rj9GP0Y/RmdwLUklbXN1cEdGJDYlRmB2LUZdbzYkUSIyRidGPy8lMXN1cGVyc2NyaXB0c2hpZnRHRkhGP0ZBRkRGP0Y/RkFGREY/">LCYiIiJGIyomLCghIzpGI0kiZEc2IiMhJWoqKSIkMCIqJiwoISNORiNGJyMiJlNXKCIkbiYqJiwoIiNqRiNGJyMhJig+N0YxKiYsJiEjREYjRicjISY5I3AiJU5HRiNJInlHRihGI0YjRiNGPUYjRiNGI0Y9RiNGI0YjRj0iIiMjRiMiIzc=</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEkaGR3RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUYjNiYtRi82JVEnJiM5NDg7RicvRjNRJmZhbHNlRicvRjZRJ25vcm1hbEYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y+Rj8vJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1JI21vR0YkNi1RIzo9RidGPy8lJmZlbmNlR0Y+LyUqc2VwYXJhdG9yR0Y+LyUpc3RyZXRjaHlHRj4vJSpzeW1tZXRyaWNHRj4vJShsYXJnZW9wR0Y+LyUubW92YWJsZWxpbWl0c0dGPi8lJ2FjY2VudEdGPi8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRmduLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRj8tRmBvNiRRIzEyRidGPy8lLmxpbmV0aGlja25lc3NHRmJvLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmpvLyUpYmV2ZWxsZWRHRj4tRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RJjAuMGVtRicvRmluRmNwLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2KS1GSjYtUSomdW1pbnVzMDtGJ0Y/Rk1GT0ZRRlNGVUZXRlkvRmZuUSwwLjIyMjIyMjJlbUYnL0ZpbkZgcS1GIzYoLUZdbzYoLUZgbzYkUSQ2NzZGJ0Y/LUZgbzYkUSM0NUYnRj9GZm9GaG9GW3BGXXBGX3AtRi82JVEiZEYnRjJGNUZBRkRGPy1GSjYtUSIrRidGP0ZNRk9GUUZTRlVGV0ZZRl9xRmFxLUZgbzYkUSI4RidGP0Zfci1GIzYmLUZocDYkLUYjNilGXHEtRiM2KC1GXW82KC1GYG82JFEnMTgzNDUxRidGPy1GYG82JFElMjgzNUYnRj9GZm9GaG9GW3BGXXBGX3BGXHJGQUZERj9GX3JGYnJGX3ItRiM2Ji1GaHA2JC1GIzYoLUYjNigtRl1vNigtRmBvNiRRJjM3NTkyRidGPy1GYG82JFEkMTg5RidGP0Zmb0Zob0ZbcEZdcEZfcEZcckZBRkRGP0Zfci1GYG82JFEjMzNGJ0Y/Rl9yLUYjNiYtRmhwNiQtRiM2KUZccS1GIzYoLUZdbzYoLUZgbzYkUSYyNzEzN0YnRj9GYnRGZm9GaG9GW3BGXXBGX3BGXHJGQUZERj8tRko2LVEoJm1pbnVzO0YnRj9GTUZPRlFGU0ZVRldGWUZfcUZhcS1GYG82JFEjNjJGJ0Y/Rl9yLUYjNiYtRmhwNiQtRiM2Ji1GYG82JFEjMjVGJ0Y/Rl9yLUYjNigtRl1vNigtRmBvNiRRJjY5MjE0RidGP0Zic0Zmb0Zob0ZbcEZdcEZfcEZcckZBRkRGP0Y/Rj9GX3AtRi82JVEieUYnRjJGNUY/Rj9GP0ZfcEZbd0Y/Rj9GP0ZfcEZbd0Y/Rj9GP0ZfcEZbd0Y/Rj9GP0ZfcEZbd0Y/RkFGREY/RkFGREY/">LCQqJiwoSSJkRzYiIyEkdyciI1giIikiIiIqJiwoRiUjISdeTT0iJU5HRipGKyomLChGJSMiJiNmUCIkKj0iI0xGKyomLChGJSMhJlByI0Y1ISNpRisqJiwmIiNERitGJSMiJjkjcEYwRitJInlHRiZGK0YrRitGQUYrRitGK0ZBRitGK0YrRkFGK0YrRitGQUYrI0YrIiM3</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEkaGR3RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUYjNiYtRi82JVEnJiM5NTE7RicvRjNRJmZhbHNlRicvRjZRJ25vcm1hbEYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y+Rj8vJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1JI21vR0YkNi1RIzo9RidGPy8lJmZlbmNlR0Y+LyUqc2VwYXJhdG9yR0Y+LyUpc3RyZXRjaHlHRj4vJSpzeW1tZXRyaWNHRj4vJShsYXJnZW9wR0Y+LyUubW92YWJsZWxpbWl0c0dGPi8lJ2FjY2VudEdGPi8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRmduLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRj8tRmBvNiRRIzI0RidGPy8lLmxpbmV0aGlja25lc3NHRmJvLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmpvLyUpYmV2ZWxsZWRHRj4tRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RJjAuMGVtRicvRmluRmNwLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2KC1GIzYoLUZdbzYoLUZgbzYkUSUxNDExRidGPy1GYG82JFEjNDVGJ0Y/RmZvRmhvRltwRl1wRl9wLUYvNiVRImRGJ0YyRjVGQUZERj8tRko2LVEoJm1pbnVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RLDAuMjIyMjIyMmVtRicvRmluRl1yLUZgbzYkUSIyRidGPy1GSjYtUSIrRidGP0ZNRk9GUUZTRlVGV0ZZRlxyRl5yLUYjNiYtRmhwNiQtRiM2KC1GIzYoLUZdbzYoLUZgbzYkUSc4NjYxNTNGJ0Y/LUZgbzYkUSUyODM1RidGP0Zmb0Zob0ZbcEZdcEZfcEZmcUZBRkRGP0ZpcUZfb0Zici1GIzYmLUZocDYkLUYjNiktRko2LVEqJnVtaW51czA7RidGP0ZNRk9GUUZTRlVGV0ZZRlxyRl5yLUYjNigtRl1vNigtRmBvNiRRJjkwMjI5RidGPy1GYG82JFEjODFGJ0Y/RmZvRmhvRltwRl1wRl9wRmZxRkFGREY/RmlxLUZgbzYkUSMzM0YnRj9GYnItRiM2Ji1GaHA2JC1GIzYoLUYjNigtRl1vNigtRmBvNiRRJzY4OTQzNUYnRj8tRmBvNiRRJDU2N0YnRj9GZm9GaG9GW3BGXXBGX3BGZnFGQUZERj9GYnItRmBvNiRRIzYxRidGP0Zici1GIzYmLUZocDYkLUYjNidGW3QtRmBvNiRRIzI1RidGP0ZpcS1GIzYoLUZdbzYoLUZgbzYkUSgxMjQ0MjA2RidGP0Zic0Zmb0Zob0ZbcEZdcEZfcEZmcUZBRkRGP0Y/Rj9GX3AtRi82JVEieUYnRjJGNUY/Rj9GP0ZfcEZed0Y/Rj9GP0ZfcEZed0Y/Rj9GP0ZfcEZed0Y/Rj9GP0ZfcEZed0Y/RkFGREY/RkFGREY/">LCQqJiwoSSJkRzYiIyIlNjkiI1ghIiMiIiIqJiwoRiUjIidgaCcpIiVORyEiIkYrKiYsKEYlIyEmSC0qIiMiKSEjTEYrKiYsKEYlIyInTiUqbyIkbiYiI2hGKyomLCYhI0RGK0YlIyEoMVVDIkYwRitJInlHRiZGK0YrRitGQ0YrRitGK0ZDRitGK0YrRkNGK0YrRitGQ0YrI0YrIiND</Equation></Text-field> -</Output> -<Output> -<Text-field style="2D Output" layout="Maple Output"><Equation executable="false" style="2D Output" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEkaGR3RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUYjNiYtRi82JVEnJiM5NTA7RicvRjNRJmZhbHNlRicvRjZRJ25vcm1hbEYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y+Rj8vJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1JI21vR0YkNi1RIzo9RidGPy8lJmZlbmNlR0Y+LyUqc2VwYXJhdG9yR0Y+LyUpc3RyZXRjaHlHRj4vJSpzeW1tZXRyaWNHRj4vJShsYXJnZW9wR0Y+LyUubW92YWJsZWxpbWl0c0dGPi8lJ2FjY2VudEdGPi8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRmduLUYjNigtSSZtZnJhY0dGJDYoLUkjbW5HRiQ2JFEiMUYnRj8tRmBvNiRRIzI0RidGPy8lLmxpbmV0aGlja25lc3NHRmJvLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmpvLyUpYmV2ZWxsZWRHRj4tRko2LVExJkludmlzaWJsZVRpbWVzO0YnRj9GTUZPRlFGU0ZVRldGWS9GZm5RJjAuMGVtRicvRmluRmNwLUYjNiYtSShtZmVuY2VkR0YkNiQtRiM2Jy1GSjYtUSomdW1pbnVzMDtGJ0Y/Rk1GT0ZRRlNGVUZXRlkvRmZuUSwwLjIyMjIyMjJlbUYnL0ZpbkZgcS1GIzYoLUZdbzYoLUZgbzYkUSU0OTAwRidGPy1GYG82JFEjMjdGJ0Y/RmZvRmhvRltwRl1wRl9wLUYvNiVRImRGJ0YyRjVGQUZERj8tRko2LVEiK0YnRj9GTUZPRlFGU0ZVRldGWUZfcUZhcS1GIzYmLUZocDYkLUYjNigtRmBvNiRRIjdGJ0Y/Rl9yLUYjNigtRl1vNigtRmBvNiRRKDIwNTQwODFGJ0Y/LUZgbzYkUSUyODM1RidGP0Zmb0Zob0ZbcEZdcEZfcEZcckZBRkRGP0Zfci1GIzYmLUZocDYkLUYjNilGXHEtRmBvNiRRIzEyRidGPy1GSjYtUSgmbWludXM7RidGP0ZNRk9GUUZTRlVGV0ZZRl9xRmFxLUYjNigtRl1vNigtRmBvNiRRJzUzMDcxMUYnRj8tRmBvNiRRJDU2N0YnRj9GZm9GaG9GW3BGXXBGX3BGXHJGQUZERj9GX3ItRiM2Ji1GaHA2JC1GIzYmLUZgbzYkUSI1RidGP0Zfci1GIzYoLUZdbzYoLUZgbzYkUSgxMTEzOTc0RidGP0Zic0Zmb0Zob0ZbcEZdcEZfcEZcckZBRkRGP0Y/Rj9GX3AtRi82JVEieUYnRjJGNUY/Rj9GP0ZfcEZbdkY/Rj9GP0ZfcEZbdkY/Rj9GP0ZfcC1JJW1zdXBHRiQ2JUZbdi1GYG82JFEiMkYnRj8vJTFzdXBlcnNjcmlwdHNoaWZ0R0ZIRj9GQUZERj9GQUZERj8=">LCQqJiwmSSJkRzYiIyElK1wiI0YqJiwoIiIoIiIiRiUjIigiM2E/IiVORyomLCghIzdGLUYlIyEnNjJgIiRuJiomLCYiIiZGLUYlIyIodVI2IkYwRi1JInlHRiZGLUYtRi1GPEYtRi1GLUY8Ri1GLUYtRjwiIiMjRi0iI0M=</Equation></Text-field> -</Output> -</Group> -<Group labelreference="L54" drawlabel="true"> -<Input> -<Text-field prompt="> " style="Maple Input" layout="Normal"><Equation executable="true" style="2D Input" input-equation="" display="LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRic=">LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=</Equation></Text-field> -</Input> -</Group> -</Worksheet> \ No newline at end of file diff --git a/Docs/remeshing_formulas/resume_lambdastar.png b/Docs/remeshing_formulas/resume_lambdastar.png deleted file mode 100644 index 8a28b769d6c989663f9dea97936796f0cc7d1f90..0000000000000000000000000000000000000000 Binary files a/Docs/remeshing_formulas/resume_lambdastar.png and /dev/null differ diff --git a/Docs/remeshing_formulas/resume_lambdastar_detail.png b/Docs/remeshing_formulas/resume_lambdastar_detail.png deleted file mode 100644 index 00791b4235d2c92e153b9526f98c42bc05c7c7f4..0000000000000000000000000000000000000000 Binary files a/Docs/remeshing_formulas/resume_lambdastar_detail.png and /dev/null differ diff --git a/Examples/Tools/plot_2D.gp b/Examples/Tools/plot_2D.gp deleted file mode 100644 index b59d58d6ad4d3659404aa72c32a0532df408b5e0..0000000000000000000000000000000000000000 --- a/Examples/Tools/plot_2D.gp +++ /dev/null @@ -1,8 +0,0 @@ -## Script Gnuplot d'animation 2D de résultats de new_ParMePy -f=50 -i=0 -while (i<=f) { - sp sprintf("res/RK2_results_%05d.dat",i) u 3:4:7:7 pt 7 ps 0.25 palette t sprintf("%05d",i) - i=i+1 - pause 0.1 -} \ No newline at end of file diff --git a/Examples/Tools/plot_3D.gp b/Examples/Tools/plot_3D.gp deleted file mode 100644 index 661d20ce1d4959d088219270badf0e3018213358..0000000000000000000000000000000000000000 --- a/Examples/Tools/plot_3D.gp +++ /dev/null @@ -1,8 +0,0 @@ -## Script Gnuplot d'animation 3D de résultats de new_ParMePy -f=50 -i=0 -while (i<=f) { - sp sprintf("res/RK2_results_%05d.dat",i) u 4:5:6:10 pt 7 ps 0.25 palette t sprintf("%05d",i) - i=i+1 - pause 0.1 -} \ No newline at end of file diff --git a/Examples/Tools/print_volume_2D.gp b/Examples/Tools/print_volume_2D.gp deleted file mode 100644 index a8dd09cefed8f15115e1b010e4161d24ca92e5ca..0000000000000000000000000000000000000000 --- a/Examples/Tools/print_volume_2D.gp +++ /dev/null @@ -1,19 +0,0 @@ -reset -set auto - -vol_theo = pi*0.15*0.15 - -set title "Volume en fonction du temps" -set xl 'temps' -set yl 'volume' -set ytics nomirror -set y2l 'erreur relative' -set y2tics -set key outside bottom center maxrows 1 box height 1 -set yr [0:*] - -p'volume.dat' u ($0*0.07):1 w lp t 'volume' axes x1y1,\ - (vol_theo) t'volume théorique' axes x1y1, \ - 'volume.dat' u ($0*0.07):(abs($1-vol_theo)/vol_theo) t 'erreur' w lp axes x1y2 - -l'loop.gp' \ No newline at end of file diff --git a/Examples/Tools/print_volume_3D.gp b/Examples/Tools/print_volume_3D.gp deleted file mode 100644 index f7baf84c69d2f69e0a8d9a54b2a1461359b749a5..0000000000000000000000000000000000000000 --- a/Examples/Tools/print_volume_3D.gp +++ /dev/null @@ -1,19 +0,0 @@ -reset -set auto - -vol_theo = 4.0*pi*0.15*0.15*0.15/3.0 - -set title "Volume en fonction du temps" -set xl 'temps' -set yl 'volume' -set ytics nomirror -set y2l 'erreur relative' -set y2tics -set key outside bottom center maxrows 1 box height 1 -set yr [0:*] - -p'volume.dat' u ($0*0.07):1 w lp t 'volume' axes x1y1,\ - (vol_theo) t'volume théorique' axes x1y1, \ - 'volume.dat' u ($0*0.07):(abs($1-vol_theo)/vol_theo) t 'erreur' w lp axes x1y2 - -l'loop.gp' \ No newline at end of file diff --git a/HySoP/CMake/FindFFTW.cmake b/HySoP/CMake/FindFFTW.cmake index 9f90cc0a27848a415592a3243ada475200cb94ff..bec57b85a64411e700f9572de4984207c6d73b41 100644 --- a/HySoP/CMake/FindFFTW.cmake +++ b/HySoP/CMake/FindFFTW.cmake @@ -80,4 +80,4 @@ find_library(FFTWFloat_MPI_LIBRARY set(FFTW_PROCESS_INCLUDES FFTW_INCLUDE_DIR) set(FFTW_PROCESS_LIBS FFTW_LIBRARY FFTWFloat_LIBRARY FFTW_MPI_LIBRARY FFTWFloat_MPI_LIBRARY) - libfind_process(FFTW) +libfind_process(FFTW) diff --git a/HySoP/CMake/FindPythonFull.cmake b/HySoP/CMake/FindPythonFull.cmake new file mode 100644 index 0000000000000000000000000000000000000000..604086dd8cac828e7690e452ddb18e06f03a16f2 --- /dev/null +++ b/HySoP/CMake/FindPythonFull.cmake @@ -0,0 +1,112 @@ +#.rst: +# FindPythonFull +# -------------- +# +# Find python interpreter and all required libraries and headers. +# +# The default cmake find_package(PythonLibs) process does not work for us. +# +# Usage: +# find_package(PythonFull) +# +# This call will set the following variables : +# :: +# +# PYTHON_FOUND - True if Python executable, libraries and header were found +# PYTHON_EXECUTABLE - python interpreter (full path) +# PYTHON_VERSION_STRING - Python version found e.g. 2.5.2 +# PYTHON_LIBRARIES - full path to the python library +# PYTHON_INCLUDE_DIR - full path to Python.h +# PYTHONLIBS_VERSION_STRING - version of the Python libs found +# +# By default, we search for the current active python version first. +# If you need another version, use -DPYTHON_EXECUTABLE=full-path-to-python-exe +# during cmake call. +# + +set(PYTHON_FOUND FALSE) + +# Does nothing if vars are already in cache +if(EXISTS "${PYTHON_INCLUDE_DIR}" AND EXISTS "${PYTHON_LIBRARY}" AND EXISTS "${PYTHON_SITE_PACKAGES_DIR}") + set(PYTHON_FOUND TRUE) +else() + set(PYTHON_FOUND FALSE) + # --- Find python interpreter + find_package(PythonInterp) + + # --- Use distutils to explore python configuration corresponding to + # the python executable found. + find_file(_findpython explore_python_config.py PATHS ${CMAKE_MODULE_PATH}) + + execute_process( + COMMAND ${PYTHON_EXECUTABLE} ${_findpython} + OUTPUT_VARIABLE python_config + ) + + # --- Post-process distutils results + if(python_config) + string(REGEX REPLACE ".*exec_prefix:([^\n]+).*$" "\\1" PYTHON_PREFIX ${python_config}) + string(REGEX REPLACE ".*\nversion:([^\n]+).*$" "\\1" PYTHON_VERSION ${python_config}) + string(REGEX REPLACE ".*\npy_inc_dir:([^\n]+).*$" "\\1" PYTHON_INCLUDE_DIR ${python_config}) + string(REGEX REPLACE ".*\nsite_packages_dir:([^\n]+).*$" "\\1" PYTHON_SITE_PACKAGES_DIR ${python_config}) + string(REGEX REPLACE "([0-9]+).([0-9]+)" "\\1\\2" PYTHON_VERSION_NO_DOTS ${PYTHON_VERSION}) + if(WIN32) + string(REPLACE "\\" "/" PYTHON_SITE_PACKAGES_DIR ${PYTHON_SITE_PACKAGES_DIR}) + endif(WIN32) + + # --- Search python library corresponding to python exec. + find_library(PYTHON_LIBRARY + NAMES + python${PYTHON_VERSION_NO_DOTS} python${PYTHON_VERSION} + NO_DEFAULT_PATH + HINTS ${PYTHON_PREFIX} ${PYTHON_PREFIX}/lib/python${PYTHON_VERSION}/config + PATH_SUFFIXES lib + ) + # find_library(PYTHON_LIBRARY + # NAMES + # python${PYTHON_VERSION_NO_DOTS} python${PYTHON_VERSION} + # NO_DEFAULT_PATH + # HINTS ${PYTHON_PREFIX}/lib/python${PYTHON_VERSION}/config + # ) + set(PYTHON_LIBRARIES ${PYTHON_LIBRARY} CACHE FILEPATH "Python libraries" FORCE) + + set(PYTHON_INCLUDE_DIR ${PYTHON_INCLUDE_DIR} CACHE FILEPATH "Path to Python.h" FORCE) + + # --- Extract python library version for further checks. + if(PYTHON_INCLUDE_DIR AND EXISTS "${PYTHON_INCLUDE_DIR}/patchlevel.h") + file(STRINGS "${PYTHON_INCLUDE_DIR}/patchlevel.h" python_version_str + REGEX "^#define[ \t]+PY_VERSION[ \t]+\"[^\"]+\"") + string(REGEX REPLACE "^#define[ \t]+PY_VERSION[ \t]+\"([^\"]+)\".*" "\\1" + PYTHONLIBS_VERSION_STRING "${python_version_str}") + unset(python_version_str) + endif() + + endif() + + unset(PYTHON_FOUND) + include(FindPackageHandleStandardArgs) + find_package_handle_standard_args(Python + REQUIRED_VARS PYTHON_LIBRARIES PYTHON_INCLUDE_DIR PYTHON_EXECUTABLE + VERSION_VAR PYTHONLIBS_VERSION_STRING) + + if(PYTHON_FOUND) + if(NOT PythonFull_FIND_QUIETLY) + message("-- Found Python executable: ${PYTHON_EXECUTABLE}") + message("-- Found Python library: ${PYTHON_LIBRARIES}") + message("-- Python version is : ${PYTHON_VERSION_STRING}") + message("-- Python include dir is : ${PYTHON_INCLUDE_DIR}") + message("-- Python Site package dir is : ${PYTHON_SITE_PACKAGES_DIR}\n") + endif() + else() + if(PythonFull_FIND_REQUIRED) + message(FATAL_ERROR "Could not find Python") + endif() + endif() + +endif() + +if(NOT PYTHONLIBS_VERSION_STRING VERSION_EQUAL PYTHON_VERSION_STRING) + display(PYTHONLIBS_VERSION_STRING) + display(PYTHON_VERSION_STRING) + message(FATAL_ERROR "Python library and executable versions do not match.") +endif() diff --git a/HySoP/CMake/FindPythonLibs.cmake b/HySoP/CMake/FindPythonLibs.cmake deleted file mode 100644 index af80e2c7daefe7a8563f3f4b31a78d67f47a8f07..0000000000000000000000000000000000000000 --- a/HySoP/CMake/FindPythonLibs.cmake +++ /dev/null @@ -1,276 +0,0 @@ -# - Find python libraries -# This module finds if Python is installed and determines where the -# include files and libraries are. It also determines what the name of -# the library is. This code sets the following variables: -# -# PYTHONLIBS_FOUND - have the Python libs been found -# PYTHON_LIBRARIES - path to the python library -# PYTHON_INCLUDE_PATH - path to where Python.h is found (deprecated) -# PYTHON_INCLUDE_DIRS - path to where Python.h is found -# PYTHON_DEBUG_LIBRARIES - path to the debug library (deprecated) -# PYTHONLIBS_VERSION_STRING - version of the Python libs found (since CMake 2.8.8) -# -# The Python_ADDITIONAL_VERSIONS variable can be used to specify a list of -# version numbers that should be taken into account when searching for Python. -# You need to set this variable before calling find_package(PythonLibs). -# -# If you'd like to specify the installation of Python to use, you should modify -# the following cache variables: -# PYTHON_LIBRARY - path to the python library -# PYTHON_INCLUDE_DIR - path to where Python.h is found - -#============================================================================= -# Copyright 2001-2009 Kitware, Inc. -# -# Distributed under the OSI-approved BSD License (the "License"); -# see accompanying file Copyright.txt for details. -# -# This software is distributed WITHOUT ANY WARRANTY; without even the -# implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -# See the License for more information. -#============================================================================= -# (To distribute this file outside of CMake, substitute the full -# License text for the above reference.) - -INCLUDE(CMakeFindFrameworks) -# Search for the python framework on Apple. -CMAKE_FIND_FRAMEWORKS(Python) - -SET(_PYTHON1_VERSIONS 1.6 1.5) -SET(_PYTHON2_VERSIONS 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0) -SET(_PYTHON3_VERSIONS 3.3 3.2 3.1 3.0) - -IF(PythonLibs_FIND_VERSION) - IF(PythonLibs_FIND_VERSION MATCHES "^[0-9]+\\.[0-9]+(\\.[0-9]+.*)?$") - STRING(REGEX REPLACE "^([0-9]+\\.[0-9]+).*" "\\1" _PYTHON_FIND_MAJ_MIN "${PythonLibs_FIND_VERSION}") - STRING(REGEX REPLACE "^([0-9]+).*" "\\1" _PYTHON_FIND_MAJ "${_PYTHON_FIND_MAJ_MIN}") - UNSET(_PYTHON_FIND_OTHER_VERSIONS) - IF(PythonLibs_FIND_VERSION_EXACT) - IF(_PYTHON_FIND_MAJ_MIN STREQUAL PythonLibs_FIND_VERSION) - SET(_PYTHON_FIND_OTHER_VERSIONS "${PythonLibs_FIND_VERSION}") - ELSE(_PYTHON_FIND_MAJ_MIN STREQUAL PythonLibs_FIND_VERSION) - SET(_PYTHON_FIND_OTHER_VERSIONS "${PythonLibs_FIND_VERSION}" "${_PYTHON_FIND_MAJ_MIN}") - ENDIF(_PYTHON_FIND_MAJ_MIN STREQUAL PythonLibs_FIND_VERSION) - ELSE(PythonLibs_FIND_VERSION_EXACT) - FOREACH(_PYTHON_V ${_PYTHON${_PYTHON_FIND_MAJ}_VERSIONS}) - IF(NOT _PYTHON_V VERSION_LESS _PYTHON_FIND_MAJ_MIN) - LIST(APPEND _PYTHON_FIND_OTHER_VERSIONS ${_PYTHON_V}) - ENDIF() - ENDFOREACH() - ENDIF(PythonLibs_FIND_VERSION_EXACT) - UNSET(_PYTHON_FIND_MAJ_MIN) - UNSET(_PYTHON_FIND_MAJ) - ELSE(PythonLibs_FIND_VERSION MATCHES "^[0-9]+\\.[0-9]+(\\.[0-9]+.*)?$") - SET(_PYTHON_FIND_OTHER_VERSIONS ${_PYTHON${PythonLibs_FIND_VERSION}_VERSIONS}) - ENDIF(PythonLibs_FIND_VERSION MATCHES "^[0-9]+\\.[0-9]+(\\.[0-9]+.*)?$") -ELSE(PythonLibs_FIND_VERSION) - SET(_PYTHON_FIND_OTHER_VERSIONS ${_PYTHON3_VERSIONS} ${_PYTHON2_VERSIONS} ${_PYTHON1_VERSIONS}) -ENDIF(PythonLibs_FIND_VERSION) - -# Set up the versions we know about, in the order we will search. Always add -# the user supplied additional versions to the front. -SET(_Python_VERSIONS - ${Python_ADDITIONAL_VERSIONS} - ${_PYTHON_FIND_OTHER_VERSIONS} - ) - -UNSET(_PYTHON_FIND_OTHER_VERSIONS) -UNSET(_PYTHON1_VERSIONS) -UNSET(_PYTHON2_VERSIONS) -UNSET(_PYTHON3_VERSIONS) - -FOREACH(_CURRENT_VERSION ${_Python_VERSIONS}) - STRING(REPLACE "." "" _CURRENT_VERSION_NO_DOTS ${_CURRENT_VERSION}) - IF(WIN32) - FIND_LIBRARY(PYTHON_DEBUG_LIBRARY - NAMES python${_CURRENT_VERSION_NO_DOTS}_d python - PATHS - [HKEY_LOCAL_MACHINE\\SOFTWARE\\Python\\PythonCore\\${_CURRENT_VERSION}\\InstallPath]/libs/Debug - [HKEY_CURRENT_USER\\SOFTWARE\\Python\\PythonCore\\${_CURRENT_VERSION}\\InstallPath]/libs/Debug - [HKEY_LOCAL_MACHINE\\SOFTWARE\\Python\\PythonCore\\${_CURRENT_VERSION}\\InstallPath]/libs - [HKEY_CURRENT_USER\\SOFTWARE\\Python\\PythonCore\\${_CURRENT_VERSION}\\InstallPath]/libs - ) - ENDIF(WIN32) - FIND_LIBRARY(PYTHON_LIBRARY - NAMES - python${_CURRENT_VERSION_NO_DOTS} - python${_CURRENT_VERSION}mu - python${_CURRENT_VERSION}m - python${_CURRENT_VERSION}u - python${_CURRENT_VERSION} - PATHS ENV LD_LIBRARY_PATH ENV DYLD_LIBRARY_PATH -# PATHS -# [HKEY_LOCAL_MACHINE\\SOFTWARE\\Python\\PythonCore\\${_CURRENT_VERSION}\\InstallPath]/libs -# [HKEY_CURRENT_USER\\SOFTWARE\\Python\\PythonCore\\${_CURRENT_VERSION}\\InstallPath]/libs - # Avoid finding the .dll in the PATH. We want the .lib. - # NO_SYSTEM_ENVIRONMENT_PATH - ) - - # Look for the static library in the Python config directory - FIND_LIBRARY(PYTHON_LIBRARY - NAMES python${_CURRENT_VERSION_NO_DOTS} python${_CURRENT_VERSION} - # Avoid finding the .dll in the PATH. We want the .lib. - NO_SYSTEM_ENVIRONMENT_PATH - # This is where the static library is usually located - PATH_SUFFIXES python${_CURRENT_VERSION}/config - ) - - # For backward compatibility, honour value of PYTHON_INCLUDE_PATH, if - # PYTHON_INCLUDE_DIR is not set. - IF(DEFINED PYTHON_INCLUDE_PATH AND NOT DEFINED PYTHON_INCLUDE_DIR) - SET(PYTHON_INCLUDE_DIR "${PYTHON_INCLUDE_PATH}" CACHE PATH - "Path to where Python.h is found" FORCE) - ENDIF(DEFINED PYTHON_INCLUDE_PATH AND NOT DEFINED PYTHON_INCLUDE_DIR) - - SET(PYTHON_FRAMEWORK_INCLUDES) - IF(Python_FRAMEWORKS AND NOT PYTHON_INCLUDE_DIR) - FOREACH(dir ${Python_FRAMEWORKS}) - SET(PYTHON_FRAMEWORK_INCLUDES ${PYTHON_FRAMEWORK_INCLUDES} - ${dir}/Versions/${_CURRENT_VERSION}/include/python${_CURRENT_VERSION}) - ENDFOREACH(dir) - ENDIF(Python_FRAMEWORKS AND NOT PYTHON_INCLUDE_DIR) - - FIND_PATH(PYTHON_INCLUDE_DIR - NAMES Python.h - PATHS - ${PYTHON_FRAMEWORK_INCLUDES} - [HKEY_LOCAL_MACHINE\\SOFTWARE\\Python\\PythonCore\\${_CURRENT_VERSION}\\InstallPath]/include - [HKEY_CURRENT_USER\\SOFTWARE\\Python\\PythonCore\\${_CURRENT_VERSION}\\InstallPath]/include - PATH_SUFFIXES - python${_CURRENT_VERSION}mu - python${_CURRENT_VERSION}m - python${_CURRENT_VERSION}u - python${_CURRENT_VERSION} - ) - - # For backward compatibility, set PYTHON_INCLUDE_PATH. - SET(PYTHON_INCLUDE_PATH "${PYTHON_INCLUDE_DIR}") - - IF(PYTHON_INCLUDE_DIR AND EXISTS "${PYTHON_INCLUDE_DIR}/patchlevel.h") - FILE(STRINGS "${PYTHON_INCLUDE_DIR}/patchlevel.h" python_version_str - REGEX "^#define[ \t]+PY_VERSION[ \t]+\"[^\"]+\"") - STRING(REGEX REPLACE "^#define[ \t]+PY_VERSION[ \t]+\"([^\"]+)\".*" "\\1" - PYTHONLIBS_VERSION_STRING "${python_version_str}") - UNSET(python_version_str) - ENDIF(PYTHON_INCLUDE_DIR AND EXISTS "${PYTHON_INCLUDE_DIR}/patchlevel.h") - - IF(PYTHON_LIBRARY AND PYTHON_INCLUDE_DIR) - BREAK() - ENDIF(PYTHON_LIBRARY AND PYTHON_INCLUDE_DIR) -ENDFOREACH(_CURRENT_VERSION) - -MARK_AS_ADVANCED( - PYTHON_DEBUG_LIBRARY - PYTHON_LIBRARY - PYTHON_INCLUDE_DIR -) - -# We use PYTHON_INCLUDE_DIR, PYTHON_LIBRARY and PYTHON_DEBUG_LIBRARY for the -# cache entries because they are meant to specify the location of a single -# library. We now set the variables listed by the documentation for this -# module. -SET(PYTHON_INCLUDE_DIRS "${PYTHON_INCLUDE_DIR}") -SET(PYTHON_DEBUG_LIBRARIES "${PYTHON_DEBUG_LIBRARY}") - -# These variables have been historically named in this module different from -# what SELECT_LIBRARY_CONFIGURATIONS() expects. -SET(PYTHON_LIBRARY_DEBUG "${PYTHON_DEBUG_LIBRARY}") -SET(PYTHON_LIBRARY_RELEASE "${PYTHON_LIBRARY}") -INCLUDE(SelectLibraryConfigurations) -SELECT_LIBRARY_CONFIGURATIONS(PYTHON) -# SELECT_LIBRARY_CONFIGURATIONS() sets ${PREFIX}_FOUND if it has a library. -# Unset this, this prefix doesn't match the module prefix, they are different -# for historical reasons. -UNSET(PYTHON_FOUND) - -INCLUDE(FindPackageHandleStandardArgs) -FIND_PACKAGE_HANDLE_STANDARD_ARGS(PythonLibs - REQUIRED_VARS PYTHON_LIBRARIES PYTHON_INCLUDE_DIRS - VERSION_VAR PYTHONLIBS_VERSION_STRING) - -# PYTHON_ADD_MODULE(<name> src1 src2 ... srcN) is used to build modules for python. -# PYTHON_WRITE_MODULES_HEADER(<filename>) writes a header file you can include -# in your sources to initialize the static python modules -FUNCTION(PYTHON_ADD_MODULE _NAME ) - GET_PROPERTY(_TARGET_SUPPORTS_SHARED_LIBS - GLOBAL PROPERTY TARGET_SUPPORTS_SHARED_LIBS) - OPTION(PYTHON_ENABLE_MODULE_${_NAME} "Add module ${_NAME}" TRUE) - OPTION(PYTHON_MODULE_${_NAME}_BUILD_SHARED - "Add module ${_NAME} shared" ${_TARGET_SUPPORTS_SHARED_LIBS}) - - # Mark these options as advanced - MARK_AS_ADVANCED(PYTHON_ENABLE_MODULE_${_NAME} - PYTHON_MODULE_${_NAME}_BUILD_SHARED) - - IF(PYTHON_ENABLE_MODULE_${_NAME}) - IF(PYTHON_MODULE_${_NAME}_BUILD_SHARED) - SET(PY_MODULE_TYPE MODULE) - ELSE(PYTHON_MODULE_${_NAME}_BUILD_SHARED) - SET(PY_MODULE_TYPE STATIC) - SET_PROPERTY(GLOBAL APPEND PROPERTY PY_STATIC_MODULES_LIST ${_NAME}) - ENDIF(PYTHON_MODULE_${_NAME}_BUILD_SHARED) - - SET_PROPERTY(GLOBAL APPEND PROPERTY PY_MODULES_LIST ${_NAME}) - ADD_LIBRARY(${_NAME} ${PY_MODULE_TYPE} ${ARGN}) -# TARGET_LINK_LIBRARIES(${_NAME} ${PYTHON_LIBRARIES}) - - IF(PYTHON_MODULE_${_NAME}_BUILD_SHARED) - SET_TARGET_PROPERTIES(${_NAME} PROPERTIES PREFIX "${PYTHON_MODULE_PREFIX}") - IF(WIN32 AND NOT CYGWIN) - SET_TARGET_PROPERTIES(${_NAME} PROPERTIES SUFFIX ".pyd") - ENDIF(WIN32 AND NOT CYGWIN) - ENDIF(PYTHON_MODULE_${_NAME}_BUILD_SHARED) - - ENDIF(PYTHON_ENABLE_MODULE_${_NAME}) -ENDFUNCTION(PYTHON_ADD_MODULE) - -FUNCTION(PYTHON_WRITE_MODULES_HEADER _filename) - - GET_PROPERTY(PY_STATIC_MODULES_LIST GLOBAL PROPERTY PY_STATIC_MODULES_LIST) - - GET_FILENAME_COMPONENT(_name "${_filename}" NAME) - STRING(REPLACE "." "_" _name "${_name}") - STRING(TOUPPER ${_name} _nameUpper) - SET(_filename ${CMAKE_CURRENT_BINARY_DIR}/${_filename}) - - SET(_filenameTmp "${_filename}.in") - FILE(WRITE ${_filenameTmp} "/*Created by cmake, do not edit, changes will be lost*/\n") - FILE(APPEND ${_filenameTmp} -"#ifndef ${_nameUpper} -#define ${_nameUpper} - -#include <Python.h> - -#ifdef __cplusplus -extern \"C\" { -#endif /* __cplusplus */ - -") - - FOREACH(_currentModule ${PY_STATIC_MODULES_LIST}) - FILE(APPEND ${_filenameTmp} "extern void init${PYTHON_MODULE_PREFIX}${_currentModule}(void);\n\n") - ENDFOREACH(_currentModule ${PY_STATIC_MODULES_LIST}) - - FILE(APPEND ${_filenameTmp} -"#ifdef __cplusplus -} -#endif /* __cplusplus */ - -") - - - FOREACH(_currentModule ${PY_STATIC_MODULES_LIST}) - FILE(APPEND ${_filenameTmp} "int ${_name}_${_currentModule}(void) \n{\n static char name[]=\"${PYTHON_MODULE_PREFIX}${_currentModule}\"; return PyImport_AppendInittab(name, init${PYTHON_MODULE_PREFIX}${_currentModule});\n}\n\n") - ENDFOREACH(_currentModule ${PY_STATIC_MODULES_LIST}) - - FILE(APPEND ${_filenameTmp} "void ${_name}_LoadAllPythonModules(void)\n{\n") - FOREACH(_currentModule ${PY_STATIC_MODULES_LIST}) - FILE(APPEND ${_filenameTmp} " ${_name}_${_currentModule}();\n") - ENDFOREACH(_currentModule ${PY_STATIC_MODULES_LIST}) - FILE(APPEND ${_filenameTmp} "}\n\n") - FILE(APPEND ${_filenameTmp} "#ifndef EXCLUDE_LOAD_ALL_FUNCTION\nvoid CMakeLoadAllPythonModules(void)\n{\n ${_name}_LoadAllPythonModules();\n}\n#endif\n\n#endif\n") - -# with CONFIGURE_FILE() cmake complains that you may not use a file created using FILE(WRITE) as input file for CONFIGURE_FILE() - EXECUTE_PROCESS(COMMAND ${CMAKE_COMMAND} -E copy_if_different "${_filenameTmp}" "${_filename}" OUTPUT_QUIET ERROR_QUIET) - -ENDFUNCTION(PYTHON_WRITE_MODULES_HEADER) diff --git a/HySoP/CMake/MyTools.cmake b/HySoP/CMake/MyTools.cmake index acb891887b833fc21bbb451319ed2979ed865fbb..f0c4ad54c40a01dba44c761e2fc6eca3f928638a 100644 --- a/HySoP/CMake/MyTools.cmake +++ b/HySoP/CMake/MyTools.cmake @@ -146,13 +146,13 @@ endmacro() macro(get_python_builddir where result) get_subdirectories(listofdirs ${where}) foreach(dir ${listofdirs}) - find_file(parmepyfile + find_file(hysopfile NAMES __init__.py - PATHS ${where}/${dir}/parmepy - PATH_SUFFIXES parmepy + PATHS ${where}/${dir}/hysop + PATH_SUFFIXES hysop NO_DEFAULT_PATH) endforeach() - get_filename_component(builddir ${parmepyfile} PATH) + get_filename_component(builddir ${hysopfile} PATH) get_filename_component(builddir ${builddir} PATH) set(${result} ${builddir}) endmacro() \ No newline at end of file diff --git a/HySoP/CMake/ParmesInstallSetup.cmake b/HySoP/CMake/ParmesInstallSetup.cmake index d4ac67bb6491331487da3cb2ca8697ff2e428145..5a20120ca4084f04325b3029cc7e16754bb04126 100644 --- a/HySoP/CMake/ParmesInstallSetup.cmake +++ b/HySoP/CMake/ParmesInstallSetup.cmake @@ -1,6 +1,6 @@ -# --- Parmes Install Process --- +# --- HySoP Install Process --- # -# By default, parmepy libraries and python modules will be installed +# By default, hysop libraries and python modules will be installed # in the usual 'user' path of python (see https://docs.python.org/2/install/) # as if you run "python setup.py install --user". # This directory corresponds to site.USER_SITE variable. @@ -10,10 +10,10 @@ # # You can also set your own install path using CMAKE_INSTALL_PREFIX option. # In that case a proper set of PYTHONPATH environment variable will -# be required for parmepy to work. +# be required for hysop to work. # # Summary : -# cmake path-to-parme-sources +# cmake path-to-hysop-sources # make install # ---> install in USER_SITE (no virtualenv case) # ---> install in site-packages of your virtualenv @@ -101,7 +101,7 @@ endfunction() set_install_options() -# Target to remove parmepy from install-path. +# Target to remove hysop from install-path. if(CMAKE_PATCH_VERSION LESS 12) set(${PROJECT_NAME}_PYTHONPATH ${CMAKE_INSTALL_PREFIX}/..) get_filename_component(${PROJECT_NAME}_PYTHONPATH ${${PROJECT_NAME}_PYTHONPATH} REALPATH) @@ -109,17 +109,17 @@ else() set(${PROJECT_NAME}_PYTHONPATH ${CMAKE_INSTALL_PREFIX}) get_filename_component(${PROJECT_NAME}_PYTHONPATH ${${PROJECT_NAME}_PYTHONPATH} DIRECTORY) endif() -set(${PROJECT_NAME}_PYTHONPATH ${${PROJECT_NAME}_PYTHONPATH} CACHE PATH "PYTHONPATH for parmespy") +set(${PROJECT_NAME}_PYTHONPATH ${${PROJECT_NAME}_PYTHONPATH} CACHE PATH "PYTHONPATH for hysop") add_custom_target(uninstall COMMAND rm -rf ${${PROJECT_NAME}_PYTHONPATH}/${PYPACKAGE_NAME}* - COMMENT "Remove ${${PROJECT_NAME}_PYTHONPATH}/${PYPACKAGE_NAME} directory (parmepy package and its dependencies)") -# To install python package AND parmes library and modules + COMMENT "Remove ${${PROJECT_NAME}_PYTHONPATH}/${PYPACKAGE_NAME} directory (hysop package and its dependencies)") +# To install python package AND hysop library and modules add_custom_target(python-install COMMAND ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_BINARY_DIR}/setup.py install ${install-opt} config_fc --f90exec=${CMAKE_Fortran_COMPILER} #COMMAND make install - WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} COMMENT "build/install parmepy package") + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} COMMENT "build/install hysop package") install(CODE "execute_process(COMMAND ${CMAKE_BUILD_TOOL} python-install WORKING_DIRECTORY \"${CMAKE_CURRENT_BINARY_DIR}\")") if(WITH_LIB_FORTRAN) - add_dependencies(python-install ${PARMES_LIBRARY_NAME}) + add_dependencies(python-install ${HYSOP_LIBRARY_NAME}) endif() diff --git a/HySoP/CMake/ParmesTests.cmake b/HySoP/CMake/ParmesTests.cmake index e8164044d066f4e42a19ec65ba1c810b7d3b12fa..f4df2ffc010bc298eb8c3665d7e32f2a3706112b 100644 --- a/HySoP/CMake/ParmesTests.cmake +++ b/HySoP/CMake/ParmesTests.cmake @@ -1,4 +1,4 @@ -# === Configuration for tests in Parmes === +# === Configuration for tests in HySoP === # # --> collect test directories/files # --> create tests (ctest) @@ -20,7 +20,7 @@ string(STRIP ${${PROJECT_NAME}_PYTHON_BUILD_DIR} ${PROJECT_NAME}_PYTHON_BUILD_DI set(testDir ${CMAKE_BINARY_DIR}/build/${${PROJECT_NAME}_PYTHON_BUILD_DIR}) # 1 - Collect files for Python unitary tests (user-defined) ----- -# We create a new test for each test_XXX.py found in each directory (i.e. module) of parmepy listed below +# We create a new test for each test_XXX.py found in each directory (i.e. module) of hysop listed below set(py_src_dirs fields @@ -31,13 +31,13 @@ set(py_src_dirs tools ) -# If mpi is on, we add test_XXX.py files of parmepy/mpi directory +# If mpi is on, we add test_XXX.py files of hysop/mpi directory if(USE_MPI) set(py_src_dirs ${py_src_dirs} mpi) endif() -# If GPU is on, we add test_XXX.py files of parmepy/gpu directory +# If GPU is on, we add test_XXX.py files of hysop/gpu directory if(WITH_GPU) set(py_src_dirs ${py_src_dirs} gpu) @@ -45,27 +45,27 @@ endif() # Copy the OpenCL sources files to build dir (required since only python files are copied by setup.py) set(clfiles) -file(GLOB clfilestmp RELATIVE ${CMAKE_SOURCE_DIR} parmepy/gpu/cl_src/[a-z]*.cl) +file(GLOB clfilestmp RELATIVE ${CMAKE_SOURCE_DIR} hysop/gpu/cl_src/[a-z]*.cl) set(clfiles ${clfiles} ${clfilestmp}) -file(GLOB clfilestmp RELATIVE ${CMAKE_SOURCE_DIR} parmepy/gpu/cl_src/kernels/[a-z]*.cl) +file(GLOB clfilestmp RELATIVE ${CMAKE_SOURCE_DIR} hysop/gpu/cl_src/kernels/[a-z]*.cl) set(clfiles ${clfiles} ${clfilestmp}) -file(GLOB clfilestmp RELATIVE ${CMAKE_SOURCE_DIR} parmepy/gpu/cl_src/advection/[a-z]*.cl) +file(GLOB clfilestmp RELATIVE ${CMAKE_SOURCE_DIR} hysop/gpu/cl_src/advection/[a-z]*.cl) set(clfiles ${clfiles} ${clfilestmp}) -file(GLOB clfilestmp RELATIVE ${CMAKE_SOURCE_DIR} parmepy/gpu/cl_src/remeshing/[a-z]*.cl) +file(GLOB clfilestmp RELATIVE ${CMAKE_SOURCE_DIR} hysop/gpu/cl_src/remeshing/[a-z]*.cl) set(clfiles ${clfiles} ${clfilestmp}) foreach(_F ${clfiles}) configure_file(${_F} ${testDir}/${_F} COPYONLY) endforeach() -# Build a list of test_*.py files for each directory of parmepy/${py_src_dirs} +# Build a list of test_*.py files for each directory of hysop/${py_src_dirs} set(py_test_files) foreach(testdir ${py_src_dirs}) - file(GLOB testfiles RELATIVE ${CMAKE_SOURCE_DIR} parmepy/${testdir}/tests/test_*.py) + file(GLOB testfiles RELATIVE ${CMAKE_SOURCE_DIR} hysop/${testdir}/tests/test_*.py) set(py_test_files ${py_test_files} ${testfiles}) # copy data files - file(GLOB datfiles parmepy/${testdir}/tests/*.dat) - file(GLOB mapfiles parmepy/${testdir}/tests/*.map) - file(GLOB reffiles parmepy/${testdir}/tests/ref_files/*) + file(GLOB datfiles hysop/${testdir}/tests/*.dat) + file(GLOB mapfiles hysop/${testdir}/tests/*.map) + file(GLOB reffiles hysop/${testdir}/tests/ref_files/*) set(datafiles ${mapfiles} ${datfiles}) file(COPY ${reffiles} DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/dataForTests) foreach(_F ${datafiles}) @@ -75,12 +75,12 @@ foreach(testdir ${py_src_dirs}) endforeach() # 2 - Collect files for Python doctest ----- -# Handling doctest in *.py files recursively for each directory of parmepy/${py_src_dirs} +# Handling doctest in *.py files recursively for each directory of hysop/${py_src_dirs} # excluding __init__ or test_ files. # Doctest are run for every line which contains '>>>' set(py_doctest_files) foreach(testdir ${py_src_dirs}) - file(GLOB testfiles parmepy/${testdir}/[a-zA-Z]*.py) + file(GLOB testfiles hysop/${testdir}/[a-zA-Z]*.py) foreach(testfile ${testfiles}) file(STRINGS ${testfile} test_doctest REGEX ">>>") if(NOT "${test_doctest}" STREQUAL "") diff --git a/HySoP/CMake/PythonSetup.cmake b/HySoP/CMake/PythonSetup.cmake index 84063aa0647c83c80f6ea11f64e7a06cf901ad9a..59c70ddba547290151f346e6d71c2399e51f82e8 100644 --- a/HySoP/CMake/PythonSetup.cmake +++ b/HySoP/CMake/PythonSetup.cmake @@ -1,23 +1,40 @@ # Find python exec and python libs # and check their compatibility . +message("Start python search process ...") +find_package(PythonFull REQUIRED) + +# if(CMAKE_VERSION VERSION_LESS 2.8.11) +# get_filename_component(PYTHON_DIR ${PYTHON_EXECUTABLE} REALPATH) +# get_filename_component(PYTHON_DIR ${PYTHON_DIR} PATH) +# get_filename_component(PYTHON_DIR ${PYTHON_DIR} PATH) +# set(PYTHON_DIR ${PYTHON_LIBRARY}/lib) +# else() +# get_filename_component(PYTHON_DIR ${PYTHON_EXECUTABLE} REALPATH) +# get_filename_component(PYTHON_DIR ${PYTHON_DIR} DIRECTORY) +# get_filename_component(PYTHON_DIR ${PYTHON_DIR} DIRECTORY) +# set(PYTHON_DIR ${PYTHON_DIR}/lib) +# endif() +# message("Hello ...") +# display(PYTHON_DIR) +# display(PYTHON_VERSION_STRING) +# set(PYTHON_main_version ${PYTHON_VERSION_MAJOR}.${PYTHON_VERSION_MINOR}) +# set(Python_ADDITIONAL_VERSIONS ${PYTHON_main_version}) +# set(PythonLibs_FIND_VERSION_EXACT ${Python_ADDITIONAL_VERSIONS}) +# set(PYTHON_INCLUDE_DIR ${PYTHON_DIR}/../include/python${PYTHON_main_version}) +# Try to find frameworks after standard libraries or headers. +#set(default_fwk ${CMAKE_FIND_FRAMEWORK}) +#set(CMAKE_FIND_FRAMEWORK LAST) +# find_package(PythonLibrary) -find_package(PythonInterp) -get_filename_component(PYTHON_DIR ${PYTHON_EXECUTABLE} REALPATH) +# display(PYTHON_EXECUTABLE) +# display(PYTHON_INCLUDE_PATH)Python_ADDITIONAL_VERSIONS +# display(PYTHON_LIBRARY) +# display(PYTHON_LIBRARIES) +# display(PYTHON_LONG_VERSION) +# display(PYTHON_SITE_PACKAGES_DIR) +# #Back to default case for framework -if(CMAKE_PATCH_VERSION LESS 12) - set(PYTHON_DIR ${PYTHON_DIR}/..) - get_filename_component(PYTHON_DIR ${PYTHON_DIR} REALPATH) -else() - get_filename_component(PYTHON_DIR ${PYTHON_DIR} DIRECTORY) -endif() -set(PYTHON_main_version ${PYTHON_VERSION_MAJOR}.${PYTHON_VERSION_MINOR}) -set(PythonLibs_FIND_VERSION ${PYTHON_VERSION_STRING}) -set(PYTHON_INCLUDE_DIR ${PYTHON_DIR}/../include/python${PYTHON_main_version}) -find_package(PythonLibs) -if(NOT PYTHONLIBS_VERSION_STRING VERSION_EQUAL PYTHON_VERSION_STRING) - display(PYTHONLIBS_VERSION_STRING) - display(PYTHON_VERSION_STRING) - message(FATAL_ERROR "Python library and executable versions do not match.") -endif() +#set(CMAKE_FIND_FRAMEWORK ${default_fwk}) + include(FindPythonModule) diff --git a/HySoP/CMakeLists.txt b/HySoP/CMakeLists.txt index e511de777a4ac71ee02cd96d96f526335edfa085..8e2df44f4fac96a802c30c6cdff476eebab6eb9e 100644 --- a/HySoP/CMakeLists.txt +++ b/HySoP/CMakeLists.txt @@ -1,11 +1,11 @@ #=============================================================================== -# cmake utility to compile and install parmepy python modules and libraries +# cmake utility to compile and install hysop python modules and libraries # # It includes : -# - high level python interface to parmes routines -# - parmes fortran library (with fftw solver and scales interface) +# - high level python interface to HySoP routines +# - HySoP fortran library (with fftw solver and scales interface) # -# parmes depends (optionally) on : +# HySoP depends (optionally) on : # - scales (WITH_SCALES=ON, default) # # LJK-CNRS, F. Pérignon, june 2012 @@ -27,22 +27,22 @@ include(MyTools) # User defined options option(VERBOSE_MODE "enable verbose mode for cmake exec. Default = on" ON) option(DOUBLEPREC "set precision for real numbers to double precision when this mode is enable. Default = on." ON) -option(USE_MPI "compile and link parmes with mpi when this mode is enable. Default = on." ON) +option(USE_MPI "compile and link HySoP with mpi when this mode is enable. Default = on." ON) option(WITH_TESTS "Enable testing. Default = off" ON) option(BUILD_SHARED_LIBS "Enable dynamic library build, default = ON." ON) -option(WITH_LIB_FORTRAN "Generate libparmes from fortran files in src, wrapped into parmepy.f2py module. Default = ON." ON) -option(WITH_SCALES "compile/create parmesscales lib and link it with Parmes. Default = ON." ON) -option(WITH_FFTW "Link with fftw library (required for some Parmes solvers), default = ON" ON) -option(WITH_GPU "Use of GPU (required for some Parmes solvers), default = ON" ON) -option(WITH_MAIN_FORTRAN "Create an executable (test purpose) from fortran sources in src/main, linked with libparmes, default = ON" ON) -option(DEBUG "Enable debug mode for Parmes (0:disabled, 1:verbose, 2:trace, 3:verbose+trace). Default = 0" 0) +option(WITH_LIB_FORTRAN "Generate libhysop from fortran files in src, wrapped into hysop.f2py module. Default = ON." ON) +option(WITH_SCALES "compile/create scales lib and link it with HySoP. Default = ON." ON) +option(WITH_FFTW "Link with fftw library (required for some HySoP solvers), default = ON" ON) +option(WITH_GPU "Use of GPU (required for some HySoP solvers), default = ON" ON) +option(WITH_MAIN_FORTRAN "Create an executable (test purpose) from fortran sources in src/main, linked with libhysop, default = ON" ON) +option(DEBUG "Enable debug mode for HySoP (0:disabled, 1:verbose, 2:trace, 3:verbose+trace). Default = 0" 0) option(FULL_TEST "Enable all test options (pep8, mpi ...) - Default = OFF" OFF) -option(PROFILE "Enable profiling mode for Parmes. 0:disabled, 1: enabled. Default = 0" 0) +option(PROFILE "Enable profiling mode for HySoP. 0:disabled, 1: enabled. Default = 0" 0) option(OPTIM "To allow python -OO run, some packages must be deactivated. Set this option to 'ON' to do so. Default = OFF" OFF) option(WITH_MPI_TESTS "Enable mpi tests. Default = ON if USE_MPI is ON." ON) if(NOT WITH_LIB_FORTRAN) - message(WARNING "You deactivate libparmes (fortran) generation. This will disable fftw and scales fonctionnalities.") + message(WARNING "You deactivate libhysop (fortran) generation. This will disable fftw and scales fonctionnalities.") set(WITH_FFTW "OFF") set(WITH_SCALES "OFF") set(WITH_MAIN_FORTRAN "OFF") @@ -54,10 +54,10 @@ if(WITH_FFTW OR WITH_SCALES) endif() # cmake project name -set(PROJECT_NAME parmepy) +set(PROJECT_NAME hysop) # --- Name for the package --- # This name will be used as the Python Package name -set(PYPACKAGE_NAME "parmepy") +set(PYPACKAGE_NAME "hysop") # --- Set a version number for the package --- set(PACKAGE_VERSION 1.0.0) set(${PYPACKAGE_NAME}_version ${PACKAGE_VERSION}) @@ -72,11 +72,11 @@ set(PROJECT_LIBRARY_NAME ${PROJECT_NAME}) project(${PROJECT_NAME}) # ============= Search for libraries ============= -# We search for libraries Parmes depends on and +# We search for libraries HySoP depends on and # set the compile/link conf (-I and -L opt) -set(PARMES_LIBRARY_NAME parmes) -set(PACKAGE_NAME Parmes) +set(HYSOP_LIBRARY_NAME hysop) +set(PACKAGE_NAME HySoP) # --- Python --- # - Global setup (interp and lib) - @@ -125,7 +125,7 @@ display(OPENCL_DEFAULT_OPENCL_DEVICE_ID) # --> set options for python install # --> create install/uninstall targets -include(ParmesInstallSetup) +include(HySoPInstallSetup) # Remark : this must be done before add_subdir below, since install process in src needs CMAKE_INSTALL_PREFIX # to be properly set. @@ -143,10 +143,10 @@ if(EXISTS ${CMAKE_SOURCE_DIR}/setup.py.in) endif() # The file __init__.py will be generated from __init__.py.in. -if(EXISTS ${CMAKE_SOURCE_DIR}/parmepy/__init__.py.in) +if(EXISTS ${CMAKE_SOURCE_DIR}/hysop/__init__.py.in) message(STATUS "Generate __init__.py file ...") - file(REMOVE ${CMAKE_SOURCE_DIR}/parmepy/__init__.py) - configure_file(parmepy/__init__.py.in ${CMAKE_SOURCE_DIR}/parmepy/__init__.py) + file(REMOVE ${CMAKE_SOURCE_DIR}/hysop/__init__.py) + configure_file(hysop/__init__.py.in ${CMAKE_SOURCE_DIR}/hysop/__init__.py) endif() # ====== Create (and setup) build target ====== @@ -155,12 +155,12 @@ set_directory_properties(PROPERTIES ADDITIONAL_MAKE_CLEAN_FILES ${CMAKE_BINARY_D if(WITH_LIB_FORTRAN) add_custom_target(python-build ALL COMMAND ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_BINARY_DIR}/setup.py build config_fc --f90exec=${CMAKE_Fortran_COMPILER} - WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} COMMENT "build parmepy package") - add_dependencies(python-build ${PARMES_LIBRARY_NAME}) + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} COMMENT "build hysop package") + add_dependencies(python-build ${HYSOP_LIBRARY_NAME}) else() add_custom_target(python-build ALL COMMAND ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_BINARY_DIR}/setup.py build - WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} COMMENT "build parmepy package") + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} COMMENT "build hysop package") endif() # ====== Create a Target to clean sources (remove .pyc files) and build dir ====== @@ -169,8 +169,8 @@ file(GLOB_RECURSE PYCFILES "${CMAKE_SOURCE_DIR}/*.pyc") add_custom_target(pyclean COMMAND rm -f ${PYCFILES} COMMAND make clean COMMAND rm -rf ${CMAKE_BINARY_DIR}/build ${CMAKE_BINARY_DIR}/DoxygenGeneratedDoc - COMMAND rm ${CMAKE_SOURCE_DIR}/parmepy/__init__.py - COMMENT "clean parmepy sources and build.") + COMMAND rm ${CMAKE_SOURCE_DIR}/hysop/__init__.py + COMMENT "clean hysop sources and build.") # ====== Create a Target to generate the documentation ====== find_package(Doxygen) @@ -179,13 +179,13 @@ if(DOXYGEN_FOUND) if(DOXY-NOTFOUND) message(STATUS "Warning, doxypy seems to be missing on your system. You may not be able to properly generate the documentation.") endif() - configure_file(${CMAKE_SOURCE_DIR}/DoxyConf/parmes.doxyfile.in ${CMAKE_BINARY_DIR}/DoxyConf/parmes.doxyfile) - add_custom_target(doc COMMAND ${DOXYGEN_EXECUTABLE} ${CMAKE_BINARY_DIR}/DoxyConf/parmes.doxyfile - COMMENT "Generate parmepy documentation using doxygen.") + configure_file(${CMAKE_SOURCE_DIR}/DoxyConf/hysop.doxyfile.in ${CMAKE_BINARY_DIR}/DoxyConf/hysop.doxyfile) + add_custom_target(doc COMMAND ${DOXYGEN_EXECUTABLE} ${CMAKE_BINARY_DIR}/DoxyConf/hysop.doxyfile + COMMENT "Generate hysop documentation using doxygen.") else() - message(STATUS "Warning : cmake cannot find doxygen on your system. It means you will not be able to generate documentation for parmepy.") + message(STATUS "Warning : cmake cannot find doxygen on your system. It means you will not be able to generate documentation for hysop.") add_custom_target(doc COMMAND echo "Doxygen was not found on your system. Documentation generation is not possible." - COMMENT "Generate parmepy documentation using doxygen.") + COMMENT "Generate hysop documentation using doxygen.") endif() # ============= Tests ============= @@ -195,7 +195,7 @@ if(WITH_TESTS) if(NOT USE_MPI) set(WITH_MPI_TESTS "OFF") endif() - include(ParmesTests) + include(HySoPTests) endif(WITH_TESTS) @@ -223,12 +223,12 @@ if(VERBOSE_MODE) message(STATUS "Try :") message(STATUS " 'make -jN' to build the project, N being the number of available processes.") message(STATUS " 'make install' to install python modules and their dependencies. ") - message(STATUS " 'make doc' to generate doxygen documentation for parmepy.") + message(STATUS " 'make doc' to generate doxygen documentation for hysop.") message(STATUS " 'make test' to run some test (after the build! Do not use -j with this target).") message(STATUS " 'make clean' to clean build directory.") message(STATUS " 'make uninstall' to clean install directory. Dry-run (make -n uninstall) is advisable to check what will really be deleted.") message(STATUS "\n\n/!\\ Warning /!\\ : depending on your python environment configuration, you may need to set PYTHONPATH.") - message("Try to run python -c 'import parmepy'. If it fails, add ${${PROJECT_NAME}_PYTHONPATH} to PYTHONPATH environment variable.") + message("Try to run python -c 'import hysop'. If it fails, add ${${PROJECT_NAME}_PYTHONPATH} to PYTHONPATH environment variable.") message("Example : \n export PYTHONPATH=${${PROJECT_NAME}_PYTHONPATH}:\${PYTHONPATH}\n") endif() diff --git a/HySoP/DoxyConf/mainpage.doxygen b/HySoP/DoxyConf/mainpage.doxygen index 2fe3d48ba3c14372d274d27f4aa2c8e59272977c..fa8352f1fb5d5267ddebaa9a06cd0236d3a99005 100644 --- a/HySoP/DoxyConf/mainpage.doxygen +++ b/HySoP/DoxyConf/mainpage.doxygen @@ -1,22 +1,21 @@ -/** \mainpage ParMepy -\anchor doxyParmes +/** \mainpage HySoP +\anchor doxyHySoP -\section doxyParmesIntro Introduction +\section doxyHySoPIntro Introduction -ParMepy (Particular Methods Software) is a library dedicated to flow simulation based on particular methods, on hybrid (multi CPU-GPU) architecture. +HySoP (Hybrid SimulatiOn with Particles) is a library dedicated to flow simulation based on particular methods, on hybrid (multi CPU-GPU) architecture. It is written in Python (high level functionnalities) and Fortran. The library is also supposed to provide a common framework to the following libraries : -- PPM (Parallel Particles Mesh) (No more ...) - the library of Adrien Magni (split3D and 2D for remeshing methods tests) -- a spectral soft from LEGI +- an interface to a spectral software from LEGI (Scales) - ... =================================================================================================================== -\section parmepyInstall Install : +\section installhysop Install : \subsection reqInstall Requirements @@ -56,17 +55,16 @@ At the end of this step BUILDDIR contains all makefiles, setup.py and other requ Some useful options for cmake : - -DFFTW_DIR : where to find fftw if it's not in a "standard" place. -- -DWITH_SCALES=ON/OFF : to compile a parmepy version including scales (default = on) -- -DWITH_PPM=ON/OFF : to compile a parmepy version including scales (default = off) +- -DWITH_SCALES=ON/OFF : to compile an HySoP version including scales (default = on) - -DWITH_TESTS=ON/OFF: enable testing (i.e. prepare target "make test", default = off) example : \code -mkdir /home/mylogin/buildParmes -cd /home/mylogin/buildParmes +mkdir /home/mylogin/buildHySoP +cd /home/mylogin/buildHySoP export FC=mpif90 module load cmake-2.8 -cmake -DFFTW_DIR=/softs/install/fftw3.1 ~/Softs/Parmes +cmake -DFFTW_DIR=/softs/install/fftw3.1 ~/Softs/HySoP \endcode \subsection installDirConfig Install directory configuration : @@ -77,10 +75,10 @@ Installation scheme is following Python distutils one (<a href="http://docs.pyth Default setup leads to a 'User scheme installation' : <a href="http://docs.python.org/2/install/#alternate-installation-the-user-scheme">http://docs.python.org/2/install/#alternate-installation-the-user-scheme</a>. Files are installed into subdirectories of Python 'site.USER_BASE' (USER_BASE/lib/pythonX.Y/site-packages for UNIX systems). After install completed, new files are located as follows : - - python package in USER_BASE/lib/pythonX.Y/site-packages/parmepy/ - - library in USER_BASE/lib/pythonX.Y/site-packages/parmepy/lib - - fortran modules in USER_BASE/lib/pythonX.Y/site-packages/parmepy/include/Modules - - CMake configuration files in USER_BASE/lib/pythonX.Y/site-packages/parmepy/share/CMake + - python package in USER_BASE/lib/pythonX.Y/site-packages/hysop/ + - library in USER_BASE/lib/pythonX.Y/site-packages/hysop/lib + - fortran modules in USER_BASE/lib/pythonX.Y/site-packages/hysop/include/Modules + - CMake configuration files in USER_BASE/lib/pythonX.Y/site-packages/hysop/share/CMake \subsubsection installDirConfigCustom Custom configuration The other available setup is based on the Python 'Prefix scheme installation' : <a href="http://docs.python.org/2/install/#alternate-installation-unix-the-prefix-scheme">http://docs.python.org/2/install/#alternate-installation-unix-the-prefix-scheme</a>. You need to specify your prefix that replace the default USER_BASE. This prefix is passed to cmake through the variable PREFIX. @@ -90,18 +88,18 @@ Example : cmake -DPREFIX=/my/custom/prefix $SOURCEDIR \endcode After install completed, new files are located as follows : - - python package in PREFIX/lib/pythonX.Y/site-packages/parmepy/ - - library in PREFIX/lib/pythonX.Y/site-packages/parmepy/lib - - fortran modules in PREFIX/lib/pythonX.Y/site-packages/parmepy/include/Modules - - CMake configuration files in PREFIX/lib/pythonX.Y/site-packages/parmepy/share/CMake + - python package in PREFIX/lib/pythonX.Y/site-packages/hysop/ + - library in PREFIX/lib/pythonX.Y/site-packages/hysop/lib + - fortran modules in PREFIX/lib/pythonX.Y/site-packages/hysop/include/Modules + - CMake configuration files in PREFIX/lib/pythonX.Y/site-packages/hysop/share/CMake -\subsection buildparmepy Build +\subsection buildhysop Build -You need to build the underlying fortran libraries (mainly libparmes) and the python package. +You need to build the underlying fortran libraries (mainly libhysop) and the python package. Just run "make" to do both. make python-build will run only python package building. -\subsection installparmepy Install +\subsection installhysop Install Run : \code @@ -147,13 +145,13 @@ cmake -DPYTHON_LIBRARY=$(brew --prefix)/Cellar/python/2.7.5/Frameworks/Python.fr =================================================================================================================== -\section parmepyuse Use +\section usehysop Use Use as a classical python package : \code -import parmepy as PP -print PP.Box +import hysop as hy +print hy.Box \endcode and so on ... diff --git a/HySoP/DoxyConf/parmes.doxyfile.in b/HySoP/DoxyConf/parmes.doxyfile.in index 29c28e38642320b99cd79588670930471119719f..78907963763fed73166db0e9e9b68f613fa52774 100644 --- a/HySoP/DoxyConf/parmes.doxyfile.in +++ b/HySoP/DoxyConf/parmes.doxyfile.in @@ -733,7 +733,7 @@ WARN_LOGFILE = # spaces. # Note: If this tag is empty the current directory is searched. -INPUT = @CMAKE_SOURCE_DIR@/parmepy \ +INPUT = @CMAKE_SOURCE_DIR@/hysop \ @CMAKE_SOURCE_DIR@/DoxyConf/mainpage.doxygen \ @CMAKE_SOURCE_DIR@/src/fftw diff --git a/HySoP/HySoPConfigVersion.cmake.in b/HySoP/HySoPConfigVersion.cmake.in index 16fc03f5985e060fea9649b6acd3f2bba5f940bb..ad9445c38a0d4d54e9620b9585305cbbd3db4b30 100644 --- a/HySoP/HySoPConfigVersion.cmake.in +++ b/HySoP/HySoPConfigVersion.cmake.in @@ -1,4 +1,4 @@ -set(PACKAGE_VERSION "@Parmes_version@") +set(PACKAGE_VERSION "@HySoP_version@") # Check whether the requested PACKAGE_FIND_VERSION is compatible diff --git a/HySoP/INSTALL b/HySoP/INSTALL index 39c96164baed457dfc2eb25c1bef8805dbfe1eab..bfa0f3666075ae491a0be0d6c0f8057066294845 100644 --- a/HySoP/INSTALL +++ b/HySoP/INSTALL @@ -1,5 +1,5 @@ =========================== -Parmepy package install +HySoP package install =========================== 1 - Introduction @@ -50,22 +50,22 @@ At the end of this step BUILDDIR contains all makefiles, setup.py and other requ Some useful options for cmake : -DFFTW_DIR : where to find fftw if it's not in a "standard" place. --DWITH_SCALES=ON/OFF : to compile a parmepy version including scales (default = on) --DWITH_PPM=ON/OFF : to compile a parmepy version including scales (default = off) +-DWITH_SCALES=ON/OFF : to compile a hysop version including scales (default = on) +-DWITH_PPM=ON/OFF : to compile a hysop version including scales (default = off) -DWITH_TESTS=ON/OFF: enable testing (i.e. prepare target "make test", default = off) example : -mkdir /home/mylogin/buildParmes -cd /home/mylogin/buildParmes +mkdir /home/mylogin/buildhysop +cd /home/mylogin/buildhysop export FC=mpif90 module load cmake-2.8 -cmake -DFFTW_DIR=/softs/install/fftw3.1 ~/Softs/Parmes +cmake -DFFTW_DIR=/softs/install/fftw3.1 ~/Softs/HySoP =================================================================================================================== 3 - Build -You need to build the underlying fortran libraries (mainly libparmes) and the python package. +You need to build the underlying fortran libraries (mainly libhysop) and the python package. Just run "make" to do both. make python-build will run only python package building. diff --git a/HySoP/config.hpp.cmake b/HySoP/config.hpp.cmake index 3b5277f6e40af1518518711adfacd48bbbfa33b2..2dc745d8b2eb92303c62c2b292c3a8cb12c8d0eb 100644 --- a/HySoP/config.hpp.cmake +++ b/HySoP/config.hpp.cmake @@ -1,5 +1,5 @@ -#ifndef PARMESCONFIG_HPP -#define PARMESCONFIG_HPP +#ifndef HYSOPCONFIG_HPP +#define HYSOPCONFIG_HPP #define WITH_CMAKE #cmakedefine USE_MPI diff --git a/HySoP/hysop/__init__.py.in b/HySoP/hysop/__init__.py.in index 2edad41f57cbe5d752c9ea6c922777a3ae795fe8..941c09cc4c395eb9cbb29f168a299cbf4d46a8a5 100755 --- a/HySoP/hysop/__init__.py.in +++ b/HySoP/hysop/__init__.py.in @@ -1,5 +1,5 @@ """ -@package parmepy +@package hysop Python package dedicated to flow simulation using particular methods on hybrid architectures (MPI-GPU) @@ -18,7 +18,7 @@ __DEBUG__ = "@DEBUG@" in ["2", "3"] __PROFILE__ = "@PROFILE@" in ["0", "1"] __OPTIMIZE__ = "@OPTIM@" is "ON" -import parmepy.tools.io_utils as io +import hysop.tools.io_utils as io default_path = io.io.default_path() msg_start = '\nStarting @PACKAGE_NAME@ (no mpi) version ' msg_start += str(__version__) @@ -27,7 +27,7 @@ msg_io += 'If you want to change this, use io.set_default_path function.\n' # MPI if __MPI_ENABLED__: - import parmepy.mpi as mpi + import hysop.mpi as mpi if mpi.main_rank == 0: msg_start += ' on ' + str(mpi.main_size) + ' mpi process(es).' print msg_start @@ -44,20 +44,20 @@ __DEFAULT_DEVICE_ID__ = @OPENCL_DEFAULT_OPENCL_DEVICE_ID@ version = "1.0.0" ## Box-type physical domain -import parmepy.domain.box -Box = parmepy.domain.box.Box +import hysop.domain.box +Box = hysop.domain.box.Box ## Fields -import parmepy.fields.continuous -Field = parmepy.fields.continuous.Field +import hysop.fields.continuous +Field = hysop.fields.continuous.Field ## Variable parameters -import parmepy.fields.variable_parameter -VariableParameter = parmepy.fields.variable_parameter.VariableParameter +import hysop.fields.variable_parameter +VariableParameter = hysop.fields.variable_parameter.VariableParameter ## Simulation parameters -import parmepy.problem.simulation -Simulation = parmepy.problem.simulation.Simulation +import hysop.problem.simulation +Simulation = hysop.problem.simulation.Simulation # ## ## Problem # import problem.problem diff --git a/HySoP/hysop/constants.py b/HySoP/hysop/constants.py index d77a3e93b93887359d33dc1a8a6ca1a3b8298500..e1db5a3d21e833ca1e88bcafd71eab9ee5b45862 100644 --- a/HySoP/hysop/constants.py +++ b/HySoP/hysop/constants.py @@ -1,27 +1,27 @@ """ @file constants.py -Constant parameters required for the parmepy package (internal use). +Constant parameters required for the hysop package (internal use). """ -from parmepy import __DEBUG__, __PROFILE__ +from hysop import __DEBUG__, __PROFILE__ import numpy as np import math -from parmepy.mpi import MPI +from hysop.mpi import MPI PI = math.pi # Set default type for real and integer numbers -PARMES_REAL = np.float64 -SIZEOF_PARMES_REAL = int(PARMES_REAL(1.).nbytes) +HYSOP_REAL = np.float64 +SIZEOF_HYSOP_REAL = int(HYSOP_REAL(1.).nbytes) # type for array indices -PARMES_INDEX = np.uint32 +HYSOP_INDEX = np.uint32 # type for integers -PARMES_INTEGER = np.int32 +HYSOP_INTEGER = np.int32 # integer used for arrays dimensions -PARMES_DIM = np.int16 +HYSOP_DIM = np.int16 # float type for MPI messages -PARMES_MPI_REAL = MPI.DOUBLE +HYSOP_MPI_REAL = MPI.DOUBLE # int type for MPI messages -PARMES_MPI_INTEGER = MPI.INT +HYSOP_MPI_INTEGER = MPI.INT ## default array layout (fortran or C convention) ORDER = 'F' # to check array ordering with : diff --git a/HySoP/hysop/default_methods.py b/HySoP/hysop/default_methods.py index dac3d5721fde789ede97c3c2f45c1a44d81e7ab1..9e17fbf0ed37b57a0cb93c15c3016b65e68ef3a8 100644 --- a/HySoP/hysop/default_methods.py +++ b/HySoP/hysop/default_methods.py @@ -2,22 +2,22 @@ @file default_methods.py Default parameter values for methods in operators. """ -from parmepy.methods_keys import TimeIntegrator, Interpolation, GhostUpdate,\ +from hysop.methods_keys import TimeIntegrator, Interpolation, GhostUpdate,\ Remesh, Support, Splitting, MultiScale, Formulation, SpaceDiscretisation, \ dtCrit, Precision -from parmepy.constants import PARMES_REAL -from parmepy.numerics.integrators.runge_kutta2 import RK2 -from parmepy.numerics.integrators.runge_kutta3 import RK3 -from parmepy.numerics.interpolation import Linear -from parmepy.numerics.remeshing import L2_1 -#from parmepy.operator.discrete.stretching import Conservative +from hysop.constants import HYSOP_REAL +from hysop.numerics.integrators.runge_kutta2 import RK2 +from hysop.numerics.integrators.runge_kutta3 import RK3 +from hysop.numerics.interpolation import Linear +from hysop.numerics.remeshing import L2_1 +#from hysop.operator.discrete.stretching import Conservative ADVECTION = {TimeIntegrator: RK2, Interpolation: Linear, Remesh: L2_1, Support: '', Splitting: 'o2', MultiScale: L2_1, - Precision: PARMES_REAL} + Precision: HYSOP_REAL} -from parmepy.numerics.finite_differences import FD_C_4, FD_C_2 +from hysop.numerics.finite_differences import FD_C_4, FD_C_2 DIFFERENTIAL = {SpaceDiscretisation: FD_C_4, GhostUpdate: True} diff --git a/HySoP/hysop/domain/__init__.py b/HySoP/hysop/domain/__init__.py index b80282f2229df5785474dab01f9687dbb53f1460..79b4773973e2ba2129afceeea2ba982ef6edc34f 100644 --- a/HySoP/hysop/domain/__init__.py +++ b/HySoP/hysop/domain/__init__.py @@ -1,4 +1,4 @@ -## @package parmepy.domain +## @package hysop.domain # Physical domains descriptions and related tools. # At the time : # - Box for box-shaped domains diff --git a/HySoP/hysop/domain/box.py b/HySoP/hysop/domain/box.py index fbea902f159455e834a8ceca98db08a330690e8f..0a22d36ce795cfd1beea7f6bf887ec908aff4500 100644 --- a/HySoP/hysop/domain/box.py +++ b/HySoP/hysop/domain/box.py @@ -3,9 +3,9 @@ Box-shaped domains definition. """ -from parmepy.domain.domain import Domain -from parmepy.constants import PERIODIC, debug -import parmepy.tools.numpywrappers as npw +from hysop.domain.domain import Domain +from hysop.constants import PERIODIC, debug +import hysop.tools.numpywrappers as npw class Box(Domain): @@ -24,7 +24,7 @@ class Box(Domain): @param length : Box length. Default [1.0, ...] @param origin : Box minimum position. Default [0., ...] \code - >>> import parmepy as pp + >>> import hysop as pp >>> import numpy as np >>> b = pp.Box() >>> (b.end == np.asarray([1.0, 1.0, 1.0])).all() diff --git a/HySoP/hysop/domain/domain.py b/HySoP/hysop/domain/domain.py index 4110129bfbade2b778ba2504e7039023ed69fc26..e0c5effbdbd2bfe2bebeae258fe029b88d5e6013 100644 --- a/HySoP/hysop/domain/domain.py +++ b/HySoP/hysop/domain/domain.py @@ -5,10 +5,10 @@ Abstract interface for physical domains description. """ from abc import ABCMeta, abstractmethod -from parmepy.constants import debug, DEFAULT_TASK_ID, PERIODIC -from parmepy.mpi.topology import Cartesian -from parmepy.mpi import main_rank, main_size, main_comm -from parmepy.tools.parameters import MPI_params +from hysop.constants import debug, DEFAULT_TASK_ID, PERIODIC +from hysop.mpi.topology import Cartesian +from hysop.mpi import main_rank, main_size, main_comm +from hysop.tools.parameters import MPI_params import numpy as np @@ -33,7 +33,7 @@ class Domain(object): self.dimension = dimension ## A list of all the topologies defined on this domain. ## Each topology is unique in the sense defined by - ## the comparison operator in the class parmepy.mpi.topology.Cartesian. + ## the comparison operator in the class hysop.mpi.topology.Cartesian. self.topologies = {} ## Connectivity between mpi tasks and proc numbers : @@ -62,7 +62,7 @@ class Domain(object): def isOnTask(self, params): """ - @param params : a parmepy.mpi.MPI_params object + @param params : a hysop.mpi.MPI_params object or an int (task number) @return true if params.task_id (or params if int) corresponds with task_id of the current proc. @@ -95,14 +95,14 @@ class Domain(object): def create_topology(self, discretization, dim=None, mpi_params=None, shape=None, cutdir=None): """ - Create or return an existing parmepy.mpi.topology. + Create or return an existing hysop.mpi.topology. Either it gets the topology corresponding to the input arguments if it exists (in the sense of the comparison operator defined in - parmepy.mpi.topology.Cartesian) + hysop.mpi.topology.Cartesian) or it creates a new topology and register it i n the topology list. @param domain : the geometry; it must be a box. - @param discretization : a parmepy.tools.parameters.Discretization + @param discretization : a hysop.tools.parameters.Discretization with: - resolution = Number of points in the domain in each direction. We assume that first point corresponds @@ -112,7 +112,7 @@ class Domain(object): x[Discretization.resolution-1] = domain.Lengths_x. - ghosts = number of points in the ghost layer @param dim : dimension of the topology - @param mpi_params : a parmepy.tools.parameters.MPI_params, with: + @param mpi_params : a hysop.tools.parameters.MPI_params, with: - comm : MPI communicator used to create this topology (default = main_comm) - task_id : id of the task that owns this topology. @@ -140,7 +140,7 @@ class Domain(object): def create_plane_topology_from_mesh(self, localres, global_start, cdir=None, **kwds): """ - Create or return an existing parmepy.mpi.topology. + Create or return an existing hysop.mpi.topology. Define a 'plane' (1D) topology for a given mesh resolution. This function is to be used when topo/discretization features diff --git a/HySoP/hysop/domain/mesh.py b/HySoP/hysop/domain/mesh.py index 27e7a90d2b821ee3c010d7df73e07c4e792b6adf..616be81b42508c5530b63aa8a313ea1fcfce2f25 100644 --- a/HySoP/hysop/domain/mesh.py +++ b/HySoP/hysop/domain/mesh.py @@ -1,11 +1,11 @@ """ @file mesh.py local cartesian grid. """ -from parmepy.constants import debug -import parmepy.tools.numpywrappers as npw -from parmepy.tools.parameters import Discretization +from hysop.constants import debug +import hysop.tools.numpywrappers as npw +from hysop.tools.parameters import Discretization import numpy as np -from parmepy.tools.misc import utils +from hysop.tools.misc import utils class Mesh(object): @@ -65,7 +65,7 @@ class Mesh(object): """ @param parent : the geometry on which this mesh is defined (it must be a rectangle or a rectangular cuboid) - @param discretization : parmepy.tools.parameters.Discretization which + @param discretization : hysop.tools.parameters.Discretization which describes the global discretization of the domain (resolution and ghost layer) @param global_start diff --git a/HySoP/hysop/domain/subsets/__init__.py b/HySoP/hysop/domain/subsets/__init__.py index 4dce0d91ff94d1fdae5d437c4e1988dd95f2ec1e..6d0e46c97bb49cfd6f6972d07fd4aecd945d040a 100644 --- a/HySoP/hysop/domain/subsets/__init__.py +++ b/HySoP/hysop/domain/subsets/__init__.py @@ -1,3 +1,3 @@ -## @package parmepy.domain.subsets +## @package hysop.domain.subsets # Description (geometry) and discretisation (grid and data distribution) of some subsets # of a domain diff --git a/HySoP/hysop/domain/subsets/boxes.py b/HySoP/hysop/domain/subsets/boxes.py index 3a94ebad6541ad56388387b0671e7da71cf28ad3..ab96176542218c2ca3da41601f295ba46dfba288 100644 --- a/HySoP/hysop/domain/subsets/boxes.py +++ b/HySoP/hysop/domain/subsets/boxes.py @@ -2,13 +2,13 @@ @file boxes.py 2D rectangle or 3D Rectangular Cuboid subsets """ -from parmepy.domain.subsets.subset import Subset -from parmepy.domain.subsets.submesh import SubMesh -import parmepy.tools.numpywrappers as npw -from parmepy import Field -from parmepy.fields.discrete import DiscreteField +from hysop.domain.subsets.subset import Subset +from hysop.domain.subsets.submesh import SubMesh +import hysop.tools.numpywrappers as npw +from hysop import Field +from hysop.fields.discrete import DiscreteField import numpy as np -from parmepy.mpi.topology import Cartesian +from hysop.mpi.topology import Cartesian class SubBox(Subset): @@ -20,7 +20,7 @@ class SubBox(Subset): """ """ super(SubBox, self).__init__(**kwds) - ## Dictionnary of parmepy.domain.mesh.Submesh, keys=topo, values=mesh + ## Dictionnary of hysop.domain.mesh.Submesh, keys=topo, values=mesh self.mesh = {} ## coordinates of the lowest point of this subset self.origin = npw.asrealarray(origin).copy() @@ -55,7 +55,7 @@ class SubBox(Subset): def discretize(self, topo): """ Compute a local submesh on the subset, for a given topology - @param topo: a parmepy topology + @param topo: a hysop topology """ assert isinstance(topo, Cartesian) # Find the indices of starting/ending points in the global_end @@ -73,8 +73,8 @@ class SubBox(Subset): def integrate_field_on_proc(self, field, topo, component=0): """ - @param[in] field : a parmepy continuous field - @param[in] topo : a parmepy.mpi.topology.Cartesian topology + @param[in] field : a hysop continuous field + @param[in] topo : a hysop.mpi.topology.Cartesian topology @param[in] component : number of the component of field integrate the field on the subset on the current process (i.e. no mpi reduce over all processes) for the discretization @@ -95,7 +95,7 @@ class SubBox(Subset): """ @param[in] func : a python function, depending on the space coordinates. See below for the required signature. - @param[in] topo : a parmepy.mpi.topology.Cartesian topology + @param[in] topo : a hysop.mpi.topology.Cartesian topology @param[in] nbc : number of components of the return value from func @return integral of a component of the input field over the current subset, for the discretization given by @@ -115,7 +115,7 @@ class SubBox(Subset): """ @param[in] func : a python function, depending on the space coordinates. See below for the required signature. - @param[in] : a parmepy.mpi.topology.Cartesian topology + @param[in] : a hysop.mpi.topology.Cartesian topology integrate a funcion on the subset on the current process (i.e. no mpi reduce over all processes) """ @@ -132,7 +132,7 @@ class SubBox(Subset): def integrate_dfield_on_proc(self, field, component=0): """ - @param[in] field : a parmepy discrete field + @param[in] field : a hysop discrete field @param[in] component : number of the component of field integrate the field on the subset on the current process (i.e. no mpi reduce over all processes) for the discretization diff --git a/HySoP/hysop/domain/subsets/control_box.py b/HySoP/hysop/domain/subsets/control_box.py index 9dcb57965b45e07cd773d9028959630639be0821..00325b79ed9d301688fbfed08bb718ae2eae95ca 100644 --- a/HySoP/hysop/domain/subsets/control_box.py +++ b/HySoP/hysop/domain/subsets/control_box.py @@ -2,9 +2,9 @@ @file control_box.py Define a volume of control inside a domain (volume + all faces) """ -from parmepy.domain.subsets.boxes import SubBox +from hysop.domain.subsets.boxes import SubBox import numpy as np -import parmepy.tools.numpywrappers as npw +import hysop.tools.numpywrappers as npw class ControlBox(SubBox): @@ -64,8 +64,8 @@ class ControlBox(SubBox): def integrate_on_faces(self, field, topo, list_dir, component=0, root=None): """ - @param[in] field : a parmepy continuous field - @param[in] topo : a parmepy.mpi.topology.Cartesian topology + @param[in] field : a hysop continuous field + @param[in] topo : a hysop.mpi.topology.Cartesian topology @param[in] root : root process used for mpi reduction. If None reduction is done on all processes from topo. @param[in] list_dir : list of surfaces on which we must integrate. @@ -89,8 +89,8 @@ class ControlBox(SubBox): def integrate_on_faces_allc(self, field, topo, list_dir, root=None): """ - @param[in] field : a parmepy continuous field - @param[in] topo : a parmepy.mpi.topology.Cartesian topology + @param[in] field : a hysop continuous field + @param[in] topo : a hysop.mpi.topology.Cartesian topology @param[in] root : root process used for mpi reduction. If None reduction is done on all processes from topo. @param[in] list_dir : list of surfaces on which we must integrate. diff --git a/HySoP/hysop/domain/subsets/cylinder.py b/HySoP/hysop/domain/subsets/cylinder.py index 1459d7db1d12947f6635a85134b9eab35b45b762..55c4da9183b62d5012e85702664ea08c37ed33ff 100644 --- a/HySoP/hysop/domain/subsets/cylinder.py +++ b/HySoP/hysop/domain/subsets/cylinder.py @@ -2,11 +2,11 @@ @file sphere.py Spherical or hemispherical subset. """ -from parmepy.domain.subsets.subset import Subset +from hysop.domain.subsets.subset import Subset import numpy as np -import parmepy.tools.numpywrappers as npw -from parmepy.mpi.topology import Cartesian -from parmepy.domain.subsets.boxes import SubBox +import hysop.tools.numpywrappers as npw +from hysop.mpi.topology import Cartesian +from hysop.domain.subsets.boxes import SubBox class Cylinder(Subset): diff --git a/HySoP/hysop/domain/subsets/porous.py b/HySoP/hysop/domain/subsets/porous.py index d6f6aa4c4c4ff48d47ea91f087dc709e294769da..2ad0178ad534f8746372d6792a11f7f6a98096bd 100644 --- a/HySoP/hysop/domain/subsets/porous.py +++ b/HySoP/hysop/domain/subsets/porous.py @@ -2,13 +2,13 @@ @file porous.py Porous subset in 2 or 3D domains. """ -from parmepy.domain.subsets.subset import Subset +from hysop.domain.subsets.subset import Subset import numpy as np -import parmepy.tools.numpywrappers as npw -from parmepy.mpi.topology import Cartesian -from parmepy.domain.subsets.boxes import SubBox -from parmepy.domain.subsets.sphere import Sphere, HemiSphere -from parmepy.domain.subsets.cylinder import Cylinder, HemiCylinder +import hysop.tools.numpywrappers as npw +from hysop.mpi.topology import Cartesian +from hysop.domain.subsets.boxes import SubBox +from hysop.domain.subsets.sphere import Sphere, HemiSphere +from hysop.domain.subsets.cylinder import Cylinder, HemiCylinder class Porous(Subset): diff --git a/HySoP/hysop/domain/subsets/sphere.py b/HySoP/hysop/domain/subsets/sphere.py index 290146e0e8bb7e503a0c89afc537e56300b0b616..03e1af94cfe1904e780bb351ca3245319e3432e8 100644 --- a/HySoP/hysop/domain/subsets/sphere.py +++ b/HySoP/hysop/domain/subsets/sphere.py @@ -2,11 +2,11 @@ @file sphere.py Spherical or hemispherical subset in 2 or 3D domains. """ -from parmepy.domain.subsets.subset import Subset +from hysop.domain.subsets.subset import Subset import numpy as np -import parmepy.tools.numpywrappers as npw -from parmepy.mpi.topology import Cartesian -from parmepy.domain.subsets.boxes import SubBox +import hysop.tools.numpywrappers as npw +from hysop.mpi.topology import Cartesian +from hysop.domain.subsets.boxes import SubBox class Sphere(Subset): diff --git a/HySoP/hysop/domain/subsets/submesh.py b/HySoP/hysop/domain/subsets/submesh.py index b69e3eaf397fde1a256886e04043952896b81e8f..f2e8dfffc6990f3c7628511cb077824c9680067b 100644 --- a/HySoP/hysop/domain/subsets/submesh.py +++ b/HySoP/hysop/domain/subsets/submesh.py @@ -1,10 +1,10 @@ """ @file submesh.py local cartesian grid. """ -import parmepy.tools.numpywrappers as npw -from parmepy.tools.parameters import Discretization +import hysop.tools.numpywrappers as npw +from hysop.tools.parameters import Discretization import numpy as np -from parmepy.tools.misc import utils +from hysop.tools.misc import utils class SubMesh(object): diff --git a/HySoP/hysop/domain/subsets/subset.py b/HySoP/hysop/domain/subsets/subset.py index bb01a398d7eeab3efa7eec6b3880e13f91afc0a9..c085db6a28a3e5e6e3829e051411390973d8819a 100644 --- a/HySoP/hysop/domain/subsets/subset.py +++ b/HySoP/hysop/domain/subsets/subset.py @@ -2,12 +2,12 @@ @file subset.py A subset of a given domain. """ -from parmepy.domain.domain import Domain +from hysop.domain.domain import Domain import numpy as np -from parmepy.mpi.topology import Cartesian -from parmepy.fields.discrete import DiscreteField -import parmepy.tools.numpywrappers as npw -from parmepy.fields.continuous import Field +from hysop.mpi.topology import Cartesian +from hysop.fields.discrete import DiscreteField +import hysop.tools.numpywrappers as npw +from hysop.fields.continuous import Field class Subset(object): @@ -75,7 +75,7 @@ class Subset(object): """ Create the list of indices for points inside the subset for a given topo. - @param topo: a parmepy.mpi.topology.Cartesian + @param topo: a hysop.mpi.topology.Cartesian """ assert isinstance(topo, Cartesian) if topo not in self.ind: @@ -106,7 +106,7 @@ class Subset(object): def intersection(slist, topo): """ @param slist : a list of subsets - @param topo : a parmepy.mpi.topology.Cartesian + @param topo : a hysop.mpi.topology.Cartesian @return : the intersection of a list of subsets for a given topo as a tuple of arrays, like self.ind[topo] """ @@ -131,7 +131,7 @@ class Subset(object): def union(slist, topo): """ @param slist : a list of subsets - @param topo : a parmepy.mpi.topology.Cartesian + @param topo : a hysop.mpi.topology.Cartesian @return : the union of a set of subsets for a given topo as a tuple of arrays, like self.ind[topo] """ @@ -141,7 +141,7 @@ class Subset(object): def union_as_bool(slist, topo): """ @param slist : a list of subsets - @param topo : a parmepy.mpi.topology.Cartesian + @param topo : a hysop.mpi.topology.Cartesian @return : the union of a set of subsets for a given topo as an array of boolean """ @@ -167,7 +167,7 @@ class Subset(object): """ @param s1 : first subset @param s2 : second subset - @param topo : a parmepy.mpi.topology.Cartesian + @param topo : a hysop.mpi.topology.Cartesian @return : subtract a subset from another for a given topo and return a tuple of arrays, like self.ind[topo] """ @@ -186,7 +186,7 @@ class Subset(object): """ @param s1 : a list of subsets @param s2 : a second list of subsets - @param topo : a parmepy.mpi.topology.Cartesian + @param topo : a hysop.mpi.topology.Cartesian @return : subtract a the union of subsets from the union of other subsets for a given topo and return a tuple of arrays, like self.ind[topo] @@ -197,8 +197,8 @@ class Subset(object): def integrate_field_allc(self, field, topo, root=None): """ - @param[in] field : a parmepy continuous field - @param[in] topo : a parmepy.mpi.topology.Cartesian topology + @param[in] field : a hysop continuous field + @param[in] topo : a hysop.mpi.topology.Cartesian topology @param[in] root : root process used for mpi reduction. If None reduction is done on all processes from topo. @return a numpy array, with res[i] = integral of component i @@ -217,8 +217,8 @@ class Subset(object): def integrate_field(self, field, topo, component=0, root=None): """ - @param[in] field : a parmepy continuous field - @param[in] topo : a parmepy.mpi.topology.Cartesian topology + @param[in] field : a hysop continuous field + @param[in] topo : a hysop.mpi.topology.Cartesian topology @param[in] component : number of the component of field to integrate @return integral of a component of the input field @@ -233,8 +233,8 @@ class Subset(object): def integrate_field_on_proc(self, field, topo, component=0): """ - @param[in] field : a parmepy continuous field - @param[in] topo : a parmepy.mpi.topology.Cartesian topology + @param[in] field : a hysop continuous field + @param[in] topo : a hysop.mpi.topology.Cartesian topology @param[in] component : number of the component of field integrate the field on the subset on the current process (i.e. no mpi reduce over all processes) for the discretization @@ -252,7 +252,7 @@ class Subset(object): def integrate_dfield_allc(self, field, root=None): """ - @param[in] field : a parmepy discrete field + @param[in] field : a hysop discrete field @param[in] root : root process used for mpi reduction. If None reduction is done on all processes from topo. @return a numpy array, with res[i] = integral of component i @@ -271,7 +271,7 @@ class Subset(object): def integrate_dfield(self, field, component=0, root=None): """ - @param[in] field : a parmepy discrete field + @param[in] field : a hysop discrete field @param[in] component : number of the component of field to integrate @return integral of a component of the input field @@ -286,7 +286,7 @@ class Subset(object): def integrate_dfield_on_proc(self, field, component=0): """ - @param[in] field : a parmepy discrete field + @param[in] field : a hysop discrete field @param[in] component : number of the component of field integrate the field on the subset on the current process (i.e. no mpi reduce over all processes) for the discretization diff --git a/HySoP/hysop/domain/tests/test_box.py b/HySoP/hysop/domain/tests/test_box.py index ecdd1f95b95395be95ae590aab8fb2c25877507d..baadc3322a03f9e8119a360990e7ab17acc7f50a 100644 --- a/HySoP/hysop/domain/tests/test_box.py +++ b/HySoP/hysop/domain/tests/test_box.py @@ -1,11 +1,11 @@ """ -Testing parmepy.domain.box.Box +Testing hysop.domain.box.Box """ -from parmepy.constants import PERIODIC, DEFAULT_TASK_ID -from parmepy.domain.box import Box +from hysop.constants import PERIODIC, DEFAULT_TASK_ID +from hysop.domain.box import Box from numpy import allclose, ones_like, zeros_like -import parmepy.tools.numpywrappers as npw -from parmepy.mpi import main_size, main_rank +import hysop.tools.numpywrappers as npw +from hysop.mpi import main_size, main_rank def test_create_box1(): @@ -63,7 +63,7 @@ def test_create_box4(): # Test topology creation ... N = 33 -from parmepy.tools.parameters import Discretization, MPI_params +from hysop.tools.parameters import Discretization, MPI_params r3D = Discretization([N, N, 17]) # No ghosts r3DGh = Discretization([N, N, 17], [2, 2, 2]) # Ghosts @@ -72,12 +72,12 @@ GPU = 29 proc_tasks = [CPU] * main_size if main_size > 1: proc_tasks[-1] = GPU -from parmepy.mpi import main_comm +from hysop.mpi import main_comm comm_s = main_comm.Split(color=proc_tasks[main_rank], key=main_rank) mpCPU = MPI_params(comm=comm_s, task_id=CPU) mpGPU = MPI_params(comm=comm_s, task_id=GPU) -from parmepy.mpi.topology import Cartesian +from hysop.mpi.topology import Cartesian def test_topo_standard(): @@ -124,7 +124,7 @@ def test_topo_plane(): def test_topo_from_mesh(): # e.g. for fftw dom = Box(proc_tasks=proc_tasks) - from parmepy.f2py import fftw2py + from hysop.f2py import fftw2py if dom.isOnTask(CPU): localres, global_start = fftw2py.init_fftw_solver( r3D.resolution, dom.length, comm=comm_s.py2f()) diff --git a/HySoP/hysop/domain/tests/test_control_box.py b/HySoP/hysop/domain/tests/test_control_box.py index dc7b2cda2e6b071ea66bdeefd45bbfd9678e29c5..09d4cdc310339f76fe7ac88a1e1287a234ae6ea7 100644 --- a/HySoP/hysop/domain/tests/test_control_box.py +++ b/HySoP/hysop/domain/tests/test_control_box.py @@ -1,10 +1,10 @@ -from parmepy.domain.subsets.control_box import ControlBox -from parmepy.domain.subsets.boxes import SubBox -from parmepy.tools.parameters import Discretization -from parmepy import Field, Box +from hysop.domain.subsets.control_box import ControlBox +from hysop.domain.subsets.boxes import SubBox +from hysop.tools.parameters import Discretization +from hysop import Field, Box import numpy as np import math -import parmepy.tools.numpywrappers as npw +import hysop.tools.numpywrappers as npw Nx = 128 diff --git a/HySoP/hysop/domain/tests/test_mesh.py b/HySoP/hysop/domain/tests/test_mesh.py index 5cdb6a168cc1fef1492fc3f1c57565c90ef1b7af..993c6df42db5067019120075fc0012b11654a547 100644 --- a/HySoP/hysop/domain/tests/test_mesh.py +++ b/HySoP/hysop/domain/tests/test_mesh.py @@ -1,11 +1,11 @@ """ -@file parmepy.domain.tests.test_mesh +@file hysop.domain.tests.test_mesh Testing regular grids. """ -from parmepy.domain.box import Box -from parmepy.tools.parameters import Discretization -from parmepy.mpi import main_size, main_rank -import parmepy.tools.numpywrappers as npw +from hysop.domain.box import Box +from hysop.tools.parameters import Discretization +from hysop.mpi import main_size, main_rank +import hysop.tools.numpywrappers as npw Nx = Ny = Nz = 32 diff --git a/HySoP/hysop/domain/tests/test_regular_subset.py b/HySoP/hysop/domain/tests/test_regular_subset.py index 1c1fd4dc4cc75934ba8aece03010c6946383951a..46dee15d76e06ad1510b1a8e3e1911c3d2765d2f 100644 --- a/HySoP/hysop/domain/tests/test_regular_subset.py +++ b/HySoP/hysop/domain/tests/test_regular_subset.py @@ -1,7 +1,7 @@ -from parmepy.domain.subsets.boxes import SubBox -from parmepy.tools.parameters import Discretization -from parmepy import Field, Box -import parmepy.tools.numpywrappers as npw +from hysop.domain.subsets.boxes import SubBox +from hysop.tools.parameters import Discretization +from hysop import Field, Box +import hysop.tools.numpywrappers as npw import numpy as np import math diff --git a/HySoP/hysop/domain/tests/test_submesh.py b/HySoP/hysop/domain/tests/test_submesh.py index 1e0f56d6bb4edd6c8affdfa62b21f33ecc5a7030..f599b6fea722fb29d778c8f52b561e8c4d81c1e8 100644 --- a/HySoP/hysop/domain/tests/test_submesh.py +++ b/HySoP/hysop/domain/tests/test_submesh.py @@ -1,11 +1,11 @@ """ -@file parmepy.domain.tests.test_mesh +@file hysop.domain.tests.test_mesh Testing regular grids. """ -from parmepy.domain.box import Box -from parmepy.tools.parameters import Discretization -from parmepy.domain.subsets.submesh import SubMesh -from parmepy.tools.misc import utils +from hysop.domain.box import Box +from hysop.tools.parameters import Discretization +from hysop.domain.subsets.submesh import SubMesh +from hysop.tools.misc import utils import numpy as np Nx = Ny = Nz = 32 diff --git a/HySoP/hysop/domain/tests/test_subset.py b/HySoP/hysop/domain/tests/test_subset.py index 61c63677aada4025eee0ba8d790f31ddb34caaf9..765b942ff7ed940e8837649ddf839f95c7280338 100644 --- a/HySoP/hysop/domain/tests/test_subset.py +++ b/HySoP/hysop/domain/tests/test_subset.py @@ -1,15 +1,15 @@ -from parmepy.domain.subsets.sphere import Sphere, HemiSphere -from parmepy.domain.subsets.subset import Subset -from parmepy.domain.subsets.boxes import SubBox -from parmepy.domain.subsets.cylinder import Cylinder, HemiCylinder -from parmepy.operator.hdf_io import HDF_Reader -from parmepy.tools.parameters import Discretization, IO_params -from parmepy import Field, Box -from parmepy.mpi.topology import Cartesian -import parmepy.tools.numpywrappers as npw +from hysop.domain.subsets.sphere import Sphere, HemiSphere +from hysop.domain.subsets.subset import Subset +from hysop.domain.subsets.boxes import SubBox +from hysop.domain.subsets.cylinder import Cylinder, HemiCylinder +from hysop.operator.hdf_io import HDF_Reader +from hysop.tools.parameters import Discretization, IO_params +from hysop import Field, Box +from hysop.mpi.topology import Cartesian +import hysop.tools.numpywrappers as npw import numpy as np import math -from parmepy.mpi import main_size +from hysop.mpi import main_size import mpi4py diff --git a/HySoP/hysop/f2py/fftw2py.f90 b/HySoP/hysop/f2py/fftw2py.f90 index c032cd0500eaf1c1f52cdbd3e2a3de23d9671bca..cfa244b942ff37c6c64458e2b1e72d808e3b0f2a 100755 --- a/HySoP/hysop/f2py/fftw2py.f90 +++ b/HySoP/hysop/f2py/fftw2py.f90 @@ -5,7 +5,7 @@ module fftw2py use client_data - use parmesparam + use hysopparam !> 2d case use fft2d !> 3d case diff --git a/HySoP/hysop/f2py/parameters.f90 b/HySoP/hysop/f2py/parameters.f90 index b45d02594f75c2ed32ea13d604c89b3b72050239..aa0ad767d0cf935d1a06ed384aa0c89275977ee9 100755 --- a/HySoP/hysop/f2py/parameters.f90 +++ b/HySoP/hysop/f2py/parameters.f90 @@ -2,7 +2,7 @@ !! !! see https://github.com/numpy/numpy/issues/2428 !! for some issues -module parmesparam +module hysopparam implicit none @@ -11,9 +11,9 @@ module parmesparam ! integer precision kind integer, parameter :: ik = 8 -end module parmesparam +end module hysopparam -module parmesparam_sp +module hysopparam_sp implicit none @@ -22,4 +22,4 @@ module parmesparam_sp ! integer precision kind integer, parameter :: ik = 8 -end module parmesparam_sp +end module hysopparam_sp diff --git a/HySoP/hysop/f2py/scales2py.f90 b/HySoP/hysop/f2py/scales2py.f90 index 78845354729494b91c0f97220010d54e4ab4dd06..c021618b45a1f723b4ea2176bf7e22036df5956b 100755 --- a/HySoP/hysop/f2py/scales2py.f90 +++ b/HySoP/hysop/f2py/scales2py.f90 @@ -6,7 +6,7 @@ use advec, only : advec_init,advec_step,advec_step_Inter_basic,advec_step_Inter_ use advec_vect, only : advec_step_Vect,advec_step_Inter_basic_Vect use interpolation_velo, only : interpol_init use mpi -use parmesparam +use hysopparam implicit none diff --git a/HySoP/hysop/fakef2py/__init__.py b/HySoP/hysop/fakef2py/__init__.py index 23aca8c10d71d88b7d4fd5e17a6e8111a6651ae4..58da6ae35dd3554bf354e34a5f0878ee4a7c427c 100644 --- a/HySoP/hysop/fakef2py/__init__.py +++ b/HySoP/hysop/fakef2py/__init__.py @@ -1,4 +1,4 @@ -## @package parmepy.f2py +## @package hysop.f2py # f2py interfaces to fortran files. # # Driver routines to generate python functions @@ -11,9 +11,9 @@ # # Usage : # \code -# import parmepy.f2py -# ppfft = parmepy.f2py.fftw2py -# scales = parmepy.f2py.scales2py +# import hysop.f2py +# ppfft = hysop.f2py.fftw2py +# scales = hysop.f2py.scales2py # ... # ppfft.init_fftw_solver(...) # scales.init_advection_solver(...) diff --git a/HySoP/hysop/fakef2py/fftw2py/__init__.py b/HySoP/hysop/fakef2py/fftw2py/__init__.py index 7c0957d86fd098949227d0a666ddfab85f21aa6f..95df2255c1722b1a16cd39a6452fe5d94a7385cb 100644 --- a/HySoP/hysop/fakef2py/fftw2py/__init__.py +++ b/HySoP/hysop/fakef2py/fftw2py/__init__.py @@ -1,5 +1,5 @@ msg = " ==== Import f2py.fftw2py warning ==== \n" msg += "The package is empty since you disable " -msg += "fftw when installing Parmes. \n" +msg += "fftw when installing HySoP. \n" msg += "Whatever you'll do with this will probably failed." print (msg) diff --git a/HySoP/hysop/fakef2py/scales2py/__init__.py b/HySoP/hysop/fakef2py/scales2py/__init__.py index 984b9f3389f264b3b22d795d9e29bfbc307955f5..58ba76d2f7aceb911bb77628ceefced262357ce7 100644 --- a/HySoP/hysop/fakef2py/scales2py/__init__.py +++ b/HySoP/hysop/fakef2py/scales2py/__init__.py @@ -1,5 +1,5 @@ msg = " ==== Import f2py.scales2py warning ==== \n" msg += "The package is empty since you disable " -msg += "scales when installing Parmes. \n" +msg += "scales when installing HySoP. \n" msg += "Whatever you'll do with this will probably failed." print (msg) diff --git a/HySoP/hysop/fields/__init__.py b/HySoP/hysop/fields/__init__.py index 4cd9647d2fa94dd3ade4b7d5e3f6fdb88ca855e7..607e76f906775fe56b0ff3bbd214ecc3d7045ae6 100644 --- a/HySoP/hysop/fields/__init__.py +++ b/HySoP/hysop/fields/__init__.py @@ -1,4 +1,4 @@ -## @package parmepy.fields +## @package hysop.fields # Tools to build and use 1, 2 or 3D fields (scalar, vector or # any number of components.) # @@ -13,17 +13,17 @@ # - a name # # A continuous field may have several discretisations (i.e. may -# be associated with different parmepy topologies). +# be associated with different hysop topologies). # # \section fieldsTuto How to define and discretize a field # -# \b Classes : parmepy.fields.continuous.Field, -# parmepy.fields.discrete.DiscreteField +# \b Classes : hysop.fields.continuous.Field, +# hysop.fields.discrete.DiscreteField # # First of all, one must have defined a domain : # \code -# from parmepy.domain.box import Box -# from parmepy.fields.continuous import Field +# from hysop.domain.box import Box +# from hysop.fields.continuous import Field # # # First, the domain : 3D and 2D boxes # dom3D = Box() @@ -53,7 +53,7 @@ # \endcode # # Now, let's turn to fields discretisation. We suppose that -# two parmepy topologies have been defined (see parmepy.mpi.topology) +# two hysop topologies have been defined (see hysop.mpi.topology) # on domain dom3D: # - topo1 : with a local (for each mpi process) resolution "r1" # - topo2 : r2 @@ -170,7 +170,7 @@ # as in the func_1_3D arg list. # - setExtraParameters must be called for any new value of alpha/t # - if the field has to be initialized at each step, or at least several times, -# you'd rather use parmepy.operator.analytic.Analytic. +# you'd rather use hysop.operator.analytic.Analytic. # - if you only need to compute the value of the field at a specific point, # you can just call: #\code @@ -213,6 +213,6 @@ # Then the setup process of the problem/operators will automatically # performs the topologies creation and the discretisation of the fields. # See operators/problem documentation for more details or -# the examples in Parmes/Examples. +# the examples in HySoP/Examples. # # diff --git a/HySoP/hysop/fields/continuous.py b/HySoP/hysop/fields/continuous.py index f36500e2959f6d2e2294c3d3d4805b92d6ab2f1c..f3ceea00a0a58ed69db86cf08d14c382c98511ca 100644 --- a/HySoP/hysop/fields/continuous.py +++ b/HySoP/hysop/fields/continuous.py @@ -3,10 +3,10 @@ Continuous variable description. """ -from parmepy.constants import debug -from parmepy.fields.discrete import DiscreteField -from parmepy.mpi import main_rank -from parmepy.tools.profiler import Profiler +from hysop.constants import debug +from hysop.fields.discrete import DiscreteField +from hysop.mpi import main_rank +from hysop.tools.profiler import Profiler class Field(object): @@ -19,7 +19,7 @@ class Field(object): discretize it. Example : - if topo1 and topo2 are two parmepy.mpi.topology.Cartesian objects: + if topo1 and topo2 are two hysop.mpi.topology.Cartesian objects: \code scal = Field(domain=dom, name='Scalar') # Discretize scal on two different topologies @@ -52,7 +52,7 @@ class Field(object): @param isVector : true if the field is a vector. @param nbComponents : Components number (1 for scalar fields). @param doVectorize : true if formula must be vectorized - (i.e. is of type 'user_func_2', see parmepy.fields for details) + (i.e. is of type 'user_func_2', see hysop.fields for details) Warning: if set, this formula will overwrite any previous setting. """ @@ -65,8 +65,8 @@ class Field(object): name = 'unnamed' self.name = name ## Dictionnary of all the discretizations of this field. - ## Key = parmepy.mpi.topology.Cartesian, - ## value =parmepy.fields.discrete.DiscreteField. + ## Key = hysop.mpi.topology.Cartesian, + ## value =hysop.fields.discrete.DiscreteField. ## Example : vel = discreteFields[topo] self.discreteFields = {} ## Is this field a vector field? @@ -120,7 +120,7 @@ class Field(object): values. @param formula : a user-defined python function @param doVectorize : true if formula must be vectorized - (i.e. is of type 'user_func_2', see parmepy.fields for details) + (i.e. is of type 'user_func_2', see hysop.fields for details) Warning: if set, this formula will overwrite any previous setting. """ self.formula = formula @@ -134,7 +134,7 @@ class Field(object): or with setFormula method. If formula is not set, field values are set to zero. @param[in] time current time - @param[in] topo a parmepy.mpi.Cartesian topology on which + @param[in] topo a hysop.mpi.Cartesian topology on which the field must be initialized. If topo is not set, all discrete fields will be initialized. """ @@ -182,7 +182,7 @@ class Field(object): """ Get the discretization of the current field associated to topo. - @param : a parmepy.mpi.Cartesian topology. + @param : a hysop.mpi.Cartesian topology. """ try: return self.discreteFields[topo] @@ -238,12 +238,12 @@ class Field(object): self.discreteFields.values()[0].dump(filename) def hdf_dump(self, discretization, io_params=None): - from parmepy.operator.hdf_io import HDF_Writer - from parmepy.problem.simulation import Simulation + from hysop.operator.hdf_io import HDF_Writer + from hysop.problem.simulation import Simulation simu = Simulation(nbIter=1) if io_params is None: - from parmepy.tools.parameters import IO_params - from parmepy.constants import HDF5 + from hysop.tools.parameters import IO_params + from hysop.constants import HDF5 io_params = IO_params(self.name + '_', fileformat=HDF5) wr = HDF_Writer(variables={self: discretization}, io_params=io_params) @@ -253,11 +253,11 @@ class Field(object): wr.finalize() def hdf_load(self, discretization, io_params=None, restart=None): - from parmepy.operator.hdf_io import HDF_Reader + from hysop.operator.hdf_io import HDF_Reader if io_params is None: - from parmepy.tools.parameters import IO_params - from parmepy.constants import HDF5 + from hysop.tools.parameters import IO_params + from hysop.constants import HDF5 io_params = IO_params(self.name + '_', fileformat=HDF5) read = HDF_Reader(variables={self: discretization}, io_params=io_params, restart=restart) diff --git a/HySoP/hysop/fields/discrete.py b/HySoP/hysop/fields/discrete.py index e0edac882f14d3b2a38651520e4031b62d6c55a4..605da51e49a6eaf170a046f56799ccae1cd7c76b 100644 --- a/HySoP/hysop/fields/discrete.py +++ b/HySoP/hysop/fields/discrete.py @@ -3,14 +3,13 @@ Discrete fields (scalars or vectors) descriptions. """ -from parmepy.constants import debug +from hysop.constants import debug import cPickle from itertools import count -from parmepy.mpi import main_rank -from parmepy.tools.profiler import profile, Profiler +from hysop.mpi import main_rank +from hysop.tools.profiler import profile, Profiler import numpy as np -from parmepy.constants import ORDER, PARMES_REAL -import parmepy.tools.numpywrappers as npw +import hysop.tools.numpywrappers as npw import numpy.linalg as la @@ -23,7 +22,7 @@ class DiscreteField(object): More precisely a discrete field : - is the discrete representation of a continuous field for some - local resolution given by a parmepy.mpi.topology.Cartesian topology. + local resolution given by a hysop.mpi.topology.Cartesian topology. - can be a vector or a scalar Thus, this object is the one which deals with memory allocation @@ -37,7 +36,7 @@ class DiscreteField(object): by using discrete.initialize(formula=your_function_name). Example 1 : direct build of a discrete field - (topo being a pre-defined parmepy.mpi.topology.Cartesian object) : + (topo being a pre-defined hysop.mpi.topology.Cartesian object) : \code velocity = ScalarField(topo) def myfunc(x,y,z): @@ -73,7 +72,7 @@ class DiscreteField(object): def __init__(self, topology, isVector=False, name=None, nbComponents=None): """ Discretize a field on a given topology. - @param topology : a topology (mpi topo + mesh, parmepy.mpi.topology) + @param topology : a topology (mpi topo + mesh, hysop.mpi.topology) @param name : field name """ ## Topology used to distribute/discretize the present field. @@ -127,10 +126,10 @@ class DiscreteField(object): @param formula : a user-defined python function @param doVectorize : true if formula must be vectorized - (i.e. is of type 'user_func_2', see parmepy.fields for details) + (i.e. is of type 'user_func_2', see hysop.fields for details) @param doVectorize : true (default = false) if formula must be vectorized to handle numpy arrays. See notes about fields - initialization in parmepy.fields. + initialization in hysop.fields. @param time : current time (default set to 0.0) @param args : extra (optional) parameters """ @@ -153,15 +152,13 @@ class DiscreteField(object): # Warning : in this case, self.data[i] memory will # be reallocated. print ("Warning : reallocation of memory for fields data\ - during initialisation. See parmepy.fields\ + during initialisation. See hysop.fields\ documentation for details.") self.data = v_formula(*arg_list) # Ensure that data is of the right type, # in the right order. for i in xrange(self.nbComponents): - self.data[i][...] = np.asarray(self.data[i], - dtype=PARMES_REAL, - order=ORDER) + self.data[i][...] = npw.asrealarray(self.data[i]) else: # In that cas, we assume that formula has been properly diff --git a/HySoP/hysop/fields/tests/test_field.py b/HySoP/hysop/fields/tests/test_field.py index 0fdf6ea41246adc4b7bd81af2770e4fe361ac39b..d61dc29b6b09a53c5c2094bd6792baf79a511a67 100644 --- a/HySoP/hysop/fields/tests/test_field.py +++ b/HySoP/hysop/fields/tests/test_field.py @@ -1,13 +1,13 @@ """ -Testing parmepy.field.continuous.Field +Testing hysop.field.continuous.Field """ -import parmepy -print parmepy.__file__ -from parmepy.fields.continuous import Field -from parmepy.domain.box import Box -from parmepy.tools.parameters import Discretization +import hysop +print hysop.__file__ +from hysop.fields.continuous import Field +from hysop.domain.box import Box +from hysop.tools.parameters import Discretization import numpy as np -from parmepy.fields.tests.func_for_tests import func_scal_1, func_scal_2, \ +from hysop.fields.tests.func_for_tests import func_scal_1, func_scal_2, \ func_vec_1, func_vec_2, func_vec_3, func_vec_4, func_vec_5, func_vec_6 from numpy import allclose diff --git a/HySoP/hysop/fields/tests/test_variable.py b/HySoP/hysop/fields/tests/test_variable.py index d3fac2c7bfa0713145c83445a6c3f3f9ef1526c0..3ff70b57615cfd84b308b55b254889aaae9698b8 100644 --- a/HySoP/hysop/fields/tests/test_variable.py +++ b/HySoP/hysop/fields/tests/test_variable.py @@ -1,8 +1,8 @@ """ -Testing parmepy.field.variable_parameter.Variable_parameter +Testing hysop.field.variable_parameter.Variable_parameter """ -from parmepy.fields.variable_parameter import VariableParameter -from parmepy.problem.simulation import Simulation +from hysop.fields.variable_parameter import VariableParameter +from hysop.problem.simulation import Simulation from math import sin, cos import numpy as np diff --git a/HySoP/hysop/fields/variable_parameter.py b/HySoP/hysop/fields/variable_parameter.py index b58bf3dddeadec0365f7f21fb0807b03e2cc3fe7..2d17a28033241b4ed0d99806ea21a2aa06c53e48 100644 --- a/HySoP/hysop/fields/variable_parameter.py +++ b/HySoP/hysop/fields/variable_parameter.py @@ -99,7 +99,7 @@ class VariableParameter(object): """ Apply formula to compute data for a given simulation (current time ...) - @param simu : a parmepy.problem.simulation.Simulation + @param simu : a hysop.problem.simulation.Simulation """ self.data[self.name] = self.formula(simu) diff --git a/HySoP/hysop/gpu/QtRendering.py b/HySoP/hysop/gpu/QtRendering.py index 83ad1410773dea12d30656f43c9394417d459373..37eac0eec76ee6318820c07611d36f443a095bf5 100644 --- a/HySoP/hysop/gpu/QtRendering.py +++ b/HySoP/hysop/gpu/QtRendering.py @@ -3,17 +3,18 @@ Contains all stuff to perform real-time rendering on GPU. """ -from parmepy.constants import debug, np, PARMES_REAL +from hysop.constants import debug, np, HYSOP_REAL import sys from PyQt4 import QtGui, QtCore from PyQt4.QtOpenGL import QGLWidget import OpenGL.GL as gl -from parmepy.gpu.tools import get_opengl_shared_environment -from parmepy.gpu import cl -from parmepy.gpu.gpu_discrete import GPUDiscreteField -from parmepy.gpu.gpu_kernel import KernelLauncher -from parmepy.mpi import main_rank -from parmepy.operator.computational import Computational +from hysop.gpu.tools import get_opengl_shared_environment +from hysop.gpu import cl +from hysop.gpu.gpu_discrete import GPUDiscreteField +from hysop.gpu.gpu_kernel import KernelLauncher +from hysop.mpi import main_rank +from hysop.operator.computational import Computational +import hysop.tools.numpywrappers as npw class QtOpenGLRendering(Computational): @@ -149,12 +150,10 @@ class QtOpenGLRendering(Computational): ## Text label of the window StatusBar self.labelText = str(self.gpu_field.topology.mesh.resolution) self.labelText += " particles, " - coord_min = np.ones(4, dtype=PARMES_REAL) - mesh_size = np.ones(4, dtype=PARMES_REAL) - coord_min[0:2] = np.asarray(self.gpu_field.topology.mesh.origin, - dtype=PARMES_REAL) - mesh_size[0:2] = np.asarray(self.gpu_field.topology.mesh.space_step, - dtype=PARMES_REAL) + coord_min = npw.ones(4) + mesh_size = npw.ones(4) + coord_min[0:2] = npw.asrealarray(self.gpu_field.topology.mesh.origin) + mesh_size[0:2] = npw.asrealarray(self.gpu_field.topology.mesh.space_step) self.initCoordinates(self.pos, coord_min, mesh_size) @debug @@ -286,11 +285,11 @@ class GLWidget(QGLWidget): """GL content initialization""" self.buffer = gl.glGenBuffers(1) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self.buffer) - gl.glBufferData(gl.GL_ARRAY_BUFFER, np.zeros(2, dtype=PARMES_REAL), + gl.glBufferData(gl.GL_ARRAY_BUFFER, npw.zeros(2) gl.GL_DYNAMIC_DRAW) self.cl_env = get_opengl_shared_environment( platform_id=0, device_id=0,device_type='gpu', - precision=PARMES_REAL, resolution=None) + precision=HYSOP_REAL, resolution=None) @debug def paintGL(self): diff --git a/HySoP/hysop/gpu/__init__.py b/HySoP/hysop/gpu/__init__.py index 14579c0c2f0e2d4ea06fc3c2d8e2855a11c1ba7a..cfacaa7009cd1c6c7293c7cd8580d056c3bce7c3 100644 --- a/HySoP/hysop/gpu/__init__.py +++ b/HySoP/hysop/gpu/__init__.py @@ -1,6 +1,6 @@ """ -@package parmepy.gpu -Everything concerning GPU in Parmes. +@package hysop.gpu +Everything concerning GPU in hysop. OpenCL sources are located in the cl_src directory and organized as follows - kernels/ @@ -24,10 +24,10 @@ OpenCL sources are located in the cl_src directory and organized as follows - common.cl Sources are parsed at build to handle several OpenCL features -@see parmepy.gpu.tools.parse_file +@see hysop.gpu.tools.parse_file """ -from parmepy.constants import np +from hysop.constants import np import pyopencl import pyopencl.tools import pyopencl.array diff --git a/HySoP/hysop/gpu/cl_src/advection/basic_rk2.cl b/HySoP/hysop/gpu/cl_src/advection/basic_rk2.cl index bdbd70fd22e8025ae67d221a985b64b218aab056..559638ff61919ef65d8a5e6c6013320f56976495 100644 --- a/HySoP/hysop/gpu/cl_src/advection/basic_rk2.cl +++ b/HySoP/hysop/gpu/cl_src/advection/basic_rk2.cl @@ -20,7 +20,7 @@ float__N__ advection(uint i, float dt, __local float* velocity_cache, __constant * @remark <code>NB_I</code>, <code>NB_II</code>, <code>NB_III</code> : points number in directions from 1st varying index to last. * @remark <code>__N__</code> is expanded at compilation time by vector width. * @remark <code>__NN__</code> is expanded at compilation time by a sequence of integer for each vector component. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file */ float__N__ advection(uint i, float dt, __local float* velocity_cache, __constant struct AdvectionMeshInfo* mesh) { diff --git a/HySoP/hysop/gpu/cl_src/advection/basic_rk4.cl b/HySoP/hysop/gpu/cl_src/advection/basic_rk4.cl index efabf15bf43f71ef8c493a0305e98ab2127d1f62..853873ba47e171acfffef036b37c7eafd72388ac 100644 --- a/HySoP/hysop/gpu/cl_src/advection/basic_rk4.cl +++ b/HySoP/hysop/gpu/cl_src/advection/basic_rk4.cl @@ -20,7 +20,7 @@ float__N__ advection(uint i, float dt, __local float* velocity_cache, __constant * @remark <code>NB_I</code>, <code>NB_II</code>, <code>NB_III</code> : points number in directions from 1st varying index to last. * @remark <code>__N__</code> is expanded at compilation time by vector width. * @remark <code>__NN__</code> is expanded at compilation time by a sequence of integer for each vector component. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file */ float__N__ advection(uint i, float dt, __local float* velocity_cache, __constant struct AdvectionMeshInfo* mesh) { diff --git a/HySoP/hysop/gpu/cl_src/advection/builtin_rk2.cl b/HySoP/hysop/gpu/cl_src/advection/builtin_rk2.cl index b69882a56730073b91c9c15142835def93348972..c45d5cee4b78861d35ecb891efc51a3116bbc1af 100644 --- a/HySoP/hysop/gpu/cl_src/advection/builtin_rk2.cl +++ b/HySoP/hysop/gpu/cl_src/advection/builtin_rk2.cl @@ -20,7 +20,7 @@ float__N__ advection(uint i, float dt, __local float* velocity_cache, __constant * @remark <code>NB_I</code>, <code>NB_II</code>, <code>NB_III</code> : points number in directions from 1st varying index to last. * @remark <code>__N__</code> is expanded at compilation time by vector width. * @remark <code>__NN__</code> is expanded at compilation time by a sequence of integer for each vector component. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file */ float__N__ advection(uint i, float dt, __local float* velocity_cache, __constant struct AdvectionMeshInfo* mesh) { diff --git a/HySoP/hysop/gpu/cl_src/advection/builtin_rk4.cl b/HySoP/hysop/gpu/cl_src/advection/builtin_rk4.cl index 8650e6af05a1b39e217b682937451fd569d6d7ae..2dcc7dc1e77817fa753a0cc48a15929f03e360f9 100644 --- a/HySoP/hysop/gpu/cl_src/advection/builtin_rk4.cl +++ b/HySoP/hysop/gpu/cl_src/advection/builtin_rk4.cl @@ -20,7 +20,7 @@ float__N__ advection(uint i, float dt, __local float* velocity_cache, __constant * @remark <code>NB_I</code>, <code>NB_II</code>, <code>NB_III</code> : points number in directions from 1st varying index to last. * @remark <code>__N__</code> is expanded at compilation time by vector width. * @remark <code>__NN__</code> is expanded at compilation time by a sequence of integer for each vector component. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file */ float__N__ advection(uint i, float dt, __local float* velocity_cache, __constant struct AdvectionMeshInfo* mesh) { diff --git a/HySoP/hysop/gpu/cl_src/kernels/advection.cl b/HySoP/hysop/gpu/cl_src/kernels/advection.cl index 106451d0f16eb36c643f1710cf11a30d06409739..29890ba9c91309565145e47cdcf1702cc76e82c0 100644 --- a/HySoP/hysop/gpu/cl_src/kernels/advection.cl +++ b/HySoP/hysop/gpu/cl_src/kernels/advection.cl @@ -20,7 +20,7 @@ * @remark <code>WI_NB</code> corresponds to the work-item number. * @remark <code>__N__</code> is expanded at compilation time by vector width. * @remark <code>__NN__</code> is expanded at compilation time by a sequence of integer for each vector component. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file */ __kernel void advection_kernel(__global const float* gvelo, __global float* ppos, diff --git a/HySoP/hysop/gpu/cl_src/kernels/advection_and_remeshing.cl b/HySoP/hysop/gpu/cl_src/kernels/advection_and_remeshing.cl index 2a712e4a0012fb2200bddc33afef180e8037abc1..b1b998913a7056df8c9ca0cf58f33f95915dcd68 100644 --- a/HySoP/hysop/gpu/cl_src/kernels/advection_and_remeshing.cl +++ b/HySoP/hysop/gpu/cl_src/kernels/advection_and_remeshing.cl @@ -24,7 +24,7 @@ * @remark <code>__RCOMP_I</code> flag is for instruction expansion for the different remeshed components. * @remark <code>__RCOMP_P</code> flag is for function parameter expansion for the different remeshed components. * @remark <code>__ID__</code> is replaced by the remeshed component id in an expansion. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file */ __kernel void advection_and_remeshing(__global const float* gvelo, __RCOMP_P__global const float* pscal__ID__, diff --git a/HySoP/hysop/gpu/cl_src/kernels/advection_and_remeshing_noVec.cl b/HySoP/hysop/gpu/cl_src/kernels/advection_and_remeshing_noVec.cl index 211aaf6de7f278e5afb6e4213808fba29c6fc31a..19dc24f54888b7e8a6906301a278adaeef51a5fd 100644 --- a/HySoP/hysop/gpu/cl_src/kernels/advection_and_remeshing_noVec.cl +++ b/HySoP/hysop/gpu/cl_src/kernels/advection_and_remeshing_noVec.cl @@ -24,7 +24,7 @@ * @remark <code>__RCOMP_I</code> flag is for instruction expansion for the different remeshed components. * @remark <code>__RCOMP_P</code> flag is for function parameter expansion for the different remeshed components. * @remark <code>__ID__</code> is replaced by the remeshed component id in an expansion. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file */ __kernel void advection_and_remeshing(__global const float* gvelo, __RCOMP_P__global const float* pscal__ID__, diff --git a/HySoP/hysop/gpu/cl_src/kernels/advection_euler_and_remeshing_noVec.cl b/HySoP/hysop/gpu/cl_src/kernels/advection_euler_and_remeshing_noVec.cl index 4b02d3cf3eeda16ec7d4b1be0f2e9e070b89b205..47fda202765fb8751d180836e4c4468e087ae57d 100644 --- a/HySoP/hysop/gpu/cl_src/kernels/advection_euler_and_remeshing_noVec.cl +++ b/HySoP/hysop/gpu/cl_src/kernels/advection_euler_and_remeshing_noVec.cl @@ -24,7 +24,7 @@ * @remark <code>__RCOMP_I</code> flag is for instruction expansion for the different remeshed components. * @remark <code>__RCOMP_P</code> flag is for function parameter expansion for the different remeshed components. * @remark <code>__ID__</code> is replaced by the remeshed component id in an expansion. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file */ __kernel void advection_and_remeshing(__global const float* gvelo, __RCOMP_P__global const float* pscal__ID__, diff --git a/HySoP/hysop/gpu/cl_src/kernels/comm_remeshing_noVec.cl b/HySoP/hysop/gpu/cl_src/kernels/comm_remeshing_noVec.cl index 5c1dad8864d0733b1e15f605ce3b9de056cc550f..89a3dac244ff1cf5a6f72da66ccf9cc8514087ae 100644 --- a/HySoP/hysop/gpu/cl_src/kernels/comm_remeshing_noVec.cl +++ b/HySoP/hysop/gpu/cl_src/kernels/comm_remeshing_noVec.cl @@ -26,7 +26,7 @@ * @remark <code>__RCOMP_I</code> flag is for instruction expansion for the different remeshed components. * @remark <code>__RCOMP_P</code> flag is for function parameter expansion for the different remeshed components. * @remark <code>__ID__</code> is replaced by the remeshed component id in an expansion. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file */ __kernel void buff_remesh_l(__global const float* ppos, __global const float* pscal, diff --git a/HySoP/hysop/gpu/cl_src/kernels/remeshing.cl b/HySoP/hysop/gpu/cl_src/kernels/remeshing.cl index 0d8ab4cfa23f4779d29f21044175eaa6eac4a28f..2e2774527468bb58dd9a3443e67e684bd4f98a51 100644 --- a/HySoP/hysop/gpu/cl_src/kernels/remeshing.cl +++ b/HySoP/hysop/gpu/cl_src/kernels/remeshing.cl @@ -23,7 +23,7 @@ * @remark <code>__RCOMP_I</code> flag is for instruction expansion for the different remeshed components. * @remark <code>__RCOMP_P</code> flag is for function parameter expansion for the different remeshed components. * @remark <code>__ID__</code> is replaced by the remeshed component id in an expansion. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file */ __kernel void remeshing_kernel(__global const float* ppos, __RCOMP_P__global const float* pscal__ID__, diff --git a/HySoP/hysop/gpu/cl_src/kernels/remeshing_noVec.cl b/HySoP/hysop/gpu/cl_src/kernels/remeshing_noVec.cl index 9358d8f7e747fbc6133ea51c7e9d9c2a6ff40ae9..c8dbd3a8a5b59f2cc0cb6dd3156fdad8e0739be8 100644 --- a/HySoP/hysop/gpu/cl_src/kernels/remeshing_noVec.cl +++ b/HySoP/hysop/gpu/cl_src/kernels/remeshing_noVec.cl @@ -23,7 +23,7 @@ * @remark <code>__RCOMP_I</code> flag is for instruction expansion for the different remeshed components. * @remark <code>__RCOMP_P</code> flag is for function parameter expansion for the different remeshed components. * @remark <code>__ID__</code> is replaced by the remeshed component id in an expansion. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file */ __kernel void remeshing_kernel(__global const float* ppos, __RCOMP_P__global const float* pscal__ID__, diff --git a/HySoP/hysop/gpu/cl_src/kernels/transpose_xy.cl b/HySoP/hysop/gpu/cl_src/kernels/transpose_xy.cl index 418a9d1ecf1075b6d94960ffd27dedf93023c12c..8e17257375400355711f8d156f084d3e8026df74 100644 --- a/HySoP/hysop/gpu/cl_src/kernels/transpose_xy.cl +++ b/HySoP/hysop/gpu/cl_src/kernels/transpose_xy.cl @@ -29,7 +29,7 @@ * @remark <code>PADDING_XY</code> : local memory padding width. * @remark <code>__N__</code> is expanded at compilation time by vector width. * @remark <code>__NN__</code> is expanded at compilation time by a sequence of integer for each vector component. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file */ __kernel void transpose_xy(__global const float* in, __global float* out) diff --git a/HySoP/hysop/gpu/cl_src/kernels/transpose_xy_noVec.cl b/HySoP/hysop/gpu/cl_src/kernels/transpose_xy_noVec.cl index 87e72c1e8c5584b567eaef36658c74e487513a4a..6c0f64489309e23e3f8581648a2bfc3cee6befc3 100644 --- a/HySoP/hysop/gpu/cl_src/kernels/transpose_xy_noVec.cl +++ b/HySoP/hysop/gpu/cl_src/kernels/transpose_xy_noVec.cl @@ -29,7 +29,7 @@ * @remark <code>PADDING_XY</code> : local memory padding width. * @remark <code>__N__</code> is expanded at compilation time by vector width. * @remark <code>__NN__</code> is expanded at compilation time by a sequence of integer for each vector component. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file */ __kernel void transpose_xy(__global const float* in, __global float* out) diff --git a/HySoP/hysop/gpu/cl_src/kernels/transpose_xz.cl b/HySoP/hysop/gpu/cl_src/kernels/transpose_xz.cl index b116a9551db95ff96139db6895dd71a69af22109..8adc81f43c6b68acf1440fa88e50b09c0fd6afe0 100644 --- a/HySoP/hysop/gpu/cl_src/kernels/transpose_xz.cl +++ b/HySoP/hysop/gpu/cl_src/kernels/transpose_xz.cl @@ -19,7 +19,7 @@ * @remark <code>PADDING_XZ</code> : local memory padding width. * @remark <code>__N__</code> is expanded at compilation time by vector width. * @remark <code>__NN__</code> is expanded at compilation time by a sequence of integer for each vector component. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file * @see transpose_xy.cl */ __kernel void transpose_xz(__global const float* in, diff --git a/HySoP/hysop/gpu/cl_src/kernels/transpose_xz_noVec.cl b/HySoP/hysop/gpu/cl_src/kernels/transpose_xz_noVec.cl index 28181ea0f7d65ede44b830414d926ca84f1ac492..96b771b20d9d1e651cea50033f601cbb118cb097 100644 --- a/HySoP/hysop/gpu/cl_src/kernels/transpose_xz_noVec.cl +++ b/HySoP/hysop/gpu/cl_src/kernels/transpose_xz_noVec.cl @@ -19,7 +19,7 @@ * @remark <code>PADDING_XZ</code> : local memory padding width. * @remark <code>__N__</code> is expanded at compilation time by vector width. * @remark <code>__NN__</code> is expanded at compilation time by a sequence of integer for each vector component. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file * @see transpose_xy.cl */ __kernel void transpose_xz(__global const float* in, diff --git a/HySoP/hysop/gpu/cl_src/kernels/transpose_xz_slice.cl b/HySoP/hysop/gpu/cl_src/kernels/transpose_xz_slice.cl index 611aa465b6a0bdc341217a0dba331b473a1263b0..b64960b0d7c8d1264fd389afb81831c2328ec80c 100644 --- a/HySoP/hysop/gpu/cl_src/kernels/transpose_xz_slice.cl +++ b/HySoP/hysop/gpu/cl_src/kernels/transpose_xz_slice.cl @@ -19,7 +19,7 @@ * @remark <code>PADDING_XZ</code> : local memory padding width. * @remark <code>__N__</code> is expanded at compilation time by vector width. * @remark <code>__NN__</code> is expanded at compilation time by a sequence of integer for each vector component. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file * @see transpose_xy.cl */ __kernel void transpose_xz(__global const float* in, diff --git a/HySoP/hysop/gpu/cl_src/kernels/transpose_xz_slice_noVec.cl b/HySoP/hysop/gpu/cl_src/kernels/transpose_xz_slice_noVec.cl index fc4b1322ac70f038f8abe20a3ac511d82628fe30..7b06e13fb29410ac7b3d0dd56b46d7595241ff07 100644 --- a/HySoP/hysop/gpu/cl_src/kernels/transpose_xz_slice_noVec.cl +++ b/HySoP/hysop/gpu/cl_src/kernels/transpose_xz_slice_noVec.cl @@ -19,7 +19,7 @@ * @remark <code>PADDING_XZ</code> : local memory padding width. * @remark <code>__N__</code> is expanded at compilation time by vector width. * @remark <code>__NN__</code> is expanded at compilation time by a sequence of integer for each vector component. - * @see parmepy.gpu.tools.parse_file + * @see hysop.gpu.tools.parse_file * @see transpose_xy.cl */ __kernel void transpose_xz(__global const float* in, diff --git a/HySoP/hysop/gpu/cl_src/remeshing/basic.cl b/HySoP/hysop/gpu/cl_src/remeshing/basic.cl index d6b652db6c08cbb378429c53c6ef77cf27a2250f..e2fd02f4d55a0b76891dc21d5ae4be546bb00cbf 100644 --- a/HySoP/hysop/gpu/cl_src/remeshing/basic.cl +++ b/HySoP/hysop/gpu/cl_src/remeshing/basic.cl @@ -27,8 +27,8 @@ void remesh(uint i, __RCOMP_P float__N__ s__ID__, float__N__ p, __RCOMP_P__local * @remark <code>__RCOMP_P</code> flag is for function parameter expansion for the different remeshed components. * @remark <code>__ID__</code> is replaced by the remeshed component id in an expansion. * @remark <code>REMESH</code> is a function-like macro expanding to the proper remeshing formula (i.e.: <code>REMESH(alpha)</code> -> <code>alpha_l2_1</code>) - * @see parmepy.gpu.tools.parse_file - * @see parmepy.gpu.cl_src.common + * @see hysop.gpu.tools.parse_file + * @see hysop.gpu.cl_src.common */ void remesh(uint i, __RCOMP_P float__N__ s__ID__, diff --git a/HySoP/hysop/gpu/cl_src/remeshing/basic_noVec.cl b/HySoP/hysop/gpu/cl_src/remeshing/basic_noVec.cl index b92140282bf95fc8e4a11427c19b292a95d43718..a2b75e98926a6a246f1e54af288fd4ab48a7143e 100644 --- a/HySoP/hysop/gpu/cl_src/remeshing/basic_noVec.cl +++ b/HySoP/hysop/gpu/cl_src/remeshing/basic_noVec.cl @@ -27,8 +27,8 @@ void remesh(uint i, __RCOMP_P float s__ID__, float p, __RCOMP_P__local float* gs * @remark <code>__RCOMP_P</code> flag is for function parameter expansion for the different remeshed components. * @remark <code>__ID__</code> is replaced by the remeshed component id in an expansion. * @remark <code>REMESH</code> is a function-like macro expanding to the proper remeshing formula (i.e.: <code>REMESH(alpha)</code> -> <code>alpha_l2_1</code>) - * @see parmepy.gpu.tools.parse_file - * @see parmepy.gpu.cl_src.common + * @see hysop.gpu.tools.parse_file + * @see hysop.gpu.cl_src.common */ void remesh(uint i, __RCOMP_P float s__ID__, diff --git a/HySoP/hysop/gpu/cl_src/remeshing/comm_basic_noVec.cl b/HySoP/hysop/gpu/cl_src/remeshing/comm_basic_noVec.cl index d02ac060accc3b689561b728ea9e7e96f54d41c9..e1e886cfcb88dbaad5a237ad9c210a7d8f945568 100644 --- a/HySoP/hysop/gpu/cl_src/remeshing/comm_basic_noVec.cl +++ b/HySoP/hysop/gpu/cl_src/remeshing/comm_basic_noVec.cl @@ -29,8 +29,8 @@ void remesh(uint i, __RCOMP_P float s__ID__, float p, __RCOMP_P__local float* gs * @remark <code>__RCOMP_P</code> flag is for function parameter expansion for the different remeshed components. * @remark <code>__ID__</code> is replaced by the remeshed component id in an expansion. * @remark <code>REMESH</code> is a function-like macro expanding to the proper remeshing formula (i.e.: <code>REMESH(alpha)</code> -> <code>alpha_l2_1</code>) - * @see parmepy.gpu.tools.parse_file - * @see parmepy.gpu.cl_src.common + * @see hysop.gpu.tools.parse_file + * @see hysop.gpu.cl_src.common */ void remesh(uint i, __RCOMP_P float s__ID__, diff --git a/HySoP/hysop/gpu/cl_src/remeshing/private.cl b/HySoP/hysop/gpu/cl_src/remeshing/private.cl index 9ae5979f615c9017c9189f3df3c30ea5cbbbdca2..18943652bf3885a13dc77e77babc7280c28c319c 100644 --- a/HySoP/hysop/gpu/cl_src/remeshing/private.cl +++ b/HySoP/hysop/gpu/cl_src/remeshing/private.cl @@ -28,8 +28,8 @@ void remesh(uint i, __RCOMP_P float__N__ s__ID__, float__N__ p, __RCOMP_P__local * @remark <code>__RCOMP_P</code> flag is for function parameter expansion for the different remeshed components. * @remark <code>__ID__</code> is replaced by the remeshed component id in an expansion. * @remark <code>REMESH</code> is a function-like macro expanding to the proper remeshing formula (i.e.: <code>REMESH(alpha)</code> -> <code>alpha_l2_1</code>) - * @see parmepy.gpu.tools.parse_file - * @see parmepy.gpu.cl_src.common + * @see hysop.gpu.tools.parse_file + * @see hysop.gpu.cl_src.common */ void remesh(uint i, __RCOMP_P float__N__ s__ID__, diff --git a/HySoP/hysop/gpu/cl_src/remeshing/private_noVec.cl b/HySoP/hysop/gpu/cl_src/remeshing/private_noVec.cl index f063d16c8ca1dfa4fe9826e904ed9d7b641133a8..7bafbe37de8e4a92fa839336045d4566374f167c 100644 --- a/HySoP/hysop/gpu/cl_src/remeshing/private_noVec.cl +++ b/HySoP/hysop/gpu/cl_src/remeshing/private_noVec.cl @@ -28,8 +28,8 @@ void remesh(uint i, __RCOMP_P float s__ID__, float p, __RCOMP_P__local float* gs * @remark <code>__RCOMP_P</code> flag is for function parameter expansion for the different remeshed components. * @remark <code>__ID__</code> is replaced by the remeshed component id in an expansion. * @remark <code>REMESH</code> is a function-like macro expanding to the proper remeshing formula (i.e.: <code>REMESH(alpha)</code> -> <code>alpha_l2_1</code>) - * @see parmepy.gpu.tools.parse_file - * @see parmepy.gpu.cl_src.common + * @see hysop.gpu.tools.parse_file + * @see hysop.gpu.cl_src.common */ void remesh(uint i, __RCOMP_P float s__ID__, diff --git a/HySoP/hysop/gpu/config_cayman.py b/HySoP/hysop/gpu/config_cayman.py index 805912e9a172f63b9eeda905f589e0f68527e02b..af7389adc1bd44146983ad65d231915a905f44fc 100644 --- a/HySoP/hysop/gpu/config_cayman.py +++ b/HySoP/hysop/gpu/config_cayman.py @@ -3,7 +3,7 @@ OpenCL kernels configurations. """ -from parmepy.constants import np +from hysop.constants import np FLOAT_GPU, DOUBLE_GPU = np.float32, np.float64 #build empty dictionaries diff --git a/HySoP/hysop/gpu/config_default.py b/HySoP/hysop/gpu/config_default.py index 8bad707b97f395cdde574637843bc403fc958d13..dcf2a89a72252747ac79b2253eab241ca0dcaea3 100644 --- a/HySoP/hysop/gpu/config_default.py +++ b/HySoP/hysop/gpu/config_default.py @@ -3,7 +3,7 @@ OpenCL kernels default configurations. """ -from parmepy.constants import np +from hysop.constants import np FLOAT_GPU, DOUBLE_GPU = np.float32, np.float64 #build empty dictionaries diff --git a/HySoP/hysop/gpu/config_k20m.py b/HySoP/hysop/gpu/config_k20m.py index 923dfcaa846288b7d63f1a271974446373e65515..68309d213beec2bbb6b5b49f73d6badb52669db5 100644 --- a/HySoP/hysop/gpu/config_k20m.py +++ b/HySoP/hysop/gpu/config_k20m.py @@ -3,7 +3,7 @@ OpenCL kernels configurations. """ -from parmepy.constants import np +from hysop.constants import np FLOAT_GPU, DOUBLE_GPU = np.float32, np.float64 #build empty dictionaries diff --git a/HySoP/hysop/gpu/gpu_diffusion.py b/HySoP/hysop/gpu/gpu_diffusion.py index e70f3ab4ad71dc3b4528e7c12936fb7af7c8106d..aa6c3656cb12085e460765359cdf481f8d088393 100644 --- a/HySoP/hysop/gpu/gpu_diffusion.py +++ b/HySoP/hysop/gpu/gpu_diffusion.py @@ -3,16 +3,16 @@ Diffusion on GPU """ -from parmepy.constants import debug, np, S_DIR, PARMES_MPI_REAL, ORDERMPI, \ - PARMES_REAL, ORDER -import parmepy.tools.numpywrappers as npw -from parmepy.operator.discrete.discrete import DiscreteOperator -from parmepy.gpu import cl -from parmepy.gpu.gpu_operator import GPUOperator -from parmepy.gpu.gpu_kernel import KernelLauncher -from parmepy.gpu.gpu_discrete import GPUDiscreteField -from parmepy.tools.profiler import FProfiler -from parmepy.mpi.main_var import MPI +from hysop.constants import debug, np, S_DIR, HYSOP_MPI_REAL, ORDERMPI, \ + HYSOP_REAL, ORDER +import hysop.tools.numpywrappers as npw +from hysop.operator.discrete.discrete import DiscreteOperator +from hysop.gpu import cl +from hysop.gpu.gpu_operator import GPUOperator +from hysop.gpu.gpu_kernel import KernelLauncher +from hysop.gpu.gpu_discrete import GPUDiscreteField +from hysop.tools.profiler import FProfiler +from hysop.mpi.main_var import MPI class GPUDiffusion(DiscreteOperator, GPUOperator): @@ -77,10 +77,10 @@ class GPUDiffusion(DiscreteOperator, GPUOperator): # _to_recv[..., 1] contains [..., -1] data (left ghosts) self._to_send[d] = npw.zeros(tuple(shape)) _to_recv = npw.zeros(tuple(shape)) - self.mpi_type_diff_l[d] = PARMES_MPI_REAL.Create_subarray( + self.mpi_type_diff_l[d] = HYSOP_MPI_REAL.Create_subarray( shape, shape_b, start_l, order=ORDERMPI) self.mpi_type_diff_l[d].Commit() - self.mpi_type_diff_r[d] = PARMES_MPI_REAL.Create_subarray( + self.mpi_type_diff_r[d] = HYSOP_MPI_REAL.Create_subarray( shape, shape_b, start_r, order=ORDERMPI) self.mpi_type_diff_r[d].Commit() self._to_recv_buf[d] = self.cl_env.global_allocation(_to_recv) @@ -89,7 +89,7 @@ class GPUDiffusion(DiscreteOperator, GPUOperator): self._to_recv_buf[d], offset=0, shape=shape, - dtype=PARMES_REAL, + dtype=HYSOP_REAL, flags=cl.map_flags.READ | cl.map_flags.WRITE, is_blocking=False, order=ORDER) diff --git a/HySoP/hysop/gpu/gpu_discrete.py b/HySoP/hysop/gpu/gpu_discrete.py index 95ce7b7789706fa24af82f944edb7bd4357161c8..bd53fa56b1ac16d3875381f914e8a32941a98f2d 100644 --- a/HySoP/hysop/gpu/gpu_discrete.py +++ b/HySoP/hysop/gpu/gpu_discrete.py @@ -3,14 +3,13 @@ Contains class for discrete fields on GPU. """ -from parmepy import __VERBOSE__ -from parmepy.constants import ORDER, np,\ - debug, PARMES_REAL, PARMES_INTEGER, S_DIR -from parmepy.fields.discrete import DiscreteField -from parmepy.gpu import cl, CL_PROFILE -from parmepy.gpu.gpu_kernel import KernelLauncher, KernelListLauncher -from parmepy.tools.numpywrappers import zeros -from parmepy.tools.profiler import FProfiler +from hysop import __VERBOSE__ +from hysop.constants import ORDER, np,\ + debug, HYSOP_REAL, S_DIR +from hysop.fields.discrete import DiscreteField +from hysop.gpu import cl, CL_PROFILE +from hysop.gpu.gpu_kernel import KernelLauncher, KernelListLauncher +from hysop.tools.profiler import FProfiler fromLayoutMgrFunc_3D_seq = [ lambda a, shape: a.reshape(shape, order=ORDER)[...], @@ -63,7 +62,7 @@ class GPUDiscreteField(DiscreteField): Allocates OpenCL device memory for the field. """ def __init__(self, cl_env, topology=None, isVector=False, name="?", - precision=PARMES_REAL, layout=True, simple_layout=False): + precision=HYSOP_REAL, layout=True, simple_layout=False): """ Constructor. @param queue : OpenCL queue @@ -76,7 +75,7 @@ class GPUDiscreteField(DiscreteField): Defaut : all components are considered in the same way. @param simple_layout : Boolean indicating if in the Z direction, layout is ZYX (simple) or ZXY. - @see parmepy.fields.vector.VectorField.__init__ + @see hysop.fields.vector.VectorField.__init__ """ super(GPUDiscreteField, self).__init__(topology, isVector, name) ## OpenCL environment @@ -99,7 +98,7 @@ class GPUDiscreteField(DiscreteField): # By default, all mpi process are take, otherwise, user create and # gives his own topologies. if topology is None: - from parmepy.mpi.main_var import main_rank + from hysop.mpi.main_var import main_rank self._rank = main_rank else: self._rank = topology.rank @@ -147,7 +146,7 @@ class GPUDiscreteField(DiscreteField): self.gpu_data[d], offset=0, shape=(int(np.prod(self.data[0].shape)), ), flags=cl.map_flags.READ | cl.map_flags.WRITE, - dtype=PARMES_REAL, is_blocking=False, order=ORDER) + dtype=HYSOP_REAL, is_blocking=False, order=ORDER) for d in xrange(self.nbComponents): evt[d].wait() self.gpu_allocated = True @@ -156,7 +155,7 @@ class GPUDiscreteField(DiscreteField): print self.mem_size / (1024 ** 2), "MB)" @classmethod - def fromField(cls, cl_env, vfield, precision=PARMES_REAL, + def fromField(cls, cl_env, vfield, precision=HYSOP_REAL, layout=True, simple_layout=False): """ Contructor from a discrete vector field. diff --git a/HySoP/hysop/gpu/gpu_kernel.py b/HySoP/hysop/gpu/gpu_kernel.py index 7d899c4a1fa7649e6c258b6ae67eb4748d06090d..abc0e9fbd4b316ecb6b11f0f6e12c81af7044001 100644 --- a/HySoP/hysop/gpu/gpu_kernel.py +++ b/HySoP/hysop/gpu/gpu_kernel.py @@ -1,10 +1,10 @@ """ @file gpu_kernel.py """ -from parmepy.constants import debug, S_DIR -from parmepy import __VERBOSE__ -from parmepy.gpu import cl, CL_PROFILE -from parmepy.tools.profiler import FProfiler +from hysop.constants import debug, S_DIR +from hysop import __VERBOSE__ +from hysop.gpu import cl, CL_PROFILE +from hysop.tools.profiler import FProfiler class KernelListLauncher(object): diff --git a/HySoP/hysop/gpu/gpu_operator.py b/HySoP/hysop/gpu/gpu_operator.py index cb419ee904e5143964795d7806806bbdea7e6277..523bb6c99ff34acce24c40e7bf12656d4a5c02b1 100644 --- a/HySoP/hysop/gpu/gpu_operator.py +++ b/HySoP/hysop/gpu/gpu_operator.py @@ -4,9 +4,9 @@ Discrete operator for GPU architecture. """ from abc import ABCMeta -from parmepy.constants import PARMES_REAL, S_DIR -from parmepy.methods_keys import Precision -from parmepy.gpu.tools import get_opencl_environment +from hysop.constants import HYSOP_REAL, S_DIR +from hysop.methods_keys import Precision +from hysop.gpu.tools import get_opencl_environment class GPUOperator(object): @@ -30,7 +30,7 @@ class GPUOperator(object): @param user_src : User OpenCL sources. """ ## real type precision on GPU - self.gpu_precision = PARMES_REAL + self.gpu_precision = HYSOP_REAL if 'method' in kwds and Precision in kwds['method'].keys(): self.gpu_precision = kwds['method'][Precision] diff --git a/HySoP/hysop/gpu/gpu_particle_advection.py b/HySoP/hysop/gpu/gpu_particle_advection.py index 0db231d59e69884dc0dc4058ddc6ac14fd36f19f..934d1a10d6685eebde516adbfef311e943f1011f 100644 --- a/HySoP/hysop/gpu/gpu_particle_advection.py +++ b/HySoP/hysop/gpu/gpu_particle_advection.py @@ -4,25 +4,19 @@ Discrete advection representation """ from abc import ABCMeta, abstractmethod -from parmepy import __VERBOSE__ -from parmepy.constants import np, debug, PARMES_INDEX, S_DIR, \ - PARMES_REAL, PARMES_INTEGER -from parmepy.methods_keys import TimeIntegrator, Interpolation, Remesh, \ - Support, Splitting, Precision, MultiScale -from parmepy.numerics.integrators.runge_kutta2 import RK2 -from parmepy.numerics.integrators.euler import Euler -from parmepy.numerics.interpolation import Linear -from parmepy.numerics.remeshing import L2_1 -from parmepy.operator.discrete.particle_advection import ParticleAdvection -from parmepy.gpu import cl -from parmepy.gpu.gpu_kernel import KernelLauncher -from parmepy.operator.discrete.discrete import DiscreteOperator -from parmepy.mpi import MPI -import parmepy.default_methods as default -import parmepy.tools.numpywrappers as npw -from parmepy.gpu.gpu_discrete import GPUDiscreteField -from parmepy.gpu.gpu_operator import GPUOperator -from parmepy.tools.profiler import ftime, profile +from hysop import __VERBOSE__ +from hysop.constants import np, debug, S_DIR +from hysop.methods_keys import TimeIntegrator, Remesh, \ + Support, Splitting, MultiScale +from hysop.numerics.integrators.euler import Euler +from hysop.operator.discrete.particle_advection import ParticleAdvection +from hysop.gpu import cl +from hysop.gpu.gpu_kernel import KernelLauncher +import hysop.default_methods as default +import hysop.tools.numpywrappers as npw +from hysop.gpu.gpu_discrete import GPUDiscreteField +from hysop.gpu.gpu_operator import GPUOperator +from hysop.tools.profiler import ftime, profile class GPUParticleAdvection(ParticleAdvection, GPUOperator): @@ -52,7 +46,7 @@ class GPUParticleAdvection(ParticleAdvection, GPUOperator): 'l6star'} @param user_src : User OpenCL sources. @param splittingConfig : Directional splitting configuration - (parmepy.numerics.splitting.Splitting.__init__) + (hysop.numerics.splitting.Splitting.__init__) """ # Set default method if unknown if 'method' not in kwds: diff --git a/HySoP/hysop/gpu/gpu_transfer.py b/HySoP/hysop/gpu/gpu_transfer.py index aed0d99373adc25969fac814cb5643bcdec64f18..5a81fbea36359e725b5cb44e4c190eef61c545c9 100644 --- a/HySoP/hysop/gpu/gpu_transfer.py +++ b/HySoP/hysop/gpu/gpu_transfer.py @@ -1,7 +1,7 @@ -from parmepy.operator.computational import Computational -from parmepy.methods_keys import Support -from parmepy.operator.continuous import opsetup, opapply -from parmepy.numerics.update_ghosts import UpdateGhostsFull +from hysop.operator.computational import Computational +from hysop.methods_keys import Support +from hysop.operator.continuous import opsetup, opapply +from hysop.numerics.update_ghosts import UpdateGhostsFull class DataTransfer(Computational): """Operator for moving data between CPU and GPU.""" @@ -47,7 +47,7 @@ class DataTransfer(Computational): assert isinstance(run_till, list) self._run_till = run_till - from parmepy.mpi.topology import Cartesian + from hysop.mpi.topology import Cartesian if not isinstance(self._target, Cartesian): # target operator must wait for # the end of this operator to apply. @@ -63,7 +63,7 @@ class DataTransfer(Computational): topo = self.variables.values()[0] self._d_var = [v.discreteFields[topo] for v in self.variables] - from parmepy.mpi.topology import Cartesian + from hysop.mpi.topology import Cartesian source_is_topo = isinstance(self._source, Cartesian) target_is_topo = isinstance(self._target, Cartesian) diff --git a/HySoP/hysop/gpu/kernel_benchmark.py b/HySoP/hysop/gpu/kernel_benchmark.py index 366c89f80d849b47d7d2e07a766268a0d2faf9e9..1eeebf8e6be84eb2d43634795d61bf2add5fc71e 100644 --- a/HySoP/hysop/gpu/kernel_benchmark.py +++ b/HySoP/hysop/gpu/kernel_benchmark.py @@ -3,8 +3,8 @@ Package for benchmarking OpenCL kernels. """ -from parmepy.gpu import cl -from parmepy.constants import np, PARMES_REAL +from hysop.gpu import cl +from hysop.constants import np, HYSOP_REAL import pickle @@ -15,7 +15,7 @@ class BenchmarkSuite(object): kernels, configs, versions, setupFunction, test=False, true_res=None, arg_to_test=0, inputs=None, file_name="Benchmarks_data", - precision=PARMES_REAL, nb_run=20): + precision=HYSOP_REAL, nb_run=20): """ Creates a benchmak suite, that consists in a list of Benchmark. @@ -44,7 +44,7 @@ class BenchmarkSuite(object): If no such file, a new database is created. """ self.pickle_file_name = file_name - if precision == PARMES_REAL: + if precision == HYSOP_REAL: self.pickle_file_name += '_DP' else: self.pickle_file_name += '_SP' @@ -362,7 +362,7 @@ class Benchmark(object): # res = res[:size[0], :size[1], :size[2]] # else: # res = res[:size[0], :size[1]] - if np.float64 == PARMES_REAL: + if np.float64 == HYSOP_REAL: exp = 15 else: exp = 6 diff --git a/HySoP/hysop/gpu/multi_gpu_particle_advection.py b/HySoP/hysop/gpu/multi_gpu_particle_advection.py index 479a01c27375887a7165939d9833d40829f91c96..339bec55f00d9bf7fa5e540b6c69d56424914160 100644 --- a/HySoP/hysop/gpu/multi_gpu_particle_advection.py +++ b/HySoP/hysop/gpu/multi_gpu_particle_advection.py @@ -4,17 +4,17 @@ Discrete advection representation for Multi-GPU architecture. """ from abc import ABCMeta -from parmepy.constants import np, debug, PARMES_INTEGER, PARMES_REAL, ORDER,\ - PARMES_MPI_REAL, ORDERMPI, PARMES_MPI_INTEGER, SIZEOF_PARMES_REAL -from parmepy.gpu.gpu_particle_advection import GPUParticleAdvection -from parmepy.methods_keys import Support, TimeIntegrator, MultiScale, Remesh -from parmepy.numerics.integrators.runge_kutta2 import RK2 -from parmepy.numerics.remeshing import Linear as Linear_rmsh -from parmepy.gpu.gpu_kernel import KernelLauncher -from parmepy.tools.profiler import FProfiler, profile -from parmepy.gpu import cl, CL_PROFILE -from parmepy.mpi.main_var import MPI -import parmepy.tools.numpywrappers as npw +from hysop.constants import np, debug, HYSOP_INTEGER, HYSOP_REAL, ORDER,\ + HYSOP_MPI_REAL, SIZEOF_HYSOP_REAL +from hysop.gpu.gpu_particle_advection import GPUParticleAdvection +from hysop.methods_keys import Support, TimeIntegrator, MultiScale, Remesh +from hysop.numerics.integrators.runge_kutta2 import RK2 +from hysop.numerics.remeshing import Linear as Linear_rmsh +from hysop.gpu.gpu_kernel import KernelLauncher +from hysop.tools.profiler import FProfiler, profile +from hysop.gpu import cl, CL_PROFILE +from hysop.mpi.main_var import MPI +import hysop.tools.numpywrappers as npw class MultiGPUParticleAdvection(GPUParticleAdvection): @@ -63,17 +63,17 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): msh = self.fields_topo.mesh v_msh = self.velocity_topo.mesh # Global start index (lowest computed point, excluding ghosts) - self._start_index = PARMES_INTEGER( + self._start_index = HYSOP_INTEGER( msh.start()[self.direction]) # Velocity lobal start index (lowest computed point, excluding ghosts) - self._v_start_index = PARMES_INTEGER( + self._v_start_index = HYSOP_INTEGER( v_msh.start()[self.direction]) # Global end index (highest computed point, excluding ghosts) - self._stop_index = PARMES_INTEGER( + self._stop_index = HYSOP_INTEGER( self._start_index + msh.resolution[self.direction] - 1 - 2 * self.fields_topo.ghosts()[self.direction]) # Velocity global end index (highest computed point, excluding ghosts) - self._v_stop_index = PARMES_INTEGER( + self._v_stop_index = HYSOP_INTEGER( self._v_start_index + v_msh.resolution[self.direction] - 1 - 2 * self.velocity_topo.ghosts()[self.direction]) if self.fields_topo.cutdir[self.direction]: @@ -139,7 +139,7 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self._cl_v_r_buff, offset=0, shape=_v_r_buff.shape, - dtype=PARMES_REAL, + dtype=HYSOP_REAL, flags=cl.map_flags.READ | cl.map_flags.WRITE, is_blocking=False, order=ORDER) @@ -149,7 +149,7 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self._cl_v_l_buff, offset=0, shape=_v_l_buff.shape, - dtype=PARMES_REAL, + dtype=HYSOP_REAL, flags=cl.map_flags.READ | cl.map_flags.WRITE, is_blocking=False, order=ORDER) @@ -164,7 +164,7 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self._v_pitches_host = (int(_v_l_buff[:, 0, 0].nbytes), int(_v_l_buff[:, :, 0].nbytes)) self._v_buffer_region = ( - int(self._v_buff_width * PARMES_REAL(0.).nbytes), + int(self._v_buff_width * HYSOP_REAL(0.).nbytes), int(self.v_resol_dir[1]), int(self.v_resol_dir[2])) self._v_block_size = 1024 * 1024 # 1MByte @@ -219,7 +219,7 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self._cl_s_l_buff, offset=0, shape=_s_l_buff.shape, - dtype=PARMES_REAL, + dtype=HYSOP_REAL, flags=cl.map_flags.READ | cl.map_flags.WRITE, is_blocking=False, order=ORDER) @@ -229,7 +229,7 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self._cl_s_r_buff, offset=0, shape=_s_r_buff.shape, - dtype=PARMES_REAL, + dtype=HYSOP_REAL, flags=cl.map_flags.READ | cl.map_flags.WRITE, is_blocking=False, order=ORDER) @@ -449,28 +449,28 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self.resol_dir, order=ORDER)[-self._s_buff_width_from_r:, :, :] self._s_buffer_region_on_l = ( - int(SIZEOF_PARMES_REAL * self._s_buff_width_from_l), + int(SIZEOF_HYSOP_REAL * self._s_buff_width_from_l), int(self.resol_dir[1]), int(self.resol_dir[2])) self._origin_locl = (0, 0, 0) self._s_buffer_region_on_r = ( - int(SIZEOF_PARMES_REAL * self._s_buff_width_from_r), + int(SIZEOF_HYSOP_REAL * self._s_buff_width_from_r), int(self.resol_dir[1]), int(self.resol_dir[2])) self._origin_locr = ( int((self.resol_dir[0] - self._s_buff_width_from_r) - * PARMES_REAL(0).nbytes), 0, 0) + * HYSOP_REAL(0).nbytes), 0, 0) # Recompute blocks number and block size self._s_block_size_to_r, self._s_n_blocks_to_r, \ self._s_elem_block_to_r, self._s_block_slice_to_r = \ self._compute_block_number_and_size( - SIZEOF_PARMES_REAL * self._s_buff_width_loc_p * + SIZEOF_HYSOP_REAL * self._s_buff_width_loc_p * self.resol_dir[1] * self.resol_dir[2]) self._s_block_size_to_l, self._s_n_blocks_to_l, \ self._s_elem_block_to_l, self._s_block_slice_to_l = \ self._compute_block_number_and_size( - SIZEOF_PARMES_REAL * self._s_buff_width_loc_m * + SIZEOF_HYSOP_REAL * self._s_buff_width_loc_m * self.resol_dir[1] * self.resol_dir[2]) self._s_block_size_from_r, self._s_n_blocks_from_r, \ self._s_elem_block_from_r, self._s_block_slice_from_r = \ @@ -513,7 +513,7 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): if block < 256 * 1024: block = buff_size / 4 n_b = buff_size / block - n_elem = block / SIZEOF_PARMES_REAL + n_elem = block / SIZEOF_HYSOP_REAL slices = [None, ] * n_b for b in xrange(n_b): slices[b] = slice(b * n_elem, (b + 1) * n_elem) @@ -568,20 +568,20 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): for b in xrange(self._v_n_blocks): self._l_recv_v[b] = self._comm.Irecv( [self._v_l_buff_flat[self._v_block_slice[b]], - self._v_elem_block, PARMES_MPI_REAL], + self._v_elem_block, HYSOP_MPI_REAL], source=self._L_rk, tag=17 + 19 * self._L_rk + 59 * b) self._r_recv_v[b] = self._comm.Irecv( [self._v_r_buff_flat[self._v_block_slice[b]], - self._v_elem_block, PARMES_MPI_REAL], + self._v_elem_block, HYSOP_MPI_REAL], source=self._R_rk, tag=29 + 23 * self._R_rk + 57 * b) for b in xrange(self._v_n_blocks): self._send_to_r_v[b] = self._comm.Issend( [self._v_r_buff_loc_flat[self._v_block_slice[b]], - self._v_elem_block, PARMES_MPI_REAL], + self._v_elem_block, HYSOP_MPI_REAL], dest=self._R_rk, tag=17 + 19 * self._comm_rank + 59 * b) self._send_to_l_v[b] = self._comm.Issend( [self._v_l_buff_loc_flat[self._v_block_slice[b]], - self._v_elem_block, PARMES_MPI_REAL], + self._v_elem_block, HYSOP_MPI_REAL], dest=self._L_rk, tag=29 + 23 * self._comm_rank + 57 * b) if CL_PROFILE: for b in xrange(self._v_n_blocks): @@ -678,7 +678,7 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self.part_position[0], self.fields_on_part[self.fields_on_grid[0]][0], self._cl_s_l_buff, - PARMES_INTEGER(self._s_buff_width_loc_m), + HYSOP_INTEGER(self._s_buff_width_loc_m), self._cl_mesh_info, wait_for=wait_list) @@ -687,7 +687,7 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self.part_position[0], self.fields_on_part[self.fields_on_grid[0]][0], self._cl_s_r_buff, - PARMES_INTEGER(self._s_buff_width_loc_p), + HYSOP_INTEGER(self._s_buff_width_loc_p), self._cl_mesh_info, wait_for=wait_list) @@ -705,7 +705,7 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self._cl_v_l_buff, self.fields_on_part[self.fields_on_grid[0]][0], self._cl_s_l_buff, - PARMES_INTEGER(self._s_buff_width_loc_m), + HYSOP_INTEGER(self._s_buff_width_loc_m), self.gpu_precision(dt), self.gpu_precision(1. / self._v_mesh_size[1]), self.gpu_precision(1. / self._v_mesh_size[2]), @@ -718,7 +718,7 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self._cl_v_r_buff, self.fields_on_part[self.fields_on_grid[0]][0], self._cl_s_r_buff, - PARMES_INTEGER(self._s_buff_width_loc_p), + HYSOP_INTEGER(self._s_buff_width_loc_p), self.gpu_precision(dt), self.gpu_precision(1. / self._v_mesh_size[1]), self.gpu_precision(1. / self._v_mesh_size[2]), @@ -744,7 +744,7 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self._cl_v_l_buff, self.fields_on_part[self.fields_on_grid[0]][0], self._cl_s_l_buff, - PARMES_INTEGER(self._s_buff_width_loc_m), + HYSOP_INTEGER(self._s_buff_width_loc_m), self.gpu_precision(dt), self._cl_mesh_info, wait_for=wait_list) @@ -755,7 +755,7 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self._cl_v_r_buff, self.fields_on_part[self.fields_on_grid[0]][0], self._cl_s_r_buff, - PARMES_INTEGER(self._s_buff_width_loc_p), + HYSOP_INTEGER(self._s_buff_width_loc_p), self.gpu_precision(dt), self._cl_mesh_info, wait_for=wait_list) @@ -787,12 +787,12 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): for b in xrange(self._s_n_blocks_from_l): self._l_recv[b] = self._comm.Irecv( [self._s_froml_buff_flat[self._s_block_slice_from_l[b]], - self._s_elem_block_from_l, PARMES_MPI_REAL], + self._s_elem_block_from_l, HYSOP_MPI_REAL], source=self._L_rk, tag=888 + self._L_rk + 19 * b) for b in xrange(self._s_n_blocks_from_r): self._r_recv[b] = self._comm.Irecv( [self._s_fromr_buff_flat[self._s_block_slice_from_r[b]], - self._s_elem_block_from_r, PARMES_MPI_REAL], + self._s_elem_block_from_r, HYSOP_MPI_REAL], source=self._R_rk, tag=333 + self._R_rk + 17 * b) # Fill and get the left buffer @@ -804,9 +804,9 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self._queue_comm_m, self._s_l_buff, self._cl_s_l_buff, host_origin=(b * self._s_block_size_to_l, 0, 0), - host_pitches=(s * SIZEOF_PARMES_REAL, 0), + host_pitches=(s * SIZEOF_HYSOP_REAL, 0), buffer_origin=(b * self._s_block_size_to_l, 0, 0), - buffer_pitches=(s * SIZEOF_PARMES_REAL, 0), + buffer_pitches=(s * SIZEOF_HYSOP_REAL, 0), region=(self._s_block_size_to_l, 1, 1), is_blocking=False, wait_for=[evt_comm_l]) @@ -817,7 +817,7 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self._evt_get_l[b].wait() self._l_send[b] = self._comm.Issend( [self._s_l_buff[self._s_block_slice_to_l[b]], - self._s_elem_block_to_l, PARMES_MPI_REAL], + self._s_elem_block_to_l, HYSOP_MPI_REAL], dest=self._L_rk, tag=333 + self._comm_rank + 17 * b) ctime_send_l = MPI.Wtime() - ctime @@ -830,9 +830,9 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self._queue_comm_p, self._s_r_buff, self._cl_s_r_buff, host_origin=(b * self._s_block_size_to_r, 0, 0), - host_pitches=(s * SIZEOF_PARMES_REAL, 0), + host_pitches=(s * SIZEOF_HYSOP_REAL, 0), buffer_origin=(b * self._s_block_size_to_r, 0, 0), - buffer_pitches=(s * SIZEOF_PARMES_REAL, 0), + buffer_pitches=(s * SIZEOF_HYSOP_REAL, 0), region=(self._s_block_size_to_r, 1, 1), is_blocking=False, wait_for=[evt_comm_r]) @@ -842,7 +842,7 @@ class MultiGPUParticleAdvection(GPUParticleAdvection): self._evt_get_r[b].wait() self._r_send[b] = self._comm.Issend( [self._s_r_buff[self._s_block_slice_to_r[b]], - self._s_elem_block_to_r, PARMES_MPI_REAL], + self._s_elem_block_to_r, HYSOP_MPI_REAL], dest=self._R_rk, tag=888 + self._comm_rank + 19 * b) ctime_send_r = MPI.Wtime() - ctime diff --git a/HySoP/hysop/gpu/tests/test_advection_nullVelocity.py b/HySoP/hysop/gpu/tests/test_advection_nullVelocity.py index 346375b44119917732b08f90954f22fd839c7e2a..14ff00024d8973cd969c80fb9e3871ca0516b083 100644 --- a/HySoP/hysop/gpu/tests/test_advection_nullVelocity.py +++ b/HySoP/hysop/gpu/tests/test_advection_nullVelocity.py @@ -1,18 +1,18 @@ """ -@file parmepy.gpu.tests.test_advection_nullVelocity +@file hysop.gpu.tests.test_advection_nullVelocity Testing advection kernels with a null velocity. Basic functionnal test. """ -from parmepy.domain.box import Box -from parmepy.fields.continuous import Field -from parmepy.operator.advection import Advection -from parmepy.constants import ORDER, np, PARMES_REAL -from parmepy.problem.simulation import Simulation -from parmepy.methods_keys import TimeIntegrator, Interpolation, Remesh, \ +from hysop.domain.box import Box +from hysop.fields.continuous import Field +from hysop.operator.advection import Advection +from hysop.constants import ORDER, np, HYSOP_REAL +from hysop.problem.simulation import Simulation +from hysop.methods_keys import TimeIntegrator, Interpolation, Remesh, \ Support, Splitting, Precision -from parmepy.numerics.integrators.runge_kutta2 import RK2 -from parmepy.numerics.interpolation import Linear -from parmepy.numerics.remeshing import L2_1, L4_2, L6_3, M8Prime -from parmepy.tools.parameters import Discretization +from hysop.numerics.integrators.runge_kutta2 import RK2 +from hysop.numerics.interpolation import Linear +from hysop.numerics.remeshing import L2_1, L4_2, L6_3, M8Prime +from hysop.tools.parameters import Discretization def setup_2D(): @@ -35,12 +35,9 @@ def assertion_2D(scal, velo, advec): scal_d = scal.discreteFields.values()[0] velo_d = velo.discreteFields.values()[0] - scal_d.data[0][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - velo_d.data[0][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) - velo_d.data[1][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) + scal_d.data[0][...] = npw.asrealarray(np.random.random(scal_d.data[0].shape)) + velo_d.data[0][...] = npw.zeros_like(scal_d.data[0]) + velo_d.data[1][...] = npw.zeros_like(scal_d.data[0]) scal_init = scal_d.data[0].copy() scal_d.toDevice() velo_d.toDevice() @@ -61,12 +58,9 @@ def assertion_2D_withPython(scal, velo, advec, advec_py): scal_d = scal.discreteFields.values()[0] velo_d = velo.discreteFields.values()[0] - scal_d.data[0][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - velo_d.data[0][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) - velo_d.data[1][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) + scal_d.data[0][...] = npw.asrealarray(np.random.random(scal_d.data[0].shape)) + velo_d.data[0][...] = npw.zeros_like(scal_d.data[0]) + velo_d.data[1][...] = npw.zeros_like(scal_d.data[0]) scal_d.toDevice() velo_d.toDevice() @@ -88,14 +82,10 @@ def assertion_3D(scal, velo, advec): scal_d = scal.discreteFields.values()[0] velo_d = velo.discreteFields.values()[0] - scal_d.data[0][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - velo_d.data[0][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) - velo_d.data[1][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) - velo_d.data[2][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) + scal_d.data[0][...] = npw.asrealarray(np.random.random(scal_d.data[0].shape)) + velo_d.data[0][...] = npw.zeros_like(scal_d.data[0]) + velo_d.data[1][...] = npw.zeros_like(scal_d.data[0]) + velo_d.data[2][...] = npw.zeros_like(scal_d.data[0]) scal_init = scal_d.data[0].copy() scal_d.toDevice() velo_d.toDevice() @@ -116,14 +106,10 @@ def assertion_3D_withPython(scal, velo, advec, advec_py): scal_d = scal.discreteFields.values()[0] velo_d = velo.discreteFields.values()[0] - scal_d.data[0][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - velo_d.data[0][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) - velo_d.data[1][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) - velo_d.data[2][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) + scal_d.data[0][...] = npw.asrealarray(np.random.random(scal_d.data[0].shape)) + velo_d.data[0][...] = npw.zeros_like(scal_d.data[0]) + velo_d.data[1][...] = npw.zeros_like(scal_d.data[0]) + velo_d.data[2][...] = npw.zeros_like(scal_d.data[0]) scal_d.toDevice() velo_d.toDevice() @@ -154,7 +140,7 @@ def test_2D_m6_1k(): Remesh: L4_2, Support: 'gpu_1k', Splitting: 'o2', - Precision: PARMES_REAL} + Precision: HYSOP_REAL} ) advec_py = Advection(velo, scal,discretization=d2d, method={TimeIntegrator: RK2, @@ -180,7 +166,7 @@ def test_2D_m6_2k(): Remesh: L4_2, Support: 'gpu_2k', Splitting: 'o2', - Precision: PARMES_REAL} + Precision: HYSOP_REAL} ) assert assertion_2D(scal, velo, advec) @@ -198,7 +184,7 @@ def test_2D_m6_1k_sFH(): Remesh: L4_2, Support: 'gpu_1k', Splitting: 'o2_FullHalf', - Precision: PARMES_REAL} + Precision: HYSOP_REAL} ) assert assertion_2D(scal, velo, advec) @@ -216,7 +202,7 @@ def test_2D_m6_2k_sFH(): Remesh: L4_2, Support: 'gpu_2k', Splitting: 'o2_FullHalf', - Precision: PARMES_REAL} + Precision: HYSOP_REAL} ) assert assertion_2D(scal, velo, advec) @@ -234,7 +220,7 @@ def test_3D_m6_1k(): Remesh: L4_2, Support: 'gpu_1k', Splitting: 'o2', - Precision: PARMES_REAL} + Precision: HYSOP_REAL} ) assert assertion_3D(scal, velo, advec) @@ -252,7 +238,7 @@ def test_3D_m6_2k(): Remesh: L4_2, Support: 'gpu_2k', Splitting: 'o2', - Precision: PARMES_REAL} + Precision: HYSOP_REAL} ) assert assertion_3D(scal, velo, advec) @@ -270,7 +256,7 @@ def test_3D_m6_1k_sFH(): Remesh: L4_2, Support: 'gpu_1k', Splitting: 'o2_FullHalf', - Precision: PARMES_REAL} + Precision: HYSOP_REAL} ) assert assertion_3D(scal, velo, advec) @@ -288,7 +274,7 @@ def test_3D_m6_2k_sFH(): Remesh: L4_2, Support: 'gpu_2k', Splitting: 'o2_FullHalf', - Precision: PARMES_REAL}, + Precision: HYSOP_REAL}, ) assert assertion_3D(scal, velo, advec) @@ -307,7 +293,7 @@ def test_2D_m4_1k(): Remesh: L2_1, Support: 'gpu_1k', Splitting: 'o2', - Precision: PARMES_REAL} + Precision: HYSOP_REAL} ) advec_py = Advection(velo, scal,discretization=d2d, method={TimeIntegrator: RK2, @@ -332,7 +318,7 @@ def test_2D_m4_2k(): Remesh: L2_1, Support: 'gpu_2k', Splitting: 'o2', - Precision: PARMES_REAL + Precision: HYSOP_REAL } ) advec_py = Advection(velo, scal,discretization=d2d, @@ -358,7 +344,7 @@ def test_2D_m4_1k_sFH(): Remesh: L2_1, Support: 'gpu_1k', Splitting: 'o2_FullHalf', - Precision: PARMES_REAL}, + Precision: HYSOP_REAL}, ) advec_py = Advection(velo, scal,discretization=d2d, method={TimeIntegrator: RK2, @@ -826,12 +812,9 @@ def test_rectangular_domain2D(): scal_d = scal.discreteFields.values()[0] velo_d = velo.discreteFields.values()[0] - scal_d.data[0][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - velo_d.data[0][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) - velo_d.data[1][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) + scal_d.data[0][...] = npw.asrealarray(np.random.random(scal_d.data[0].shape)) + velo_d.data[0][...] = npw.zeros_like(scal_d.data[0]) + velo_d.data[1][...] = npw.zeros_like(scal_d.data[0]) scal_init = scal_d.data[0].copy() scal_d.toDevice() velo_d.toDevice() @@ -873,14 +856,10 @@ def test_rectangular_domain3D(): scal_d = scal.discreteFields.values()[0] velo_d = velo.discreteFields.values()[0] - scal_d.data[0][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - velo_d.data[0][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) - velo_d.data[1][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) - velo_d.data[2][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) + scal_d.data[0][...] = npw.asrealarray(np.random.random(scal_d.data[0].shape)) + velo_d.data[0][...] = npw.zeros_like(scal_d.data[0]) + velo_d.data[1][...] = npw.zeros_like(scal_d.data[0]) + velo_d.data[2][...] = npw.zeros_like(scal_d.data[0]) scal_init = scal_d.data[0].copy() scal_d.toDevice() velo_d.toDevice() @@ -922,14 +901,10 @@ def test_2D_vector(): scal_d = scal.discreteFields.values()[0] velo_d = velo.discreteFields.values()[0] - scal_d.data[0][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - scal_d.data[1][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - velo_d.data[0][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) - velo_d.data[1][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) + scal_d.data[0][...] = npw.asrealarray(np.random.random(scal_d.data[0].shape)) + scal_d.data[1][...] = npw.asrealarray(np.random.random(scal_d.data[0].shape)) + velo_d.data[0][...] = npw.zeros_like(scal_d.data[0]) + velo_d.data[1][...] = npw.zeros_like(scal_d.data[0]) scal_init_X = scal_d.data[0].copy() scal_init_Y = scal_d.data[1].copy() scal_d.toDevice() @@ -975,18 +950,12 @@ def test_3D_vector(): scal_d = scal.discreteFields.values()[0] velo_d = velo.discreteFields.values()[0] - scal_d.data[0][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - scal_d.data[1][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - scal_d.data[2][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - velo_d.data[0][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) - velo_d.data[1][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) - velo_d.data[2][...] = np.zeros_like(scal_d.data[0], - dtype=PARMES_REAL, order=ORDER) + scal_d.data[0][...] = npw.asrealarray(np.random.random(scal_d.data[0].shape)) + scal_d.data[1][...] = npw.asrealarray(np.random.random(scal_d.data[0].shape)) + scal_d.data[2][...] = npw.asrealarray(np.random.random(scal_d.data[0].shape)) + velo_d.data[0][...] = npw.zeros_like(scal_d.data[0]) + velo_d.data[1][...] = npw.zeros_like(scal_d.data[0]) + velo_d.data[2][...] = npw.zeros_like(scal_d.data[0]) scal_init_X = scal_d.data[0].copy() scal_init_Y = scal_d.data[1].copy() scal_init_Z = scal_d.data[2].copy() diff --git a/HySoP/hysop/gpu/tests/test_advection_randomVelocity.py b/HySoP/hysop/gpu/tests/test_advection_randomVelocity.py index 22e2071c6e0a20c0b9971776f2f44faeae3c5e29..46d6ce5d40554609fc8cfaa16d025f07785f2639 100644 --- a/HySoP/hysop/gpu/tests/test_advection_randomVelocity.py +++ b/HySoP/hysop/gpu/tests/test_advection_randomVelocity.py @@ -1,18 +1,19 @@ """ -@file parmepy.gpu.tests.test_advection_randomVelocity +@file hysop.gpu.tests.test_advection_randomVelocity Testing advection kernels with a random velocity field. """ -from parmepy.domain.box import Box -from parmepy.fields.continuous import Field -from parmepy.operator.advection import Advection -from parmepy.constants import ORDER, np, PARMES_REAL -from parmepy.problem.simulation import Simulation -from parmepy.methods_keys import TimeIntegrator, Interpolation, Remesh, \ +from hysop.domain.box import Box +from hysop.fields.continuous import Field +from hysop.operator.advection import Advection +from hysop.constants import np +from hysop.problem.simulation import Simulation +from hysop.methods_keys import TimeIntegrator, Interpolation, Remesh, \ Support, Splitting -from parmepy.numerics.integrators.runge_kutta2 import RK2 -from parmepy.numerics.interpolation import Linear -from parmepy.numerics.remeshing import L2_1, L4_2, M8Prime -from parmepy.tools.parameters import Discretization +from hysop.numerics.integrators.runge_kutta2 import RK2 +from hysop.numerics.interpolation import Linear +from hysop.numerics.remeshing import L2_1, L4_2, M8Prime +from hysop.tools.parameters import Discretization +import hysop.tools.numpywrappers as npw def setup_2D(): @@ -37,19 +38,14 @@ def assertion_2D_withPython(scal, velo, advec, advec_py): scal_d = scal.discreteFields.values()[0] velo_d = velo.discreteFields.values()[0] - scal_d.data[0][...] = np.asarray( - np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - velo_d.data[0][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) + scal_d.data[0][...] = npw.asrealarray( + np.random.random(scal_d.data[0].shape)) + velo_d.data[0][...] = npw.ones(scal_d.data[0].shape) #velo_d.data[0][...] = np.asarray( - # np.random.random(scal_d.data[0].shape), - # dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[0]) - velo_d.data[1][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) + # np.random.random(scal_d.data[0].shape)) / (2. * scal_d.resolution[0]) + velo_d.data[1][...] = npw.ones(scal_d.data[0].shape) #velo_d.data[1][...] = np.asarray( - # np.random.random(scal_d.data[0].shape), - # dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[1]) + # np.random.random(scal_d.data[0].shape)) / (2. * scal_d.resolution[1]) scal_d.toDevice() velo_d.toDevice() @@ -71,24 +67,17 @@ def assertion_3D_withPython(scal, velo, advec, advec_py): scal_d = scal.discreteFields.values()[0] velo_d = velo.discreteFields.values()[0] - scal_d.data[0][...] = np.asarray( - np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - velo_d.data[0][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) -#np.zeros_like( -# scal_d.data[0], -# dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[0]) - velo_d.data[1][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) -#np.zeros_like( -# scal_d.data[0], -# dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[1]) - velo_d.data[2][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) -#np.zeros_like( -# scal_d.data[0], -# dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[2]) + scal_d.data[0][...] = npw.asrealarray( + np.random.random(scal_d.data[0].shape)) + velo_d.data[0][...] = npw.ones(scal_d.data[0].shape) +#npw.zeros_like( +# scal_d.data[0]) / (2. * scal_d.resolution[0]) + velo_d.data[1][...] = npw.ones(scal_d.data[0].shape) +#npw.zeros_like( +# scal_d.data[0]) / (2. * scal_d.resolution[1]) + velo_d.data[2][...] = npw.ones(scal_d.data[0].shape) +#npw.zeros_like( +# scal_d.data[0]) / (2. * scal_d.resolution[2]) scal_d.toDevice() velo_d.toDevice() @@ -709,18 +698,13 @@ def test_rectangular_domain2D(): scal_d = scal.discreteFields.values()[0] velo_d = velo.discreteFields.values()[0] - scal_d.data[0][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - velo_d.data[0][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) + scal_d.data[0][...] = np.asrealarray(np.random.random(scal_d.data[0].shape)) + velo_d.data[0][...] = npw.ones(scal_d.data[0].shape) #np.asarray( -# np.random.random(velo_d.data[0].shape), -# dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[0]) - velo_d.data[1][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) +# np.random.random(velo_d.data[0].shape)) / (2. * scal_d.resolution[0]) + velo_d.data[1][...] = npw.ones(scal_d.data[0].shape) #np.asarray( -# np.random.random(velo_d.data[1].shape), -# dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[1]) +# np.random.random(velo_d.data[1].shape)) / (2. * scal_d.resolution[1]) scal_d.toDevice() velo_d.toDevice() @@ -761,23 +745,16 @@ def test_rectangular_domain3D(): scal_d = scal.discreteFields.values()[0] velo_d = velo.discreteFields.values()[0] - scal_d.data[0][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - velo_d.data[0][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) -#np.asarray( -# np.random.random(velo_d.data[0].shape), -# dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[0]) - velo_d.data[1][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) -#np.asarray( -# np.random.random(velo_d.data[1].shape), -# dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[1]) - velo_d.data[2][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) -#np.asarray( -# np.random.random(velo_d.data[2].shape), -# dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[2]) + scal_d.data[0][...] = npw.asrealarray(np.random.random(scal_d.data[0].shape)) + velo_d.data[0][...] = npw.ones(scal_d.data[0].shape) +#npw.asrealarray( +# np.random.random(velo_d.data[0].shape)) / (2. * scal_d.resolution[0]) + velo_d.data[1][...] = npw.ones(scal_d.data[0].shape) +#npw.asrealarray( +# np.random.random(velo_d.data[1].shape)) / (2. * scal_d.resolution[1]) + velo_d.data[2][...] = npw.ones(scal_d.data[0].shape) +#npw.asrealarray( +# np.random.random(velo_d.data[2].shape)) / (2. * scal_d.resolution[2]) scal_d.toDevice() velo_d.toDevice() @@ -817,20 +794,14 @@ def test_vector_2D(): scal_d = scal.discreteFields.values()[0] velo_d = velo.discreteFields.values()[0] - scal_d.data[0][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - scal_d.data[1][...] = np.asarray(np.random.random(scal_d.data[1].shape), - dtype=PARMES_REAL, order=ORDER) - velo_d.data[0][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) -#np.asarray( -# np.random.random(velo_d.data[0].shape), -# dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[0]) - velo_d.data[1][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) -#np.asarray( -# np.random.random(velo_d.data[1].shape), -# dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[1]) + scal_d.data[0][...] = npw.asrealarray(np.random.random(scal_d.data[0].shape)) + scal_d.data[1][...] = npw.asrealarray(np.random.random(scal_d.data[1].shape)) + velo_d.data[0][...] = npw.ones(scal_d.data[0].shape) +#npw.asarray( +# np.random.random(velo_d.data[0].shape)) / (2. * scal_d.resolution[0]) + velo_d.data[1][...] = npw.ones(scal_d.data[0].shape) +#npw.asarray( +# np.random.random(velo_d.data[1].shape)) / (2. * scal_d.resolution[1]) scal_d.toDevice() velo_d.toDevice() @@ -873,27 +844,21 @@ def test_vector_3D(): scal_d = scal.discreteFields.values()[0] velo_d = velo.discreteFields.values()[0] - scal_d.data[0][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - scal_d.data[1][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - scal_d.data[2][...] = np.asarray(np.random.random(scal_d.data[0].shape), - dtype=PARMES_REAL, order=ORDER) - velo_d.data[0][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) -#np.asarray( -# np.random.random(velo_d.data[0].shape), -# dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[0]) - velo_d.data[1][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) -#np.asarray( -# np.random.random(velo_d.data[1].shape), -# dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[1]) - velo_d.data[2][...] = np.ones(scal_d.data[0].shape, - dtype=PARMES_REAL, order=ORDER) -#np.asarray( -# np.random.random(velo_d.data[2].shape), -# dtype=PARMES_REAL, order=ORDER) / (2. * scal_d.resolution[2]) + scal_d.data[0][...] = npw.asrealarray( + np.random.random(scal_d.data[0].shape)) + scal_d.data[1][...] = npw.asrealarray( + np.random.random(scal_d.data[0].shape)) + scal_d.data[2][...] = npw.asrealarray( + np.random.random(scal_d.data[0].shape)) + velo_d.data[0][...] = npw.ones(scal_d.data[0].shape) +#npw.asrealarray( +# np.random.random(velo_d.data[0].shape)) / (2. * scal_d.resolution[0]) + velo_d.data[1][...] = npw.ones(scal_d.data[0].shape) +#npw.asrealarray( +# np.random.random(velo_d.data[1].shape)) / (2. * scal_d.resolution[1]) + velo_d.data[2][...] = npw.ones(scal_d.data[0].shape) +#npw.asrealarray( +# np.random.random(velo_d.data[2].shape)) / (2. * scal_d.resolution[2]) scal_d.toDevice() velo_d.toDevice() diff --git a/HySoP/hysop/gpu/tests/test_copy.py b/HySoP/hysop/gpu/tests/test_copy.py index e275f44f372bf45bc2f52535805c147b400f92de..e38cd8c6b1fc4d6f76825f4f5d012a7b77aa9e4c 100644 --- a/HySoP/hysop/gpu/tests/test_copy.py +++ b/HySoP/hysop/gpu/tests/test_copy.py @@ -1,11 +1,12 @@ """ -@file parmepy.gpu.tests.test_copy +@file hysop.gpu.tests.test_copy Testing copy kernels. """ -from parmepy.gpu import cl -from parmepy.constants import ORDER, np, PARMES_REAL -from parmepy.gpu.tools import get_opencl_environment -from parmepy.gpu.gpu_kernel import KernelLauncher +from hysop.gpu import cl +from hysop.constants import np +from hysop.gpu.tools import get_opencl_environment +from hysop.gpu.gpu_kernel import KernelLauncher +import hysop.tools.numpywrappers as npw def test_copy2D(): @@ -23,9 +24,8 @@ def test_copy2D(): prg = cl_env.build_src(src_copy, build_options, vec) copy = KernelLauncher(prg.copy, cl_env.queue, gwi, lwi) - data_in = np.asarray(np.random.random(resolution), - dtype=PARMES_REAL, order=ORDER) - data_out = np.empty_like(data_in) + data_in = npw.asrealarray(np.random.random(resolution)) + data_out = npw.empty_like(data_in) data_gpu_in = cl.Buffer(cl_env.ctx, cl.mem_flags.READ_WRITE, size=data_in.nbytes) @@ -71,9 +71,8 @@ def test_copy2D_rect(): prg = cl_env.build_src(src_copy, build_options, vec) copy_y = KernelLauncher(prg.copy, cl_env.queue, gwi, lwi) - data_in = np.asarray(np.random.random(resolution), - dtype=PARMES_REAL, order=ORDER) - data_out = np.empty_like(data_in) + data_in = npw.asrealarray(np.random.random(resolution)) + data_out = npw.empty_like(data_in) data_gpu_in = cl.Buffer(cl_env.ctx, cl.mem_flags.READ_WRITE, size=data_in.nbytes) @@ -90,9 +89,8 @@ def test_copy2D_rect(): cl_env.queue.finish() assert np.allclose(data_out, data_in) - data_in = np.asarray(np.random.random(resolutionT), - dtype=PARMES_REAL, order=ORDER) - data_out = np.empty_like(data_in) + data_in = npw.asrealarray(np.random.random(resolutionT)) + data_out = npw.empty_like(data_in) cl.enqueue_copy(cl_env.queue, data_gpu_in, data_in) cl.enqueue_copy(cl_env.queue, data_gpu_out, data_out) cl_env.queue.finish() @@ -125,9 +123,8 @@ def test_copy3D(): prg = cl_env.build_src(src_copy, build_options, vec) init_copy = KernelLauncher(prg.copy, cl_env.queue, gwi, lwi) - data_in = np.asarray(np.random.random(resolution), - dtype=PARMES_REAL, order=ORDER) - data_out = np.empty_like(data_in) + data_in = npw.asrealarray(np.random.random(resolution)) + data_out = npw.empty_like(data_in) data_gpu_in = cl.Buffer(cl_env.ctx, cl.mem_flags.READ_WRITE, size=data_in.nbytes) @@ -188,8 +185,7 @@ def test_copy3D_rect(): prg = cl_env.build_src(src_copy, build_options, vec) init_copy_z = KernelLauncher(prg.copy, cl_env.queue, gwi, lwi) - data_in = np.asarray(np.random.random(resolution_x), - dtype=PARMES_REAL, order=ORDER) + data_in = npw.asrealarray(np.random.random(resolution_x)) data_out = np.empty_like(data_in) data_gpu_in = cl.Buffer(cl_env.ctx, cl.mem_flags.READ_WRITE, @@ -207,9 +203,8 @@ def test_copy3D_rect(): cl_env.queue.finish() assert np.allclose(data_out, data_in) - data_in = np.asarray(np.random.random(resolution_y), - dtype=PARMES_REAL, order=ORDER) - data_out = np.empty_like(data_in) + data_in = npw.asrealarray(np.random.random(resolution_y)) + data_out = npw.empty_like(data_in) cl.enqueue_copy(cl_env.queue, data_gpu_in, data_in) cl.enqueue_copy(cl_env.queue, data_gpu_out, data_out) cl_env.queue.finish() @@ -219,9 +214,8 @@ def test_copy3D_rect(): cl_env.queue.finish() assert np.allclose(data_out, data_in) - data_in = np.asarray(np.random.random(resolution_z), - dtype=PARMES_REAL, order=ORDER) - data_out = np.empty_like(data_in) + data_in = npw.asrealarray(np.random.random(resolution_z)) + data_out = npw.empty_like(data_in) cl.enqueue_copy(cl_env.queue, data_gpu_in, data_in) cl.enqueue_copy(cl_env.queue, data_gpu_out, data_out) cl_env.queue.finish() diff --git a/HySoP/hysop/gpu/tests/test_opencl_environment.py b/HySoP/hysop/gpu/tests/test_opencl_environment.py index 0cc2b6aa1ad3aa6ffe664558958878c4858a3bf6..0d7d0d6d720b779e3507b85ede1c20d0a2ebfe51 100644 --- a/HySoP/hysop/gpu/tests/test_opencl_environment.py +++ b/HySoP/hysop/gpu/tests/test_opencl_environment.py @@ -1,5 +1,5 @@ -from parmepy.constants import np -from parmepy.gpu.tools import get_opencl_environment +from hysop.constants import np +from hysop.gpu.tools import get_opencl_environment FLOAT_GPU = np.float32 diff --git a/HySoP/hysop/gpu/tests/test_transposition.py b/HySoP/hysop/gpu/tests/test_transposition.py index 9c35c1da5572a2d38a71fec77fef0a90cd4f306c..c6da15f27eccb21aa2df15a3b374b4bc3dac0c43 100644 --- a/HySoP/hysop/gpu/tests/test_transposition.py +++ b/HySoP/hysop/gpu/tests/test_transposition.py @@ -1,11 +1,12 @@ """ -@file parmepy.gpu.tests.test_transposition +@file hysop.gpu.tests.test_transposition Testing copy kernels. """ -from parmepy.gpu import cl -from parmepy.constants import ORDER, np, PARMES_REAL -from parmepy.gpu.tools import get_opencl_environment -from parmepy.gpu.gpu_kernel import KernelLauncher +from hysop.gpu import cl +from hysop.constants import np +from hysop.gpu.tools import get_opencl_environment +from hysop.gpu.gpu_kernel import KernelLauncher +import hysop.tools.numpywrappers as npw def test_transposition_xy2D(): @@ -25,8 +26,7 @@ def test_transposition_xy2D(): init_transpose_xy = KernelLauncher( prg.transpose_xy, cl_env.queue, gwi, lwi) - data_in = np.asarray(np.random.random(resolution), - dtype=PARMES_REAL, order=ORDER) + data_in = npw.asrealarray(np.random.random(resolution)) data_out = np.empty_like(data_in) data_out2 = np.empty_like(data_in) data_gpu_in = cl.Buffer(cl_env.ctx, @@ -90,12 +90,9 @@ def test_transposition_xy2D_rect(): cl_env.queue, gwi, lwi) - data_in = np.asarray(np.random.random(resolution), - dtype=PARMES_REAL, order=ORDER) - data_out = np.empty(resolutionT, - dtype=PARMES_REAL, order=ORDER) - data_out2 = np.empty(resolution, - dtype=PARMES_REAL, order=ORDER) + data_in = npw.asrealarray(np.random.random(resolution)) + data_out = npw.realempty(resolutionT) + data_out2 = npw.realempty(resolution) data_gpu_in = cl.Buffer(cl_env.ctx, cl.mem_flags.READ_WRITE, size=data_in.nbytes) @@ -146,10 +143,9 @@ def test_transposition_xy3D(): init_transpose_xy = KernelLauncher( prg.transpose_xy, cl_env.queue, gwi, lwi) - data_in = np.asarray(np.random.random(resolution), - dtype=PARMES_REAL, order=ORDER) - data_out = np.empty_like(data_in) - data_out2 = np.empty_like(data_in) + data_in = npw.asrealarray(np.random.random(resolution)) + data_out = npw.empty_like(data_in) + data_out2 = npw.empty_like(data_in) data_gpu_in = cl.Buffer(cl_env.ctx, cl.mem_flags.READ_WRITE, size=data_in.nbytes) @@ -211,12 +207,9 @@ def test_transposition_xy3D_rect(): init_transpose_xy_y = KernelLauncher( prg.transpose_xy, cl_env.queue, gwi, lwi) - data_in = np.asarray(np.random.random(resolution), - dtype=PARMES_REAL, order=ORDER) - data_out = np.empty(resolutionT, - dtype=PARMES_REAL, order=ORDER) - data_out2 = np.empty(resolution, - dtype=PARMES_REAL, order=ORDER) + data_in = npw.asrealarray(np.random.random(resolution)) + data_out = npw.realempty(resolutionT) + data_out2 = npw.realempty(resolution) data_gpu_in = cl.Buffer(cl_env.ctx, cl.mem_flags.READ_WRITE, size=data_in.nbytes) @@ -266,8 +259,7 @@ def test_transposition_xz3D(): init_transpose_xz = KernelLauncher( prg.transpose_xz, cl_env.queue, gwi, lwi) - data_in = np.asarray(np.random.random(resolution), - dtype=PARMES_REAL, order=ORDER) + data_in = npw.asrealarray(np.random.random(resolution)) data_out = np.empty_like(data_in) data_out2 = np.empty_like(data_in) data_gpu_in = cl.Buffer(cl_env.ctx, @@ -332,8 +324,7 @@ def test_transposition_xz3D_rect(): init_transpose_xz_z = KernelLauncher( prg.transpose_xz, cl_env.queue, gwi, lwi) - data_in = np.asarray(np.random.random(resolution), - dtype=PARMES_REAL, order=ORDER) + data_in = npw.asrealarray(np.random.random(resolution)) data_res = data_in.copy().swapaxes(0, 2) data_out = np.empty_like(data_res) data_out2 = np.empty_like(data_in) @@ -385,10 +376,9 @@ def test_transposition_xz3Dslice(): init_transpose_xz = KernelLauncher( prg.transpose_xz, cl_env.queue, gwi, lwi) - data_in = np.asarray(np.random.random(resolution), - dtype=PARMES_REAL, order=ORDER) - data_out = np.empty_like(data_in) - data_out2 = np.empty_like(data_in) + data_in = npw.asrealarray(np.random.random(resolution)) + data_out = npw.empty_like(data_in) + data_out2 = npw.empty_like(data_in) data_gpu_in = cl.Buffer(cl_env.ctx, cl.mem_flags.READ_WRITE, size=data_in.nbytes) @@ -451,8 +441,7 @@ def test_transposition_xz3Dslice_rect(): init_transpose_xz_z = KernelLauncher( prg.transpose_xz, cl_env.queue, gwi, lwi) - data_in = np.asarray(np.random.random(resolution), - dtype=PARMES_REAL, order=ORDER) + data_in = npw.asrealarray(np.random.random(resolution)) data_res = data_in.copy().swapaxes(0, 2) data_out = np.empty_like(data_res) data_out2 = np.empty_like(data_in) diff --git a/HySoP/hysop/gpu/tools.py b/HySoP/hysop/gpu/tools.py index 24aaa668e25ad35d91d6799e5da5fb4918afcb6a..656d1d2ba45fe889b5d417f2afde8c4c2da81beb 100644 --- a/HySoP/hysop/gpu/tools.py +++ b/HySoP/hysop/gpu/tools.py @@ -3,10 +3,10 @@ Tools for gpu management. """ -from parmepy import __VERBOSE__, __DEFAULT_PLATFORM_ID__, __DEFAULT_DEVICE_ID__ -from parmepy.constants import np, PARMES_REAL, ORDER -from parmepy.gpu import cl, clTools, GPU_SRC, CL_PROFILE -import parmepy.tools.numpywrappers as npw +from hysop import __VERBOSE__, __DEFAULT_PLATFORM_ID__, __DEFAULT_DEVICE_ID__ +from hysop.constants import np, HYSOP_REAL, ORDER +from hysop.gpu import cl, clTools, GPU_SRC, CL_PROFILE +import hysop.tools.numpywrappers as npw import re import mpi4py.MPI as mpi FLOAT_GPU, DOUBLE_GPU = np.float32, np.float64 @@ -47,7 +47,7 @@ class OpenCLEnvironment(object): ## MPI sub-communicator for all processes attached to the same device if comm is None: - from parmepy.mpi.main_var import main_comm + from hysop.mpi.main_var import main_comm else: main_comm = comm # Splitting the mpi communicator by the device id is not enough: @@ -534,7 +534,7 @@ class OpenCLEnvironment(object): # """ # new_alloc = 0 # if type_list is None: - # type_list = [PARMES_REAL] * len(sizes_list) + # type_list = [HYSOP_REAL] * len(sizes_list) # buff_list = [] # Returned list # keys_list = [] # for s, t in zip(sizes_list, type_list): @@ -565,7 +565,7 @@ class OpenCLEnvironment(object): def get_opengl_shared_environment(platform_id=None, device_id=None, - device_type=None, precision=PARMES_REAL, + device_type=None, precision=HYSOP_REAL, comm=None): """ Get an OpenCL environment with OpenGL shared enable. @@ -594,7 +594,7 @@ def get_opengl_shared_environment(platform_id=None, def get_opencl_environment(platform_id=None, device_id=None, - device_type=None, precision=PARMES_REAL, + device_type=None, precision=HYSOP_REAL, comm=None): """ Get an OpenCL environment. diff --git a/HySoP/hysop/gpu/visu/__init__.py b/HySoP/hysop/gpu/visu/__init__.py index 8092508a789ce08d46b1c2856ea411c4a1149294..03685a701a45ec979a9fdc3ec3f6073e1f62c435 100644 --- a/HySoP/hysop/gpu/visu/__init__.py +++ b/HySoP/hysop/gpu/visu/__init__.py @@ -1,2 +1,2 @@ -## @package parmepy.gpu.visu +## @package hysop.gpu.visu # Visualisation tools on GPU diff --git a/HySoP/hysop/gpu/visu/marchingcube.py b/HySoP/hysop/gpu/visu/marchingcube.py index 727bb4c03bc9395f889d0103f5896084824dcd47..47b166fae0c0ae41fdba72c8b311c71dfb4badcb 100644 --- a/HySoP/hysop/gpu/visu/marchingcube.py +++ b/HySoP/hysop/gpu/visu/marchingcube.py @@ -9,10 +9,9 @@ from math import log # System call import ctypes -# Parmepy -from parmepy.constant import PARMES_REAL -from parmepy.gpu import cl -from parmepy.gpu.tools import get_opencl_environment +from hysop.constant import HYSOP_REAL +from hysop.gpu import cl +from hysop.gpu.tools import get_opencl_environment class Marching_Cube(object): @@ -28,7 +27,7 @@ class Marching_Cube(object): self._size_ = size self.buffers = [] self.usr_src = "gpu-mc.cl" - self._cl_env = get_opencl_environment(0, 0, 'gpu', PARMES_REAL) + self._cl_env = get_opencl_environment(0, 0, 'gpu', HYSOP_REAL) self._create_cl_context_() def _create_cl_context_(self): diff --git a/HySoP/hysop/methods.py b/HySoP/hysop/methods.py index 17d0324ca327c05100d7877513adf9dd7e0ee27f..5e35c73619876fef4295f849ac12797cc190ea1b 100644 --- a/HySoP/hysop/methods.py +++ b/HySoP/hysop/methods.py @@ -1,6 +1,6 @@ """ @file methods.py -A list of numerical methods available in parmes that may be used to set methods +A list of numerical methods available in HySoP that may be used to set methods in operators. Usage: method = {key: value, ...} @@ -13,21 +13,21 @@ method = {TimeIntegrator: RK3, Formulation: Conservative, SpaceDiscretisation: FD_C_4} Note FP: to avoid cycling, this file must never be imported -inside a parmes module. It's only a review of all the methods +inside a HySoP module. It's only a review of all the methods that can be imported by final user. """ -import parmepy.numerics.integrators.runge_kutta2 as runge_kutta2 +import hysop.numerics.integrators.runge_kutta2 as runge_kutta2 RK2 = runge_kutta2.RK2 -import parmepy.numerics.integrators.runge_kutta3 as runge_kutta3 +import hysop.numerics.integrators.runge_kutta3 as runge_kutta3 RK3 = runge_kutta3.RK3 -import parmepy.numerics.integrators.runge_kutta4 as runge_kutta4 +import hysop.numerics.integrators.runge_kutta4 as runge_kutta4 RK4 = runge_kutta4.RK4 -import parmepy.numerics.integrators.euler as euler +import hysop.numerics.integrators.euler as euler Euler = euler.Euler # Remesh -import parmepy.numerics.remeshing as remesh +import hysop.numerics.remeshing as remesh L2_1 = remesh.L2_1 L2_2 = remesh.L2_2 L2_3 = remesh.L2_3 @@ -44,16 +44,16 @@ M8Prime = remesh.M8Prime # A completer ... # Interpolation -import parmepy.numerics.interpolation as interpolation +import hysop.numerics.interpolation as interpolation Linear = interpolation.Linear # Finite differences -import parmepy.numerics.finite_differences as fd +import hysop.numerics.finite_differences as fd FD_C_4 = fd.FD_C_4 FD_C_2 = fd.FD_C_2 FD2_C_2 = fd.FD2_C_2 # Stretching formulations -import parmepy.operator.discrete.stretching as strd +import hysop.operator.discrete.stretching as strd Conservative = strd.Conservative GradUW = strd.GradUW diff --git a/HySoP/hysop/methods_keys.py b/HySoP/hysop/methods_keys.py index 7ffe4eef9785848b59c873ee944aa1946bf5d1fe..4344973ca795ccbeae766ff047c10eaba4f4f1f9 100644 --- a/HySoP/hysop/methods_keys.py +++ b/HySoP/hysop/methods_keys.py @@ -14,17 +14,17 @@ method = {TimeIntegrator: RK3, Formulation: Conservative, """ ## Authorized keys for method. -## Time integrator scheme (see parmepy.numerics.integrators for +## Time integrator scheme (see hysop.numerics.integrators for ## available names) TimeIntegrator = 11111 -## Remeshing scheme (parmepy.numerics.remeshing) +## Remeshing scheme (hysop.numerics.remeshing) Remesh = 22222 -## Interpolation scheme (parmepy.numerics.interpolation) +## Interpolation scheme (hysop.numerics.interpolation) Interpolation = 33333 ## Formulation (example in stretching : either Conservative or GradUW) Formulation = 44444 ## Space discretisation method -## (see for example parmepy.numerics.finite_differences) +## (see for example hysop.numerics.finite_differences) SpaceDiscretisation = 55555 ## Scales method parameters Scales = 66666 diff --git a/HySoP/hysop/mpi/__init__.py b/HySoP/hysop/mpi/__init__.py index b20988c36fe5d95c9fb6e1461c73f20626cb55ea..f990cd8c790a9effd03543088d92b99edf09e8a5 100644 --- a/HySoP/hysop/mpi/__init__.py +++ b/HySoP/hysop/mpi/__init__.py @@ -1,6 +1,6 @@ """ -@package parmepy.mpi -Parmes interface to the mpi implementation. +@package hysop.mpi +hysop interface to the mpi implementation. It contains : - mpi basic variables (main communicator, rank, size ...) @@ -18,7 +18,7 @@ At the time we use mpi4py : http://mpi4py.scipy.org ## Everything concerning the chosen mpi implementation is hidden in main_var # Why? --> to avoid that things like mpi4py. ... spread everywhere in the # soft so to ease a change of this implementation (if needed). -from parmepy.mpi import main_var +from hysop.mpi import main_var ## A list of mpi variables that can be "seen" by user ## MPI underlying implementation MPI = main_var.MPI diff --git a/HySoP/hysop/mpi/bridge.py b/HySoP/hysop/mpi/bridge.py index 98c060ee7c41ac32fa2fa3b7013485542d4d4d59..33957e1fe76f71c64570498e695ef5ae4e39bba8 100644 --- a/HySoP/hysop/mpi/bridge.py +++ b/HySoP/hysop/mpi/bridge.py @@ -1,10 +1,10 @@ """ @file bridge.py Tools to compute the intersection between -two parmes topologies. +two HySoP topologies. """ -from parmepy.mpi.topology import Cartesian, topotools -from parmepy.tools.misc import utils +from hysop.mpi.topology import Cartesian, topotools +from hysop.tools.misc import utils class Bridge(object): diff --git a/HySoP/hysop/mpi/bridge_inter.py b/HySoP/hysop/mpi/bridge_inter.py index 55fd153a7f8216f5912cd3c85a55fd93978781dd..6516bd7abcf6071264448b544295b13007b1cc40 100644 --- a/HySoP/hysop/mpi/bridge_inter.py +++ b/HySoP/hysop/mpi/bridge_inter.py @@ -1,12 +1,12 @@ """ @file bridge.py Tools to compute the intersection between -two parmes topologies. +two HySoP topologies. """ -from parmepy.mpi.topology import Cartesian, topotools -from parmepy.tools.misc import utils -from parmepy.mpi import MPI -import parmepy.tools.numpywrappers as npw +from hysop.mpi.topology import Cartesian, topotools +from hysop.tools.misc import utils +from hysop.mpi import MPI +import hysop.tools.numpywrappers as npw class BridgeInter(object): diff --git a/HySoP/hysop/mpi/bridge_overlap.py b/HySoP/hysop/mpi/bridge_overlap.py index cdc1007a1ff4d9f9ce1a4deeedd1b05aca25391d..64585e68b31fe4e87a31e96952fe6cbe6c9772b6 100644 --- a/HySoP/hysop/mpi/bridge_overlap.py +++ b/HySoP/hysop/mpi/bridge_overlap.py @@ -1,12 +1,12 @@ """ @file bridge.py Tools to compute the intersection between -two parmes topologies defined on the same comm but for a +two HySoP topologies defined on the same comm but for a different number of processes. """ -from parmepy.mpi.topology import Cartesian, topotools -from parmepy.tools.misc import utils -from parmepy.mpi.bridge import Bridge +from hysop.mpi.topology import Cartesian, topotools +from hysop.tools.misc import utils +from hysop.mpi.bridge import Bridge class BridgeOverlap(Bridge): diff --git a/HySoP/hysop/mpi/main_var.py b/HySoP/hysop/mpi/main_var.py index 864fec4516287616ef6ab0dedcecbbaa2a161c67..0840b4d5e1b1f220d9e772f99178d21d45b1c9f2 100644 --- a/HySoP/hysop/mpi/main_var.py +++ b/HySoP/hysop/mpi/main_var.py @@ -1,7 +1,7 @@ """ @file main_var.py -Global parameters related to mpi, for parmepy package. +Global parameters related to mpi, for hysop package. """ @@ -10,7 +10,7 @@ Global parameters related to mpi, for parmepy package. import mpi4py.MPI MPI = mpi4py.MPI -# Create Parmes main communicator from COMM_WORLD +# Create hysop main communicator from COMM_WORLD main_comm = MPI.COMM_WORLD.Dup() main_rank = main_comm.Get_rank() main_size = main_comm.Get_size() diff --git a/HySoP/hysop/mpi/mesh.py b/HySoP/hysop/mpi/mesh.py index 8768bc28a14440058eb572cd1073f35ef5e7d540..771a8c1bf48976fb26a582a3a2a020491bbbdf3f 100644 --- a/HySoP/hysop/mpi/mesh.py +++ b/HySoP/hysop/mpi/mesh.py @@ -3,9 +3,9 @@ Cartesian mesh class for local mesh. """ -from parmepy.constants import debug -import parmepy.tools.numpywrappers as npw -from parmepy.tools.parameters import Discretization +from hysop.constants import debug +import hysop.tools.numpywrappers as npw +from hysop.tools.parameters import Discretization import numpy as np diff --git a/HySoP/hysop/mpi/tests/test_bridge.py b/HySoP/hysop/mpi/tests/test_bridge.py index 68b43730413c75bc1722abd6055016a63a72a456..fa02f3b69ca84d28f565c14b1abbb79821a49d23 100644 --- a/HySoP/hysop/mpi/tests/test_bridge.py +++ b/HySoP/hysop/mpi/tests/test_bridge.py @@ -1,8 +1,8 @@ -from parmepy.domain.box import Box -from parmepy.tools.parameters import Discretization -from parmepy.mpi.bridge import Bridge -from parmepy.mpi.bridge_overlap import BridgeOverlap -from parmepy.mpi.bridge_inter import BridgeInter +from hysop.domain.box import Box +from hysop.tools.parameters import Discretization +from hysop.mpi.bridge import Bridge +from hysop.mpi.bridge_overlap import BridgeOverlap +from hysop.mpi.bridge_inter import BridgeInter import math @@ -42,8 +42,8 @@ def test_bridge3D(): print bridge -from parmepy.mpi.main_var import main_size, main_comm -from parmepy.mpi.tests.utils import create_subtopos, create_inter_topos +from hysop.mpi.main_var import main_size, main_comm +from hysop.mpi.tests.utils import create_subtopos, create_inter_topos def test_bridge_overlap(): diff --git a/HySoP/hysop/mpi/tests/test_topology.py b/HySoP/hysop/mpi/tests/test_topology.py index 3961be0e9a1521c19357f2972f61ccfbbaa8404e..926eb3af659c3fe581a6827be56b1d303674660b 100644 --- a/HySoP/hysop/mpi/tests/test_topology.py +++ b/HySoP/hysop/mpi/tests/test_topology.py @@ -1,10 +1,10 @@ -import parmepy as pp -from parmepy.domain.box import Box -from parmepy.constants import DEFAULT_TASK_ID -from parmepy.tools.parameters import Discretization -from parmepy.mpi import main_size +import hysop as pp +from hysop.domain.box import Box +from hysop.constants import DEFAULT_TASK_ID +from hysop.tools.parameters import Discretization +from hysop.mpi import main_size import numpy as np -import parmepy.tools.numpywrappers as npw +import hysop.tools.numpywrappers as npw N = 33 diff --git a/HySoP/hysop/mpi/tests/utils.py b/HySoP/hysop/mpi/tests/utils.py index 675dfa201375b9bd1d6b811b42ade58e0be46004..a86c1fd2ac3b67586cbccf48a8b4a299babaeaf5 100644 --- a/HySoP/hysop/mpi/tests/utils.py +++ b/HySoP/hysop/mpi/tests/utils.py @@ -2,9 +2,9 @@ Functions used through mpi-related tests. """ -from parmepy.mpi.main_var import main_comm, main_rank, main_size -from parmepy.tools.parameters import MPI_params -import parmepy as pp +from hysop.mpi.main_var import main_comm, main_rank, main_size +from hysop.tools.parameters import MPI_params +import hysop as pp GPU = 4 CPU = 1 OTHER = 12 diff --git a/HySoP/hysop/mpi/topology.py b/HySoP/hysop/mpi/topology.py index 6b28e506083c0975ca684ed9808c0d8db9cb9d93..de86aed5c69e3fa69e025cd62eae9186add9a037 100644 --- a/HySoP/hysop/mpi/topology.py +++ b/HySoP/hysop/mpi/topology.py @@ -1,23 +1,23 @@ """ @file topology.py -Tools and definitions for parmes topologies +Tools and definitions for HySoP topologies (MPI Processes layout + space discretization) """ -from parmepy.constants import debug, ORDER, PERIODIC -from parmepy.domain.mesh import Mesh +from hysop.constants import debug, ORDER, PERIODIC +from hysop.domain.mesh import Mesh from itertools import count -from parmepy.mpi.main_var import MPI -from parmepy.tools.parameters import Discretization, MPI_params +from hysop.mpi.main_var import MPI +from hysop.tools.parameters import Discretization, MPI_params import numpy as np -import parmepy.tools.numpywrappers as npw -from parmepy.tools.misc import utils +import hysop.tools.numpywrappers as npw +from hysop.tools.misc import utils class Cartesian(object): """ - A Parmes Topology is defined as the association of + In hysop, a topology is defined as the association of a mpi process distribution (mpi topology) and of a set of local meshes (one per process). @@ -25,15 +25,15 @@ class Cartesian(object): Example : \code - >>> from parmepy.mpi.topology import Cartesian - >>> from parmepy.tools.parameters import Discretization - >>> from parmepy.domain.box import Box + >>> from hysop.mpi.topology import Cartesian + >>> from hysop.tools.parameters import Discretization + >>> from hysop.domain.box import Box >>> dom = Box() >>> r = Discretization([33, 33, 33]) >>> topo = Cartesian(dom, dim=2, discretization=r) >>> \endcode - For details about topologies see Parmes User Manual. + For details about topologies see HySoP User Manual. You can also find examples of topologies instanciation in test_topology.py. @@ -55,11 +55,11 @@ class Cartesian(object): Others are optional. You must choose one and only one param among dim, cutdir and shape. - See parmepy.mpi.topology.Cartesian.plane_precomputed + See hysop.mpi.topology.Cartesian.plane_precomputed details to build a plane topology from a given local discretization (e.g. from fftw or scales precomputation). @param domain : the geometry; it must be a box. - @param discretization : a parmepy.tools.parameters.Discretization + @param discretization : a hysop.tools.parameters.Discretization with: - resolution = Number of points in the domain in each direction. We assume that first point corresponds @@ -69,7 +69,7 @@ class Cartesian(object): x[Discretization.resolution-1] = domain.Lengths_x. - ghosts = number of points in the ghost layer @param dim : dimension of the topology - @param mpi_params : a parmepy.tools.parameters.MPI_params, with: + @param mpi_params : a hysop.tools.parameters.MPI_params, with: - comm : MPI communicator used to create this topology (default = main_comm) - task_id : id of the task that owns this topology. @@ -78,7 +78,7 @@ class Cartesian(object): to distribute data through direction dir. @param shape : topology resolution (i.e process layout in each direction). - @param mesh : a predefined parmepy.mpi.mesh.SubMesh + @param mesh : a predefined hysop.mpi.mesh.SubMesh """ # ===== 1 - Required parameters : domain and mpi (comm, task) ==== # An id for the topology @@ -459,7 +459,7 @@ class topotools(object): def gatherGlobalIndices(topo, toslice=True, root=None, comm=None): """ Collect global indices of local meshes on each process of topo - @param topo : a parmepy.mpi.topology.Cartesian + @param topo : a hysop.mpi.topology.Cartesian @param toslice : true (default) if you want a dict of slice as return value, false if you need a numpy array. @param root : rank (in topo.parent()) of the gathering process. @@ -626,7 +626,7 @@ class topotools(object): @return : dictionnary of MPI derived types. Keys = ranks in parent communicator. """ - from parmepy.constants import PARMES_MPI_REAL, ORDERMPI + from hysop.constants import HYSOP_MPI_REAL, ORDERMPI subtypes = {} dim = len(data_shape) for rk in sl_dict.keys(): @@ -634,7 +634,7 @@ class topotools(object): sl_dict[rk][i].start for i in xrange(dim))) substart = tuple((sl_dict[rk][i].start for i in xrange(dim))) subtypes[rk] = \ - PARMES_MPI_REAL.Create_subarray(data_shape, + HYSOP_MPI_REAL.Create_subarray(data_shape, subvshape, substart, order=ORDERMPI) diff --git a/HySoP/hysop/numerics/__init__.py b/HySoP/hysop/numerics/__init__.py index eec80ccf6aa0f446052af7ca5003db946437d80c..c991ed075ff1f03868bc14e421f731f1f9f6f649 100644 --- a/HySoP/hysop/numerics/__init__.py +++ b/HySoP/hysop/numerics/__init__.py @@ -1,9 +1,9 @@ -## @package parmepy.numerics +## @package hysop.numerics # # \todo write a proper doc for numerical methods # # All functions in this package are supposed to work with numpy arrays, -# not with parmepy fields. +# not with hysop fields. # # # diff --git a/HySoP/hysop/numerics/differential_operations.py b/HySoP/hysop/numerics/differential_operations.py index 7561a27616f5b7d9ba69aad266af935d66460ff8..8cae02fcf32845f07dd655e81ba970e2e90ce5a6 100755 --- a/HySoP/hysop/numerics/differential_operations.py +++ b/HySoP/hysop/numerics/differential_operations.py @@ -4,11 +4,11 @@ Library of functions used to perform classical vector calculus (diff operations like grad, curl ...) """ -from parmepy.constants import debug, XDIR, YDIR, ZDIR +from hysop.constants import debug, XDIR, YDIR, ZDIR from abc import ABCMeta, abstractmethod -from parmepy.numerics.finite_differences import FD_C_4, FD_C_2, FD2_C_2 +from hysop.numerics.finite_differences import FD_C_4, FD_C_2, FD2_C_2 import numpy as np -import parmepy.tools.numpywrappers as npw +import hysop.tools.numpywrappers as npw class DifferentialOperation(object): diff --git a/HySoP/hysop/numerics/finite_differences.py b/HySoP/hysop/numerics/finite_differences.py index d90cbec11caeea71c7914499000ebd77622dcf28..02490523a978551671868a164a5512b34c795fcf 100644 --- a/HySoP/hysop/numerics/finite_differences.py +++ b/HySoP/hysop/numerics/finite_differences.py @@ -3,8 +3,8 @@ Finite difference schemes description """ from abc import ABCMeta, abstractmethod -from parmepy.constants import debug -import parmepy.tools.numpywrappers as npw +from hysop.constants import debug +import hysop.tools.numpywrappers as npw import numpy as np @@ -78,14 +78,14 @@ class FiniteDifference(object): def computeIndices(self, indices): """ @param indices : a list of slices (see for example - parmepy.mpi.mesh.Mesh iCompute) that represent the local + hysop.mpi.mesh.Mesh iCompute) that represent the local mesh on which finite-differences will be applied. """ def computeIndices_reduced(self, indices, reduced_shape): """ @param indices : a list of slices (see for example - parmepy.mpi.mesh.Mesh iCompute) that represent the local + hysop.mpi.mesh.Mesh iCompute) that represent the local mesh on which finite-differences will be applied. """ self.computeIndices(indices) diff --git a/HySoP/hysop/numerics/integrators/__init__.py b/HySoP/hysop/numerics/integrators/__init__.py index d54697ff71812611d44f3637b7ecd3925db4d8da..95d54930b4da56bcab0540838fae14e5e45063e0 100644 --- a/HySoP/hysop/numerics/integrators/__init__.py +++ b/HySoP/hysop/numerics/integrators/__init__.py @@ -1,5 +1,5 @@ """ -@package parmepy.numerics.integrators +@package hysop.numerics.integrators ODE integrators. \todo write a proper doc with the list of available solvers diff --git a/HySoP/hysop/numerics/integrators/euler.py b/HySoP/hysop/numerics/integrators/euler.py index d4f85a34e7423dcff628197260719a271b4451fa..c65192afc17d0468a09a8fdf3e82cf324eac9693 100755 --- a/HySoP/hysop/numerics/integrators/euler.py +++ b/HySoP/hysop/numerics/integrators/euler.py @@ -4,7 +4,7 @@ Forward Euler method. """ -from parmepy.numerics.integrators.odesolver import ODESolver +from hysop.numerics.integrators.odesolver import ODESolver import numpy as np @@ -23,7 +23,7 @@ class Euler(ODESolver): solve. @param nbComponent : nbComponentensions @param optim : to choose the level of optimization (memory management). - Default = None. See parmepy.numerics.integrators for details. + Default = None. See hysop.numerics.integrators for details. """ ODESolver.__init__(self, nbComponents, work, topo, f=f, optim=optim) diff --git a/HySoP/hysop/numerics/integrators/odesolver.py b/HySoP/hysop/numerics/integrators/odesolver.py index 57b078c605d56ab757505ea7123002a410305122..9f8dd5879301aca4a938274282578c74d5031a46 100644 --- a/HySoP/hysop/numerics/integrators/odesolver.py +++ b/HySoP/hysop/numerics/integrators/odesolver.py @@ -5,10 +5,10 @@ Abstract class for time integrators. """ from abc import ABCMeta, abstractmethod -from parmepy.numerics.method import NumMethod -from parmepy.constants import WITH_GUESS -from parmepy.numerics.update_ghosts import UpdateGhosts -import parmepy.tools.numpywrappers as npw +from hysop.numerics.method import NumMethod +from hysop.constants import WITH_GUESS +from hysop.numerics.update_ghosts import UpdateGhosts +import hysop.tools.numpywrappers as npw class ODESolver(NumMethod): @@ -33,7 +33,7 @@ class ODESolver(NumMethod): argument even if it unused in f. @remark - f function must return a list of numpy arrays. @param optim : to choose the level of optimization (memory management). - Default = None. See parmepy.numerics.integrators for details. + Default = None. See hysop.numerics.integrators for details. """ ## RHS. self.f = f diff --git a/HySoP/hysop/numerics/integrators/runge_kutta2.py b/HySoP/hysop/numerics/integrators/runge_kutta2.py index 0cc087ad6f2f9e1213e24602825325129b487584..7d095167f653dc82bf4ad93503eeeb71325fceae 100755 --- a/HySoP/hysop/numerics/integrators/runge_kutta2.py +++ b/HySoP/hysop/numerics/integrators/runge_kutta2.py @@ -3,7 +3,7 @@ RK2 method interface. """ -from parmepy.numerics.integrators.odesolver import ODESolver +from hysop.numerics.integrators.odesolver import ODESolver import numpy as np @@ -21,7 +21,7 @@ class RK2(ODESolver): @param f function f(t, y) : Right hand side of the equation to solve. @param optim : to choose the level of optimization (memory management). - Default = None. See parmepy.numerics.integrators for details. + Default = None. See hysop.numerics.integrators for details. """ ODESolver.__init__(self, dim, work, topo, f=f, optim=optim) diff --git a/HySoP/hysop/numerics/integrators/runge_kutta3.py b/HySoP/hysop/numerics/integrators/runge_kutta3.py index fd53cb6b300543dd19ad2206a2476b5edfb3e981..0cabf408a8c2e4b41a0548b4e1532507e8a53b12 100755 --- a/HySoP/hysop/numerics/integrators/runge_kutta3.py +++ b/HySoP/hysop/numerics/integrators/runge_kutta3.py @@ -3,7 +3,7 @@ RK3 method interface. """ -from parmepy.numerics.integrators.odesolver import ODESolver +from hysop.numerics.integrators.odesolver import ODESolver import numpy as np @@ -17,7 +17,7 @@ class RK3(ODESolver): solve. @param nbComponents : dimensions @param optim : to choose the level of optimization (memory management). - Default = None. See parmepy.numerics.integrators for details. + Default = None. See hysop.numerics.integrators for details. """ ODESolver.__init__(self, nbComponents, work, topo, f=f, optim=optim) diff --git a/HySoP/hysop/numerics/integrators/runge_kutta4.py b/HySoP/hysop/numerics/integrators/runge_kutta4.py index 6ce7e7334dac0750662ef3b7c04e116ec278838f..c7a95b7e712f6e2132a8f542dad3b2725b5f22be 100755 --- a/HySoP/hysop/numerics/integrators/runge_kutta4.py +++ b/HySoP/hysop/numerics/integrators/runge_kutta4.py @@ -4,7 +4,7 @@ RK4 method interface. """ -from parmepy.numerics.integrators.odesolver import ODESolver +from hysop.numerics.integrators.odesolver import ODESolver import numpy as np @@ -18,7 +18,7 @@ class RK4(ODESolver): Right hand side of the equation to solve. @param nbComponents : dimensions @param optim : to choose the level of optimization (memory management). - Default = None. See parmepy.numerics.integrators for details. + Default = None. See hysop.numerics.integrators for details. """ ODESolver.__init__(self, nbComponents, work, topo, f=f, optim=optim) diff --git a/HySoP/hysop/numerics/interpolation.py b/HySoP/hysop/numerics/interpolation.py index 55c59e5626832cfaa341719b35edd32fdc9ff4d3..5b7f4c157a56d129acbf9ebfced42af48fef7ff7 100644 --- a/HySoP/hysop/numerics/interpolation.py +++ b/HySoP/hysop/numerics/interpolation.py @@ -1,8 +1,8 @@ """ @file interpolation.py """ -from parmepy.constants import np, PARMES_INTEGER, ORDER -from parmepy.numerics.method import NumMethod +from hysop.constants import np, HYSOP_INTEGER, ORDER +from hysop.numerics.method import NumMethod class Linear(NumMethod): @@ -29,7 +29,7 @@ class Linear(NumMethod): dimension = self.topo.domain.dimension self.work = work for iw in iwork: - assert iw.dtype == PARMES_INTEGER + assert iw.dtype == HYSOP_INTEGER self.iwork = iwork assert len(self.work) == 1 assert len(self.iwork) == dimension @@ -106,7 +106,7 @@ class Linear(NumMethod): # use res as the result (no more uses to floor variable) index[self.dir][...] = np.asarray( - floor, dtype=PARMES_INTEGER, order=ORDER) % (resolution[self.dir] - 1) + floor, dtype=HYSOP_INTEGER, order=ORDER) % (resolution[self.dir] - 1) res[...] = self.tab[index] * (1. - i_y) diff --git a/HySoP/hysop/numerics/method.py b/HySoP/hysop/numerics/method.py index ed6a3b9ce937566e6b951f66184f0bdc12082bb6..119d8088dd2f7555b881325b9c0d16a63786bca4 100644 --- a/HySoP/hysop/numerics/method.py +++ b/HySoP/hysop/numerics/method.py @@ -4,7 +4,7 @@ Abstract interface to numerical methods. """ from abc import ABCMeta, abstractmethod -from parmepy.constants import debug +from hysop.constants import debug class NumMethod(object): diff --git a/HySoP/hysop/numerics/remeshing.py b/HySoP/hysop/numerics/remeshing.py index 4c07e382a2eb355ea8c43b6d2b7f0e488398ced9..4cdc0ea7ba8dd9cf128304905ff1915dbaa8957b 100644 --- a/HySoP/hysop/numerics/remeshing.py +++ b/HySoP/hysop/numerics/remeshing.py @@ -1,9 +1,9 @@ """ @file remeshing.py """ -from parmepy.constants import np, PARMES_INDEX, PARMES_REAL -from parmepy.numerics.method import NumMethod -import parmepy.tools.numpywrappers as npw +from hysop.constants import np, HYSOP_INDEX +from hysop.numerics.method import NumMethod +import hysop.tools.numpywrappers as npw class Remeshing(NumMethod): @@ -82,33 +82,33 @@ class Remeshing(NumMethod): def _affect_work_2D_X(self, resol): self.iwork[1][...] = np.indices((resol[1],))[0].astype( - PARMES_INDEX)[np.newaxis, :] + HYSOP_INDEX)[np.newaxis, :] return (self.work[0], self.work[1], tuple(self.iwork)) def _affect_work_2D_Y(self, resol): self.iwork[0][...] = np.indices((resol[0],))[0].astype( - PARMES_INDEX)[:, np.newaxis] + HYSOP_INDEX)[:, np.newaxis] return (self.work[0], self.work[1], tuple(self.iwork)) def _affect_work_3D_X(self, resol): self.iwork[1][...] = np.indices((resol[1],))[0].astype( - PARMES_INDEX)[np.newaxis, :, np.newaxis] + HYSOP_INDEX)[np.newaxis, :, np.newaxis] self.iwork[2][...] = np.indices((resol[2],))[0].astype( - PARMES_INDEX)[np.newaxis, np.newaxis, :] + HYSOP_INDEX)[np.newaxis, np.newaxis, :] return (self.work[0], self.work[1], tuple(self.iwork)) def _affect_work_3D_Y(self, resol): self.iwork[0][...] = np.indices((resol[0],))[0].astype( - PARMES_INDEX)[:, np.newaxis, np.newaxis] + HYSOP_INDEX)[:, np.newaxis, np.newaxis] self.iwork[2][...] = np.indices((resol[2],))[0].astype( - PARMES_INDEX)[np.newaxis, np.newaxis, :] + HYSOP_INDEX)[np.newaxis, np.newaxis, :] return (self.work[0], self.work[1], tuple(self.iwork)) def _affect_work_3D_Z(self, resol): self.iwork[0][...] = np.indices((resol[0],))[0].astype( - PARMES_INDEX)[:, np.newaxis, np.newaxis] + HYSOP_INDEX)[:, np.newaxis, np.newaxis] self.iwork[1][...] = np.indices((resol[1],))[0].astype( - PARMES_INDEX)[np.newaxis, :, np.newaxis] + HYSOP_INDEX)[np.newaxis, :, np.newaxis] return (self.work[0], self.work[1], tuple(self.iwork)) def __call__(self, ppos, pscal, result): @@ -135,7 +135,7 @@ class Remeshing(NumMethod): i_y[...] -= floor # Gobal indices - index[d][...] = (floor.astype(PARMES_INDEX) - self.shift) \ + index[d][...] = (floor.astype(HYSOP_INDEX) - self.shift) \ % (resolution[d] - 1) result[...] = 0. # reset res array (no more uses to floor variable) for w_id, w in enumerate(self.weights): @@ -391,11 +391,9 @@ def polynomial_optimisation(): tt += (MPI.Wtime() - t) print tt, s - from parmepy.constants import PARMES_REAL, ORDER - from parmepy.mpi.main_var import MPI + from hysop.mpi.main_var import MPI nb = 128 - a = npw.asrealarray(np.random.random((nb, nb, nb)), - dtype=PARMES_REAL, order=ORDER) + a = npw.asrealarray(np.random.random((nb, nb, nb))) r = np.zeros_like(a) temp = np.zeros_like(a) lambda_p = lambda x: 1. + 2. * x + 3. * x ** 2 + 4. *x ** 3 + 5. * x ** 4 + \ @@ -529,7 +527,7 @@ def polynomial_optimisation(): assert lambda_h(1.) == 66. assert lambda_p(1.) == 66. - single_val = np.ones((1, ), order=ORDER) + single_val = npw.ones((1, )) single_val_r = np.zeros_like(single_val) single_val_tmp = np.zeros_like(single_val) func_p(single_val, single_val_r, single_val_tmp) diff --git a/HySoP/hysop/numerics/tests/test_diffOp.py b/HySoP/hysop/numerics/tests/test_diffOp.py index ca315c24081d4962596a1240877ef42371efb64c..2cdd06bedca04e13be6b273b188bcdb07c94c159 100755 --- a/HySoP/hysop/numerics/tests/test_diffOp.py +++ b/HySoP/hysop/numerics/tests/test_diffOp.py @@ -1,9 +1,9 @@ # -*- coding: utf-8 -*- -import parmepy as pp +import hysop as pp import numpy as np -from parmepy.fields.continuous import Field -import parmepy.numerics.differential_operations as diffop -import parmepy.tools.numpywrappers as npw +from hysop.fields.continuous import Field +import hysop.numerics.differential_operations as diffop +import hysop.tools.numpywrappers as npw import math as m pi = m.pi cos = np.cos @@ -62,7 +62,7 @@ def analyticalDivStressTensor(res, x, y, z, t): nb = 65 -from parmepy.tools.parameters import Discretization +from hysop.tools.parameters import Discretization d3 = Discretization([nb] * 3, [2] * 3) d2 = Discretization([nb] * 2, [2] * 2) diff --git a/HySoP/hysop/numerics/tests/test_integrators.py b/HySoP/hysop/numerics/tests/test_integrators.py index daec18e7c80c6b3471351164d852d8bb528162ac..c90c46bcb9406be85b54f2d29483157951dad5b0 100644 --- a/HySoP/hysop/numerics/tests/test_integrators.py +++ b/HySoP/hysop/numerics/tests/test_integrators.py @@ -1,10 +1,9 @@ # -*- coding: utf-8 -*- -from parmepy.methods import Euler, RK2, RK3, RK4 -from parmepy.constants import PARMES_REAL -import parmepy.tools.numpywrappers as npw +from hysop.methods import Euler, RK2, RK3, RK4 +import hysop.tools.numpywrappers as npw import math import numpy as np -from parmepy.tools.parameters import Discretization +from hysop.tools.parameters import Discretization pi = math.pi sin = np.sin cos = np.cos @@ -20,7 +19,7 @@ tend = 0.2 # time sequence #time = npu.seq(tinit, tend, dt) #nbSteps = time.size -import parmepy as pp +import hysop as pp d1 = Discretization([nb + 1]) box = pp.Box(length=[2.0 * pi], origin=[0.]) topo = box.create_topology(dim=1, discretization=d1) @@ -65,16 +64,16 @@ def f(t, u): # -- 1D cases -- def integrate(integ, nbSteps): """ - Integration with parmepy + Integration with hysop """ t = tinit time_points = np.linspace(tinit, tend, nbSteps) dtt = time_points[1] - time_points[0] - y = [np.ones(nb, dtype=PARMES_REAL) * math.exp(-tinit)] - res = [np.zeros(nb, dtype=PARMES_REAL)] + y = [npw.ones(nb) * math.exp(-tinit)] + res = [npw.zeros(nb)] # work = None i = 1 - ref = np.zeros((nbSteps, nb), dtype=PARMES_REAL) + ref = npw.zeros((nbSteps, nb)) ref[0, :] = y[0][:] while i < nbSteps: res = integ(t, y, dtt, res) diff --git a/HySoP/hysop/numerics/update_ghosts.py b/HySoP/hysop/numerics/update_ghosts.py index 8e9c9a99720d71c60d01f235ebfa8d27213d5192..d1f35e1b56d63f2d73a79392edd3135181213cf3 100644 --- a/HySoP/hysop/numerics/update_ghosts.py +++ b/HySoP/hysop/numerics/update_ghosts.py @@ -4,8 +4,8 @@ Update ghost points for a list of numpy arrays for a given topology. """ -from parmepy.constants import debug, PERIODIC, PARMES_MPI_REAL -import parmepy.tools.numpywrappers as npw +from hysop.constants import debug, PERIODIC, HYSOP_MPI_REAL +import hysop.tools.numpywrappers as npw import numpy as np @@ -169,7 +169,7 @@ class UpdateGhosts(object): # 2 - Send to next receive from previous dest_rk = neighbours[1, i] from_rk = neighbours[0, i] - comm.Sendrecv([self._sendbuffer[i], PARMES_MPI_REAL], + comm.Sendrecv([self._sendbuffer[i], HYSOP_MPI_REAL], dest=dest_rk, sendtag=rank, recvbuf=self._recvbuffer[i], source=from_rk, recvtag=from_rk) @@ -189,7 +189,7 @@ class UpdateGhosts(object): # 4 -Send to previous and receive from next dest_rk = neighbours[0, i] from_rk = neighbours[1, i] - comm.Sendrecv([self._sendbuffer[i], PARMES_MPI_REAL], + comm.Sendrecv([self._sendbuffer[i], HYSOP_MPI_REAL], dest=dest_rk, sendtag=rank, recvbuf=self._recvbuffer[i], source=from_rk, recvtag=from_rk) diff --git a/HySoP/hysop/numerics/utils.py b/HySoP/hysop/numerics/utils.py index 30537774a0b6304135660fd354e13bac95079e95..1c12f17ff1ae9d104a0e61c6f4695792f453dac0 100644 --- a/HySoP/hysop/numerics/utils.py +++ b/HySoP/hysop/numerics/utils.py @@ -1,5 +1,5 @@ -from parmepy.constants import XDIR, YDIR, ZDIR -import parmepy.tools.numpywrappers as npw +from hysop.constants import XDIR, YDIR, ZDIR +import hysop.tools.numpywrappers as npw import numpy as np diff --git a/HySoP/hysop/operator/__init__.py b/HySoP/hysop/operator/__init__.py index 0e4665b3ffe12a407e7ebbfdfe4bead873916239..2692abc1c5b3f7afdc722ad5f53a80a8529eb10f 100644 --- a/HySoP/hysop/operator/__init__.py +++ b/HySoP/hysop/operator/__init__.py @@ -1,4 +1,4 @@ -## @package parmepy.operator +## @package hysop.operator # Operators on continuous fields. # # An operator is an abstract object that handles a set of continuous variables @@ -7,7 +7,7 @@ # Example: # To define and apply the advection of a scalar rho at velocity v: #\code -# advec = parmepy.operator.advection(v, rho, ...) +# advec = hysop.operator.advection(v, rho, ...) # advec.setup() # ... # advec.apply() @@ -17,7 +17,7 @@ # # Method argument must be a dictionnary with some of the following keys/values: # -# Methods have default values, taken from parmepy.default_methods +# Methods have default values, taken from hysop.default_methods # preset dictionnaries. # -# Keys in methods dict are given in parmepy.method_keys. +# Keys in methods dict are given in hysop.method_keys. diff --git a/HySoP/hysop/operator/adapt_timestep.py b/HySoP/hysop/operator/adapt_timestep.py index d81139cbe5acf5fc64527f677f57a446451ef9f7..769007aa91cf5bc2149e98b0780e7e11f31d4def 100755 --- a/HySoP/hysop/operator/adapt_timestep.py +++ b/HySoP/hysop/operator/adapt_timestep.py @@ -5,15 +5,15 @@ Definition of the adaptative time step according to the flow fields. """ -from parmepy.constants import debug -from parmepy.methods_keys import TimeIntegrator, SpaceDiscretisation,\ +from hysop.constants import debug +from hysop.methods_keys import TimeIntegrator, SpaceDiscretisation,\ dtCrit -from parmepy.numerics.finite_differences import FD_C_4 -from parmepy.operator.discrete.adapt_timestep import AdaptTimeStep_D -from parmepy.operator.continuous import opsetup -from parmepy.operator.computational import Computational -import parmepy.default_methods as default -from parmepy.mpi import main_comm, MPI +from hysop.numerics.finite_differences import FD_C_4 +from hysop.operator.discrete.adapt_timestep import AdaptTimeStep_D +from hysop.operator.continuous import opsetup +from hysop.operator.computational import Computational +import hysop.default_methods as default +from hysop.mpi import main_comm, MPI class AdaptTimeStep(Computational): diff --git a/HySoP/hysop/operator/advection.py b/HySoP/hysop/operator/advection.py index 9c443c29dd490a43fc0650b9f5b1cce3d15a0b16..ef3e9e20d8ce1377c69e86450787d7a5a0c8fd6e 100644 --- a/HySoP/hysop/operator/advection.py +++ b/HySoP/hysop/operator/advection.py @@ -3,17 +3,17 @@ Advection of a field. """ -from parmepy.constants import debug, S_DIR, ZDIR -from parmepy.operator.computational import Computational -from parmepy.methods_keys import Scales, TimeIntegrator, Interpolation,\ +from hysop.constants import debug, S_DIR, ZDIR +from hysop.operator.computational import Computational +from hysop.methods_keys import Scales, TimeIntegrator, Interpolation,\ Remesh, Support, Splitting, MultiScale -from parmepy.numerics.remeshing import L2_1 -from parmepy.operator.continuous import opsetup, opapply -from parmepy.operator.advection_dir import AdvectionDir -import parmepy.default_methods as default -from parmepy.tools.parameters import Discretization -from parmepy.mpi.topology import Cartesian -import parmepy.tools.numpywrappers as npw +from hysop.numerics.remeshing import L2_1 +from hysop.operator.continuous import opsetup, opapply +from hysop.operator.advection_dir import AdvectionDir +import hysop.default_methods as default +from hysop.tools.parameters import Discretization +from hysop.mpi.topology import Cartesian +import hysop.tools.numpywrappers as npw class Advection(Computational): @@ -215,7 +215,7 @@ class Advection(Computational): # Check if topos need to be created build_topos = self._check_variables() - from parmepy.f2py import scales2py as scales + from hysop.f2py import scales2py as scales # Scales, single resolution if self._single_topo: @@ -281,7 +281,7 @@ class Advection(Computational): self._discretize_vars() def _create_scales_topo(self, d3d, order, splitting): - from parmepy.f2py import scales2py as scales + from hysop.f2py import scales2py as scales comm = self._mpis.comm topodims = [1, 1, comm.Get_size()] msg = 'Wrong type for parameter discretization (at init).' + str(self._discretization) @@ -294,13 +294,13 @@ class Advection(Computational): comm.py2f(), order=order, dim_split=splitting) - # Create the parmes topo (plane, cut through ZDIR) + # Create the topo (plane, cut through ZDIR) return self.domain.create_plane_topology_from_mesh( global_start=global_start, localres=scalesres, discretization=d3d, cdir=ZDIR) def _check_scales_topo(self, toporef, order, splitting): - from parmepy.f2py import scales2py as scales + from hysop.f2py import scales2py as scales # In that case, self._discretization must be # a Cartesian object, used for all fields. # We use it to initialize scales solver @@ -366,7 +366,7 @@ class Advection(Computational): for f in self.advected_fields] # - Create the discrete_op from the # list of discrete fields - - from parmepy.operator.discrete.scales_advection import \ + from hysop.operator.discrete.scales_advection import \ ScalesAdvection self.discrete_op = ScalesAdvection( self.discreteFields[self.velocity], @@ -500,7 +500,7 @@ class Advection(Computational): Apply this operator to its variables. @param simulation : object that describes the simulation parameters (time, time step, iteration number ...), see - parmepy.problem.simulation.Simulation for details. + hysop.problem.simulation.Simulation for details. Redefinition for advection. Applying a dimensional splitting. """ diff --git a/HySoP/hysop/operator/advection_dir.py b/HySoP/hysop/operator/advection_dir.py index 75c004af26e22a4730c9ac781a0f1eadc5711c77..c8e585f4ee99291aa772a705a79d7ca130eff433 100644 --- a/HySoP/hysop/operator/advection_dir.py +++ b/HySoP/hysop/operator/advection_dir.py @@ -3,15 +3,15 @@ Advection of a field in a single direction. """ -from parmepy.constants import debug, S_DIR -from parmepy.methods_keys import Support, MultiScale, \ +from hysop.constants import debug, S_DIR +from hysop.methods_keys import Support, MultiScale, \ TimeIntegrator, Interpolation, Remesh -from parmepy.numerics.remeshing import L2_1, L4_2, L4_4, Remeshing, Linear -from parmepy.operator.computational import Computational +from hysop.numerics.remeshing import L2_1, L4_2, L4_4, Remeshing, Linear +from hysop.operator.computational import Computational # To get default method values for advection: -import parmepy.default_methods as default +import hysop.default_methods as default import numpy as np -from parmepy.operator.continuous import opsetup, opapply +from hysop.operator.continuous import opsetup, opapply class AdvectionDir(Computational): @@ -64,7 +64,7 @@ class AdvectionDir(Computational): self.output = self.advected_fields self.input = [var for var in self.variables] - from parmepy.methods_keys import Splitting + from hysop.methods_keys import Splitting if Splitting not in self.method.keys(): self.method[Splitting] = 'o2' self.name += name_suffix + S_DIR[direction] @@ -168,14 +168,14 @@ class AdvectionDir(Computational): if self.method[Support].find('gpu') >= 0: topo_shape = advected_discrete_fields[0].topology.shape if topo_shape[self.direction] == 1: - from parmepy.gpu.gpu_particle_advection \ + from hysop.gpu.gpu_particle_advection \ import GPUParticleAdvection as advec else: - from parmepy.gpu.multi_gpu_particle_advection \ + from hysop.gpu.multi_gpu_particle_advection \ import MultiGPUParticleAdvection as advec else: # pure-python advection - from parmepy.operator.discrete.particle_advection \ + from hysop.operator.discrete.particle_advection \ import ParticleAdvection as advec self.discrete_op = advec( @@ -232,7 +232,7 @@ class AdvectionDir(Computational): Apply this operator to its variables. @param simulation : object that describes the simulation parameters (time, time step, iteration number ...), see - parmepy.problem.simulation.Simulation for details. + hysop.problem.simulation.Simulation for details. """ self.discrete_op.apply(simulation, dtCoeff, split_id, old_dir) diff --git a/HySoP/hysop/operator/analytic.py b/HySoP/hysop/operator/analytic.py index d8f0585f0b7aa9a86805cedf5d03d20926ff53af..e83cf0e792a928f41145151f385882dc43d2bbe1 100644 --- a/HySoP/hysop/operator/analytic.py +++ b/HySoP/hysop/operator/analytic.py @@ -2,10 +2,10 @@ @file operator/analytic.py Initialize fields on a grid, with a user-defined function """ -from parmepy.constants import debug -from parmepy.operator.continuous import opsetup, opapply -from parmepy.operator.computational import Computational -from parmepy.methods_keys import Support +from hysop.constants import debug +from hysop.operator.continuous import opsetup, opapply +from hysop.operator.computational import Computational +from hysop.methods_keys import Support class Analytic(Computational): diff --git a/HySoP/hysop/operator/baroclinic.py b/HySoP/hysop/operator/baroclinic.py index 6866105b4dfab2c1c3824e44aed6208ddd987496..d3ae20e1f2d0a5407e8b824715e7bf4563206d80 100644 --- a/HySoP/hysop/operator/baroclinic.py +++ b/HySoP/hysop/operator/baroclinic.py @@ -4,13 +4,13 @@ MultiPhase Rot Grad P """ -from parmepy.operator.computational import Computational -from parmepy.operator.discrete.baroclinic import Baroclinic as BD -from parmepy.methods_keys import SpaceDiscretisation -from parmepy.numerics.finite_differences import FD_C_4 -from parmepy.constants import debug -import parmepy.default_methods as default -from parmepy.operator.continuous import opsetup +from hysop.operator.computational import Computational +from hysop.operator.discrete.baroclinic import Baroclinic as BD +from hysop.methods_keys import SpaceDiscretisation +from hysop.numerics.finite_differences import FD_C_4 +from hysop.constants import debug +import hysop.default_methods as default +from hysop.operator.continuous import opsetup class Baroclinic(Computational): diff --git a/HySoP/hysop/operator/computational.py b/HySoP/hysop/operator/computational.py index 86655b96f4f25960ceba4c7265d93e39d8ccd63e..b91bc774a2eae6cdbc6beae47dea0c2f3cef7b50 100644 --- a/HySoP/hysop/operator/computational.py +++ b/HySoP/hysop/operator/computational.py @@ -4,12 +4,12 @@ Interface common to all continuous operators. """ from abc import ABCMeta, abstractmethod -from parmepy.constants import debug, PARMES_INTEGER -from parmepy.operator.continuous import Operator -from parmepy.mpi.topology import Cartesian -from parmepy.tools.parameters import Discretization -from parmepy.tools.profiler import profile -import parmepy.tools.numpywrappers as npw +from hysop.constants import debug +from hysop.operator.continuous import Operator +from hysop.mpi.topology import Cartesian +from hysop.tools.parameters import Discretization +from hysop.tools.profiler import profile +import hysop.tools.numpywrappers as npw class Computational(Operator): @@ -36,8 +36,8 @@ class Computational(Operator): @abstractmethod def __init__(self, discretization=None, method=None, **kwds): """ - @param discretization : either a parmes.mpi.topology.Cartesian - or a parmepy.tools.parameters.Discretization. Required only if + @param discretization : either a hysop.mpi.topology.Cartesian + or a hysop.tools.parameters.Discretization. Required only if variables is set with a list. @param method : a dictionnary of methods. See methods.py for authorized values. @@ -226,7 +226,7 @@ class Computational(Operator): assert self._single_topo, 'All fields must use the same topology.' # Get local mesh parameters from fftw comm = self._mpis.comm - from parmepy.f2py import fftw2py + from hysop.f2py import fftw2py if build_topos: # In that case, self._discretization must be # a Discretization object, used for all fields. @@ -236,7 +236,7 @@ class Computational(Operator): resolution = npw.asintarray(self._discretization.resolution) localres, global_start = fftw2py.init_fftw_solver( resolution, self.domain.length, comm=comm.py2f()) - # Create the parmes topo (plane, cut through ZDIR) + # Create the topo (plane, cut through ZDIR) topo = self.domain.create_plane_topology_from_mesh( global_start=global_start, localres=localres, discretization=self._discretization) @@ -251,7 +251,7 @@ class Computational(Operator): msg = 'input topology is not compliant with fftw.' assert topo.dimension == 1, msg - from parmepy.constants import ORDER + from hysop.constants import ORDER if ORDER == 'C': assert topo.shape[0] == self._mpis.comm.Get_size(), msg else: @@ -296,7 +296,7 @@ class Computational(Operator): Apply this operator to its variables. @param simulation : object that describes the simulation parameters (time, time step, iteration number ...), see - parmepy.problem.simulation.Simulation for details. + hysop.problem.simulation.Simulation for details. """ super(Computational, self).apply(simulation) if self.discrete_op is not None: @@ -308,7 +308,7 @@ class Computational(Operator): self.discrete_op.printComputeTime() self.time_info = self.discrete_op.time_info else: - from parmepy.mpi.main_var import main_rank + from hysop.mpi.main_var import main_rank shortName = str(self.__class__).rpartition('.')[-1][0:-2] s = '[' + str(main_rank) + '] ' + shortName s += " : operator not discretized --> no computation, time = 0." diff --git a/HySoP/hysop/operator/continuous.py b/HySoP/hysop/operator/continuous.py index 57a70f10d9d44765ac24ff1ae264027b85c7862a..6a46e2f428e86c6772f4bfd2d0b299ae1b48f54a 100644 --- a/HySoP/hysop/operator/continuous.py +++ b/HySoP/hysop/operator/continuous.py @@ -4,10 +4,10 @@ Interface common to all continuous operators. """ from abc import ABCMeta, abstractmethod -from parmepy.constants import debug -from parmepy.tools.profiler import Profiler -from parmepy.tools.parameters import MPI_params, IO_params -import parmepy.tools.io_utils as io +from hysop.constants import debug +from hysop.tools.profiler import Profiler +from hysop.tools.parameters import MPI_params, IO_params +import hysop.tools.io_utils as io class Operator(object): @@ -40,12 +40,12 @@ class Operator(object): and an associated value which may be: - a topology - a resolution for computationnal operators - @oaram[in] mpi_params: parmepy.tools.parameters.MPI_params to + @oaram[in] mpi_params: hysop.tools.parameters.MPI_params to set the mpi context. @param[in, out] io_params : setup for i/o. """ # 1 ---- Variables setup ---- - ## List of parmepy.continuous.Fields involved in the operator. + ## List of hysop.continuous.Fields involved in the operator. if isinstance(variables, list): self.variables = {} for v in variables: @@ -66,7 +66,7 @@ class Operator(object): # this last case corresponds with redistribute operators # that may have variables implicitely defined from input # source and target operators - #(see parmepy.operator.redistribute.Redistribute for details). + #(see hysop.operator.redistribute.Redistribute for details). self.variables = {} ## Domain of definition. @@ -133,7 +133,7 @@ class Operator(object): def waitFor(self, op): """ - @param op : a parmepy operator + @param op : a hysop operator Add an operator into 'wait' list of the present object. It means that before any apply of this operator, all (mpi) operations in op must be fulfilled, which implies @@ -185,7 +185,7 @@ class Operator(object): Apply this operator to its variables. @param simulation : object that describes the simulation parameters (time, time step, iteration number ...), see - parmepy.problem.simulation.Simulation for details. + hysop.problem.simulation.Simulation for details. In derived classes, called through @opapply decorator. """ for op in self.waitList(): @@ -266,7 +266,7 @@ def opsetup(f): return decorator -from parmepy.tools.profiler import ftime +from hysop.tools.profiler import ftime def opapply(f): @@ -297,7 +297,7 @@ class Tools(object): """ @return true if op operates on a GPU """ - from parmepy.methods_keys import Support + from hysop.methods_keys import Support try: is_device = \ diff --git a/HySoP/hysop/operator/curlAndDiffusion.py b/HySoP/hysop/operator/curlAndDiffusion.py index 861aa25971b737933c5d754229f1b54c34f6e6e1..e8958501cad35ec1cbcf02ddee1b48ba54c83712 100644 --- a/HySoP/hysop/operator/curlAndDiffusion.py +++ b/HySoP/hysop/operator/curlAndDiffusion.py @@ -5,14 +5,14 @@ Operator for diffusion problem. """ -from parmepy.operator.continuous import Operator +from hysop.operator.continuous import Operator try: - from parmepy.f2py import fftw2py + from hysop.f2py import fftw2py except ImportError: - from parmepy.fakef2py import fftw2py -from parmepy.operator.discrete.diffusion_fft import DiffusionFFT -from parmepy.constants import debug -from parmepy.operator.continuous import opsetup + from hysop.fakef2py import fftw2py +from hysop.operator.discrete.diffusion_fft import DiffusionFFT +from hysop.constants import debug +from hysop.operator.continuous import opsetup class CurlDiffusion(Operator): @@ -50,7 +50,7 @@ class CurlDiffusion(Operator): Create a discrete Diffusion operator from given specifications. """ if self._comm is None: - from parmepy.mpi.main_var import main_comm as comm + from hysop.mpi.main_var import main_comm as comm else: comm = self._comm diff --git a/HySoP/hysop/operator/custom.py b/HySoP/hysop/operator/custom.py index 774e98855d8ad7e8356a8829f49c4ab397b0008e..b9578fd5f6b9eba0af299e7c32a98e52dacac2e6 100644 --- a/HySoP/hysop/operator/custom.py +++ b/HySoP/hysop/operator/custom.py @@ -1,9 +1,9 @@ """ @file custom.py """ -from parmepy.operator.computational import Computational -from parmepy.operator.discrete.custom import CustomMonitor as CM -from parmepy.operator.continuous import opsetup +from hysop.operator.computational import Computational +from hysop.operator.discrete.custom import CustomMonitor as CM +from hysop.operator.continuous import opsetup class CustomMonitor(Computational): diff --git a/HySoP/hysop/operator/density.py b/HySoP/hysop/operator/density.py index de0dce2c7da34c83fa2c0a25193a7b94637fdcd6..f30d56e5da82b5efaa909b1ee4a18bb2c9f454e5 100644 --- a/HySoP/hysop/operator/density.py +++ b/HySoP/hysop/operator/density.py @@ -3,10 +3,10 @@ @file operator/density.py """ -from parmepy.operator.computational import Computational -from parmepy.operator.discrete.density import DensityVisco_d -from parmepy.operator.continuous import opsetup -from parmepy.constants import debug +from hysop.operator.computational import Computational +from hysop.operator.discrete.density import DensityVisco_d +from hysop.operator.continuous import opsetup +from hysop.constants import debug class DensityVisco(Computational): diff --git a/HySoP/hysop/operator/differential.py b/HySoP/hysop/operator/differential.py index 406c33821a67e176f0e20a3691214503a8b3cc5e..b10cb26db64632d883d6abfe2bc25257e1206f8f 100644 --- a/HySoP/hysop/operator/differential.py +++ b/HySoP/hysop/operator/differential.py @@ -3,14 +3,14 @@ Differential operators """ -from parmepy.constants import debug -from parmepy.operator.computational import Computational -from parmepy.operator.discrete.differential import CurlFFT, CurlFD, GradFD -from parmepy.methods_keys import SpaceDiscretisation -from parmepy.operator.continuous import opsetup -from parmepy.numerics.finite_differences import FD_C_4,\ +from hysop.constants import debug +from hysop.operator.computational import Computational +from hysop.operator.discrete.differential import CurlFFT, CurlFD, GradFD +from hysop.methods_keys import SpaceDiscretisation +from hysop.operator.continuous import opsetup +from hysop.numerics.finite_differences import FD_C_4,\ FD_C_2, FiniteDifference -import parmepy.default_methods as default +import hysop.default_methods as default from abc import ABCMeta, abstractmethod @@ -83,7 +83,7 @@ class Curl(Differential): raise RuntimeError(msg) res = {'rwork': None, 'iwork': None} if self.method[SpaceDiscretisation].mro()[1] is FiniteDifference: - from parmepy.numerics.differential_operations \ + from hysop.numerics.differential_operations \ import Curl as NumCurl work_length = NumCurl.getWorkLengths() shape = self.discreteFields[self.invar].data[0].shape diff --git a/HySoP/hysop/operator/diffusion.py b/HySoP/hysop/operator/diffusion.py index 1d118506e360ddf0a4f93437c659489bf9ff87dd..cbf96d9ab07c8990bb050666d139842a7264c40b 100644 --- a/HySoP/hysop/operator/diffusion.py +++ b/HySoP/hysop/operator/diffusion.py @@ -5,12 +5,12 @@ Operator for diffusion problem. """ -from parmepy.operator.computational import Computational -from parmepy.operator.discrete.diffusion_fft import DiffusionFFT -from parmepy.constants import debug -from parmepy.operator.continuous import opsetup -from parmepy.methods_keys import SpaceDiscretisation -import parmepy.default_methods as default +from hysop.operator.computational import Computational +from hysop.operator.discrete.diffusion_fft import DiffusionFFT +from hysop.constants import debug +from hysop.operator.continuous import opsetup +from hysop.methods_keys import SpaceDiscretisation +import hysop.default_methods as default class Diffusion(Computational): @@ -69,7 +69,7 @@ class Diffusion(Computational): self.discreteFields[self.vorticity], self.viscosity, method=self.method) elif self.method[SpaceDiscretisation] is 'fd': - from parmepy.gpu.gpu_diffusion import GPUDiffusion + from hysop.gpu.gpu_diffusion import GPUDiffusion kw = self.kwds.copy() if 'discretization' in kw.keys(): kw.pop('discretization') diff --git a/HySoP/hysop/operator/discrete/__init__.py b/HySoP/hysop/operator/discrete/__init__.py index 0d41efad13d2a33642a49b12866e042505c64452..70f15434bdf7ca63593af802292c2fbb54364f1c 100644 --- a/HySoP/hysop/operator/discrete/__init__.py +++ b/HySoP/hysop/operator/discrete/__init__.py @@ -1,4 +1,4 @@ -## @package parmepy.operator.discrete +## @package hysop.operator.discrete # Discrete operators classes. # # A DiscreteOperator is an object that represents the discretisation of a diff --git a/HySoP/hysop/operator/discrete/adapt_timestep.py b/HySoP/hysop/operator/discrete/adapt_timestep.py index e1ff050e8a2bd6eb30da7da8a0f37ad6d017f9ee..129ee4019467fc5e0ad8b8ab48733ff5b1c77607 100755 --- a/HySoP/hysop/operator/discrete/adapt_timestep.py +++ b/HySoP/hysop/operator/discrete/adapt_timestep.py @@ -5,16 +5,16 @@ Evaluation of the adaptative time step according to the flow fields. """ -from parmepy.constants import debug -from parmepy.methods_keys import TimeIntegrator, SpaceDiscretisation,\ +from hysop.constants import debug +from hysop.methods_keys import TimeIntegrator, SpaceDiscretisation,\ dtCrit -from parmepy.operator.discrete.discrete import DiscreteOperator -from parmepy.numerics.differential_operations import GradV -import parmepy.tools.numpywrappers as npw -from parmepy.numerics.update_ghosts import UpdateGhosts -from parmepy.mpi import MPI -from parmepy.constants import np, PARMES_MPI_REAL -from parmepy.tools.profiler import profile +from hysop.operator.discrete.discrete import DiscreteOperator +from hysop.numerics.differential_operations import GradV +import hysop.tools.numpywrappers as npw +from hysop.numerics.update_ghosts import UpdateGhosts +from hysop.mpi import MPI +from hysop.constants import np, HYSOP_MPI_REAL +from hysop.tools.profiler import profile class AdaptTimeStep_D(DiscreteOperator): @@ -31,7 +31,7 @@ class AdaptTimeStep_D(DiscreteOperator): @param velocity : discretization of the velocity field @param vorticity : discretization of the vorticity field @param dt_adapt : adaptative timestep - (a parmepy.variable_parameter.VariableParameter) + (a hysop.variable_parameter.VariableParameter) @param lcfl : the lagrangian CFL coefficient used for advection stability @param cfl : the CFL coefficient. @@ -45,7 +45,7 @@ class AdaptTimeStep_D(DiscreteOperator): ## vorticity discrete field self.vorticity = vorticity ## adaptative time step variable - from parmepy.problem.simulation import Simulation + from hysop.problem.simulation import Simulation assert isinstance(simulation, Simulation) self.simulation = simulation assert 'variables' not in kwds, 'variables parameter is useless.' @@ -123,10 +123,10 @@ class AdaptTimeStep_D(DiscreteOperator): @staticmethod def _compute_stability_coeff(timeint): - from parmepy.numerics.integrators.euler import Euler - from parmepy.numerics.integrators.runge_kutta2 import RK2 - from parmepy.numerics.integrators.runge_kutta3 import RK3 - from parmepy.numerics.integrators.runge_kutta4 import RK4 + from hysop.numerics.integrators.euler import Euler + from hysop.numerics.integrators.runge_kutta2 import RK2 + from hysop.numerics.integrators.runge_kutta3 import RK3 + from hysop.numerics.integrators.runge_kutta4 import RK4 # Definition of stability coefficient for stretching operator coef_stretch = 0.0 classtype = timeint.mro()[0] @@ -243,8 +243,8 @@ class AdaptTimeStep_D(DiscreteOperator): self.diagnostics[func[0]] = func[1]() self.velocity.topology.comm.Allreduce( - sendbuf=[self.diagnostics, 7, PARMES_MPI_REAL], - recvbuf=[self._t_diagnostics, 7, PARMES_MPI_REAL], + sendbuf=[self.diagnostics, 7, HYSOP_MPI_REAL], + recvbuf=[self._t_diagnostics, 7, HYSOP_MPI_REAL], op=MPI.MAX) self.diagnostics[...] = self._t_diagnostics diff --git a/HySoP/hysop/operator/discrete/baroclinic.py b/HySoP/hysop/operator/discrete/baroclinic.py index 63f926fe2b2e57d6628f0ce7c1f8cdfec59a0438..05bd973f4f7bc9dcf7524aeb43286a0b3a3b2687 100644 --- a/HySoP/hysop/operator/discrete/baroclinic.py +++ b/HySoP/hysop/operator/discrete/baroclinic.py @@ -3,13 +3,13 @@ @file operator/discrete/baroclinic.py Discrete MultiPhase Rot Grad P """ -from parmepy.operator.discrete.discrete import DiscreteOperator -import parmepy.numerics.differential_operations as diff_op -from parmepy.constants import debug, XDIR, YDIR, ZDIR -from parmepy.methods_keys import SpaceDiscretisation -from parmepy.numerics.update_ghosts import UpdateGhosts -from parmepy.tools.profiler import ftime -import parmepy.tools.numpywrappers as npw +from hysop.operator.discrete.discrete import DiscreteOperator +import hysop.numerics.differential_operations as diff_op +from hysop.constants import debug, XDIR, YDIR, ZDIR +from hysop.methods_keys import SpaceDiscretisation +from hysop.numerics.update_ghosts import UpdateGhosts +from hysop.tools.profiler import ftime +import hysop.tools.numpywrappers as npw class Baroclinic(DiscreteOperator): @@ -33,7 +33,7 @@ class Baroclinic(DiscreteOperator): """ assert 'variables' not in kwds, 'variables parameter is useless.' if 'method' not in kwds: - import parmepy.default_methods as default + import hysop.default_methods as default kwds['method'] = default.BAROCLINIC super(Baroclinic, self).__init__(variables=[velocity, vorticity, diff --git a/HySoP/hysop/operator/discrete/curlAndDiffusion_fft.py b/HySoP/hysop/operator/discrete/curlAndDiffusion_fft.py index 19c5c30444167c554a27a0f6084b6ff382ee17f7..73c6500618f4b9506f1db2121fa8435fbbd4f453 100644 --- a/HySoP/hysop/operator/discrete/curlAndDiffusion_fft.py +++ b/HySoP/hysop/operator/discrete/curlAndDiffusion_fft.py @@ -4,18 +4,18 @@ Discrete Diffusion operator using FFTW (fortran) """ try: - from parmepy.f2py import fftw2py + from hysop.f2py import fftw2py except ImportError: - from parmepy.fakef2py import fftw2py -from parmepy.operator.discrete.discrete import DiscreteOperator -from parmepy.constants import debug -from parmepy.tools.profiler import profile + from hysop.fakef2py import fftw2py +from hysop.operator.discrete.discrete import DiscreteOperator +from hysop.constants import debug +from hysop.tools.profiler import profile class DiffusionFFT(DiscreteOperator): """ Discretized Poisson operator based on FFTW. - See details in parmepy.operator.diffusion. + See details in hysop.operator.diffusion. """ @debug @@ -81,12 +81,10 @@ class DiffusionFFT(DiscreteOperator): # ind2a = self.topology.mesh.local_start[2] # ind2b = self.topology.mesh.local_end[2] + 1 -# vorticityNoG = [np.zeros((self.resolution - 2 * self.ghosts), -# dtype=PARMES_REAL, -# order=ORDER) for d in xrange(self.dim)] -# velocityNoG = [np.zeros((self.resolution - 2 * self.ghosts), -# dtype=PARMES_REAL, -# order=ORDER) for d in xrange(self.dim)] +# vorticityNoG = [npw.zeros((self.resolution - 2 * self.ghosts)) +# for d in xrange(self.dim)] +# velocityNoG = [nwp.zeros((self.resolution - 2 * self.ghosts)) +# for d in xrange(self.dim)] # for i in xrange(self.dim): # vorticityNoG[i][...] = self.vorticity[i][ind0a:ind0b, # ind1a:ind1b, ind2a:ind2b] diff --git a/HySoP/hysop/operator/discrete/custom.py b/HySoP/hysop/operator/discrete/custom.py index e707483cf147b92c05d741f8e100acbc8db98f39..9fec5585962955277499e004df1f0f35e3742735 100644 --- a/HySoP/hysop/operator/discrete/custom.py +++ b/HySoP/hysop/operator/discrete/custom.py @@ -1,5 +1,5 @@ -import parmepy.tools.numpywrappers as npw -from parmepy.operator.discrete.discrete import DiscreteOperator +import hysop.tools.numpywrappers as npw +from hysop.operator.discrete.discrete import DiscreteOperator class CustomMonitor(DiscreteOperator): diff --git a/HySoP/hysop/operator/discrete/density.py b/HySoP/hysop/operator/discrete/density.py index 71b91f6f07de5829623f6583a087bbb4b4df3402..ffea3a72b31bc01482405a04d7dc37327f5dcf85 100644 --- a/HySoP/hysop/operator/discrete/density.py +++ b/HySoP/hysop/operator/discrete/density.py @@ -3,9 +3,9 @@ @file operator/discrete/density.py Discrete MultiPhase Rot Grad P """ -from parmepy.operator.discrete.discrete import DiscreteOperator -from parmepy.constants import np, debug -from parmepy.tools.profiler import profile +from hysop.operator.discrete.discrete import DiscreteOperator +from hysop.constants import np, debug +from hysop.tools.profiler import profile class DensityVisco_d(DiscreteOperator): diff --git a/HySoP/hysop/operator/discrete/differential.py b/HySoP/hysop/operator/discrete/differential.py index f8dbc0d1ed727443e8f75a8d76db89c9e74551be..fc1be77b56ba2bdf6af72954264754122b24d358 100644 --- a/HySoP/hysop/operator/discrete/differential.py +++ b/HySoP/hysop/operator/discrete/differential.py @@ -4,19 +4,19 @@ Discretisation of the differential operators (curl, grad ...) """ -from parmepy.constants import debug -from parmepy.operator.discrete.discrete import DiscreteOperator -from parmepy.numerics.differential_operations import Curl, GradV -import parmepy.tools.numpywrappers as npw +from hysop.constants import debug +from hysop.operator.discrete.discrete import DiscreteOperator +from hysop.numerics.differential_operations import Curl, GradV +import hysop.tools.numpywrappers as npw from abc import ABCMeta, abstractmethod -from parmepy.numerics.update_ghosts import UpdateGhosts -from parmepy.methods_keys import SpaceDiscretisation +from hysop.numerics.update_ghosts import UpdateGhosts +from hysop.methods_keys import SpaceDiscretisation try: - from parmepy.f2py import fftw2py + from hysop.f2py import fftw2py except ImportError: - from parmepy.fakef2py import fftw2py -import parmepy.default_methods as default -from parmepy.tools.profiler import profile + from hysop.fakef2py import fftw2py +import hysop.default_methods as default +from hysop.tools.profiler import profile class Differential(DiscreteOperator): diff --git a/HySoP/hysop/operator/discrete/diffusion_fft.py b/HySoP/hysop/operator/discrete/diffusion_fft.py index 1e84701d0e2585c658a4ac15d9d29c51b5cbad95..45e9ac18148480c8c7a88b08b693d4cd4ed820b4 100644 --- a/HySoP/hysop/operator/discrete/diffusion_fft.py +++ b/HySoP/hysop/operator/discrete/diffusion_fft.py @@ -4,19 +4,19 @@ Discrete Diffusion operator using FFTW (fortran) """ try: - from parmepy.f2py import fftw2py + from hysop.f2py import fftw2py except ImportError: - from parmepy.fakef2py import fftw2py -from parmepy.operator.discrete.discrete import DiscreteOperator -from parmepy.constants import debug -from parmepy.mpi import MPI -from parmepy.tools.profiler import profile + from hysop.fakef2py import fftw2py +from hysop.operator.discrete.discrete import DiscreteOperator +from hysop.constants import debug +from hysop.mpi import MPI +from hysop.tools.profiler import profile class DiffusionFFT(DiscreteOperator): """ Discretized Poisson operator based on FFTW. - See details in parmepy.operator.diffusion. + See details in hysop.operator.diffusion. """ @debug diff --git a/HySoP/hysop/operator/discrete/discrete.py b/HySoP/hysop/operator/discrete/discrete.py index fc3b03de6c06d6560d9b67d053eb7cf6169df9f8..390f0aed2d1a52ee7e6164d1f7c5967ebe441a74 100644 --- a/HySoP/hysop/operator/discrete/discrete.py +++ b/HySoP/hysop/operator/discrete/discrete.py @@ -3,9 +3,9 @@ Abstract interface for discrete operators. """ from abc import ABCMeta, abstractmethod -from parmepy.constants import debug -from parmepy.methods_keys import GhostUpdate -from parmepy.tools.profiler import Profiler +from hysop.constants import debug +from hysop.methods_keys import GhostUpdate +from hysop.tools.profiler import Profiler class DiscreteOperator(object): @@ -29,7 +29,7 @@ class DiscreteOperator(object): """ Abstract base class for discrete operators. @param variables : a list of discrete fields - (parmepy.fields.discrete.Discrete) + (hysop.fields.discrete.Discrete) @param rwork : a list of work arrays of reals. if None, local work arrays will be allocated. @param iwork : a list of work arrays of int. @@ -116,7 +116,7 @@ class DiscreteOperator(object): Apply this operator to its variables. @param simulation : object that describes the simulation parameters (time, time step, iteration number ...), see - parmepy.problem.simulation.Simulation for details. + hysop.problem.simulation.Simulation for details. """ @debug diff --git a/HySoP/hysop/operator/discrete/drag_and_lift.py b/HySoP/hysop/operator/discrete/drag_and_lift.py index a37cd828624c0bd1ad55f4d470c8eb5f863c49a2..7782cf0056127a1b600703ecb2eb9af0f4f88690 100644 --- a/HySoP/hysop/operator/discrete/drag_and_lift.py +++ b/HySoP/hysop/operator/discrete/drag_and_lift.py @@ -3,12 +3,12 @@ @file operator/discrete/drag_and_lift.py Methods to compute drag and lift forces """ -from parmepy.numerics.update_ghosts import UpdateGhosts -from parmepy.operator.discrete.discrete import DiscreteOperator -import parmepy.tools.numpywrappers as npw +from hysop.numerics.update_ghosts import UpdateGhosts +from hysop.operator.discrete.discrete import DiscreteOperator +import hysop.tools.numpywrappers as npw from abc import ABCMeta, abstractmethod -from parmepy.numerics.utils import Utils -from parmepy.constants import XDIR, YDIR, ZDIR +from hysop.numerics.utils import Utils +from hysop.constants import XDIR, YDIR, ZDIR class Forces(DiscreteOperator): @@ -28,8 +28,8 @@ class Forces(DiscreteOperator): @param a volume of control @param normalization : a normalization coefficient applied to the force (default = 1.) - (parmepy.domain.subset.boxes.SubBox) - @param obstacles a list of parmepy.domain.subsets inside the volume of + (hysop.domain.subset.boxes.SubBox) + @param obstacles a list of hysop.domain.subsets inside the volume of control """ super(Forces, self).__init__(**kwds) @@ -76,7 +76,7 @@ class Forces(DiscreteOperator): @abstractmethod def _init_indices(self, obstacles): """ - @param obstacles: a list of parmepy.domain.subsets.subset.Subset + @param obstacles: a list of hysop.domain.subsets.subset.Subset @return : a list of np arrays representing points indices (like result from np.where) Discretize obstacles, volume of control ... and @@ -107,7 +107,7 @@ class Forces(DiscreteOperator): def apply(self, simulation=None): """ Perform integrals on volume and surfaces of the control box - @param parmepy.problem.simulation : object describing + @param hysop.problem.simulation : object describing simulation parameters """ assert simulation is not None,\ @@ -147,8 +147,8 @@ class MomentumForces(Forces): @param a volume of control @param normalization : a normalization coefficient applied to the force (default = 1.) - (parmepy.domain.subset.boxes.SubBox) - @param obstacles a list of parmepy.domain.subsets inside the volume of + (hysop.domain.subset.boxes.SubBox) + @param obstacles a list of hysop.domain.subsets inside the volume of control """ assert 'variables' not in kwds, 'variables parameter is useless.' @@ -200,8 +200,8 @@ class NocaForces(Forces): @param a volume of control @param normalization : a normalization coefficient applied to the force (default = 1.) - (parmepy.domain.subset.boxes.SubBox) - @param obstacles a list of parmepy.domain.subsets inside the volume of + (hysop.domain.subset.boxes.SubBox) + @param obstacles a list of hysop.domain.subsets inside the volume of control """ # A volume of control, in which forces are computed @@ -225,12 +225,12 @@ class NocaForces(Forces): self._dvol = npw.prod(self._topology.mesh.space_step) # function to compute the laplacian of a # scalar field. Default fd scheme. (See Laplacian) - from parmepy.numerics.differential_operations import Laplacian + from hysop.numerics.differential_operations import Laplacian self._laplacian = Laplacian(self._topology) # function used to compute first derivative of # a scalar field in a given direction. # Default = FD_C_2. Todo : set this as an input method value. - from parmepy.numerics.finite_differences import FD_C_2 + from hysop.numerics.finite_differences import FD_C_2 self._fd_scheme = FD_C_2(self._topology.mesh.space_step) self._formula = self._noca @@ -255,12 +255,12 @@ class NocaForces(Forces): Compute a list of indices corresponding to points inside the volume of control minus those inside the obstacles """ - from parmepy.domain.subsets.control_box import ControlBox + from hysop.domain.subsets.control_box import ControlBox assert isinstance(self._voc, ControlBox) self._on_proc = self._voc.on_proc[self._topology] msg = 'obstacles arg must be a list.' assert isinstance(obstacles, list), msg - from parmepy.domain.subsets.subset import Subset + from hysop.domain.subsets.subset import Subset # no obstacle in the box, just for test purpose. if obstacles is None or len(obstacles) == 0: return self._voc.ind[self._topology] diff --git a/HySoP/hysop/operator/discrete/energy_enstrophy.py b/HySoP/hysop/operator/discrete/energy_enstrophy.py index 950442182770448cf0c183043705ee796b4da306..288c7bcca157eaddd53dd88e92d1d1a3fd225847 100644 --- a/HySoP/hysop/operator/discrete/energy_enstrophy.py +++ b/HySoP/hysop/operator/discrete/energy_enstrophy.py @@ -3,10 +3,10 @@ @file energy_enstrophy.py Compute Energy and Enstrophy """ -from parmepy.constants import debug -from parmepy.tools.profiler import profile -import parmepy.tools.numpywrappers as npw -from parmepy.operator.discrete.discrete import DiscreteOperator +from hysop.constants import debug +from hysop.tools.profiler import profile +import hysop.tools.numpywrappers as npw +from hysop.operator.discrete.discrete import DiscreteOperator class EnergyEnstrophy(DiscreteOperator): @@ -121,10 +121,10 @@ class EnergyEnstrophy(DiscreteOperator): self.velocity.topology.comm.Allreduce(sendbuff, recvbuff) # the other way : #energy = self.velocity.topology.allreduce(local_energy, - # PARMES_MPI_REAL, + # HYSOP_MPI_REAL, # op=MPI.SUM) #enstrophy = self.velocity.topology.allreduce(local_enstrophy, - # PARMES_MPI_REAL, + # HYSOP_MPI_REAL, # op=MPI.SUM) # Update global values diff --git a/HySoP/hysop/operator/discrete/particle_advection.py b/HySoP/hysop/operator/discrete/particle_advection.py index 0d63860c8e19fced0c9ccfb6e9479248ee20eeeb..649003005944f39efc66b2b257b7efb150f58a0a 100644 --- a/HySoP/hysop/operator/discrete/particle_advection.py +++ b/HySoP/hysop/operator/discrete/particle_advection.py @@ -4,14 +4,14 @@ Advection solver, particular method, pure-python version. """ -from parmepy.constants import debug, WITH_GUESS, PARMES_REAL, PARMES_DIM -from parmepy.methods_keys import TimeIntegrator, Interpolation, Remesh, Support -from parmepy.operator.discrete.discrete import DiscreteOperator -import parmepy.tools.numpywrappers as npw -import parmepy.default_methods as default +from hysop.constants import debug, WITH_GUESS, HYSOP_REAL, HYSOP_DIM +from hysop.methods_keys import TimeIntegrator, Interpolation, Remesh, Support +from hysop.operator.discrete.discrete import DiscreteOperator +import hysop.tools.numpywrappers as npw +import hysop.default_methods as default import numpy as np -from parmepy.numerics.remeshing import Remeshing -from parmepy.tools.profiler import profile +from hysop.numerics.remeshing import Remeshing +from hysop.tools.profiler import profile class ParticleAdvection(DiscreteOperator): @@ -139,8 +139,8 @@ class ParticleAdvection(DiscreteOperator): # Testing the buffer size instead of shape for wk in rwork: s = wk.size / np.prod(memshape) - assert (PARMES_REAL is np.float32 and s == 4) or \ - (PARMES_REAL is np.float64 and s == 8) + assert (HYSOP_REAL is np.float32 and s == 4) or \ + (HYSOP_REAL is np.float64 and s == 8) self._rwork = rwork if iwork is None: @@ -157,9 +157,9 @@ class ParticleAdvection(DiscreteOperator): # Testing the buffer size instead of shape for wk in iwork: s = wk.size / np.prod(memshape) - assert (PARMES_DIM is np.int16 and s == 2) or \ - (PARMES_DIM is np.int32 and s == 4) or \ - (PARMES_DIM is np.int64 and s == 8) + assert (HYSOP_DIM is np.int16 and s == 2) or \ + (HYSOP_DIM is np.int32 and s == 4) or \ + (HYSOP_DIM is np.int64 and s == 8) self._iwork = iwork @debug diff --git a/HySoP/hysop/operator/discrete/penalization.py b/HySoP/hysop/operator/discrete/penalization.py index 5746eb9750ad87a970b907aa1142606291ab2867..60a5e169d4740ec019aadae2e0323906e8b2ef42 100644 --- a/HySoP/hysop/operator/discrete/penalization.py +++ b/HySoP/hysop/operator/discrete/penalization.py @@ -3,16 +3,16 @@ @file operator/discrete/penalization.py Discrete operator for penalization problem. """ -from parmepy.constants import debug -from parmepy.operator.discrete.discrete import DiscreteOperator -from parmepy.tools.profiler import profile -from parmepy.domain.subsets.subset import Subset +from hysop.constants import debug +from hysop.operator.discrete.discrete import DiscreteOperator +from hysop.tools.profiler import profile +from hysop.domain.subsets.subset import Subset class Penalization(DiscreteOperator): """ Discretized penalisation operator. - See details in parmepy.operator.penalization + See details in hysop.operator.penalization """ @debug @@ -27,7 +27,7 @@ class Penalization(DiscreteOperator): to apply a different coefficient on each subset. - obstacles = [obs1, obs2, ...], coeff=coeff1 to apply the same penalization on all subsets. - obs1, ob2 ... must be some parmepy.domain.subsets.Subset + obs1, ob2 ... must be some hysop.domain.subsets.Subset and coeff1 must be either a scalar or a function of the coordinates like def coeff(*args): diff --git a/HySoP/hysop/operator/discrete/penalization_and_curl.py b/HySoP/hysop/operator/discrete/penalization_and_curl.py index 60ef7dc6c2f0276f31f4372cf032ba8580212a27..e4830a206ffd502acbe747d428bbbe1c4e786c40 100644 --- a/HySoP/hysop/operator/discrete/penalization_and_curl.py +++ b/HySoP/hysop/operator/discrete/penalization_and_curl.py @@ -3,14 +3,14 @@ @file operator/discrete/penalization.py Discrete operator for penalization problem. """ -from parmepy.constants import debug -from parmepy.operator.discrete.penalization import Penalization +from hysop.constants import debug +from hysop.operator.discrete.penalization import Penalization class PenalizationAndCurl(Penalization): """ Discretized penalisation operator. - See details in parmepy.operator.penalization + See details in hysop.operator.penalization """ @debug diff --git a/HySoP/hysop/operator/discrete/poisson_fft.py b/HySoP/hysop/operator/discrete/poisson_fft.py index f9ba044f3867bf099b5bb8ecb088f5fe87cb1b6a..9ffaecedb873fad4dacf65fa51f9e4778a963be2 100644 --- a/HySoP/hysop/operator/discrete/poisson_fft.py +++ b/HySoP/hysop/operator/discrete/poisson_fft.py @@ -3,22 +3,22 @@ @file poisson_fft.py Discrete operator for Poisson problem (fftw based) """ -import parmepy.tools.numpywrappers as npw +import hysop.tools.numpywrappers as npw try: - from parmepy.f2py import fftw2py + from hysop.f2py import fftw2py except ImportError: - from parmepy.fakef2py import fftw2py + from hysop.fakef2py import fftw2py -from parmepy.operator.discrete.discrete import DiscreteOperator -from parmepy.operator.discrete.reprojection import Reprojection -from parmepy.constants import debug -from parmepy.tools.profiler import profile +from hysop.operator.discrete.discrete import DiscreteOperator +from hysop.operator.discrete.reprojection import Reprojection +from hysop.constants import debug +from hysop.tools.profiler import profile class PoissonFFT(DiscreteOperator): """ Discretized Poisson operator based on FFTW. - See details in parmepy.operator.poisson + See details in hysop.operator.poisson """ @debug @@ -36,7 +36,7 @@ class PoissonFFT(DiscreteOperator): @param filterSize : @param correction : operator used to shift velocity according to a given input (fixed) flowrate. - See parmepy.operator.velocity_correction. + See hysop.operator.velocity_correction. Default = None. """ # Base class initialisation diff --git a/HySoP/hysop/operator/discrete/reprojection.py b/HySoP/hysop/operator/discrete/reprojection.py index 923bc2c5df5ab4d9ab1927922b921fcabf2e8cba..c4daad5554c8ff6f598647c2d618207204192119 100644 --- a/HySoP/hysop/operator/discrete/reprojection.py +++ b/HySoP/hysop/operator/discrete/reprojection.py @@ -4,15 +4,15 @@ Compute reprojection criterion and divergence maximum """ import numpy as np -from parmepy.constants import debug, PARMES_MPI_REAL -from parmepy.methods_keys import SpaceDiscretisation -from parmepy.operator.discrete.discrete import DiscreteOperator -from parmepy.numerics.finite_differences import FD_C_4 -from parmepy.numerics.differential_operations import GradV -import parmepy.tools.numpywrappers as npw -from parmepy.numerics.update_ghosts import UpdateGhosts -from parmepy.mpi import MPI -from parmepy.tools.profiler import profile +from hysop.constants import debug, HYSOP_MPI_REAL +from hysop.methods_keys import SpaceDiscretisation +from hysop.operator.discrete.discrete import DiscreteOperator +from hysop.numerics.finite_differences import FD_C_4 +from hysop.numerics.differential_operations import GradV +import hysop.tools.numpywrappers as npw +from hysop.numerics.update_ghosts import UpdateGhosts +from hysop.mpi import MPI +from hysop.tools.profiler import profile class Reprojection(DiscreteOperator): @@ -104,7 +104,7 @@ class Reprojection(DiscreteOperator): # computation of the reprojection criterion and mpi-reduction criterion = d1 / d2 criterion = self.vorticity.topology.comm.allreduce( - criterion, PARMES_MPI_REAL, op=MPI.MAX) + criterion, HYSOP_MPI_REAL, op=MPI.MAX) # is reprojection of vorticity needed for the next time step ? if criterion > self.threshold: self.frequency = 1 diff --git a/HySoP/hysop/operator/discrete/scales_advection.py b/HySoP/hysop/operator/discrete/scales_advection.py index a77a4edf3e6a89715f88969f9634ace0bc894a89..d1a794b3bf8f55fa781946ad3282684bea577062 100644 --- a/HySoP/hysop/operator/discrete/scales_advection.py +++ b/HySoP/hysop/operator/discrete/scales_advection.py @@ -5,13 +5,13 @@ Discrete Advection operator based on scales library (Jean-Baptiste) """ try: - from parmepy.f2py import scales2py + from hysop.f2py import scales2py except ImportError: - from parmepy.fakef2py import scales2py -from parmepy.operator.discrete.discrete import DiscreteOperator -from parmepy.methods_keys import MultiScale -from parmepy.constants import debug -from parmepy.tools.profiler import profile + from hysop.fakef2py import scales2py +from hysop.operator.discrete.discrete import DiscreteOperator +from hysop.methods_keys import MultiScale +from hysop.constants import debug +from hysop.tools.profiler import profile import math ceil = math.ceil diff --git a/HySoP/hysop/operator/discrete/stretching.py b/HySoP/hysop/operator/discrete/stretching.py index bb526848dd8389d0224f9601fe19fd185b6932d6..66236a7cc4c88191144d040ea883db7801a0ed16 100755 --- a/HySoP/hysop/operator/discrete/stretching.py +++ b/HySoP/hysop/operator/discrete/stretching.py @@ -5,18 +5,18 @@ Discretisation of the stretching operator for two different formulations. """ -from parmepy.constants import debug, WITH_GUESS -from parmepy.methods_keys import TimeIntegrator, SpaceDiscretisation -from parmepy.operator.discrete.discrete import DiscreteOperator -from parmepy.numerics.integrators.euler import Euler -from parmepy.numerics.integrators.runge_kutta2 import RK2 -from parmepy.numerics.integrators.runge_kutta3 import RK3 -from parmepy.numerics.integrators.runge_kutta4 import RK4 -import parmepy.numerics.differential_operations as diff_op -import parmepy.tools.numpywrappers as npw -from parmepy.numerics.update_ghosts import UpdateGhosts -from parmepy.mpi import MPI -from parmepy.tools.profiler import profile +from hysop.constants import debug, WITH_GUESS +from hysop.methods_keys import TimeIntegrator, SpaceDiscretisation +from hysop.operator.discrete.discrete import DiscreteOperator +from hysop.numerics.integrators.euler import Euler +from hysop.numerics.integrators.runge_kutta2 import RK2 +from hysop.numerics.integrators.runge_kutta3 import RK3 +from hysop.numerics.integrators.runge_kutta4 import RK4 +import hysop.numerics.differential_operations as diff_op +import hysop.tools.numpywrappers as npw +from hysop.numerics.update_ghosts import UpdateGhosts +from hysop.mpi import MPI +from hysop.tools.profiler import profile from abc import ABCMeta, abstractmethod import math ceil = math.ceil @@ -48,7 +48,7 @@ class Stretching(DiscreteOperator): self.formulation = formulation if 'method' not in kwds: - import parmepy.default_methods as default + import hysop.default_methods as default kwds['method'] = default.STRETCHING # Work vector used by time-integrator self._ti_work = None diff --git a/HySoP/hysop/operator/discrete/velocity_correction.py b/HySoP/hysop/operator/discrete/velocity_correction.py index 33a48c571dae1481365ea2d506a9656d1aa065ca..b6f468710cd9290bdc654f5d95b52d40ae486d27 100755 --- a/HySoP/hysop/operator/discrete/velocity_correction.py +++ b/HySoP/hysop/operator/discrete/velocity_correction.py @@ -5,12 +5,12 @@ Correction of the velocity field. """ -from parmepy.constants import debug -from parmepy.operator.discrete.discrete import DiscreteOperator -from parmepy.fields.variable_parameter import VariableParameter -from parmepy.tools.profiler import profile -import parmepy.tools.numpywrappers as npw -from parmepy.constants import XDIR, YDIR, ZDIR +from hysop.constants import debug +from hysop.operator.discrete.discrete import DiscreteOperator +from hysop.fields.variable_parameter import VariableParameter +from hysop.tools.profiler import profile +import hysop.tools.numpywrappers as npw +from hysop.constants import XDIR, YDIR, ZDIR class VelocityCorrection_D(DiscreteOperator): @@ -18,7 +18,7 @@ class VelocityCorrection_D(DiscreteOperator): The velocity field is corrected after solving the Poisson equation. For more details about calculations, see the "velocity_correction.pdf" explanations document - in ParmeDoc directory. + in Docs. """ @debug @@ -28,7 +28,7 @@ class VelocityCorrection_D(DiscreteOperator): @param[in] vorticity field used to compute correction @param[in] req_flowrate : required value for the flowrate (VariableParameter object) - @param[in] surf : surface (parmepy.domain.obstacle.planes.SubPlane) + @param[in] surf : surface (hysop.domain.obstacle.planes.SubPlane) used to compute reference flow rates. Default = surface at x_origin, normal to x-dir. """ diff --git a/HySoP/hysop/operator/drag_and_lift.py b/HySoP/hysop/operator/drag_and_lift.py index 8737e67ba08bf2aceb12e011fd5a134f1559b9b7..cea72bb6159df9264f401174c5561babdd8a4dc2 100644 --- a/HySoP/hysop/operator/drag_and_lift.py +++ b/HySoP/hysop/operator/drag_and_lift.py @@ -3,8 +3,8 @@ @file drag_and_lift.py Methods to compute drag and lift """ -from parmepy.operator.computational import Computational -from parmepy.operator.continuous import opsetup +from hysop.operator.computational import Computational +from hysop.operator.continuous import opsetup from abc import ABCMeta, abstractmethod @@ -18,12 +18,12 @@ class Forces(Computational): def __init__(self, obstacles, **kwds): """ - @param obstacles a list of parmepy.domain.obstacles inside + @param obstacles a list of hysop.domain.obstacles inside the box """ super(Forces, self).__init__(**kwds) self.input = self.variables - ## List of parmepy.domain.subsets, obstacles to the flow + ## List of hysop.domain.subsets, obstacles to the flow self.obstacles = obstacles # Minimal number of ghost points required. Defined in derived class self._min_ghosts = 0 @@ -81,7 +81,7 @@ class MomentumForces(Forces): @opsetup def setup(self, rwork=None, iwork=None): if not self._is_uptodate: - from parmepy.operator.discrete.drag_and_lift \ + from hysop.operator.discrete.drag_and_lift \ import MomentumForces as DMF self.discrete_op = DMF( velocity=self.discreteFields[self.velocity], @@ -109,7 +109,7 @@ class NocaForces(Forces): @param vorticity field @param nu viscosity @param a volume of control - (parmepy.domain.obstacle.controlBox.ControlBox object) + (hysop.domain.obstacle.controlBox.ControlBox object) @param normalization : a normalization coefficient applied to the force (default = 1.) """ @@ -128,10 +128,10 @@ class NocaForces(Forces): # setup for finite differences if self.method is None: - import parmepy.default_methods as default + import hysop.default_methods as default self.method = default.FORCES - from parmepy.methods_keys import SpaceDiscretisation - from parmepy.numerics.finite_differences import FD_C_4, FD_C_2 + from hysop.methods_keys import SpaceDiscretisation + from hysop.numerics.finite_differences import FD_C_4, FD_C_2 assert SpaceDiscretisation in self.method.keys() if SpaceDiscretisation is FD_C_2: self._min_ghosts = 1 @@ -147,7 +147,7 @@ class NocaForces(Forces): if volume_of_control is None: lr = self.domain.length * 0.9 xr = self.domain.origin + 0.04 * self.domain.length - from parmepy.domain.subsets.control_box import ControlBox + from hysop.domain.subsets.control_box import ControlBox volume_of_control = ControlBox(parent=self.domain, origin=xr, length=lr) self._voc = volume_of_control @@ -172,7 +172,7 @@ class NocaForces(Forces): @opsetup def setup(self, rwork=None, iwork=None): if not self._is_uptodate: - from parmepy.operator.discrete.drag_and_lift \ + from hysop.operator.discrete.drag_and_lift \ import NocaForces as DNF topo = self.discreteFields[self.velocity].topology self._voc.discretize(topo) diff --git a/HySoP/hysop/operator/energy_enstrophy.py b/HySoP/hysop/operator/energy_enstrophy.py index f193018f3bf66c819e68112ea0977b38aaa99c85..4f0bd403adf9cfcd87d2dfdcec8dcf654ba2cac8 100644 --- a/HySoP/hysop/operator/energy_enstrophy.py +++ b/HySoP/hysop/operator/energy_enstrophy.py @@ -3,9 +3,9 @@ @file energy_enstrophy.py Compute Energy and Enstrophy """ -from parmepy.operator.discrete.energy_enstrophy import EnergyEnstrophy as DEE -from parmepy.operator.computational import Computational -from parmepy.operator.continuous import opsetup +from hysop.operator.discrete.energy_enstrophy import EnergyEnstrophy as DEE +from hysop.operator.computational import Computational +from hysop.operator.continuous import opsetup class EnergyEnstrophy(Computational): @@ -29,7 +29,7 @@ class EnergyEnstrophy(Computational): and energy values have to be normalized by the domain lengths. Default file name = 'energy_enstrophy.dat' - See parmepy.tools.io_utils.Writer for details + See hysop.tools.io_utils.Writer for details """ assert 'variables' not in kwds, 'variables parameter is useless.' super(EnergyEnstrophy, self).__init__(variables=[velocity, vorticity], diff --git a/HySoP/hysop/operator/hdf_io.py b/HySoP/hysop/operator/hdf_io.py index 6010dcdd8d89eee591065835e6c2829694fc6cd1..cb6d3953f569ece4fb8705023456e7b9c1ed5fd1 100644 --- a/HySoP/hysop/operator/hdf_io.py +++ b/HySoP/hysop/operator/hdf_io.py @@ -3,14 +3,13 @@ File output for field(s) value on a grid. """ -from parmepy.constants import S_DIR, debug, HDF5, PARMES_REAL -from parmepy.operator.computational import Computational -from parmepy.operator.continuous import opapply, opsetup -import parmepy.tools.numpywrappers as npw -import parmepy.tools.io_utils as io -from parmepy.tools.parameters import IO_params +from hysop.constants import S_DIR, debug, HDF5, HYSOP_REAL +from hysop.operator.computational import Computational +from hysop.operator.continuous import opapply, opsetup +import hysop.tools.numpywrappers as npw +import hysop.tools.io_utils as io +from hysop.tools.parameters import IO_params from abc import ABCMeta, abstractmethod -from parmepy.mpi import main_rank try: import h5py @@ -20,13 +19,13 @@ except ImportError as h5py_error: msg_err += ' use hdf5 I/O functionnalities.' print msg_err -from parmepy.tools.profiler import profile +from hysop.tools.profiler import profile class HDF_IO(Computational): """ Abstract interface for read/write from/to hdf files, for - parmepy fields. + hysop fields. """ __metaclass__ = ABCMeta @@ -38,7 +37,7 @@ class HDF_IO(Computational): @param var_names : a dictionnary of names to connect fields to the dataset in the hdf file. See example below. @param subset : a subset of the domain, on which data are read. - It must be a parmepy.domain.subset. + It must be a hysop.domain.subset. Names paramater example: if variables=[velo, vorti], and if hdf file contains @@ -250,7 +249,7 @@ class HDF_Writer(HDF_IO): for name in self.dataset: ds = self._hdf_file.create_dataset(name, self._global_resolution, - dtype=PARMES_REAL, + dtype=HYSOP_REAL, compression=compression) # In parallel, each proc must write at the right place # of the dataset --> use self._slices. diff --git a/HySoP/hysop/operator/penalization.py b/HySoP/hysop/operator/penalization.py index b676b439b0296992d500be795a3f4992d8f47034..9d164a41253c8756ccde375c56e5b5e1d1432467 100644 --- a/HySoP/hysop/operator/penalization.py +++ b/HySoP/hysop/operator/penalization.py @@ -4,10 +4,10 @@ Penalisation of a given field """ -from parmepy.operator.computational import Computational -from parmepy.operator.discrete.penalization import Penalization as DiscrPenal -from parmepy.constants import debug -from parmepy.operator.continuous import opsetup +from hysop.operator.computational import Computational +from hysop.operator.discrete.penalization import Penalization as DiscrPenal +from hysop.constants import debug +from hysop.operator.continuous import opsetup class Penalization(Computational): @@ -34,7 +34,7 @@ class Penalization(Computational): to apply a different coefficient on each subset. - obstacles = [obs1, obs2, ...], coeff=coeff1 to apply the same penalization on all subsets. - obs1, ob2 ... must be some parmepy.domain.subsets.Subset + obs1, ob2 ... must be some hysop.domain.subsets.Subset and coeff1 must be either a scalar or a function of the coordinates like def coeff(*args): @@ -57,7 +57,7 @@ class Penalization(Computational): # all variables must have the same resolution assert self._single_topo, 'multi-resolution case not allowed.' topo = self.variables.values()[0] - from parmepy.domain.subsets.subset import Subset + from hysop.domain.subsets.subset import Subset for obs in self.obstacles: assert isinstance(obs, Subset) obs.discretize(topo) diff --git a/HySoP/hysop/operator/penalization_and_curl.py b/HySoP/hysop/operator/penalization_and_curl.py index 537b7b31ec61b3a825b785e22f95fb82e83fbe61..2bdccc7a34646ac4503dbcb7152c3d9fa6eba83c 100644 --- a/HySoP/hysop/operator/penalization_and_curl.py +++ b/HySoP/hysop/operator/penalization_and_curl.py @@ -4,17 +4,17 @@ Compute the vorticity field from velocity using penalization. """ -from parmepy.operator.penalization import Penalization -from parmepy.operator.discrete.penalization_and_curl\ +from hysop.operator.penalization import Penalization +from hysop.operator.discrete.penalization_and_curl\ import PenalizationAndCurl as PAC -from parmepy.constants import debug -from parmepy.operator.continuous import opsetup -import parmepy.default_methods as default -from parmepy.methods_keys import SpaceDiscretisation -from parmepy.numerics.finite_differences import FD_C_4,\ +from hysop.constants import debug +from hysop.operator.continuous import opsetup +import hysop.default_methods as default +from hysop.methods_keys import SpaceDiscretisation +from hysop.numerics.finite_differences import FD_C_4,\ FD_C_2 -from parmepy.operator.differential import Curl -from parmepy.fields.continuous import Field +from hysop.operator.differential import Curl +from hysop.fields.continuous import Field class PenalizationAndCurl(Penalization): @@ -61,7 +61,7 @@ class PenalizationAndCurl(Penalization): # all variables must have the same resolution assert self._single_topo, 'multi-resolution case not allowed.' topo = self.variables[self.velocity] - from parmepy.domain.subsets.subset import Subset + from hysop.domain.subsets.subset import Subset for obs in self.obstacles: assert isinstance(obs, Subset) obs.discretize(topo) diff --git a/HySoP/hysop/operator/poisson.py b/HySoP/hysop/operator/poisson.py index 269aa2aff55a372bdb6f6d021f62ae1b87584479..6043dedc63cef96f32c535ac6f845800548884c2 100644 --- a/HySoP/hysop/operator/poisson.py +++ b/HySoP/hysop/operator/poisson.py @@ -4,14 +4,14 @@ Poisson problem. """ -from parmepy.operator.computational import Computational -from parmepy.operator.discrete.poisson_fft import PoissonFFT -from parmepy.constants import debug -from parmepy.operator.velocity_correction import VelocityCorrection -from parmepy.operator.reprojection import Reprojection -from parmepy.methods_keys import SpaceDiscretisation -from parmepy.operator.continuous import opsetup -import parmepy.default_methods as default +from hysop.operator.computational import Computational +from hysop.operator.discrete.poisson_fft import PoissonFFT +from hysop.constants import debug +from hysop.operator.velocity_correction import VelocityCorrection +from hysop.operator.reprojection import Reprojection +from hysop.methods_keys import SpaceDiscretisation +from hysop.operator.continuous import opsetup +import hysop.default_methods as default class Poisson(Computational): @@ -36,7 +36,7 @@ class Poisson(Computational): @param[in] vorticity : rhs field @param[in] flowrate : a flow rate value (through input surf, normal to xdir) used to compute a correction of the solution field. - Default = 0 (no correction). See parmepy.operator.velocity_correction. + Default = 0 (no correction). See hysop.operator.velocity_correction. @param projection : if None, no projection. Else: - either the value of the frequency of reprojection, never update. - or a tuple = (frequency, threshold). diff --git a/HySoP/hysop/operator/redistribute.py b/HySoP/hysop/operator/redistribute.py index befce9d4d0b8e2951482347d51c7fa0d6eb1b37e..053b081f034526f89a2ea2fc3bb92d178ef9c674 100644 --- a/HySoP/hysop/operator/redistribute.py +++ b/HySoP/hysop/operator/redistribute.py @@ -3,10 +3,10 @@ Abstract interface for data redistribution. """ -from parmepy.operator.continuous import Operator +from hysop.operator.continuous import Operator from abc import ABCMeta, abstractmethod -from parmepy.mpi.topology import Cartesian -from parmepy.operator.computational import Computational +from hysop.mpi.topology import Cartesian +from hysop.operator.computational import Computational class Redistribute(Operator): diff --git a/HySoP/hysop/operator/redistribute_inter.py b/HySoP/hysop/operator/redistribute_inter.py index 4860c5bc44e15e5859c93711fe15a361d54800f9..7a9179aac56b03ab85f4cb84b094929fd8f0c882 100644 --- a/HySoP/hysop/operator/redistribute_inter.py +++ b/HySoP/hysop/operator/redistribute_inter.py @@ -3,11 +3,11 @@ Data transfer between two topologies/operators, defined on different mpi tasks (i.e. intercommunication). """ -from parmepy.constants import debug, S_DIR -from parmepy.mpi.bridge_inter import BridgeInter -from parmepy.operator.redistribute import Redistribute -from parmepy.operator.computational import Computational -from parmepy.operator.continuous import opsetup, opapply +from hysop.constants import debug, S_DIR +from hysop.mpi.bridge_inter import BridgeInter +from hysop.operator.redistribute import Redistribute +from hysop.operator.computational import Computational +from hysop.operator.continuous import opsetup, opapply class RedistributeInter(Redistribute): @@ -129,7 +129,7 @@ class RedistributeInter(Redistribute): Apply this operator to its variables. @param simulation : object that describes the simulation parameters (time, time step, iteration number ...), see - parmepy.problem.simulation.Simulation for details. + hysop.problem.simulation.Simulation for details. """ pass # --- Standard send/recv --- diff --git a/HySoP/hysop/operator/redistribute_intra.py b/HySoP/hysop/operator/redistribute_intra.py index 5f2b37cc7fc0a87809e45ffe2dbfd7b3f59c3326..c9e91d98cd2af5ce379382a08368449cbe65a5e2 100644 --- a/HySoP/hysop/operator/redistribute_intra.py +++ b/HySoP/hysop/operator/redistribute_intra.py @@ -3,10 +3,10 @@ Setup for data transfer/redistribution between two topologies or operators inside the same mpi communicator. """ -from parmepy.operator.redistribute import Redistribute -from parmepy.operator.continuous import opsetup, opapply -from parmepy.mpi.bridge import Bridge -from parmepy.constants import S_DIR +from hysop.operator.redistribute import Redistribute +from hysop.operator.continuous import opsetup, opapply +from hysop.mpi.bridge import Bridge +from hysop.constants import S_DIR class RedistributeIntra(Redistribute): @@ -53,7 +53,7 @@ class RedistributeIntra(Redistribute): @opsetup def setup(self, rwork=None, iwork=None): # At setup, source and topo must be either - # a parmepy.mpi.topology.Cartesian or + # a hysop.mpi.topology.Cartesian or # a computational operator. msg = 'Redistribute error : undefined source of target.' @@ -87,7 +87,7 @@ class RedistributeIntra(Redistribute): """ Set who must wait for who ... """ - from parmepy.operator.computational import Computational + from hysop.operator.computational import Computational # Check input operators if isinstance(self._source, Computational): # redistribute must wait for source if a variable of redistribute diff --git a/HySoP/hysop/operator/redistribute_overlap.py b/HySoP/hysop/operator/redistribute_overlap.py index be80f3d3890762b42744cfaf8c7bb56b3b8cac31..6206f25022996fa185984c2b3b8329b918046756 100644 --- a/HySoP/hysop/operator/redistribute_overlap.py +++ b/HySoP/hysop/operator/redistribute_overlap.py @@ -3,9 +3,9 @@ Setup for data transfer/redistribution between two topologies defined on the same mpi parent communicator but with a different number of processes. """ -from parmepy.operator.continuous import opsetup -from parmepy.operator.redistribute_intra import RedistributeIntra -from parmepy.mpi.bridge_overlap import BridgeOverlap +from hysop.operator.continuous import opsetup +from hysop.operator.redistribute_intra import RedistributeIntra +from hysop.mpi.bridge_overlap import BridgeOverlap class RedistributeOverlap(RedistributeIntra): @@ -52,10 +52,10 @@ class RedistributeOverlap(RedistributeIntra): def _discrete_fields(self, topo): """ - @param topo : a Cartesian parmes topology + @param topo : a Cartesian HySoP topology Return the dictionnary of discrete fields for topo and the variables of this operator. """ - from parmepy.mpi.topology import Cartesian + from hysop.mpi.topology import Cartesian assert isinstance(topo, Cartesian) return {v: v.discretize(topo) for v in self.variables} diff --git a/HySoP/hysop/operator/reprojection.py b/HySoP/hysop/operator/reprojection.py index bf36bf9ebc61b734425c34ce0c57ec9b14f03819..ded88362032a68c7d6bb576cb926316b65d7ee7f 100644 --- a/HySoP/hysop/operator/reprojection.py +++ b/HySoP/hysop/operator/reprojection.py @@ -3,16 +3,16 @@ @file operator/reprojection.py Compute reprojection criterion and divergence maximum """ -from parmepy.operator.computational import Computational -from parmepy.operator.discrete.reprojection import Reprojection as RD -from parmepy.operator.continuous import opsetup +from hysop.operator.computational import Computational +from hysop.operator.discrete.reprojection import Reprojection as RD +from hysop.operator.continuous import opsetup class Reprojection(Computational): """ Computes and prints reprojection criterion. See the related PDF called "vorticity_solenoidal_projection.pdf" - in ParmesDoc for more details. + in HySoPDoc for more details. """ def __init__(self, vorticity, threshold, frequency, **kwds): """ diff --git a/HySoP/hysop/operator/stretching.py b/HySoP/hysop/operator/stretching.py index 0222c57bb908cd5e4cd5b432bf9fa594e98373b4..91647b920e3a10726de465183001d033832623f5 100755 --- a/HySoP/hysop/operator/stretching.py +++ b/HySoP/hysop/operator/stretching.py @@ -5,13 +5,13 @@ Computation of stretch. term in Navier-Stokes. """ -from parmepy.constants import debug -from parmepy.methods_keys import TimeIntegrator, Formulation, \ +from hysop.constants import debug +from hysop.methods_keys import TimeIntegrator, Formulation, \ SpaceDiscretisation -from parmepy.numerics.finite_differences import FD_C_4 -from parmepy.operator.computational import Computational -from parmepy.operator.continuous import opsetup -from parmepy.operator.discrete.stretching import Conservative, GradUW +from hysop.numerics.finite_differences import FD_C_4 +from hysop.operator.computational import Computational +from hysop.operator.continuous import opsetup +from hysop.operator.discrete.stretching import Conservative, GradUW from abc import ABCMeta @@ -41,7 +41,7 @@ class Stretching(Computational): ## Numerical methods for time and space discretization if self.method is None: - import parmepy.default_methods as default + import hysop.default_methods as default self.method = default.STRETCHING assert Formulation in self.method.keys() assert SpaceDiscretisation in self.method.keys() @@ -67,7 +67,7 @@ class Stretching(Computational): shape_v = vd[0][...].shape ti = self.method[TimeIntegrator] rwork_length = ti.getWorkLengths(3) - import parmepy.numerics.differential_operations as diff_op + import hysop.numerics.differential_operations as diff_op if self.formulation is GradUW: rwork_length += diff_op.GradVxW.getWorkLengths() elif self.formulation is Conservative: diff --git a/HySoP/hysop/operator/tests/test_Stretching.py b/HySoP/hysop/operator/tests/test_Stretching.py index 497b4138d2c8d8a4a0c973271dadfeed9ad5f976..70d47c4b86f1ec15172317f462ff13e8e7419704 100755 --- a/HySoP/hysop/operator/tests/test_Stretching.py +++ b/HySoP/hysop/operator/tests/test_Stretching.py @@ -1,14 +1,14 @@ # -*- coding: utf-8 -*- -import parmepy as pp +import hysop as pp import numpy as np -from parmepy.fields.continuous import Field -from parmepy.operator.stretching import Stretching -from parmepy.problem.simulation import Simulation -#from parmepy.methods_keys import TimeIntegrator, Formulation,\ +from hysop.fields.continuous import Field +from hysop.operator.stretching import Stretching +from hysop.problem.simulation import Simulation +#from hysop.methods_keys import TimeIntegrator, Formulation,\ # SpaceDiscretisation -#from parmepy.methods import RK3, FD_C_4, Conservative -from parmepy.tools.parameters import Discretization -import parmepy.tools.numpywrappers as npw +#from hysop.methods import RK3, FD_C_4, Conservative +from hysop.tools.parameters import Discretization +import hysop.tools.numpywrappers as npw pi = np.pi cos = np.cos sin = np.sin diff --git a/HySoP/hysop/operator/tests/test_adaptive_time_step.py b/HySoP/hysop/operator/tests/test_adaptive_time_step.py index 63e6bddb399e678a7ac65dd0e59cf7651012e384..16721f934a05307cfa7edbd9b4366068c492e860 100644 --- a/HySoP/hysop/operator/tests/test_adaptive_time_step.py +++ b/HySoP/hysop/operator/tests/test_adaptive_time_step.py @@ -1,11 +1,11 @@ # -*- coding: utf-8 -*- -import parmepy as pp -from parmepy.operator.adapt_timestep import AdaptTimeStep -from parmepy.problem.simulation import Simulation -from parmepy.tools.parameters import Discretization -from parmepy.mpi import main_comm +import hysop as pp +from hysop.operator.adapt_timestep import AdaptTimeStep +from hysop.problem.simulation import Simulation +from hysop.tools.parameters import Discretization +from hysop.mpi import main_comm import numpy as np -import parmepy.tools.numpywrappers as npw +import hysop.tools.numpywrappers as npw import os sin = np.sin cos = np.cos @@ -98,7 +98,7 @@ def test_adapt_4(): GPU = 4 CPU = 1 VISU = 12 - from parmepy.mpi.main_var import main_size + from hysop.mpi.main_var import main_size proc_tasks = [CPU, ] * main_size if main_size > 4: @@ -112,7 +112,7 @@ def test_adapt_4(): vorti = pp.Field(domain=dom, formula=computeVort, name='Vorticity', isVector=True) - from parmepy.tools.parameters import MPI_params + from hysop.tools.parameters import MPI_params cpu_task = MPI_params(comm=dom.comm_task, task_id=CPU) simu = Simulation(nbIter=4) op = AdaptTimeStep(velo, vorti, simulation=simu, io_params=True, diff --git a/HySoP/hysop/operator/tests/test_advec_scales.py b/HySoP/hysop/operator/tests/test_advec_scales.py index f6c81dc029956659eaee451b90729918e05d1f99..35d3508cbe53be309fe81ff985201dd965d533a3 100755 --- a/HySoP/hysop/operator/tests/test_advec_scales.py +++ b/HySoP/hysop/operator/tests/test_advec_scales.py @@ -2,17 +2,16 @@ Testing Scales advection operator. """ import numpy as np -from parmepy.constants import PARMES_REAL, ORDER -from parmepy.methods_keys import Scales, TimeIntegrator, Interpolation,\ +from hysop.methods_keys import Scales, TimeIntegrator, Interpolation,\ Remesh, Support, Splitting -from parmepy.methods import RK2, L2_1, L4_2, M8Prime, Linear -from parmepy.domain.box import Box -from parmepy.fields.continuous import Field -from parmepy.operator.advection import Advection -from parmepy.problem.simulation import Simulation -import parmepy.tools.numpywrappers as npw - -from parmepy.tools.parameters import Discretization +from hysop.methods import RK2, L2_1, L4_2, M8Prime, Linear +from hysop.domain.box import Box +from hysop.fields.continuous import Field +from hysop.operator.advection import Advection +from hysop.problem.simulation import Simulation +import hysop.tools.numpywrappers as npw + +from hysop.tools.parameters import Discretization d3d = Discretization([17, 17, 17]) diff --git a/HySoP/hysop/operator/tests/test_analytic.py b/HySoP/hysop/operator/tests/test_analytic.py index bb627bcfe662fb4e15fae97ac625abb6e449a10d..11087aec69f697a6eb0250fa821b204796bc94d6 100644 --- a/HySoP/hysop/operator/tests/test_analytic.py +++ b/HySoP/hysop/operator/tests/test_analytic.py @@ -1,14 +1,14 @@ """ -@file parmepy.operator.tests.test_analytic +@file hysop.operator.tests.test_analytic Test initialization of fields with analytic formula """ from numpy import allclose -from parmepy.domain.box import Box -from parmepy.fields.continuous import Field -from parmepy.operator.analytic import Analytic -from parmepy.problem.simulation import Simulation -from parmepy.tools.parameters import Discretization -from parmepy.fields.tests.func_for_tests import func_scal_1, func_scal_2, \ +from hysop.domain.box import Box +from hysop.fields.continuous import Field +from hysop.operator.analytic import Analytic +from hysop.problem.simulation import Simulation +from hysop.tools.parameters import Discretization +from hysop.fields.tests.func_for_tests import func_scal_1, func_scal_2, \ func_vec_1, func_vec_2, func_vec_3, func_vec_4, func_vec_5, func_vec_6 d3D = Discretization([33, 33, 33]) d2D = Discretization([33, 33]) diff --git a/HySoP/hysop/operator/tests/test_density.py b/HySoP/hysop/operator/tests/test_density.py index 4c42f8267e6668e25665e0d7fda8f9b8d3239bce..4c71a38750b49e9693147b0e373fa0395b977c42 100644 --- a/HySoP/hysop/operator/tests/test_density.py +++ b/HySoP/hysop/operator/tests/test_density.py @@ -1,9 +1,9 @@ # -*- coding: utf-8 -*- -import parmepy as pp -from parmepy.operator.density import DensityVisco -from parmepy.problem.simulation import Simulation -from parmepy.tools.parameters import Discretization -from parmepy import Field +import hysop as pp +from hysop.operator.density import DensityVisco +from hysop.problem.simulation import Simulation +from hysop.tools.parameters import Discretization +from hysop import Field d3d = Discretization([129, 129, 129]) diff --git a/HySoP/hysop/operator/tests/test_diff_poisson_3D.py b/HySoP/hysop/operator/tests/test_diff_poisson_3D.py index c5e3ee64ee4bb69664c32c584c975d66ef369cec..96d98297f9d27cc9f39b8c4bf77efa3dfbc71205 100755 --- a/HySoP/hysop/operator/tests/test_diff_poisson_3D.py +++ b/HySoP/hysop/operator/tests/test_diff_poisson_3D.py @@ -1,9 +1,9 @@ # -*- coding: utf-8 -*- -import parmepy as pp -from parmepy.operator.poisson import Poisson -from parmepy.operator.diffusion import Diffusion +import hysop as pp +from hysop.operator.poisson import Poisson +from hysop.operator.diffusion import Diffusion from math import sqrt, pi, exp -from parmepy.problem.simulation import Simulation +from hysop.problem.simulation import Simulation def computeVel(x, y, z): @@ -41,7 +41,7 @@ def test_Diff_Poisson(): nb = 33 boxLength = [1., 1., 1.] boxMin = [0., 0., 0.] - from parmepy.tools.parameters import Discretization + from hysop.tools.parameters import Discretization d3D = Discretization([nb, nb, nb]) ## Domain diff --git a/HySoP/hysop/operator/tests/test_differential.py b/HySoP/hysop/operator/tests/test_differential.py index c986d9fefba4dc60f3b9a7a56863cb2dd0a91d6a..df6c868a0b18d8dcd510874b5001f453a0c9db59 100644 --- a/HySoP/hysop/operator/tests/test_differential.py +++ b/HySoP/hysop/operator/tests/test_differential.py @@ -1,12 +1,12 @@ """ -@file parmepy.operator.tests.test_differential +@file hysop.operator.tests.test_differential Tests for differential operators. """ import numpy as np -from parmepy.domain.box import Box -from parmepy.fields.continuous import Field -import parmepy.tools.numpywrappers as npw -#from parmepy.numerics.differential_operations import DivT, GradVxW +from hysop.domain.box import Box +from hysop.fields.continuous import Field +import hysop.tools.numpywrappers as npw +#from hysop.numerics.differential_operations import DivT, GradVxW # Domain and topologies definitions @@ -15,7 +15,7 @@ import math Lx = Ly = Lz = 2. * math.pi box = Box(length=[Lx, Ly, Lz], origin=[0., 0., 0.]) box2d = Box(length=[Lx, Ly], origin=[0., 0.]) -from parmepy.tools.parameters import Discretization +from hysop.tools.parameters import Discretization d3D = Discretization([nb, nb, nb], [2, 2, 2]) d2D = Discretization([nb, nb], [2, 2]) d3D_nog = Discretization([nb, nb, nb]) @@ -109,47 +109,47 @@ def callOp(DiffOperator, ref_formula, discretization, def test_CurlFD(): - from parmepy.methods_keys import SpaceDiscretisation - from parmepy.methods import FD_C_4 - from parmepy.operator.differential import Curl + from hysop.methods_keys import SpaceDiscretisation + from hysop.methods import FD_C_4 + from hysop.operator.differential import Curl method = {SpaceDiscretisation: FD_C_4} callOp(Curl, vorticity_f, method=method, discretization=d3D) def test_CurlFD2(): - from parmepy.methods_keys import SpaceDiscretisation - from parmepy.methods import FD_C_2 - from parmepy.operator.differential import Curl + from hysop.methods_keys import SpaceDiscretisation + from hysop.methods import FD_C_2 + from hysop.operator.differential import Curl method = {SpaceDiscretisation: FD_C_2} callOp(Curl, vorticity_f, method=method, order=2, discretization=d3D) def test_CurlFD2D(): - from parmepy.methods_keys import SpaceDiscretisation - from parmepy.methods import FD_C_4 - from parmepy.operator.differential import Curl + from hysop.methods_keys import SpaceDiscretisation + from hysop.methods import FD_C_4 + from hysop.operator.differential import Curl method = {SpaceDiscretisation: FD_C_4} callOp(Curl, vorticity_f2d, method=method, discretization=d2D, dom=box2d, op_dim=1, vform=velocity_f2d) def test_CurlFFT(): - from parmepy.methods_keys import SpaceDiscretisation - from parmepy.operator.differential import Curl + from hysop.methods_keys import SpaceDiscretisation + from hysop.operator.differential import Curl method = {SpaceDiscretisation: 'fftw'} callOp(Curl, vorticity_f, method=method, order=6, discretization=d3D_nog) #def test_CurlFFT_ghosts(): -# from parmepy.methods_keys import SpaceDiscretisation -# from parmepy.operator.differential import Curl +# from hysop.methods_keys import SpaceDiscretisation +# from hysop.operator.differential import Curl # method = {SpaceDiscretisation: 'fftw'} # callOp(Curl, vorticity_f, method=method, order=6, discretization=d3D) #def test_CurlFFT_2(): -# from parmepy.methods_keys import SpaceDiscretisation -# from parmepy.operator.differential import Curl +# from hysop.methods_keys import SpaceDiscretisation +# from hysop.operator.differential import Curl # method = {SpaceDiscretisation: 'fftw'} # discr = Discretization([129, nb, nb]) # callOp(Curl, vorticity_f, method=method, order=6, dom=box2, @@ -157,61 +157,61 @@ def test_CurlFFT(): def test_Grad(): - from parmepy.methods_keys import SpaceDiscretisation - from parmepy.methods import FD_C_2 + from hysop.methods_keys import SpaceDiscretisation + from hysop.methods import FD_C_2 method = {SpaceDiscretisation: FD_C_2} - from parmepy.operator.differential import Grad + from hysop.operator.differential import Grad callOp(Grad, grad_velo, op_dim=9, method=method, order=2, discretization=d3D) def test_Grad2(): - from parmepy.operator.differential import Grad - from parmepy.methods_keys import SpaceDiscretisation - from parmepy.methods import FD_C_4 + from hysop.operator.differential import Grad + from hysop.methods_keys import SpaceDiscretisation + from hysop.methods import FD_C_4 method = {SpaceDiscretisation: FD_C_4} callOp(Grad, grad_velo, op_dim=9, method=method, discretization=d3D) def test_CurlFD_2(): - from parmepy.methods_keys import SpaceDiscretisation - from parmepy.methods import FD_C_4 - from parmepy.operator.differential import Curl + from hysop.methods_keys import SpaceDiscretisation + from hysop.methods import FD_C_4 + from hysop.operator.differential import Curl method = {SpaceDiscretisation: FD_C_4} callOp(Curl, vorticity_f, method=method, dom=box2, discretization=d3D_2) def test_CurlFD2_2(): - from parmepy.methods_keys import SpaceDiscretisation - from parmepy.methods import FD_C_2 - from parmepy.operator.differential import Curl + from hysop.methods_keys import SpaceDiscretisation + from hysop.methods import FD_C_2 + from hysop.operator.differential import Curl method = {SpaceDiscretisation: FD_C_2} callOp(Curl, vorticity_f, method=method, order=2, dom=box2, discretization=d3D_2) def test_Grad_2(): - from parmepy.methods_keys import SpaceDiscretisation - from parmepy.methods import FD_C_2 + from hysop.methods_keys import SpaceDiscretisation + from hysop.methods import FD_C_2 method = {SpaceDiscretisation: FD_C_2} - from parmepy.operator.differential import Grad + from hysop.operator.differential import Grad callOp(Grad, grad_velo, op_dim=9, method=method, order=2, dom=box2, discretization=d3D_2) def test_Grad2_2(): - from parmepy.operator.differential import Grad - from parmepy.methods_keys import SpaceDiscretisation - from parmepy.methods import FD_C_4 + from hysop.operator.differential import Grad + from hysop.methods_keys import SpaceDiscretisation + from hysop.methods import FD_C_4 method = {SpaceDiscretisation: FD_C_4} callOp(Grad, grad_velo, op_dim=9, method=method, dom=box2, discretization=d3D_2) def test_CurlFD_work(): - from parmepy.methods_keys import SpaceDiscretisation - from parmepy.methods import FD_C_4 - from parmepy.operator.differential import Curl + from hysop.methods_keys import SpaceDiscretisation + from hysop.methods import FD_C_4 + from hysop.operator.differential import Curl # Velocity and result fields velo = Field(domain=box, formula=velocity_f, isVector=True) result = Field(domain=box, nbComponents=box.dimension) diff --git a/HySoP/hysop/operator/tests/test_diffusion.py b/HySoP/hysop/operator/tests/test_diffusion.py index 0d4a277bc547708d4055728e7d7e68797c609a2e..6e29dc3228e556bdc0cc94c2f5ee69335179897d 100755 --- a/HySoP/hysop/operator/tests/test_diffusion.py +++ b/HySoP/hysop/operator/tests/test_diffusion.py @@ -1,12 +1,12 @@ # -*- coding: utf-8 -*- -import parmepy as pp -from parmepy.operator.diffusion import Diffusion -from parmepy.operator.analytic import Analytic -from parmepy.problem.simulation import Simulation -from parmepy.tools.parameters import Discretization +import hysop as pp +from hysop.operator.diffusion import Diffusion +from hysop.operator.analytic import Analytic +from hysop.problem.simulation import Simulation +from hysop.tools.parameters import Discretization import numpy as np -import parmepy.tools.numpywrappers as npw +import hysop.tools.numpywrappers as npw import math pi = math.pi sin = np.sin diff --git a/HySoP/hysop/operator/tests/test_drag_and_lift.py b/HySoP/hysop/operator/tests/test_drag_and_lift.py index 89c315480004e2f45bf161ebaac25161542dc8a3..cebb1eb2c8589f6b9435120cca42379539d97247 100644 --- a/HySoP/hysop/operator/tests/test_drag_and_lift.py +++ b/HySoP/hysop/operator/tests/test_drag_and_lift.py @@ -1,15 +1,15 @@ # -*- coding: utf-8 -*- -from parmepy.domain.subsets.sphere import Sphere -from parmepy.operator.penalization import Penalization -from parmepy.operator.penalization_and_curl import PenalizationAndCurl -from parmepy.problem.simulation import Simulation -from parmepy.tools.parameters import Discretization, IO_params -from parmepy.mpi.topology import Cartesian +from hysop.domain.subsets.sphere import Sphere +from hysop.operator.penalization import Penalization +from hysop.operator.penalization_and_curl import PenalizationAndCurl +from hysop.problem.simulation import Simulation +from hysop.tools.parameters import Discretization, IO_params +from hysop.mpi.topology import Cartesian import numpy as np import os -from parmepy import Field, Box -from parmepy.operator.hdf_io import HDF_Reader -from parmepy.operator.drag_and_lift import MomentumForces, NocaForces +from hysop import Field, Box +from hysop.operator.hdf_io import HDF_Reader +from hysop.operator.drag_and_lift import MomentumForces, NocaForces def v2d(res, x, y, t): @@ -50,7 +50,7 @@ ldom = np.asarray([math.pi * 2., ] * 3) xdef = xdom + 0.2 xpos = ldom * 0.5 xpos[-1] += 0.1 -from parmepy.mpi import main_size +from hysop.mpi import main_size working_dir = os.getcwd() + '/p' + str(main_size) + '/' diff --git a/HySoP/hysop/operator/tests/test_energy_enstrophy.py b/HySoP/hysop/operator/tests/test_energy_enstrophy.py index 1704c54e9137114226689f05afe68fe1f78aed1a..af3bc68ccc92c4ca9e165dc850eb2d141d282277 100644 --- a/HySoP/hysop/operator/tests/test_energy_enstrophy.py +++ b/HySoP/hysop/operator/tests/test_energy_enstrophy.py @@ -1,11 +1,11 @@ # -*- coding: utf-8 -*- -import parmepy as pp -from parmepy.operator.energy_enstrophy import EnergyEnstrophy -from parmepy.problem.simulation import Simulation -from parmepy.tools.parameters import Discretization -from parmepy import VariableParameter, Field +import hysop as pp +from hysop.operator.energy_enstrophy import EnergyEnstrophy +from hysop.problem.simulation import Simulation +from hysop.tools.parameters import Discretization +from hysop import VariableParameter, Field import numpy as np -import parmepy.tools.numpywrappers as npw +import hysop.tools.numpywrappers as npw import os from scipy.integrate import nquad sin = np.sin diff --git a/HySoP/hysop/operator/tests/test_hdf5_io.py b/HySoP/hysop/operator/tests/test_hdf5_io.py index 989d7e0e381be3bec68480a9bee266f219468d92..e921366b4bbac9d712f18d3f9f48d2c2121188e9 100644 --- a/HySoP/hysop/operator/tests/test_hdf5_io.py +++ b/HySoP/hysop/operator/tests/test_hdf5_io.py @@ -3,16 +3,16 @@ Tests for reader/writer of fields in hdf5 format. """ -from parmepy import Box, Field +from hysop import Box, Field import numpy as np import os -from parmepy.constants import HDF5 -from parmepy.problem.simulation import Simulation +from hysop.constants import HDF5 +from hysop.problem.simulation import Simulation import shutil -from parmepy.tools.parameters import Discretization, IO_params -from parmepy.operator.hdf_io import HDF_Writer, HDF_Reader -import parmepy.tools.io_utils as io -from parmepy.mpi import main_rank, main_size +from hysop.tools.parameters import Discretization, IO_params +from hysop.operator.hdf_io import HDF_Writer, HDF_Reader +import hysop.tools.io_utils as io +from hysop.mpi import main_rank, main_size Lx = 2. nb = 65 @@ -286,7 +286,7 @@ def test_write_read_subset_1(): velo = Field(domain=dom, formula=vec3D, name='velo', isVector=True) # A subset of the current domain - from parmepy.domain.subsets.boxes import SubBox + from hysop.domain.subsets.boxes import SubBox mybox = SubBox(origin=[-0.5, 2.3, 4.1], length=[Lx / 2, Lx / 3, Lx], parent=dom) # Write a vector field, using default for output location @@ -339,7 +339,7 @@ def test_write_read_subset_2(): velo = Field(domain=dom, formula=vec3D, name='velo', isVector=True) # A subset of the current domain - from parmepy.domain.subsets.boxes import SubBox + from hysop.domain.subsets.boxes import SubBox # a plane ... mybox = SubBox(origin=[-0.5, 2.3, 4.1], length=[Lx / 2, Lx / 3, 0.0], parent=dom) diff --git a/HySoP/hysop/operator/tests/test_operators.py b/HySoP/hysop/operator/tests/test_operators.py index fb5ea63b912aebe37f96327f7670772ffacd81e4..87e987eb2667a568e3a91673ff5f43cb3e7cd0fe 100644 --- a/HySoP/hysop/operator/tests/test_operators.py +++ b/HySoP/hysop/operator/tests/test_operators.py @@ -4,11 +4,11 @@ tests for operators general interface """ -from parmepy.mpi.tests.utils import create_multitask_context, CPU, GPU, OTHER -from parmepy.tools.parameters import Discretization -from parmepy.operator.analytic import Analytic -from parmepy.mpi import main_size -import parmepy as pp +from hysop.mpi.tests.utils import create_multitask_context, CPU, GPU, OTHER +from hysop.tools.parameters import Discretization +from hysop.operator.analytic import Analytic +from hysop.mpi import main_size +import hysop as pp r_ng = Discretization([33, ] * 3) diff --git a/HySoP/hysop/operator/tests/test_particle_advection.py b/HySoP/hysop/operator/tests/test_particle_advection.py index 103a6b871433dfecbe3394b4411a4c430a470f80..82a4e54ba60e02351b27941e912c1545fb0f0a36 100644 --- a/HySoP/hysop/operator/tests/test_particle_advection.py +++ b/HySoP/hysop/operator/tests/test_particle_advection.py @@ -1,14 +1,13 @@ """ -@file parmepy.operator.tests.test_particle_advection +@file hysop.operator.tests.test_particle_advection Testing pure python particle advection with null velocity. """ -from parmepy.domain.box import Box -from parmepy.fields.continuous import Field -from parmepy.operator.advection import Advection -from parmepy.constants import ORDER, PARMES_REAL -from parmepy.problem.simulation import Simulation -from parmepy.tools.parameters import Discretization -import parmepy.tools.numpywrappers as npw +from hysop.domain.box import Box +from hysop.fields.continuous import Field +from hysop.operator.advection import Advection +from hysop.problem.simulation import Simulation +from hysop.tools.parameters import Discretization +import hysop.tools.numpywrappers as npw import numpy as np diff --git a/HySoP/hysop/operator/tests/test_penalization.py b/HySoP/hysop/operator/tests/test_penalization.py index 7906da7aa6f8203877200d2e215802a24581d973..8c94c52928a2b375c0bbebe5dc1b01a56e6c676e 100644 --- a/HySoP/hysop/operator/tests/test_penalization.py +++ b/HySoP/hysop/operator/tests/test_penalization.py @@ -1,17 +1,17 @@ # -*- coding: utf-8 -*- -from parmepy.domain.subsets.sphere import HemiSphere, Sphere -from parmepy.domain.subsets.cylinder import Cylinder -from parmepy.domain.subsets.porous import Porous -from parmepy.operator.penalization import Penalization -from parmepy.operator.penalization_and_curl import PenalizationAndCurl -from parmepy.problem.simulation import Simulation -from parmepy.tools.parameters import Discretization, IO_params -from parmepy.mpi.topology import Cartesian -import parmepy.tools.numpywrappers as npw +from hysop.domain.subsets.sphere import HemiSphere, Sphere +from hysop.domain.subsets.cylinder import Cylinder +from hysop.domain.subsets.porous import Porous +from hysop.operator.penalization import Penalization +from hysop.operator.penalization_and_curl import PenalizationAndCurl +from hysop.problem.simulation import Simulation +from hysop.tools.parameters import Discretization, IO_params +from hysop.mpi.topology import Cartesian +import hysop.tools.numpywrappers as npw import numpy as np import os -from parmepy import Field, Box -from parmepy.operator.hdf_io import HDF_Reader +from hysop import Field, Box +from hysop.operator.hdf_io import HDF_Reader def v2d(res, x, y, t): @@ -52,7 +52,7 @@ ldom = npw.asrealarray([math.pi * 2., ] * 3) xdef = npw.asrealarray(xdom + 0.2) xpos = npw.asrealarray(ldom * 0.5) xpos[-1] += 0.1 -from parmepy.mpi import main_size +from hysop.mpi import main_size working_dir = os.getcwd() + '/p' + str(main_size) + '/' @@ -129,7 +129,7 @@ def test_penal_2D_multi(): radius=rd + 0.3) ll = topo.domain.length.copy() ll[1] = 0. - from parmepy.domain.subsets.boxes import SubBox + from hysop.domain.subsets.boxes import SubBox downplane = SubBox(parent=topo.domain, origin=topo.domain.origin, length=ll) penal = Penalization(variables=[scal, velo], discretization=topo, @@ -171,7 +171,7 @@ def test_penal_3D_multi(): radius=rd + 0.3) ll = topo.domain.length.copy() ll[1] = 0. - from parmepy.domain.subsets.boxes import SubBox + from hysop.domain.subsets.boxes import SubBox downplane = SubBox(parent=topo.domain, origin=topo.domain.origin, length=ll) penal = Penalization(variables=[scal, velo], discretization=topo, @@ -193,7 +193,7 @@ def test_penal_3D_porous(): source=Sphere, layers=[0.5, 0.7, 0.3]) ll = topo.domain.length.copy() ll[1] = 0. - from parmepy.domain.subsets.boxes import SubBox + from hysop.domain.subsets.boxes import SubBox downplane = SubBox(parent=topo.domain, origin=topo.domain.origin, length=ll) penal = Penalization(variables=[scal, velo], discretization=topo, @@ -215,7 +215,7 @@ def test_penal_3D_porous_cyl(): source=Cylinder, layers=[0.5, 0.7, 0.3]) ll = topo.domain.length.copy() ll[1] = 0. - from parmepy.domain.subsets.boxes import SubBox + from hysop.domain.subsets.boxes import SubBox downplane = SubBox(parent=topo.domain, origin=topo.domain.origin, length=ll) penal = Penalization(variables=[scal, velo], discretization=topo, @@ -237,7 +237,7 @@ def test_penal_2D_porous(): source=Sphere, layers=[0.5, 0.7, 0.3]) ll = topo.domain.length.copy() ll[1] = 0. - from parmepy.domain.subsets.boxes import SubBox + from hysop.domain.subsets.boxes import SubBox downplane = SubBox(parent=topo.domain, origin=topo.domain.origin, length=ll) penal = Penalization(variables=[scal, velo], discretization=topo, diff --git a/HySoP/hysop/operator/tests/test_poisson.py b/HySoP/hysop/operator/tests/test_poisson.py index 72ab7bdfdd6b71dddfab7fc25d1a154feb49a012..fb600aa5d6324ac3066eca6bc90c78bfec97ee7b 100755 --- a/HySoP/hysop/operator/tests/test_poisson.py +++ b/HySoP/hysop/operator/tests/test_poisson.py @@ -1,13 +1,13 @@ # -*- coding: utf-8 -*- -import parmepy as pp -from parmepy.operator.poisson import Poisson -from parmepy.operator.analytic import Analytic -from parmepy.operator.reprojection import Reprojection -from parmepy.problem.simulation import Simulation -from parmepy.tools.parameters import Discretization +import hysop as pp +from hysop.operator.poisson import Poisson +from hysop.operator.analytic import Analytic +from hysop.operator.reprojection import Reprojection +from hysop.problem.simulation import Simulation +from hysop.tools.parameters import Discretization import numpy as np -import parmepy.tools.numpywrappers as npw +import hysop.tools.numpywrappers as npw import math pi = math.pi sin = np.sin @@ -176,7 +176,7 @@ def test_Poisson3D_correction(): refOp.apply(simu) refD = ref.discretization(topo) vd = velocity.discretization(topo) - from parmepy.domain.subsets.boxes import SubBox + from hysop.domain.subsets.boxes import SubBox surf = SubBox(parent=dom, origin=dom.origin, length=[0., LL[1], LL[2]]) surf.discretize(topo) diff --git a/HySoP/hysop/operator/tests/test_redistribute.py b/HySoP/hysop/operator/tests/test_redistribute.py index cfb3c1349b54e76b9513727ad055ff46295c99b1..04389a74ffa84ce47a53fc065afb455ea172c47e 100644 --- a/HySoP/hysop/operator/tests/test_redistribute.py +++ b/HySoP/hysop/operator/tests/test_redistribute.py @@ -1,20 +1,20 @@ -from parmepy.operator.redistribute_intra import RedistributeIntra -from parmepy.operator.redistribute_inter import RedistributeInter -from parmepy.operator.redistribute_overlap import RedistributeOverlap -#from parmepy.mpi.main_var import main_size, main_rank, main_comm -from parmepy.tools.parameters import Discretization, MPI_params, IO_params -import parmepy as pp +from hysop.operator.redistribute_intra import RedistributeIntra +from hysop.operator.redistribute_inter import RedistributeInter +from hysop.operator.redistribute_overlap import RedistributeOverlap +#from hysop.mpi.main_var import main_size, main_rank, main_comm +from hysop.tools.parameters import Discretization, MPI_params, IO_params +import hysop as pp import numpy as np sin = np.sin import math pi = math.pi -from parmepy.operator.hdf_io import HDF_Writer -from parmepy import Simulation -from parmepy.operator.analytic import Analytic -from parmepy.mpi.main_var import main_comm, main_size -from parmepy.mpi.tests.utils import create_inter_topos, CPU, GPU, OTHER,\ +from hysop.operator.hdf_io import HDF_Writer +from hysop import Simulation +from hysop.operator.analytic import Analytic +from hysop.mpi.main_var import main_comm, main_size +from hysop.mpi.tests.utils import create_inter_topos, CPU, GPU, OTHER,\ create_multitask_context -from parmepy.fields.tests.func_for_tests import v3d, v2d, v3dbis +from hysop.fields.tests.func_for_tests import v3d, v2d, v3dbis dim3 = 3 @@ -336,7 +336,7 @@ def test_distribute_intra_failed_4(): res = True assert res -from parmepy.mpi.tests.test_bridge import create_subtopos +from hysop.mpi.tests.test_bridge import create_subtopos def test_distribute_failed_5(): @@ -600,7 +600,7 @@ def test_distribute_inter_5(): """ 2 tasks, redistribute op to op """ - from parmepy.operator.poisson import Poisson + from hysop.operator.poisson import Poisson if main_size < 4: return proc_tasks = [CPU, ] * main_size @@ -649,7 +649,7 @@ def test_distribute_inter_2d(): """ 2 tasks, redistribute op to op, 2D domain """ - from parmepy.operator.poisson import Poisson + from hysop.operator.poisson import Poisson if main_size < 4: return proc_tasks = [CPU, ] * main_size diff --git a/HySoP/hysop/operator/tests/test_reprojection.py b/HySoP/hysop/operator/tests/test_reprojection.py index 18fae3d7dced8f053f9cb5f585a9c3cdc3d7d43d..853b5b1fa4edbdafcdbff65a52bbc88177506a71 100644 --- a/HySoP/hysop/operator/tests/test_reprojection.py +++ b/HySoP/hysop/operator/tests/test_reprojection.py @@ -1,10 +1,10 @@ # -*- coding: utf-8 -*- -import parmepy as pp -from parmepy.operator.reprojection import Reprojection -from parmepy.problem.simulation import Simulation +import hysop as pp +from hysop.operator.reprojection import Reprojection +from hysop.problem.simulation import Simulation import numpy as np -from parmepy.tools.parameters import Discretization +from hysop.tools.parameters import Discretization pi = np.pi cos = np.cos sin = np.sin diff --git a/HySoP/hysop/operator/tests/test_velocity_correction.py b/HySoP/hysop/operator/tests/test_velocity_correction.py index 74c97c313917fa31102a045310b135eec0818729..6ae24dee92969abf5d1b9f79ea92c9e7bff435cd 100755 --- a/HySoP/hysop/operator/tests/test_velocity_correction.py +++ b/HySoP/hysop/operator/tests/test_velocity_correction.py @@ -1,11 +1,11 @@ # -*- coding: utf-8 -*- -import parmepy as pp -from parmepy.operator.velocity_correction import VelocityCorrection -from parmepy.problem.simulation import Simulation +import hysop as pp +from hysop.operator.velocity_correction import VelocityCorrection +from hysop.problem.simulation import Simulation import numpy as np -import parmepy.tools.numpywrappers as npw -from parmepy.tools.parameters import Discretization +import hysop.tools.numpywrappers as npw +from hysop.tools.parameters import Discretization pi = np.pi cos = np.cos sin = np.sin diff --git a/HySoP/hysop/operator/velocity_correction.py b/HySoP/hysop/operator/velocity_correction.py index 3485d724b64928c7e68d976ad2e326fad4344a5f..aa1eb885db8bef0c6b1ef35384f920d166827a29 100755 --- a/HySoP/hysop/operator/velocity_correction.py +++ b/HySoP/hysop/operator/velocity_correction.py @@ -5,11 +5,11 @@ Operator to shift velocity to fit with a required input flowrate. """ -from parmepy.constants import debug -from parmepy.operator.discrete.velocity_correction import VelocityCorrection_D -from parmepy.operator.computational import Computational -from parmepy.domain.subsets.control_box import ControlBox -from parmepy.operator.continuous import opsetup +from hysop.constants import debug +from hysop.operator.discrete.velocity_correction import VelocityCorrection_D +from hysop.operator.computational import Computational +from hysop.domain.subsets.control_box import ControlBox +from hysop.operator.continuous import opsetup class VelocityCorrection(Computational): @@ -17,7 +17,7 @@ class VelocityCorrection(Computational): The velocity field is corrected after solving the Poisson equation. For more details about calculations, see the "velocity_correction.pdf" explanations document - in ParmeDoc directory. + in Docs. """ @debug diff --git a/HySoP/hysop/problem/navier_stokes.py b/HySoP/hysop/problem/navier_stokes.py index ab63e10eb08d33fe60746fb9c662458fbd26a7bd..40ec1b5bcb749bae935559bd43079f3c49aa4bc0 100644 --- a/HySoP/hysop/problem/navier_stokes.py +++ b/HySoP/hysop/problem/navier_stokes.py @@ -1,13 +1,13 @@ """ @file navier_stokes.py """ -from parmepy.problem.problem import Problem -from parmepy.operator.analytic import Analytic -from parmepy.operator.advection import Advection -from parmepy.operator.stretching import Stretching -from parmepy.operator.poisson import Poisson -from parmepy.operator.diffusion import Diffusion -from parmepy.operator.penalization import Penalization +from hysop.problem.problem import Problem +from hysop.operator.analytic import Analytic +from hysop.operator.advection import Advection +from hysop.operator.stretching import Stretching +from hysop.operator.poisson import Poisson +from hysop.operator.diffusion import Diffusion +from hysop.operator.penalization import Penalization class NSProblem(Problem): diff --git a/HySoP/hysop/problem/problem.py b/HySoP/hysop/problem/problem.py index 10760a089d6237aa685e0c6547b9c777842081fc..3cc53fd53b0ca04f3ca596c08b0fa7025185abac 100644 --- a/HySoP/hysop/problem/problem.py +++ b/HySoP/hysop/problem/problem.py @@ -3,14 +3,14 @@ Complete problem description. """ -from parmepy.constants import debug +from hysop.constants import debug import cPickle -from parmepy import __VERBOSE__ -from parmepy.operator.redistribute import Redistribute -from parmepy.operator.redistribute_intra import RedistributeIntra -from parmepy.tools.profiler import profile, Profiler -from parmepy.mpi import main_rank -from parmepy.gpu.gpu_transfer import DataTransfer +from hysop import __VERBOSE__ +from hysop.operator.redistribute import Redistribute +from hysop.operator.redistribute_intra import RedistributeIntra +from hysop.tools.profiler import profile, Profiler +from hysop.mpi import main_rank +from hysop.gpu.gpu_transfer import DataTransfer class Problem(object): @@ -36,7 +36,7 @@ class Problem(object): Create a transport problem instance. @param operators : list of operators. - @param simulation : a parmepy.simulation.Simulation object + @param simulation : a hysop.simulation.Simulation object to describe simulation parameters. @param name : an id for the problem @param dumpFreq : frequency of dump (i.e. saving to a file) @@ -71,7 +71,7 @@ class Problem(object): ## Id for the problem. Used for dump file name. if name is None: - self.name = 'parmesPb' + self.name = 'HySoPPb' else: self.name = name ## Object to store computational times of lower level functions diff --git a/HySoP/hysop/problem/problem_tasks.py b/HySoP/hysop/problem/problem_tasks.py index 624dfc59859ee6743170d4170c47fc67a6a1095b..3d9efb4ccae807d2fbdf712b7923c23416a7236e 100644 --- a/HySoP/hysop/problem/problem_tasks.py +++ b/HySoP/hysop/problem/problem_tasks.py @@ -5,14 +5,14 @@ Extending problem description to handle tasks parallelism. Each operator owns a task id that define a process group that are sharing the same tasks. """ -from parmepy.constants import debug -from parmepy import __VERBOSE__ -from parmepy.problem.problem import Problem -from parmepy.operator.redistribute_inter import RedistributeInter -from parmepy.operator.redistribute_intra import RedistributeIntra -from parmepy.operator.redistribute import Redistribute -from parmepy.gpu.gpu_transfer import DataTransfer -from parmepy.tools.profiler import profile +from hysop.constants import debug +from hysop import __VERBOSE__ +from hysop.problem.problem import Problem +from hysop.operator.redistribute_inter import RedistributeInter +from hysop.operator.redistribute_intra import RedistributeIntra +from hysop.operator.redistribute import Redistribute +from hysop.gpu.gpu_transfer import DataTransfer +from hysop.tools.profiler import profile class ProblemTasks(Problem): @@ -33,7 +33,7 @@ class ProblemTasks(Problem): """ Creates the problem. @param operators : list of operators. - @param simulation : a parmepy.simulation.Simulation object + @param simulation : a hysop.simulation.Simulation object to describe simulation parameters. @param tasks_list : list of task identifiers for each process rank @param name : an id for the problem @@ -49,7 +49,7 @@ class ProblemTasks(Problem): domain=domain, dumpFreq=dumpFreq, name=name) self.tasks_list = tasks_list if main_comm is None: - from parmepy.mpi.main_var import main_comm + from hysop.mpi.main_var import main_comm self.main_comm = main_comm self._main_rank = self.main_comm.Get_rank() assert self.main_comm.Get_size() == len(self.tasks_list), \ diff --git a/HySoP/hysop/problem/problem_with_GLRendering.py b/HySoP/hysop/problem/problem_with_GLRendering.py index cf3f54bc66a376e4dbc30d2aab75930b8fb24852..94c8854280cd0cbe6982c5d96b94bf3cf5b2730b 100644 --- a/HySoP/hysop/problem/problem_with_GLRendering.py +++ b/HySoP/hysop/problem/problem_with_GLRendering.py @@ -3,9 +3,9 @@ Extends Problem description to handel real time rendering wit OpenGL. """ -from parmepy.constants import debug -from parmepy.mpi import main_rank -from parmepy.problem.problem import Problem +from hysop.constants import debug +from hysop.mpi import main_rank +from hysop.problem.problem import Problem class ProblemGLRender(Problem): @@ -21,7 +21,7 @@ class ProblemGLRender(Problem): Create a transport problem instance. @param operators : list of operators. - @param simulation : a parmepy.simulation.Simulation object + @param simulation : a hysop.simulation.Simulation object to describe simulation parameters. @param name : an id for the problem @param dumpFreq : frequency of dump (i.e. saving to a file) diff --git a/HySoP/hysop/problem/tests/test_simulation.py b/HySoP/hysop/problem/tests/test_simulation.py index bdc7b3de6ca147067e8c4eab4c8ecfd074cbfb4e..253ac5ef82486857e88d8b28e66d3e64652fce8f 100644 --- a/HySoP/hysop/problem/tests/test_simulation.py +++ b/HySoP/hysop/problem/tests/test_simulation.py @@ -2,9 +2,9 @@ @file test_simulation.py tests simulation incr and io_utils writer """ -from parmepy.problem.simulation import Simulation -from parmepy.tools.parameters import IO_params -from parmepy.tools.io_utils import Writer +from hysop.problem.simulation import Simulation +from hysop.tools.parameters import IO_params +from hysop.tools.io_utils import Writer simu = Simulation(tinit=0.0, tend=1.0, nbIter=10) diff --git a/HySoP/hysop/problem/tests/test_transport.py b/HySoP/hysop/problem/tests/test_transport.py index 3479dfb970093dfc506c6aa3acde1bde97ab439e..0b4616d1073b7ec12fc0a2b22fed2e11c9e802c5 100644 --- a/HySoP/hysop/problem/tests/test_transport.py +++ b/HySoP/hysop/problem/tests/test_transport.py @@ -2,14 +2,14 @@ Testing transport problem. """ import numpy as np -import parmepy.tools.numpywrappers as npw +import hysop.tools.numpywrappers as npw from math import sqrt, pi, cos -from parmepy.domain.box import Box -from parmepy.fields.continuous import Field -from parmepy.operator.advection import Advection -from parmepy.problem.transport import TransportProblem -from parmepy.problem.simulation import Simulation -from parmepy.tools.parameters import Discretization +from hysop.domain.box import Box +from hysop.fields.continuous import Field +from hysop.operator.advection import Advection +from hysop.problem.transport import TransportProblem +from hysop.problem.simulation import Simulation +from hysop.tools.parameters import Discretization def cosinus_product_2D(x, y, t): diff --git a/HySoP/hysop/problem/transport.py b/HySoP/hysop/problem/transport.py index 3b8c41ca9f68abfc80c5ebaa6aadfc275d67f674..8cbfdbe196292e02622b6781546ad80e170d7e48 100644 --- a/HySoP/hysop/problem/transport.py +++ b/HySoP/hysop/problem/transport.py @@ -1,9 +1,9 @@ """ @file transport.py """ -from parmepy.problem.problem import Problem -from parmepy.operator.advection import Advection -from parmepy.operator.analytic import Analytic +from hysop.problem.problem import Problem +from hysop.operator.advection import Advection +from hysop.operator.analytic import Analytic class TransportProblem(Problem): diff --git a/HySoP/hysop/tools/__init__.py b/HySoP/hysop/tools/__init__.py index 44a793122ae228d0e14ef30bb4f7b51364ba7c38..4a7dd1d8c97708669609c14faf4ec2b69b9c6ced 100644 --- a/HySoP/hysop/tools/__init__.py +++ b/HySoP/hysop/tools/__init__.py @@ -1,5 +1,5 @@ """ -@package parmepy.tools +@package hysop.tools Everything concerning tools. diff --git a/HySoP/hysop/tools/indices.py b/HySoP/hysop/tools/indices.py index 24fcdb644a1e16ee6afc306df7145e1537841466..04c2254e6e1c15267b880287feb88db025fe81d5 100644 --- a/HySoP/hysop/tools/indices.py +++ b/HySoP/hysop/tools/indices.py @@ -1,5 +1,5 @@ import numpy as np -import parmepy.tools.numpywrappers as npw +import hysop.tools.numpywrappers as npw def condition2Slice(cond): diff --git a/HySoP/hysop/tools/io_utils.py b/HySoP/hysop/tools/io_utils.py index 130d130896db7a0f2a30d2dcdb4102b2be536d94..03608287ecd2b3345d4d2c3885377ba9fe778764 100644 --- a/HySoP/hysop/tools/io_utils.py +++ b/HySoP/hysop/tools/io_utils.py @@ -1,15 +1,15 @@ """ @file io_utils.py -Tools related to i/o in parmes. +Tools related to i/o in HySoP. """ import os import scitools.filetable as ft -import parmepy.tools.numpywrappers as npw +import hysop.tools.numpywrappers as npw from inspect import getouterframes, currentframe -import parmepy.mpi as mpi -from parmepy.tools.sys_utils import SysUtils as su +import hysop.mpi as mpi +from hysop.tools.sys_utils import SysUtils as su from re import findall, IGNORECASE -from parmepy.tools.parameters import MPI_params, IO_params +from hysop.tools.parameters import MPI_params, IO_params class io(object): @@ -25,7 +25,7 @@ class io(object): Get the default path for io. Used name if set. If not, get basename of the top exec. file. - Example : if you run python MyExe.py for your parmes simulation, + Example : if you run python MyExe.py for your HySoP simulation, results will be saved in ./MyExe/p1/, ./MyExe/p4/ the number after 'p' being the number of mpi processus set for the simulation. @@ -97,7 +97,7 @@ class io(object): @staticmethod def set_default_path(pathdir): """ - To set a new default path for parmepy. + To set a new default path for hysop. @param pathdir: the new path Note : /pN will be add to path name, N being the number of MPI process used for the simulation. @@ -112,7 +112,7 @@ class Writer(object): """ Usage : \code - >>> from parmepy.tools.parameters import IO_params + >>> from hysop.tools.parameters import IO_params >>> params = IO_params(filename='r.dat') >>> wr = Writer(params, buffshape=(1, 2)) >>> ite = 3 # current iteration number @@ -127,11 +127,11 @@ class Writer(object): def __init__(self, io_params, buffshape=None, mpi_params=None, safeIO=True): """ - @param io_params : a parmepy.tools.parameters.IO_params, setup + @param io_params : a hysop.tools.parameters.IO_params, setup for file ouput (name, location ...) @param buffshape : shape (tuple) of the output/input buffer. Muste be 2D. - @param mpi_params : a parmepy.tools.parameters.MPI_params, mpi + @param mpi_params : a hysop.tools.parameters.MPI_params, mpi setup (comm that owns the writer) @param io_rank : rank (in mpi_params.comm) that performs writting . Default = 0 @@ -239,7 +239,7 @@ class XMF(object): time, filename, subset=None): """ Write XDMF header into a file - @param[in] topo: a parmepy.mpi.topology.Cartesian, used as reference + @param[in] topo: a hysop.mpi.topology.Cartesian, used as reference to define local and global meshes in xdmf file. @param[in] datasetNames: a list of datasets names @param[in] ite: iteration number diff --git a/HySoP/hysop/tools/numpywrappers.py b/HySoP/hysop/tools/numpywrappers.py index 7e1bfa29383b9e2fe92383436dba401bf9024c81..67c8c0cf5c50eb8396b083cad8d03eab9cf0b786 100644 --- a/HySoP/hysop/tools/numpywrappers.py +++ b/HySoP/hysop/tools/numpywrappers.py @@ -2,39 +2,46 @@ """ @file numpywrappers.py -Tools to build numpy arrays based on parmepy setup (float type ...) +Tools to build numpy arrays based on hysop setup (float type ...) """ -from parmepy.constants import PARMES_REAL, ORDER, PARMES_INTEGER,\ - PARMES_DIM +from hysop.constants import HYSOP_REAL, ORDER, HYSOP_INTEGER,\ + HYSOP_DIM import numpy as np import scitools.filetable as ft bool = np.bool -def zeros(shape, dtype=PARMES_REAL): +def zeros(shape, dtype=HYSOP_REAL): """ - Wrapper to numpy.zeros, force order to parmepy.constants.ORDER + Wrapper to numpy.zeros, force order to hysop.constants.ORDER """ return np.zeros(shape, dtype=dtype, order=ORDER) -def ones(shape, dtype=PARMES_REAL): +def ones(shape, dtype=HYSOP_REAL): """ - Wrapper to numpy.ones, force order to parmepy.constants.ORDER + Wrapper to numpy.ones, force order to hysop.constants.ORDER """ return np.ones(shape, dtype=dtype, order=ORDER) def zeros_like(tab): """ - Wrapper to numpy.zeros_like, force order to parmepy.constants.ORDER + Wrapper to numpy.zeros_like, force order to hysop.constants.ORDER """ return np.zeros_like(tab, dtype=tab.dtype, order=ORDER) +def realempty(tab): + """ + Wrapper to numpy.empty, force order to hysop.constants.ORDER + """ + return np.empty(tab, dtype=HYSOP_REAL, order=ORDER) + + def empty_like(tab): """ - Wrapper to numpy.empty_like, force order to parmepy.constants.ORDER + Wrapper to numpy.empty_like, force order to hysop.constants.ORDER """ return np.empty_like(tab, dtype=tab.dtype, order=ORDER) @@ -48,76 +55,76 @@ def copy(tab): def asarray(tab): """ - Wrapper to numpy.asarray, force order to parmepy.constants.ORDER + Wrapper to numpy.asarray, force order to hysop.constants.ORDER """ return np.asarray(tab, order=ORDER, dtype=tab.dtype) def asrealarray(tab): """ - Wrapper to numpy.asarray, force order to parmepy.constants.ORDER - and type to parmepy.constants.PARMES_REAL + Wrapper to numpy.asarray, force order to hysop.constants.ORDER + and type to hysop.constants.HYSOP_REAL """ - return np.asarray(tab, order=ORDER, dtype=PARMES_REAL) + return np.asarray(tab, order=ORDER, dtype=HYSOP_REAL) def const_realarray(tab): """ - Wrapper to numpy.asarray, force order to parmepy.constants.ORDER - and type to parmepy.constants.PARMES_REAL. + Wrapper to numpy.asarray, force order to hysop.constants.ORDER + and type to hysop.constants.HYSOP_REAL. Forbid any later change in the content of the array. """ - tmp = np.asarray(tab, order=ORDER, dtype=PARMES_REAL) + tmp = np.asarray(tab, order=ORDER, dtype=HYSOP_REAL) tmp.flags.writeable = False return tmp def const_dimarray(tab): """ - Wrapper to numpy.asarray, force order to parmepy.constants.ORDER - and type to parmepy.constants.PARMES_DIM. + Wrapper to numpy.asarray, force order to hysop.constants.ORDER + and type to hysop.constants.HYSOP_DIM. Forbid any later change in the content of the array. """ - tmp = np.asarray(tab, order=ORDER, dtype=PARMES_DIM) + tmp = np.asarray(tab, order=ORDER, dtype=HYSOP_DIM) tmp.flags.writeable = False return tmp def asintarray(tab): """ - Wrapper to numpy.asarray, force order to parmepy.constants.ORDER - and type to parmepy.constants.PARMES_INTEGER. + Wrapper to numpy.asarray, force order to hysop.constants.ORDER + and type to hysop.constants.HYSOP_INTEGER. """ - return np.asarray(tab, order=ORDER, dtype=PARMES_INTEGER) + return np.asarray(tab, order=ORDER, dtype=HYSOP_INTEGER) def int_zeros(shape): """ - Wrapper to numpy.zeros, force order to parmepy.constants.ORDER - and type to parmepy.constants.PARMES_INTEGER. + Wrapper to numpy.zeros, force order to hysop.constants.ORDER + and type to hysop.constants.HYSOP_INTEGER. """ - return np.zeros(shape, order=ORDER, dtype=PARMES_INTEGER) + return np.zeros(shape, order=ORDER, dtype=HYSOP_INTEGER) def int_ones(shape): """ - Wrapper to numpy.ones, force order to parmepy.constants.ORDER - and type to parmepy.constants.PARMES_INTEGER. + Wrapper to numpy.ones, force order to hysop.constants.ORDER + and type to hysop.constants.HYSOP_INTEGER. """ - return np.ones(shape, order=ORDER, dtype=PARMES_INTEGER) + return np.ones(shape, order=ORDER, dtype=HYSOP_INTEGER) def asdimarray(tab): """ - Wrapper to numpy.asarray, force order to parmepy.constants.ORDER - and type to parmepy.constants.PARMES_DIM. + Wrapper to numpy.asarray, force order to hysop.constants.ORDER + and type to hysop.constants.HYSOP_DIM. """ - return np.asarray(tab, order=ORDER, dtype=PARMES_DIM) + return np.asarray(tab, order=ORDER, dtype=HYSOP_DIM) def asboolarray(tab): """ - Wrapper to numpy.asarray, force order to parmepy.constants.ORDER + Wrapper to numpy.asarray, force order to hysop.constants.ORDER and type to np.bool. """ return np.asarray(tab, order=ORDER, dtype=np.bool) @@ -125,18 +132,18 @@ def asboolarray(tab): def dim_ones(shape): """ - Wrapper to numpy.ones, force order to parmepy.constants.ORDER - and type to parmepy.constants.PARMES_INTEGER. + Wrapper to numpy.ones, force order to hysop.constants.ORDER + and type to hysop.constants.HYSOP_INTEGER. """ - return np.ones(shape, order=ORDER, dtype=PARMES_DIM) + return np.ones(shape, order=ORDER, dtype=HYSOP_DIM) def dim_zeros(shape): """ - Wrapper to numpy.ones, force order to parmepy.constants.ORDER - and type to parmepy.constants.PARMES_DIM. + Wrapper to numpy.ones, force order to hysop.constants.ORDER + and type to hysop.constants.HYSOP_DIM. """ - return np.zeros(shape, order=ORDER, dtype=PARMES_DIM) + return np.zeros(shape, order=ORDER, dtype=HYSOP_DIM) def equal(a, b): @@ -149,26 +156,26 @@ def equal(a, b): def abs(tab): """ - Wrapper to numpy.abs, force order to parmepy.constants.ORDER + Wrapper to numpy.abs, force order to hysop.constants.ORDER """ return np.abs(tab, order=ORDER, dtype=tab.dtype) def real_sum(tab): """ - Wrapper to numpy.sum, force type to parmepy.constants.PARMES_REAL. + Wrapper to numpy.sum, force type to hysop.constants.HYSOP_REAL. """ - return np.sum(tab, dtype=PARMES_REAL) + return np.sum(tab, dtype=HYSOP_REAL) -def prod(tab, dtype=PARMES_REAL): +def prod(tab, dtype=HYSOP_REAL): """ Wrapper to numpy.prod """ return np.prod(tab, dtype=dtype) -def add(a, b, c, dtype=PARMES_REAL): +def add(a, b, c, dtype=HYSOP_REAL): """ Wrapper to numpy.add """ diff --git a/HySoP/hysop/tools/parameters.py b/HySoP/hysop/tools/parameters.py index b24a6f9cfe80a977a94218e7c346adae0e3ffb68..a28774ca9e185db8dd9aa2ccef0d9c2a664f9896 100644 --- a/HySoP/hysop/tools/parameters.py +++ b/HySoP/hysop/tools/parameters.py @@ -5,8 +5,8 @@ Light classes to handle parameters for classes construction. """ from collections import namedtuple -from parmepy.mpi.main_var import main_comm, main_rank, MPI -from parmepy.constants import DEFAULT_TASK_ID +from hysop.mpi.main_var import main_comm, main_rank, MPI +from hysop.constants import DEFAULT_TASK_ID class MPI_params(namedtuple('MPI_params', ['comm', 'task_id', @@ -42,7 +42,7 @@ class MPI_params(namedtuple('MPI_params', ['comm', 'task_id', return super(MPI_params, cls).__new__(cls, comm, task_id, rank, onTask) -import parmepy.tools.numpywrappers as npw +import hysop.tools.numpywrappers as npw class Discretization(namedtuple("Discretization", ['resolution', 'ghosts'])): @@ -76,7 +76,7 @@ class Discretization(namedtuple("Discretization", ['resolution', 'ghosts'])): return result return not result -from parmepy.constants import HDF5 +from hysop.constants import HDF5 import os @@ -92,7 +92,7 @@ class IO_params(namedtuple("IO_params", ['filename', 'filepath', """ def __new__(cls, filename, filepath=None, frequency=1, fileformat=None, io_leader=0): - import parmepy.tools.io_utils as io + import hysop.tools.io_utils as io # Filename is absolute path, filepath arg is ignored. if os.path.isabs(filename): diff --git a/HySoP/hysop/tools/problem2dot.py b/HySoP/hysop/tools/problem2dot.py index ab2714575f03df0eb7a174d2775991337ce3262f..fb686259fcdf669c15961b8b0658f4ca0eeb657c 100644 --- a/HySoP/hysop/tools/problem2dot.py +++ b/HySoP/hysop/tools/problem2dot.py @@ -3,10 +3,10 @@ Converts a problem instance to a graph throw dot syntax. """ -from parmepy.operator.advection import Advection -from parmepy.operator.redistribute import Redistribute -from parmepy.operator.redistribute_inter import RedistributeInter -from parmepy.mpi.main_var import main_rank +from hysop.operator.advection import Advection +from hysop.operator.redistribute import Redistribute +from hysop.operator.redistribute_inter import RedistributeInter +from hysop.mpi.main_var import main_rank import pydot colors = [ "#dc322f", diff --git a/HySoP/hysop/tools/profiler.py b/HySoP/hysop/tools/profiler.py index 3888960ad99dc129e4274f39ae0d3c70d73febdf..f505b46ecb373625387b8eac5e9ca5e8fe92c243 100644 --- a/HySoP/hysop/tools/profiler.py +++ b/HySoP/hysop/tools/profiler.py @@ -1,5 +1,5 @@ -from parmepy.mpi import MPI -import parmepy.tools.numpywrappers as npw +from hysop.mpi import MPI +import hysop.tools.numpywrappers as npw import inspect import numpy as np import re @@ -92,7 +92,7 @@ class Profiler(object): return self._elems[item] def __str__(self): - from parmepy.mpi.main_var import main_rank + from hysop.mpi.main_var import main_rank if len(self.summary) > 0: s = "" if self._l == 1: @@ -129,7 +129,7 @@ class Profiler(object): print s def summarize(self): - from parmepy.fields.continuous import Field + from hysop.fields.continuous import Field self.summary = {} try: self._obj.get_profiling_info() diff --git a/HySoP/hysop/tools/remeshing_formula_parsing.py b/HySoP/hysop/tools/remeshing_formula_parsing.py index fa84a15a6b457cd0e532482ace7cb506dbdc4460..a3616178bb0397ecbfe90a55fabaf722ed75a6f7 100644 --- a/HySoP/hysop/tools/remeshing_formula_parsing.py +++ b/HySoP/hysop/tools/remeshing_formula_parsing.py @@ -3,8 +3,8 @@ Functions to parse some remeshing formula code (given as strings from Maple or Sympy for instance). Result is a formula usable in the -parmepy.numerics.remeshing module or in OpenCL code in -parmepy/gpu/cl_src/remeshing/weights* +hysop.numerics.remeshing module or in OpenCL code in +hysop/gpu/cl_src/remeshing/weights* """ import re import sympy as sp diff --git a/HySoP/hysop/tools/tests/test_formula_parsing.py b/HySoP/hysop/tools/tests/test_formula_parsing.py index 8183c91bac7f9150f046b3e0818189607e77355d..acd9fdad565c3f7fdd084e414f1e3251c598cabb 100644 --- a/HySoP/hysop/tools/tests/test_formula_parsing.py +++ b/HySoP/hysop/tools/tests/test_formula_parsing.py @@ -1,4 +1,4 @@ -from parmepy.tools.remeshing_formula_parsing import parse +from hysop.tools.remeshing_formula_parsing import parse m4p = """ w[0] = (-1 + (2 - y) * y) * y / 2; diff --git a/HySoP/hysop/tools/tests/test_parameters.py b/HySoP/hysop/tools/tests/test_parameters.py index c886d4ba531588029a4554d9444b27d81d4f9dc6..fc861097bdc925f6dd0a92228dbaa983406735f5 100644 --- a/HySoP/hysop/tools/tests/test_parameters.py +++ b/HySoP/hysop/tools/tests/test_parameters.py @@ -1,10 +1,10 @@ # -*- coding: utf-8 -*- """ -Tests for parmepy parameters-like variables. +Tests for hysop parameters-like variables. """ -from parmepy.tools.parameters import IO_params -from parmepy.tools.io_utils import io +from hysop.tools.parameters import IO_params +from hysop.tools.io_utils import io import os diff --git a/HySoP/hysop/tools/tests/test_profiler.py b/HySoP/hysop/tools/tests/test_profiler.py index 3db879d12d11dfd6d384c47b56573f2ca7fff052..0c324b3eeb90768a8b760f58d924f739cca421cf 100644 --- a/HySoP/hysop/tools/tests/test_profiler.py +++ b/HySoP/hysop/tools/tests/test_profiler.py @@ -1,8 +1,8 @@ """ -Unitary tests for parmepy.tools.profiler module +Unitary tests for hysop.tools.profiler module """ -from parmepy.tools.profiler import Profiler, profile, FProfiler, ftime -from parmepy.mpi import main_comm +from hysop.tools.profiler import Profiler, profile, FProfiler, ftime +from hysop.mpi import main_comm class A_class(object): diff --git a/HySoP/setup.py.in b/HySoP/setup.py.in index dec8ebdc15b095426ca2f1db1e40868eef7d00df..dc78957d1a26ac017168d7de0d389be088c71836 100644 --- a/HySoP/setup.py.in +++ b/HySoP/setup.py.in @@ -11,34 +11,34 @@ import os # Full package name name = '@PYPACKAGE_NAME@' # List of modules (directories) to be included -packages = ['parmepy', - 'parmepy.domain', - 'parmepy.domain.subsets', - 'parmepy.fields', - 'parmepy.operator', - 'parmepy.operator.discrete', - 'parmepy.problem', - 'parmepy.tools', - 'parmepy.numerics', - 'parmepy.numerics.integrators', +packages = ['hysop', + 'hysop.domain', + 'hysop.domain.subsets', + 'hysop.fields', + 'hysop.operator', + 'hysop.operator.discrete', + 'hysop.problem', + 'hysop.tools', + 'hysop.numerics', + 'hysop.numerics.integrators', ] -packages_for_tests = ['parmepy.domain.tests', - 'parmepy.fields.tests', - 'parmepy.operator.tests', - 'parmepy.numerics.tests', - 'parmepy.tools.tests', - 'parmepy.problem.tests', - 'parmepy.numerics.tests', +packages_for_tests = ['hysop.domain.tests', + 'hysop.fields.tests', + 'hysop.operator.tests', + 'hysop.numerics.tests', + 'hysop.tools.tests', + 'hysop.problem.tests', + 'hysop.numerics.tests', ] if "@USE_MPI@" is "ON": - packages.append('parmepy.mpi') - packages_for_tests.append('parmepy.mpi.tests') + packages.append('hysop.mpi') + packages_for_tests.append('hysop.mpi.tests') if "@WITH_GPU@" is "ON": - packages.append('parmepy.gpu') - packages_for_tests.append('parmepy.gpu.tests') + packages.append('hysop.gpu') + packages_for_tests.append('hysop.gpu.tests') if "@WITH_TESTS@" is "ON": packages = packages + packages_for_tests @@ -48,7 +48,7 @@ DISTUTILS_DEBUG = 1 ext_modules = [] -# Check if libparmes was created +# Check if libhysop was created enable_fortran = "@WITH_LIB_FORTRAN@" if enable_fortran is "ON": @@ -57,51 +57,51 @@ if enable_fortran is "ON": while inc_dir.count('') > 0: inc_dir.remove('') - parmes_dir = '@CMAKE_BINARY_DIR@/Modules' - inc_dir.append(parmes_dir) + hysop_dir = '@CMAKE_BINARY_DIR@/Modules' + inc_dir.append(hysop_dir) fortran_dir = \ - '@CMAKE_SOURCE_DIR@/parmepy/f2py/' - parmes_libdir = ['@CMAKE_BINARY_DIR@/src'] - parmeslib = ['@PARMES_LIBRARY_NAME@'] + '@CMAKE_SOURCE_DIR@/hysop/f2py/' + hysop_libdir = ['@CMAKE_BINARY_DIR@/src'] + hysoplib = ['@HYSOP_LIBRARY_NAME@'] f2py_options = ['--no-lower'] fortran_src = [] withfftw = "@WITH_FFTW@" if withfftw is "ON": - fortran_src.append(fortran_dir+'parameters.f90') - fortran_src.append(fortran_dir+'fftw2py.f90') + fortran_src.append(fortran_dir + 'parameters.f90') + fortran_src.append(fortran_dir + 'fftw2py.f90') fftwdir = '@FFTWLIB@' - parmeslib.append('fftw3') - parmeslib.append('fftw3_mpi') - parmes_libdir.append(fftwdir) + hysoplib.append('fftw3') + hysoplib.append('fftw3_mpi') + hysop_libdir.append(fftwdir) else: - packages.append('parmepy.fakef2py') - packages.append('parmepy.fakef2py.fftw2py') + packages.append('hysop.fakef2py') + packages.append('hysop.fakef2py.fftw2py') withscales = '@WITH_SCALES@' if withscales is "ON": if withfftw is "OFF": - fortran_src.append(fortran_dir+'parameters.f90') - fortran_src.append(fortran_dir+'scales2py.f90') + fortran_src.append(fortran_dir + 'parameters.f90') + fortran_src.append(fortran_dir + 'scales2py.f90') else: - packages.append('parmepy.fakef2py') - packages.append('parmepy.fakef2py.scales2py') + packages.append('hysop.fakef2py') + packages.append('hysop.fakef2py.scales2py') options = [('F2PY_REPORT_ON_ARRAY_COPY', '1')] if os.uname()[0] == 'Linux': options.append(('F2PY_REPORT_ATEXIT', '1')) - parpyModule = Extension(name='parmepy.f2py', + parpyModule = Extension(name='hysop.f2py', f2py_options=f2py_options, sources=fortran_src, include_dirs=inc_dir, - library_dirs=parmes_libdir, - libraries=parmeslib, + library_dirs=hysop_libdir, + libraries=hysoplib, define_macros=options - ) + ) ext_modules.append(parpyModule) else: - packages.append('parmepy.fakef2py') - packages.append('parmepy.fakef2py.scales2py') - packages.append('parmepy.fakef2py.fftw2py') + packages.append('hysop.fakef2py') + packages.append('hysop.fakef2py.scales2py') + packages.append('hysop.fakef2py.fftw2py') data_files = [] @@ -110,26 +110,28 @@ if "@WITH_GPU@" is "ON": "cl_src/advection", "cl_src/remeshing"] for cl_dir in cl_src_dirs: data_files.append( - ('./parmepy/gpu/'+cl_dir, - ['@CMAKE_SOURCE_DIR@/parmepy/gpu/'+cl_dir+'/' + ('./hysop/gpu/' + cl_dir, + ['@CMAKE_SOURCE_DIR@/hysop/gpu/' + cl_dir + '/' + cl_file for cl_file in os.listdir( - '@CMAKE_SOURCE_DIR@/parmepy/gpu/'+cl_dir+'/') - if cl_file[0]!='.' and cl_file[0]!='#' and cl_file[-3:]=='.cl'])) - -config = Configuration(name=name, - version='@PYPACKAGE_VERSION@', - description = \ - 'Particular Methods implementation for heterogenous platforms.', - author = 'G.H Cottet, J.M Etancelin, C.Mimeau, F.Pérignon, C. Picard', - author_email = 'parmes-devel@lists.forge.imag.fr', - url = 'https://forge.imag.fr/projects/parmes/', - license = 'GNU public license', - package_dir = {'': '@CMAKE_SOURCE_DIR@'}, - ext_modules = ext_modules, - packages = packages, - data_files = data_files, + '@CMAKE_SOURCE_DIR@/hysop/gpu/' + cl_dir + '/') + if cl_file[0] != '.' and cl_file[0] != '#' and cl_file[-3:] == '.cl'])) + +descr = 'Hybrid Computation with Particles.' +authors = 'G.H Cottet, J.M Etancelin, C.Mimeau, F.Pérignon, C. Picard' +# authors = 'HySoP development team' +config = Configuration( + name=name, + version='@PYPACKAGE_VERSION@', + description=descr, + author=authors, + author_email='hysop-members@lists.forge.imag.fr', + url='https://forge.imag.fr/projects/hysop/', + license='GNU public license', + package_dir={'': '@CMAKE_SOURCE_DIR@'}, + ext_modules=ext_modules, + packages=packages, + data_files=data_files, ) - setup(**config.todict()) diff --git a/HySoP/src/CMakeLists.txt b/HySoP/src/CMakeLists.txt index d7a6c935e2a5c18fb94e75ba436bf4cacc670545..92af38cd968c242165dfb0a99868a1910f2e4227 100644 --- a/HySoP/src/CMakeLists.txt +++ b/HySoP/src/CMakeLists.txt @@ -1,20 +1,20 @@ #======================================================= # cmake utility to compile,link and install : -# - parmes library (libparmes...) +# - hysop library (libhysop...) # - library particular solver from scales # #======================================================= -# The list of all dirs containing sources to be compiled for the Parmes lib -# Any file in those dirs will be used to create libparmes -set(${PARMES_LIBRARY_NAME}_SRCDIRS +# The list of all dirs containing sources to be compiled for the HySoP lib +# Any file in those dirs will be used to create libhysop +set(${HYSOP_LIBRARY_NAME}_SRCDIRS . ) # --- fftw interface --- if(WITH_FFTW) - set(${PARMES_LIBRARY_NAME}_SRCDIRS - ${${PARMES_LIBRARY_NAME}_SRCDIRS} fftw + set(${HYSOP_LIBRARY_NAME}_SRCDIRS + ${${HYSOP_LIBRARY_NAME}_SRCDIRS} fftw ) endif() @@ -23,8 +23,8 @@ set(SCALES_DIR scalesInterface) # --- scales --- if(WITH_SCALES) - set(${PARMES_LIBRARY_NAME}_SRCDIRS - ${${PARMES_LIBRARY_NAME}_SRCDIRS} + set(${HYSOP_LIBRARY_NAME}_SRCDIRS + ${${HYSOP_LIBRARY_NAME}_SRCDIRS} ${SCALES_DIR}/ ${SCALES_DIR}/layout ${SCALES_DIR}/particles @@ -41,13 +41,13 @@ set(EXTS_HDRS *.hpp *.h) # ============= The project ============= # Set project name and project languages # => this automatically defines: -# - ${PARMES_LIBRARY_NAME}_BINARY_DIR : where you have run cmake, i.e. the place for compilation -# - ${PARMES_LIBRARY_NAME}_SOURCE_DIR : where sources (.f and .h and this CMakeLists.txt) are located +# - ${HYSOP_LIBRARY_NAME}_BINARY_DIR : where you have run cmake, i.e. the place for compilation +# - ${HYSOP_LIBRARY_NAME}_SOURCE_DIR : where sources (.f and .h and this CMakeLists.txt) are located # Note that because of OutOfSourceBuild, binary_dir and source_dir must be different. -project(${PARMES_LIBRARY_NAME} Fortran) +project(${HYSOP_LIBRARY_NAME} Fortran) # ============= Search for libraries ============= -# We search for libraries Parmes depends on and +# We search for libraries HySoP depends on and # set the compile/link conf (-I and -L opt) # ============= Prepare compilation ============= @@ -70,9 +70,9 @@ if(USE_MPI) # -I include_directories(${MPI_Fortran_INCLUDE_PATH}) # Add compilation/link flags - set(${PARMES_LIBRARY_NAME}_LINK_FLAGS ${${PARMES_LIBRARY_NAME}_LINK_FLAGS} ${MPI_Fortran_LINK_FLAGS}) + set(${HYSOP_LIBRARY_NAME}_LINK_FLAGS ${${HYSOP_LIBRARY_NAME}_LINK_FLAGS} ${MPI_Fortran_LINK_FLAGS}) append_Fortran_flags(${MPI_Fortran_COMPILE_FLAGS}) - # Append mpi libraries to the list of libraries linked with libparmes. + # Append mpi libraries to the list of libraries linked with libhysop. set(LIBS ${LIBS} ${MPI_Fortran_LIBRARIES} ) endif(USE_MPI) @@ -98,38 +98,38 @@ if(WITH_FFTW) set(FFTWLIB ${dirlist} CACHE PATH "fftw libraries dir") endif() -# ============= Generates ParmesConfig.hpp ============= -# The file PARMES_LIBRARY_NAME_defines.hpp will be generated from config.hpp.cmake; +# ============= Generates HySoPConfig.hpp ============= +# The file HYSOP_LIBRARY_NAME_defines.hpp will be generated from config.hpp.cmake; if(EXISTS ${CMAKE_SOURCE_DIR}/config.hpp.cmake) - configure_file(${CMAKE_SOURCE_DIR}/config.hpp.cmake ${PARMES_LIBRARY_NAME}_defines.hpp) + configure_file(${CMAKE_SOURCE_DIR}/config.hpp.cmake ${HYSOP_LIBRARY_NAME}_defines.hpp) include_directories(${CMAKE_BINARY_DIR}) endif() # ============= Collect source and header files and create the library ============= # 1 - We scan all files with matching extension in directories containing sources. -foreach(_DIR ${${PARMES_LIBRARY_NAME}_SRCDIRS}) +foreach(_DIR ${${HYSOP_LIBRARY_NAME}_SRCDIRS}) set(_DIR_FILES) foreach(_EXT ${EXTS}) # Source files file(GLOB _DIR_FILES_EXT ${_DIR}/${_EXT}) if(_DIR_FILES_EXT) - list(APPEND ${PARMES_LIBRARY_NAME}_SRC ${_DIR_FILES_EXT}) + list(APPEND ${HYSOP_LIBRARY_NAME}_SRC ${_DIR_FILES_EXT}) endif() endforeach() foreach(_EXT ${EXTS_HDRS}) # Headers file(GLOB _DIR_FILES_EXT ${_DIR}/${_EXT}) if(_DIR_FILES_EXT) - list(APPEND ${PARMES_LIBRARY_NAME}_HDRS ${_DIR_FILES_EXT}) + list(APPEND ${HYSOP_LIBRARY_NAME}_HDRS ${_DIR_FILES_EXT}) endif() endforeach() endforeach() -list(APPEND ${PARMES_LIBRARY_NAME}_HDRS "parmes_defines.hpp") +list(APPEND ${HYSOP_LIBRARY_NAME}_HDRS "hysop_defines.hpp") # We add headers to source files list -list(APPEND ${PARMES_LIBRARY_NAME}_SRC ${${PARMES_LIBRARY_NAME}_HDRS}) +list(APPEND ${HYSOP_LIBRARY_NAME}_SRC ${${HYSOP_LIBRARY_NAME}_HDRS}) # Add directories to those searched by compiler ... # -I -include_directories(${${PARMES_LIBRARY_NAME}_SRCDIRS}) +include_directories(${${HYSOP_LIBRARY_NAME}_SRCDIRS}) include_directories(${CMAKE_Fortran_MODULE_DIRECTORY}) # Cmake tools to handle fortran-c interface. It will generate F2CMangle.hpp, a file @@ -141,22 +141,22 @@ include_directories(${CMAKE_Fortran_MODULE_DIRECTORY}) # SYMBOL_NAMESPACE "F2C_") # static library -add_library(${PARMES_LIBRARY_NAME} STATIC ${${PARMES_LIBRARY_NAME}_SRC}) -target_link_libraries(${PARMES_LIBRARY_NAME} ${LIBS}) +add_library(${HYSOP_LIBRARY_NAME} STATIC ${${HYSOP_LIBRARY_NAME}_SRC}) +target_link_libraries(${HYSOP_LIBRARY_NAME} ${LIBS}) -# ============= Create an executable linked with libparmes ============= -# This part is optional and only useful to test libparmes in a +# ============= Create an executable linked with libhysop ============= +# This part is optional and only useful to test libhysop in a # way that does not depends on python. # At the time it only includes fftw tests. if(WITH_FFTW) - # Set the name of a executable file that will be linked with libPARMES_LIBRARY_NAME. - # Useful to test libparmes in a way that does not depend on python. - set(EXE_NAME ${PARMES_LIBRARY_NAME}Run) + # Set the name of a executable file that will be linked with libHYSOP_LIBRARY_NAME. + # Useful to test libhysop in a way that does not depend on python. + set(EXE_NAME ${HYSOP_LIBRARY_NAME}Run) # A main file to create an executable (test purpose) - # Any files in these dirs will be used to create Parmes exec (linked with libparmes) + # Any files in these dirs will be used to create HySoP exec (linked with libhysop) set(${EXE_NAME}_SRCDIRS main) - # Source and header files list, to generate a working executable based on libparmes. + # Source and header files list, to generate a working executable based on libhysop. foreach(_DIR ${${EXE_NAME}_SRCDIRS}) set(_DIR_FILES) foreach(_EXT ${EXTS}) @@ -175,10 +175,10 @@ if(WITH_FFTW) list(APPEND ${EXE_NAME}_SRC ${${EXE_NAME}_HDRS}) include_directories(${${EXE_NAME}_HDRS}) add_executable(${EXE_NAME} ${${EXE_NAME}_SRC}) - add_dependencies(${EXE_NAME} ${PARMES_LIBRARY_NAME}) + add_dependencies(${EXE_NAME} ${HYSOP_LIBRARY_NAME}) # libs to link with EXE_NAME - target_link_libraries(${EXE_NAME} ${PARMES_LIBRARY_NAME}) + target_link_libraries(${EXE_NAME} ${HYSOP_LIBRARY_NAME}) target_link_libraries(${EXE_NAME} ${LIBS}) endif() diff --git a/HySoP/src/fftw/fft2d.f90 b/HySoP/src/fftw/fft2d.f90 index cf2a69a89df1661b07f5a6bd8b2031fb19302323..634c1108d27c6f5ff9fe180f480dbb6b11226316 100755 --- a/HySoP/src/fftw/fft2d.f90 +++ b/HySoP/src/fftw/fft2d.f90 @@ -62,7 +62,7 @@ module fft2d !> wave numbers for fft in y direction real(C_DOUBLE), pointer :: ky(:) !> log file for fftw - character(len=20),parameter :: filename ="parmesfftw.log" + character(len=20),parameter :: filename ="hysopfftw.log" !> normalization factor real(C_DOUBLE) :: normFFT !> true if all the allocation stuff for global variables has been done. diff --git a/HySoP/src/fftw/fft3d.f90 b/HySoP/src/fftw/fft3d.f90 index 0ad428e2cf8d569f8b78c4a7cae21da8bc843ef8..89071c81d5e3067b89872262dbb19fb2b83d041f 100755 --- a/HySoP/src/fftw/fft3d.f90 +++ b/HySoP/src/fftw/fft3d.f90 @@ -62,7 +62,7 @@ module fft3d !> wave numbers for fft in z direction real(C_DOUBLE), pointer :: kz(:) !> log file for fftw - character(len=20),parameter :: filename ="parmesfftw.log" + character(len=20),parameter :: filename ="hysopfftw.log" !> normalization factor real(C_DOUBLE) :: normFFT !> true if we use fftw-many routines diff --git a/HySoP/src/main/main.cxx b/HySoP/src/main/main.cxx index 504c4e63e7178e9c81dc3cd32b25892fcc393f21..5023c0543df4c7e84f25e76125ac9af8cf7ab2c7 100644 --- a/HySoP/src/main/main.cxx +++ b/HySoP/src/main/main.cxx @@ -6,7 +6,7 @@ #include <string> #include <cstring> #include <Grid.hpp> -#include<ParmesDef.hpp> +#include<HySoPDef.hpp> #include<Domain.hpp> #ifdef USE_MPI #include<mpi.h> @@ -14,7 +14,7 @@ #include "WrapC.hpp" using namespace std ; -using Parmes::Def::real_t; +using HySoP::Def::real_t; extern "C" void createTopoG(int*, int*, int*, double*, double*, int*, double*); extern "C" void plouhmans(); @@ -28,16 +28,16 @@ extern "C" void testMain(); // // Problem dimension // int pbDim = 3; // // dimensions of the domain -// Parmes::Def::vector3D dimsD = { { 1.0, 3.1, 4.3} }; +// HySoP::Def::vector3D dimsD = { { 1.0, 3.1, 4.3} }; // // "Lowest" point -// Parmes::Def::vector3D startPoint = { { 0., 1., 2.} }; +// HySoP::Def::vector3D startPoint = { { 0., 1., 2.} }; // // The domain -// Parmes::Model::Domain<3> domain(dimsD, startPoint); +// HySoP::Model::Domain<3> domain(dimsD, startPoint); // // ===== Grid definition ===== // // Number of points in each dir ... // boost::array<size_t, 3> nbSteps = { { 3, 4, 5} }; -// Parmes::Discr::Grid<3> grid(domain, nbSteps); +// HySoP::Discr::Grid<3> grid(domain, nbSteps); // std::cout << grid << std::endl; @@ -52,11 +52,11 @@ extern "C" void testMain(); // PPM::wrapper::init(pbDim, 8, -15, Comm, 2, &info, 99, 98,97); // PPM::wrapper::substart(msg, &t0, &info); -// Parmes::Def::vector3D minPhys = {{0.0,0.0,0.0}}, maxPhys ={{ 3.14, 3.14, 6.28}}; -// Parmes::Def::vector3D minSub, maxSub; +// HySoP::Def::vector3D minPhys = {{0.0,0.0,0.0}}, maxPhys ={{ 3.14, 3.14, 6.28}}; +// HySoP::Def::vector3D minSub, maxSub; // boost::array<int,6> bc = {{ 1, 1 ,1 ,1 ,1,1}}; // boost::array<int,3> nx ={{ 65, 65, 129}}; -// Parmes::Def::real_t ghostsize = 1.0; +// HySoP::Def::real_t ghostsize = 1.0; // int topoid = -1, decomp, dim = 3; // int meshid = -1; // // Time step @@ -64,7 +64,7 @@ extern "C" void testMain(); // real_t finalT = 1000; // real_t nu = 0.001; -// Parmes::Def::real_t * costPerProc; +// HySoP::Def::real_t * costPerProc; // createTopoG(&dim, &topoid, &decomp,&minPhys[0], &maxPhys[0], &bc[0], &ghostsize); diff --git a/HySoP/src/main/main.f90 b/HySoP/src/main/main.f90 index 38cc6a56a4b93137590b0da2921206eb4068cd95..7566f728209c68d3fcfcc0688f882e770f6821c2 100755 --- a/HySoP/src/main/main.f90 +++ b/HySoP/src/main/main.f90 @@ -1,5 +1,5 @@ -!> Test program for parmes library -program mainParmes +!> Test program the fortran part of the HySoP library +program mainHySoP use client_data use poisson @@ -246,4 +246,4 @@ contains -end program mainParmes +end program mainHySoP