diff --git a/HySoP/CMakeLists.txt b/HySoP/CMakeLists.txt index cc669d2a9a5f1d6da3f91f9d13303463d4087041..6d3af4846c8f500838d6b4646c4753cbad842aef 100644 --- a/HySoP/CMakeLists.txt +++ b/HySoP/CMakeLists.txt @@ -180,7 +180,7 @@ else() endif() # Target to remove parmepy from install-path. -add_custom_target(python-cleaninstall COMMAND rm -rf ${${PROJECT_NAME}_INSTALL_DIR}/${PROJECT_NAME}* +add_custom_target(python-cleaninstall COMMAND rm -rf ${CMAKE_INSTALL_PREFIX}/${PROJECT_NAME}* COMMENT "remove parmepy package and its dependencies") # Target to clean sources (remove .pyc files) and build dir. @@ -246,9 +246,17 @@ if(VERBOSE_MODE) message(STATUS " Project uses Scales : ${WITH_SCALES}") message(STATUS " Project uses FFTW : ${WITH_FFTW}") message(STATUS " Project uses GPU : ${WITH_GPU}") - message(STATUS " Project will be built in ${${PROJECT_NAME}_PYTHON_BUILD_DIR}.") + message(STATUS " Project will be built in build/${${PROJECT_NAME}_PYTHON_BUILD_DIR}.") message(STATUS " Python packages will be installed in ${CMAKE_INSTALL_PREFIX}") message(STATUS " ${PROJECT_NAME} debug mode : ${DEBUG}") message(STATUS "====================== ======= ======================") + message(STATUS " ") + message(STATUS "Try :") + message(STATUS " 'make -jN' to build the project, N being the number of available processes.") + message(STATUS " 'make python-install' to install python modules and their dependencies. ") + message(STATUS " 'make doc' to generate doxygen documentation for parmepy.") + message(STATUS " 'make test' to run some test (after the build!).") + message(STATUS " 'make clean' to clean build directory.") + message(STATUS " 'make python-cleaninstall' to clean install directory.") endif() diff --git a/HySoP/hysop/constants.py b/HySoP/hysop/constants.py index ebfe50a4fb9ec7af150368a00dd5a69c4fbd0479..7bd6de1762ae12aaa2f35e390f9d434ef6505a0e 100644 --- a/HySoP/hysop/constants.py +++ b/HySoP/hysop/constants.py @@ -31,6 +31,10 @@ ZDIR = 2 PERIODIC = 0 ## Directions string S_DIR = ["_X", "_Y", "_Z"] +## Stretching formulation (div(w:u)) +CONSERVATIVE = 1 +## Stretching formulation ([grad(u)][w]) +GRADUW = 0 #define debug decorator: diff --git a/HySoP/hysop/numerics/differential_operations.py b/HySoP/hysop/numerics/differential_operations.py index cec05fb5e506faacfb67013daca41fe6e95c5769..d9df8082685cbaf84480433bd340f0fdd714a5c3 100755 --- a/HySoP/hysop/numerics/differential_operations.py +++ b/HySoP/hysop/numerics/differential_operations.py @@ -1,4 +1,4 @@ -# -*- codingind utf-8 -*- +# -*- coding: utf-8 -*- """ @file differential_operations.py Library of functions used to perform classical vector calculus @@ -7,6 +7,7 @@ Library of functions used to perform classical vector calculus from parmepy.constants import debug, XDIR, YDIR, ZDIR from abc import ABCMeta, abstractmethod from finite_differences import FD_C_4 +import numpy as np class DifferentialOperation(object): @@ -18,15 +19,17 @@ class DifferentialOperation(object): @debug @abstractmethod - def __init__(self): + def __init__(self, topo, method=None): pass - + class Curl(DifferentialOperation): """ Computes \f$ \nabla \ times (f) \f$, f being a vector field. """ def __init__(self, topo, method=None): + + DifferentialOperation.__init__(self, topo) if method is not None and method.find('FD_order2') >= 0: raise ValueError("2nd order scheme Not yet implemented") else: @@ -36,19 +39,21 @@ class Curl(DifferentialOperation): self.fd_scheme = FD_C_4(topo.mesh.space_step) self.indices = topo.mesh.iCompute self.fd_scheme.computeIndices(self.indices) + self.nbComponents = topo.domain.dimension def __call__(self, variable, data=None): return self.fcall(variable, data) def FDCentral4(self, variable, data=None): """ + @param variable : a list of numpy arrays """ # Get slices for subarrays ... # init (if required) return data if data is None: data = [] - for i in xrange(variable.dimension): - data.append(variable.data[i].copy()) + for i in xrange(self.nbComponents): + data.append(variable[i].copy()) #data[i][...] = 0.0 #data[0][...] = 0.0 @@ -100,6 +105,7 @@ class DivV(DifferentialOperation): self.fd_scheme.computeIndices(self.indices) assert (topo.ghosts >= 2).all(),\ 'you need a ghost layer for FD4 scheme.' + self.nbComponents = topo.domain.dimension def __call__(self, var1, scal, data=None, work=None): return self.fcall(var1, scal, data) @@ -109,9 +115,9 @@ class DivV(DifferentialOperation): Compute central finite difference scheme, order 4. """ if data is None: - data = var1.data[0].copy() + data = np.zeros_like(var1[0]) if work is None: - work = var1.data[0].copy() + work = np.zeros_like(var1[0]) #data[...] = 0.0 @@ -129,9 +135,9 @@ class DivV(DifferentialOperation): """ """ if data is None: - data = var1.data[0].copy() - - data[...] = 0.0 + data = np.zeros_like(var1[0]) + else: + data[...] = 0.0 # d/dx (scal * v1x) self.fd_scheme.accumulate(var1[XDIR] * scal, XDIR, data) @@ -154,6 +160,7 @@ class DivT(DifferentialOperation): self.fcall = self.FDCentral4 self.div = DivV(topo, method='FD_C4') self.divZ = DivV(topo, method='FD_C4_nowork') + self.nbComponents = topo.domain.dimension def __call__(self, var1, var2, data=None): return self.fcall(var1, var2, data) @@ -164,8 +171,9 @@ class DivT(DifferentialOperation): # init (if required) return data if data is None: data = [] - for i in xrange(var1.dimension): - data.append(var1.data[i].copy()) + for i in xrange(self.nbComponents): + data.append(np.zeros_like(var1[i])) + # we use data[Y]Â and data[Z] as work ... data[XDIR] = self.div(var1, var2[XDIR], data=data[XDIR], work=data[YDIR]) @@ -174,3 +182,124 @@ class DivT(DifferentialOperation): # No work vector for zdir data[ZDIR] = self.divZ(var1, var2[ZDIR], data=data[ZDIR]) return data + + +class GradS(DifferentialOperation): + """ + Computes \f$ \nabla(\rho) \f$, \f$ \rho\f$ a scalar field + """ + def __init__(self, topo, method=None): + if method is not None and method.find('FD_order2') >= 0: + raise ValueError("2nd order scheme Not yet implemented") + elif method.find('FD_C4') >= 0: + self.fcall = self.FDCentral4 + self.fd_scheme = FD_C_4((topo.mesh.space_step)) + else: + raise ValueError("FD scheme Not yet implemented") + + self.indices = topo.mesh.iCompute + self.fd_scheme.computeIndices(self.indices) + assert (topo.ghosts >= 2).all(),\ + 'you need a ghost layer for FD4 scheme.' + ## number of components for vector fields + self.nbComponents = topo.domain.dimension + + def __call__(self, scal, data=None, work=None): + return self.fcall(scal, data) + + def FDCentral4(self, scal, data=None): + """ + Compute central finite difference scheme, order 4. + @param scal a numpy array + """ + if data is None: + data = [] + for i in xrange(self.nbComponents): + data.append(np.zeros_like(scal)) + #data[...] = 0.0 + + # d/dx (scal), saved in data + self.fd_scheme.inplace(scal, XDIR, data[XDIR]) + # d/dy (scal), saved in data + self.fd_scheme.inplace(scal, YDIR, data[YDIR]) + # d/dz(scal), saved in data + self.fd_scheme.inplace(scal, ZDIR, data[ZDIR]) + return data + + +class GradVxW(DifferentialOperation): + """ + Computes \f$ [\nabla(V)][W] \f$, with + \f$V\f$ and \f$W\f$ some vector fields. + """ + def __init__(self, topo, method=None): + if method is not None and method.find('FD_order2') >= 0: + raise ValueError("2nd order scheme Not yet implemented") + else: + self.fcall = self.FDCentral4 + self.grad = GradS(topo, method='FD_C4') + + self.divZ = DivV(topo, method='FD_C4_nowork') + self.nbComponents = topo.domain.dimension + + if self.nbComponents == 1: + self.worklength = 1 + elif self.nbComponents == 2: + self.worklength = 3 + else: + self.worklength = 5 + self.prod = BlockProd() + + def __call__(self, var1, var2, diagnostics=None, data=None): + return self.fcall(var1, var2, diagnostics, data) + + def FDCentral4(self, var1, var2, diagnostics=None, data=None): + """ + """ + # init (if required) return data + if data is None: + data = [] + for i in xrange(self.worklength): + data.append(np.zeros_like(var1[0])) + else: + assert len(data) == self.worklength + if diagnostics is not None: + diagnostics[:] = 0.0 + + for direc in xrange(self.nbComponents): + data[direc:self.nbComponents + direc] = \ + self.grad(var1[direc], + data=data[direc:self.nbComponents + direc]) + + if diagnostics is not None: + diagnostics[0] = max(diagnostics[0], + sum([abs(data[i]) + for i in xrange(direc, + self.nbComponents + + direc)])) + + # compute grad(Vx).var2 + data[direc] = self.prod(data[direc:self.nbComponents + direc], + var2, data[direc]) + return data + + +class BlockProd(object): + """ + Block product of two lists of numpy arrays + """ + def __init__(self): + pass + + def __call__(self, list1, list2, data=None): + assert len(list1) == len(list2) + + if data is not None: + assert data.shape == list1[0].shape + data[...] = 0.0 + else: + data = np.zeros_like(list1[0]) + + for i in xrange(len(list1)): + data += list1[i] * list2[i] + return data diff --git a/HySoP/hysop/numerics/finite_differences.py b/HySoP/hysop/numerics/finite_differences.py index 9d1dd160aa65e1c697c805a07ae3178569e4bb48..7f2ebf3e9d4ed8c4dcb70f504bb6a7ccd4d596fc 100644 --- a/HySoP/hysop/numerics/finite_differences.py +++ b/HySoP/hysop/numerics/finite_differences.py @@ -29,10 +29,11 @@ class FD_C_4(FiniteDifference): def __init__(self, step): """ Constructor - @param step : grid step size + @param step : a numpy array with grid step size in each dir. """ # dim of the field on which scheme will be applied # (i.e dim of the domain) + step = np.asarray(step) self._dim = step.size # list of indices for index - 1 self._m1 = [] @@ -73,7 +74,7 @@ class FD_C_4(FiniteDifference): def inplace(self, tab, cdir, result): """ - Compute \f$ \frac{\partial d tab()}{\partial cdir} \f$ using fd scheme, + Compute \f$ \frac{\partial tab()}{\partial cdir} \f$ using fd scheme, The result is saved in input/ouput parameter result (in place!) @param tab : a numpy array @param cdir : direction of differentiation @@ -88,7 +89,7 @@ class FD_C_4(FiniteDifference): def accumulate(self, tab, cdir, result): """ - Compute \f$ \frac{\partial d tab()}{\partial cdir} \f$ using fd scheme, + Compute \f$ \frac{\partial tab()}{\partial cdir} \f$ using fd scheme, The result is ADDED to input/ouput parameter result. @param tab : a numpy array @param cdir : direction of differentiation diff --git a/HySoP/hysop/numerics/integrators/euler.py b/HySoP/hysop/numerics/integrators/euler.py index 57bbb3f91d60a74434353141b7fce547723da865..20102a9fbf87a45b024ae465b54bb498795e59ce 100755 --- a/HySoP/hysop/numerics/integrators/euler.py +++ b/HySoP/hysop/numerics/integrators/euler.py @@ -4,7 +4,6 @@ Forward Euler method. """ -from parmepy.constants import np, PARMES_REAL, ORDER from parmepy.numerics.integrators.odesolver import ODESolver @@ -17,35 +16,18 @@ class Euler(ODESolver): y(t_{n+1}) = y(t_n) + dt*f(y(t_n)) """ - def __init__(self, f=None, dim=1): + def __init__(self, dim, f=None): """ - Constructor. - @param f function f(t,y) : Right hand side of the equation to solve. @param dim : dimensions - @param conditions : function to apply boundary conditions. """ - ODESolver.__init__(self, f) + ODESolver.__init__(self, dim, f) self.name = 'euler' - def __call__(self, f, t, dt, y): - """ - Integration step for Euler Method. - up = f[t, u(t,x,y,z)]. - - @param u : function of position at time t. - @param f : function of function of position at time t. - @param t : current time. - @param dt : time step. -# """ -# result = y + dt * np.asarray(f(t, y), dtype=PARMES_REAL, order=ORDER) -# return result - - RHS = f(t, y) - - return y[0] + dt * RHS[0], \ - y[1] + dt * RHS[1], \ - y[2] + dt * RHS[2] + def __call__(self, y, dt, t): + + result = self.f(t, y) + return [y[i] + dt * result[i] for i in xrange(self._dim)] def __str__(self): """ToString method""" diff --git a/HySoP/hysop/numerics/integrators/odesolver.py b/HySoP/hysop/numerics/integrators/odesolver.py index 7d91f24b4be7cdb944fe235957313dbedb52b6d1..df9538d53bdc8f995460183d8e57f94225a7fefc 100644 --- a/HySoP/hysop/numerics/integrators/odesolver.py +++ b/HySoP/hysop/numerics/integrators/odesolver.py @@ -12,46 +12,40 @@ class ODESolver(NumMethod): """ Abstract description for ODE solvers. Solve the system : - y'(t) = f(t,y) + \f[ \frac{dy(t)}{dt} = f(t,y) \f] - By default, f = 0. """ __metaclass__ = ABCMeta @abstractmethod - def __init__(self, f=None): + def __init__(self, dim, f=None): """ - Constructor. - - @param f function f(t,y) : Right hand side of the equation to solve. + @param dim, vector field (f) dimension (number of component) + @param f : function f(t,y), right hand side of the equation to solve. + WARNING : y arg must be a list of numpy arrays and f must return + a list of numpy arrays. """ super(ODESolver, self).__init__() ## RHS. if f is not None: self.f = f else: - #[0. for x in y] - self.f = lambda t, y: np.vectorize(f)(t, y) + self.f = lambda t, y: [np.zeros_like(y[i]) for i in xrange(dim)] + + self._dim = dim @abstractmethod - def __call__(self, y, t, dt): + def __call__(self, y, dt, t): """ - Abstract method, apply operaton on a variable. - Must be implemented by sub-class. - @param y : position at time t. @param t : current time. @param dt : time step. @return y at t+dt. """ - pass if __name__ == "__main__": print __doc__ print "- Provided class : ODESolver (abstract)" print ODESolver.__doc__ - - - diff --git a/HySoP/hysop/numerics/integrators/runge_kutta2.py b/HySoP/hysop/numerics/integrators/runge_kutta2.py index 3bad5042704a303f136f837ea835211f9deb3e64..df6793e02f61273ff745a0bfba5dcfe09068cfa9 100755 --- a/HySoP/hysop/numerics/integrators/runge_kutta2.py +++ b/HySoP/hysop/numerics/integrators/runge_kutta2.py @@ -3,7 +3,6 @@ RK2 method interface. """ -from parmepy.constants import np from parmepy.numerics.integrators.odesolver import ODESolver @@ -15,98 +14,79 @@ class RK2(ODESolver): y(t_n+1)= y(t_n) + dt*y'[y(t_n)+dt/2*y'(y(t_n))]. """ - def __init__(self, f=None, dim=3): + def __init__(self, dim, f=None): """ - Constructor. - + @param dim, vector field (f) dimension (number of component) @param f function f(t,y) : Right hand side of the equation to solve. - @param dim : dimensions """ - ODESolver.__init__(self, f) + ODESolver.__init__(self, dim, f) self.name = 'RK2' - def __call__(self, f, t, dt, y): - - """ - Integration step for RK2 Method. - up = f[t, Y(t,space)]. - - @param f : right-hand side. - @param t : current time. - @param dt : time step. - @param y : function Y(t,space) - """ - -# # K1 = dt *f[t,y(t,x,y,z)] -# K1 = dt * np.asarray(f(t, y), dtype=PARMES_REAL, order=ORDER) -# # result = y(t,x,y,z)] + dt *f[t + dt/2 , y(t,x,y,z) + k1/2.] - -# result = y + dt * np.asarray(f(t + dt / 2., y + K1 / 2.), -# dtype=PARMES_REAL, order=ORDER) -# return result - - RHS1 = f(t, y) - K1 = np.array([dt * RHS1[0], dt * RHS1[1], dt * RHS1[2]]) - - RHS2 = f(t + dt / 2., y + K1 / 2.) - - return y[0] + dt * RHS2[0], \ - y[1] + dt * RHS2[1], \ - y[2] + dt * RHS2[2] - - -class RK2_scalar(ODESolver): - """ - ODESolver implementation for solving an equation system with RK2 method - for scalar quantities. - y'(t) = f(t,y) - - y(t_n+1)= y(t_n) + dt*y'[y(t_n)+dt/2*y'(y(t_n))]. - - """ - def __init__(self, f=None): - """ - Constructor. - - @param f function f(t,y) : Right hand side of the equation to solve. - @param dim : dimensions - """ - ODESolver.__init__(self, f) - self.name = 'RK2' - - def __call__(self, t, dt, y, res=None, - work=None, y_temp=None, - yprime=None, **f_kwargs): - - """ - Integration step for RK2 Method. - up = f[t, Y(t,space)]. - - @param t : current time. - @param dt : time step. - @param y : function Y(t,space). - @param res : result (may be allocated when not None). - @param work : allocated working array. - @param yprime : y'(t) already computed (avoid 1st call to f) - @param f_kwargs : Parameters for right-hand side computing. - """ - if res is None: - res = np.empty_like(y) - if work is None: - work = np.empty_like(y) - if yprime is None: - yprime = np.empty_like(y) - yprime[...] = self.f(t, y, res=yprime, **f_kwargs) - - y_temp[...] = y + 0.5 * dt * yprime - work[...] = self.f(t + 0.5 * dt, y_temp, res=work, **f_kwargs) - - res[...] = y - res[...] += dt * work - - def __str__(self): - """ToString method""" - return "RK2 Method" + def __call__(self, y, dt, t): + # k1 = f(t,y) + # k2 = f(t + dt/2, y + dt/2 * k1) + # result = y + dt * k2 + + assert len(y) == self._dim + # k1 ... in k2 + k2 = self.f(t, y) + # k2 + k2 = [y[i] + dt / 2 * k2[i] for i in xrange(self._dim)] + k2 = self.f(t + dt / 2., k2) + + return [y[i] + dt * k2[i] for i in xrange(self._dim)] + + +## class RK2_scalar(ODESolver): +## """ +## ODESolver implementation for solving an equation system with RK2 method +## for scalar quantities. +## y'(t) = f(t,y) + +## y(t_n+1)= y(t_n) + dt*y'[y(t_n)+dt/2*y'(y(t_n))]. + +## """ +## def __init__(self, f=None): +## """ +## Constructor. + +## @param f function f(t,y) : Right hand side of the equation to solve. +## @param dim : dimensions +## """ +## ODESolver.__init__(self, f) +## self.name = 'RK2' + +## def __call__(self, f, t, dt, y, res=None, work=None, yprime=None, +## **f_kwargs): + +## """ +## Integration step for RK2 Method. +## up = f[t, Y(t,space)]. + +## @param f : right-hand side. +## @param t : current time. +## @param dt : time step. +## @param y : function Y(t,space). +## @param res : result (may be allocated when not None). +## @param work : allocated working array. +## @param yprime : y'(t) already computed (avoid 1st call to f) +## @param f_kwargs : Parameters for right-hand side computing. +## """ +## if res is None: +## res = np.empty_like(y) +## if work is None: +## work = np.empty_like(y) +## if yprime is None: +## work[...] = f(t, y, res=work, **f_kwargs) +## else: +## work[...] = yprime +## work[...] *= 0.5 * dt +## res[...] = y +## res[...] += dt * f(t + 0.5 * dt, y + work, **f_kwargs) + +## def __str__(self): +## """ToString method""" +## return "RK2 Method" if __name__ == "__main__": diff --git a/HySoP/hysop/numerics/integrators/runge_kutta3.py b/HySoP/hysop/numerics/integrators/runge_kutta3.py index d417ab7c20758d271fb4bc3a6ad18a158502ceda..905710465560246e548067ab9de82460d8aff566 100755 --- a/HySoP/hysop/numerics/integrators/runge_kutta3.py +++ b/HySoP/hysop/numerics/integrators/runge_kutta3.py @@ -3,64 +3,41 @@ RK3 method interface. """ -from parmepy.constants import np, PARMES_REAL, ORDER from parmepy.numerics.integrators.odesolver import ODESolver class RK3(ODESolver): """ ODESolver implementation for solving an equation system with RK3 method. - y'(t) = f(t,y) - - y(t_n+1)= y(t_n) + dt*y'[y(t_n)+dt/2*y'(y(t_n))]. - """ - def __init__(self, f=None, dim=3): + def __init__(self, dim, f=None): """ - Constructor. - @param f function f(t,y) : Right hand side of the equation to solve. @param dim : dimensions - @param conditions : function to apply boundary conditions. """ - ODESolver.__init__(self, f) + ODESolver.__init__(self, dim, f) self.name = 'RK3' - def __call__(self, f, t, dt, y): - """ - Integration step for RK2 Method. - up = f[t, Y(t,space)]. - - @param f : right-hand side. - @param t : current time. - @param dt : time step. - @param y : function Y(t,space) - """ -# # K1 = dt *f[t,y(t,x,y,z)] -# K1 = dt * np.asarray(f(t, y), dtype=PARMES_REAL, order=ORDER) -# # result = y(t,x,y,z)] + dt *f[t + dt/2 , y(t,x,y,z) + k1/2.] -# K2 = dt * np.asarray(f(t + dt / 3., y + K1[:, :, :, :] / 3.), -# dtype=PARMES_REAL, order=ORDER) -# K3 = dt * np.asarray( -# f(t + dt * 2. / 3., y + K2[:, :, :, :] * 2. / 3.), -# dtype=PARMES_REAL, order=ORDER) -# # result = y(t,x,y,z)] + 1/4 [ k1 + 3 k3] -# result = y + 1. / 4. * (K1 + 3. * K3) -# return result + def __call__(self, y, dt, t): - RHS1 = f(t, y) - K1 = np.array([dt * RHS1[0], dt * RHS1[1], dt * RHS1[2]]) + # k1 = f(t,y) + # k2 = f(t+dt/3, y + dt/3 *k1)) + # k3 = f(t + 2/3 *dt , y + 2/3 dt * k2)) + # result = y + 0.25 * dt * (k1 + 3 * k3) - RHS2 = f(t + dt / 3., y + K1 / 3.) - K2 = np.array([dt * RHS2[0], dt * RHS2[1], dt * RHS2[2]]) + assert len(y) == self._dim - RHS3 = f(t + dt * 2. / 3., y + K2 * 2. / 3.) - K3 = np.array([dt * RHS3[0], dt * RHS3[1], dt * RHS3[2]]) + k1 = self.f(t, y) + # k2 ... in k3 + k3 = [y[i] + dt / 3 * k1[i] for i in xrange(self._dim)] + k3 = self.f(t + dt / 3., k3) + # k3 ... + k3 = [y[i] + 2 * dt / 3 * k3[i] for i in xrange(self._dim)] + k3 = self.f(t + dt * 2. / 3., k3) # result = y(t,x,y,z)] + 1/4 [ k1 + 3 k3] - return y[0] + 1. / 4. * (K1[0] + 3. * K3[0]), \ - y[1] + 1. / 4. * (K1[1] + 3. * K3[1]), \ - y[2] + 1. / 4. * (K1[2] + 3. * K3[2]) + return [y[i] + 0.25 * dt * (k1[i] + 3 * k3[i]) + for i in xrange(self._dim)] def __str__(self): """ToString method""" diff --git a/HySoP/hysop/numerics/integrators/runge_kutta4.py b/HySoP/hysop/numerics/integrators/runge_kutta4.py index c75c5545ff613d9f6ccd56b8e49d685c8105e3ad..c5d33dece20fa7140e7eccf6b77b72a6e3b11550 100755 --- a/HySoP/hysop/numerics/integrators/runge_kutta4.py +++ b/HySoP/hysop/numerics/integrators/runge_kutta4.py @@ -4,75 +4,59 @@ RK4 method interface. """ -from parmepy.constants import np, PARMES_REAL, ORDER from parmepy.numerics.integrators.odesolver import ODESolver class RK4(ODESolver): """ ODESolver implementation for solving an equation system with RK4 method. - y'(t) = f(t,y) - - y(t_n+1)= y(t_n) + dt*y'[y(t_n)+dt/2*y'(y(t_n))]. - """ - def __init__(self, f=None, dim=3): + def __init__(self, dim, f=None): """ - Constructor. - @param f function f(t,y) : Right hand side of the equation to solve. @param dim : dimensions - @param conditions : function to apply boundary conditions. """ - ODESolver.__init__(self, f) + ODESolver.__init__(self, dim, f) self.name = 'RK4' - def __call__(self, f, t, dt, y): - """ - Integration step for RK4 Method. - up = f[t, Y(t,space)]. - - @param f : right-hand side. - @param t : current time. - @param dt : time step. - @param y : function Y(t,space) - """ - -# # K1 = dt *f[t, y(t, x, y, z)] -# K1 = dt * np.asarray(f(t, y), dtype=PARMES_REAL, order=ORDER) -# K2 = dt * np.asarray(f(t + dt / 2., y + K1[:, :, :, :] / 2.), -# dtype=PARMES_REAL, order=ORDER) -# K3 = dt * np.asarray(f(t + dt / 2., y + K2[:, :, :, :] / 2.), -# dtype=PARMES_REAL, order=ORDER) -# K4 = dt * np.asarray(f(t + dt, y + K3[:, :, :, :]), -# dtype=PARMES_REAL, order=ORDER) -# # result = y(t, x, y, z)] + dt *f[t + dt/2 , y(t, x, y, z) + k1/2.] -# result = y + 1. / 6. * (K1[:, :, :, :] + 2. * K2[:, :, :, :] + -# 2. * K3[:, :, :, :] + K4[:, :, :, :]) -# return result - - RHS1 = f(t, y) - K1 = np.array([dt * RHS1[0], dt * RHS1[1], dt * RHS1[2]]) - - RHS2 = f(t + dt / 2., y + K1 / 1.) - K2 = np.array([dt * RHS2[0], dt * RHS2[1], dt * RHS2[2]]) - - RHS3 = f(t + dt * 2., y + K2 * 2.) - K3 = np.array([dt * RHS3[0], dt * RHS3[1], dt * RHS3[2]]) - - RHS4 = f(t + dt, y + K3) - K4 = np.array([dt * RHS4[0], dt * RHS4[1], dt * RHS4[2]]) - - # result = y(t, x, y, z)] + dt *f[t + dt/2 , y(t, x, y, z) + k1/2.] - return y[0] + 1. / 6. * (K1[0] + 2. * K2[0] + 2. * K3[0] + K4[0]), \ - y[1] + 1. / 6. * (K1[1] + 2. * K2[1] + 2. * K3[1] + K4[1]), \ - y[2] + 1. / 6. * (K1[2] + 2. * K2[2] + 2. * K3[2] + K4[2]) + def __call__(self, y, dt, t): + + # k1 = f(t,y) + # k2 = f(t + dt/2, y + dt/2 * k1) + # k3 = f(t + dt/2, y + dt/2 * k2) + # k4 = f(t + dt, y + dt * k3) + # result = y + dt/6( k1 + 2 * k2 + 2 * k3 + k4) + + # k1 in result + result = self.f(t, y) + # k2 in work + work = [y[i] + dt / 2 * result[i] for i in xrange(self._dim)] + work = self.f(t + dt / 2, work) + + # k1 + 2 * k2 + for i in xrange(self._dim): + result[i] += 2 * work[i] + # k3 in work + work = [y[i] + dt / 2 * work[i] for i in xrange(self._dim)] + work = self.f(t + dt / 2, work) + # k1 + 2 * k2 + 2 * k3 + for i in xrange(self._dim): + result[i] += 2 * work[i] + # k4 in work + work = [y[i] + dt * work[i] for i in xrange(self._dim)] + work = self.f(t + dt, work) + # k1 + 2 * k2 + 2 * k3 + k4 + for i in xrange(self._dim): + result[i] += work[i] + result[i] *= dt / 6 + result[i] += y[i] + + return result def __str__(self): """ToString method""" return "RK4 Method" - class RK4_scalar(ODESolver): """ ODESolver implementation for solving an equation system with RK4 method @@ -132,7 +116,6 @@ class RK4_scalar(ODESolver): """ToString method""" return "RK4 Method" - if __name__ == "__main__": print __doc__ print "- Provided class : RK4" diff --git a/HySoP/hysop/operator/continuous.py b/HySoP/hysop/operator/continuous.py index 2e827ca148d13796958b6aa7b3bcd47241465b69..7b36c2cbc7008c838f5a9056753e52b33c050286 100644 --- a/HySoP/hysop/operator/continuous.py +++ b/HySoP/hysop/operator/continuous.py @@ -75,7 +75,6 @@ class Operator(object): ## Number of points in the ghost layer if ghosts is not None: self.ghosts = np.asarray(ghosts) - print "ooioii", self.ghosts, self.ghosts.size, self.domain.dimension assert self.ghosts.size == self.domain.dimension else: self.ghosts = None diff --git a/HySoP/hysop/operator/curl.py b/HySoP/hysop/operator/curl.py index 7a320a2b07833073845d7116c690b8bced5c3b11..11a35350331f820d1d5bae210b9b453255fa0d68 100644 --- a/HySoP/hysop/operator/curl.py +++ b/HySoP/hysop/operator/curl.py @@ -6,6 +6,7 @@ Curl of a field. from parmepy.constants import debug, np from parmepy.operator.continuous import Operator from parmepy.operator.discrete.curl import CurlFD +from parmepy.operator.updateGhosts import UpdateGhosts class Curl(Operator): @@ -21,7 +22,7 @@ class Curl(Operator): @param invar : the input vector field @param outvar : curl of input vector field @param resolution : resolution (global) of the fields - @param method : Method used (default = finite difference, 4th order) + @param method : method used (default = finite difference, 4th order) @param topo : a predefined topology to discretize invar/outvar """ @@ -35,15 +36,15 @@ class Curl(Operator): self.invar = invar self.outvar = outvar if self.method is None: - self.method = 'FD_order4' + self.method = 'FD_C4' + ## An operator to update ghost points of input var. + self.ghostsOperator = None @debug def setUp(self): - - print "set up for curl ..." if self.method.find('FD_order2') >= 0: nbGhosts = 1 - elif self.method.find('FD_order4') >= 0: + elif self.method.find('FD_C4') >= 0: nbGhosts = 2 else: nbGhosts = 0 @@ -75,8 +76,18 @@ class Curl(Operator): self.discreteFields[self.outvar], method=self.method) self.discreteOperator.setUp() + # ghost op + self.ghostsOperator = UpdateGhosts(self.input, topo=topo) + self._isUpToDate = True + def apply(self, simulation=None): + # update ghost points, if required + if self.ghostsOperator is not None: + self.ghostsOperator.apply() + # computation ... + self.discreteOperator.apply(simulation) + if __name__ == "__main__": print __doc__ print "- Provided class : Curl" diff --git a/HySoP/hysop/operator/discrete/stretching.py b/HySoP/hysop/operator/discrete/stretching.py index 48c6fd9b877418cb934c195879a4ba917f1729ed..b46cb2c6115d75ce4bdcda4b150e1c3ab067f1eb 100755 --- a/HySoP/hysop/operator/discrete/stretching.py +++ b/HySoP/hysop/operator/discrete/stretching.py @@ -2,50 +2,64 @@ """ @file operator/discrete/stretching.py -Discrete stretching representation +Discretisation of the stretching operator for two different formulations. """ from parmepy.constants import debug from discrete import DiscreteOperator -from parmepy.numerics.differentialOperator import DifferentialOperator -from parmepy.numerics.fct2op import Fct2Op from parmepy.numerics.integrators.euler import Euler from parmepy.numerics.integrators.runge_kutta2 import RK2 from parmepy.numerics.integrators.runge_kutta3 import RK3 from parmepy.numerics.integrators.runge_kutta4 import RK4 from parmepy.tools.timers import timed_function -from parmepy.operator.discrete.synchronizeGhosts import SynchronizeGhosts_d +from parmepy.numerics.differential_operations import DivT, GradVxW +import numpy as np +import math +ceil = math.ceil -class Stretching_d(DiscreteOperator): +class ConservativeStretching(DiscreteOperator): """ - Stretching operator representation. + Discretisation of the following problem : + \f{eqnarray*} \frac{\partial\omega}{\partial t} = \nabla.(\omega:v) \f} """ @debug - def __init__(self, velocity, vorticity, - method='FD_order4 RK3', propertyOp='divConservation'): + def __init__(self, velocity, vorticity, method=None): """ - Constructor. - Create a Stretching operator on a given continuous domain. - Work on a given velocity and vorticity to compute the stretching term. - - @param stretch : Stretching operator. - @param method : Method to use + @param velocity : discrete field + @param vorticity : discrete field + @param method : numerical method for space/time discretizations """ - DiscreteOperator.__init__(self, [velocity, vorticity], method, - name="Stretching") - ## Velocity. + ## velocity discrete field self.velocity = velocity - ## Vorticity. + ## vorticity discrete field self.vorticity = vorticity - # ## input fields - # self.input = [self.velocity, self.vorticity] - self.propertyOp = propertyOp + + DiscreteOperator.__init__(self, [self.velocity, self.vorticity], + method, + name="ConservativeStretching") + self.input = [self.velocity, self.vorticity] self.output = [self.vorticity] + # \todo multiresolution case + assert self.velocity.topology == self.vorticity.topology,\ + 'Multiresolution case not yet implemented.' + + # We must have a topo for this operator ... + # A function to compute the gradient of a vector field + self.divFunc = DivT(self.velocity.topology, + method=method) + + # Time integration scheme. + def rhs(t, y): + return self.divFunc(self.velocity.data, y) + + # TOdo : check fd call with numpy and/or parmes fields. + # stability constant self.cststretch = 0. + # set time integration method if self.method.find('Euler') >= 0: self.num_method = Euler self.cststretch = 2.0 @@ -62,99 +76,124 @@ class Stretching_d(DiscreteOperator): self.num_method = RK3 self.cststretch = 2.5127 + self.timeIntegrator = self.num_method(self.vorticity.nbComponents, rhs) + @timed_function def apply(self, simulation): + if simulation is None: + raise ValueError("Missing simulation value for computation.") + + # time step + dt = simulation.timeStep + # current time + t = simulation.time + # Call time integrator + self.vorticity.data[0][...], self.vorticity.data[1][...], \ + self.vorticity.data[2][...] = \ + self.timeIntegrator(self.vorticity.data, dt, t) + + +class GradStretching(DiscreteOperator): + """ + Discretisation of the following problem : + \f{eqnarray*} \frac{\partial\omega}{\partial t}=[\nabla(v)][\omega]\f} + """ + + @debug + def __init__(self, velocity, vorticity, method=None): """ - Apply Stretching operator. - - Stretching algorithm: - @li 1. discretization of the divergence operator (div wu) - or w grad(u) : \n - @li 2. Time integration. Performs a method choose to resolove - the equation dw/dt = div(wu) or dw/dt = w grad(u). - -define the function of ODEsolver as the result of the first step - -integrate with the chosen method (RK4. RK2. euler) + @param velocity : discrete field + @param vorticity : discrete field + @param method : numerical method for space/time discretizations """ + ## velocity discrete field + self.velocity = velocity + ## vorticity discrete field + self.vorticity = vorticity + + DiscreteOperator.__init__(self, [self.velocity, self.vorticity], + method, + name="ConservativeStretching") + + self.input = [self.velocity, self.vorticity] + self.output = [self.vorticity] + + # \todo multiresolution case + assert self.velocity.topology == self.vorticity.topology,\ + 'Multiresolution case not yet implemented.' + + # We must have a topo for this operator ... + # A function to compute the gradient of a vector field + self.graduv = GradVxW(self.velocity.topology, method=method) + + # Time integration scheme. + def rhs(t, y): + return self.graduv(self.velocity.data, y) + + # TOdo : check fd call with numpy and/or parmes fields. + # stability constant + self.cststretch = 0. + # set time integration method + if self.method.find('Euler') >= 0: + self.num_method = Euler + self.cststretch = 2.0 + elif self.method.find('RK2') >= 0: + self.num_method = RK2 + self.cststretch = 2.0 + elif self.method.find('RK3') >= 0: + self.num_method = RK3 + self.cststretch = 2.5127 + elif self.method.find('RK4') >= 0: + self.num_method = RK4 + self.cststretch = 2.7853 + else: + self.num_method = RK3 + self.cststretch = 2.5127 + + ## time integrator + self.timeIntegrator = self.num_method(self.vorticity.nbComponents, rhs) + ## a vector of float with diagnostics computed + ## from GradVxW (max div ...) + self.diagnostics = np.ones((5)) + + @timed_function + def apply(self, simulation): if simulation is None: raise ValueError("Missing simulation value for computation.") + # time step dt = simulation.timeStep - if self.num_method is not None: - condA = self.propertyOp.find('divConservation') < 0 - if condA and self.propertyOp.find('massConservation') < 0: - print 'No or wrong stretching operator property specified, \ - use default divConservation' - self.propertyOp = 'divConservation' - - if self.propertyOp.find('massConservation') >= 0: - ## Determination of Stretching time step (stability condition) - self.ndt = 1 - self.dtstretch = dt - - ## fct2Op - self.function = Fct2Op(self.vorticity, - self.velocity, - choice='divWU', - topology=self.velocity.topology) - - else: # self.propertyOp == 'divConservation' - - ## Space discretization of grad(u) - self.stretchOp = DifferentialOperator( - self.vorticity, self.velocity, - method='FD_order4', - choice='gradV') - #une synchro - self.synchro = SynchronizeGhosts_d( - self.vorticity.data, - self.vorticity.topology, 'greaterSend') - self.synchro.setUp() - gradResult, maxArray, divergence = self.stretchOp(self.synchro) - - print "maxadv, maxgersh", maxArray[1], maxArray[0] - print "dtAdvec", 0.5 / maxArray[1] - - ## Determination of Stretching time step (stability condition) - self.ndt = self.stabilityTest(dt, maxArray[0], - self.num_method, self.cststretch) - self.dtstretch = dt / float(self.ndt) - - ## fct2Op - self.function = Fct2Op(self.vorticity, - gradResult, - method='FD_order4', - choice='gradV', - topology=self.vorticity.topology) - self.synchro.apply() - - ## Time integration - t = simulation.time - for i in range(self.ndt): - methodInt = self.num_method(self.function) -# self.vorticity.data[...] = methodInt(self.function.apply, -# t, self.dtstretch, -# self.vorticity.data) - self.vorticity.data[0][...], self.vorticity.data[1][...], \ - self.vorticity.data[2][...] = methodInt( - self.function.apply, - t, self.dtstretch, - self.vorticity.data) - self.synchro.apply() -# print 'norm omega', LA.norm(self.vorticity.data) - - def stabilityTest(self, dt, maxi, num_method, cststretch): - dtstretch = dt - dtstretch = min(dtstretch, cststretch / maxi) - if dt == dtstretch: - print "dt, ndt , dtstretch, upperbound", dt, int(dt / dtstretch),\ - dt / float(int(dt / dtstretch)), cststretch / maxi - return int(dt / dtstretch) - else: - print "dt, ndt , dtstretch, upperbound", dt, int(dt / dtstretch)\ - + 1, dt / float(int(dt / dtstretch) + 1), cststretch / maxi - return int(dt / dtstretch) + 1 + # current time + t = simulation.time + self.graduv(self.velocity, self.vorticity, self.diagnostics) + # Compute the number of required subcycles + ndt, subdt = self.checkStability(dt) + # Call time integrator + print "time steps ...", dt, subdt + assert sum(subdt) == dt + for i in xrange(ndt): + self.vorticity.data[0], self.vorticity.data[1],\ + self.vorticity.data[2] =\ + self.timeIntegrator(self.vorticity.data, subdt[i], t) + + def checkStability(self, dt): + """ + Computes a stability condition depending on some + diagnostics (from GradVxW) + @param current time step + @return int,float : the number of required subcycles and + the subcycle time-step. + """ + dt_stab = min(dt, self.cststretch / self.diagnostics[0]) + nb_cycles = int(ceil(dt / dt_stab)) + subdt = np.zeros((nb_cycles)) + subdt[:] = dt_stab + subdt[-1] = dt - (nb_cycles - 1) * dt_stab + return nb_cycles, subdt if __name__ == "__main__": print __doc__ - print "- Provided class : Stretching_d" - print Stretching_d.__doc__ + print "- Provided class : ConservativeStretching, GradStretching" + print ConservativeStretching.__doc__ + + diff --git a/HySoP/hysop/operator/discrete/updateGhosts.py b/HySoP/hysop/operator/discrete/updateGhosts.py index 888e5cf0f88e7d48df17291e158d6664c90d85a3..7c7b403064c27e8aaf8163d22e8e626043b03877 100644 --- a/HySoP/hysop/operator/discrete/updateGhosts.py +++ b/HySoP/hysop/operator/discrete/updateGhosts.py @@ -117,8 +117,10 @@ class UpdateGhosts_d(DiscreteOperator): comm = self.topology.comm rank = self.topology.rank neighbours = self.topology.neighbours - exchange_dir = [d for d in xrange(self._dim) - if self.topology.cutdir[d]] + exchange_dir = [] + if self.topology.size > 1: + exchange_dir = [d for d in xrange(self._dim) + if self.topology.cutdir[d]] i = 0 for d in exchange_dir: # 1 - Fill in buffers diff --git a/HySoP/hysop/operator/monitors/compute_forces.py b/HySoP/hysop/operator/monitors/compute_forces.py index 5e99259b0677ab7cd9fd658880a452b6cb24fbc7..de36f634ec65f493ec90c8ec15bfe498724ca3e7 100644 --- a/HySoP/hysop/operator/monitors/compute_forces.py +++ b/HySoP/hysop/operator/monitors/compute_forces.py @@ -64,7 +64,7 @@ class Compute_forces(Monitoring): nbGhosts = 0 if self.method.find('FD_order2') >= 0: nbGhosts = 1 - elif self.method.find('FD_order4') >= 0: + elif self.method.find('FD_C4') >= 0: nbGhosts = 2 else: nbGhosts = 2 diff --git a/HySoP/hysop/operator/reprojection.py b/HySoP/hysop/operator/reprojection.py index 87e3a2e998c1d25ea66f60b00b69c16ef00b2caf..ead25a59f1acb5f95a91837ce7b93807f98a3c37 100644 --- a/HySoP/hysop/operator/reprojection.py +++ b/HySoP/hysop/operator/reprojection.py @@ -48,7 +48,7 @@ class Reprojection_criterion(Monitoring): nbGhosts = 0 if self.method.find('FD_order2') >= 0: nbGhosts = 1 - elif self.method.find('FD_order4') >= 0: + elif self.method.find('FD_C4') >= 0: nbGhosts = 2 else: nbGhosts = 2 diff --git a/HySoP/hysop/operator/stretching.py b/HySoP/hysop/operator/stretching.py index 4b381ab67f9e3f5e7ee8bf8bf1d313c9e7d6d0fa..fd888b29d5a093645097c935d124705e29280f7d 100755 --- a/HySoP/hysop/operator/stretching.py +++ b/HySoP/hysop/operator/stretching.py @@ -2,33 +2,40 @@ """ @file operator/stretching.py -Stretching operator representation - +Computation of stretch. term in Navier-Stokes. """ -from parmepy.constants import debug +from parmepy.constants import debug, GRADUW, CONSERVATIVE from parmepy.operator.continuous import Operator -from parmepy.operator.discrete.stretching import Stretching_d +from parmepy.operator.discrete.stretching import ConservativeStretching +from parmepy.operator.discrete.stretching import GradStretching +from parmepy.operator.updateGhosts import UpdateGhosts import numpy as np class Stretching(Operator): """ - Stretching operator representation \todo write latex formulas """ @debug - def __init__(self, velocity, vorticity, - resolutions=None, method='FD_order4 RK3', - topo=None, ghosts=None, **other_config): + def __init__(self, velocity, vorticity, resolutions, + formulation=None, method=None, topo=None, ghosts=None, + ghostUpdate=None): """ - Constructor. Create a Stretching operator from given velocity and vorticity variables. + 'FD_C4 RK3', - @param velocity ContinuousVectorField : velocity variable. - @param vorticity ContinuousVectorField : vorticity variable. + @param velocity field + @param vorticity field + @param resolutions : grid resolution of velocity and vorticity + @param method : solving method + (default = finite differences, 4th order, in space + and Runge-Kutta 3 in time.) + @param topo : a predefined topology to discretize velocity/vorticity + @param ghosts : number of ghosts points. Default depends on the method. + Autom. computed if not set. """ Operator.__init__(self, [velocity, vorticity], method, topo=topo, ghosts=ghosts, name="Stretching") @@ -36,64 +43,91 @@ class Stretching(Operator): self.velocity = velocity ## vorticity variable (vector) self.vorticity = vorticity + ## Grid resolution for each variable (dictionnary) self.resolutions = resolutions - self.config = other_config + ## Numerical methods for time and space discretization + if method is None: + self.method = 'FD_C4_RK3' + else: + self.method = method + ## Formulation used for the stretching equation. + ## Default = conservative form. + if formulation is not None: + self.formulation = formulation + else: + self.formulation = CONSERVATIVE + ## Do this operator deals with ghost points update? + ## default = yes + if ghostUpdate is None: + self.ghostUpdate = True + else: + self.ghostUpdate = ghostUpdate self.input = [self.velocity, self.vorticity] self.output = [self.vorticity] + ## operator to update ghost points of the input variables + self.synchronize = None @debug def setUp(self): - """ - Stretching operator discretization method. - Create a discrete Stretching operator from given specifications. - - @param idVelocityD : Index of velocity discretisation to use. - @param idVorticityD : Index of vorticity discretisation to use. - @param propertyOp : property garantied by the stretching Op - (divConservation, massConservation) default : divConservation - @param method : the method to use : - space : (FD_order2, FD_order4, ..) default : FD_order4 - and time : (Euler, RK, ..) default : RK3 - """ print '================ Stretching scheme =====================' print ' Space discretization and integr. scheme:', self.method print '========================================================' nbGhosts = 0 if self.method.find('FD_order2') >= 0: nbGhosts = 1 - elif self.method.find('FD_order4') >= 0: + elif self.method.find('FD_C4') >= 0: nbGhosts = 2 else: - nbGhosts = 2 + raise ValueError("Unknown method for stretching operator.") if self._predefinedTopo is not None: assert (self._predefinedTopo.ghosts >= nbGhosts).all() topo = self._predefinedTopo for v in self.variables: self.discreteFields[v] = v.discretize(topo) + else: # Variables discretization if self.ghosts is not None: self.ghosts[self.ghosts < nbGhosts] = nbGhosts else: - self.ghosts = np.zeros((self.domain.dimension)) * nbGhosts + self.ghosts = np.ones((self.domain.dimension)) * nbGhosts + for v in self.variables: - # the topology for v ... topo = self.domain.getOrCreateTopology(self.domain.dimension, self.resolutions[v], ghosts=self.ghosts) - - # ... and the corresponding discrete field self.discreteFields[v] = v.discretize(topo) - self.discreteOperator = \ - Stretching_d(self.discreteFields[self.velocity], - self.discreteFields[self.vorticity], - method=self.method, **self.config) - + if self.formulation is CONSERVATIVE: + self.discreteOperator =\ + ConservativeStretching(self.discreteFields[self.velocity], + self.discreteFields[self.vorticity], + method=self.method) + if self.ghostUpdate: + topov = self.discreteFields[self.velocity].topology + self.synchronize = UpdateGhosts(self.input, topo=topov) + self.synchronize.setUp() + elif self.formulation is GRADUW: + self.discreteOperator =\ + GradStretching(self.discreteFields[self.velocity], + self.discreteFields[self.vorticity], + method=self.method) + if self.ghostUpdate: + topov = self.discreteFields[self.velocity].topology + self.synchronize = UpdateGhosts(self.velocity, topo=topov) + self.synchronize.setUp() self.discreteOperator.setUp() self._isUpToDate = True + def apply(self, simulation=None): + # update ghost points, if required + if self.synchronize is not None: + self.synchronize.apply() + # computation ... + self.discreteOperator.apply(simulation) + + if __name__ == "__main__": print __doc__ print "- Provided class : Stretching" diff --git a/HySoP/hysop/operator/tests/test_Stretching.py b/HySoP/hysop/operator/tests/test_Stretching.py index db2a4786d24210f41a1da7be9400980057b87a5e..a6d044def81e34527eafa45bfeb999a107a65f0e 100755 --- a/HySoP/hysop/operator/tests/test_Stretching.py +++ b/HySoP/hysop/operator/tests/test_Stretching.py @@ -1,13 +1,9 @@ # -*- coding: utf-8 -*- -import time - import parmepy as pp import numpy as np from parmepy.fields.continuous import Field from parmepy.operator.stretching import Stretching -from parmepy.problem.navier_stokes import NSProblem from parmepy.problem.simulation import Simulation -from parmepy.mpi.main_var import main_comm, main_rank def computeVel(x, y, z): @@ -77,7 +73,7 @@ def test_Stretching(): stretch = Stretching(velo, vorti, resolutions={velo: nbElem, vorti: nbElem}, - method='FD_order4 RK3', - propertyOp='divConservation') + method='FD_C4_RK3') stretch.setUp() simulation = Simulation(0, timeStep, 20) + stretch.apply(simulation) diff --git a/HySoP/hysop/operator/updateGhosts.py b/HySoP/hysop/operator/updateGhosts.py index ea04b96f3122e5fa3942c965376c7b215bfd9817..bbab6918ea9acb728eb12271333778ebf768e733 100644 --- a/HySoP/hysop/operator/updateGhosts.py +++ b/HySoP/hysop/operator/updateGhosts.py @@ -23,7 +23,7 @@ class UpdateGhosts(Operator): """ Operator.__init__(self, variables, method, topo=topo) - self.topo = topo + self.topo = self._predefinedTopo @debug def setUp(self): diff --git a/HySoP/hysop/problem/tests/test_problem.py b/HySoP/hysop/problem/tests/test_problem.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391