"""A file containing a (pretty useless) reconstruction. It serves as example of how the project works. This file should NOT be modified. """ import numpy as np from scipy.signal import convolve2d from src.forward_model import CFA def new_interpolation(op: CFA, y: np.ndarray) -> np.ndarray: """Performs a simple interpolation of the lost pixels. Args: op (CFA): CFA operator. y (np.ndarray): Mosaicked image. Returns: np.ndarray: Demosaicked image. """ z = op.adjoint(y) if op.cfa == 'bayer': demosaicked_red = np.empty_like(z[:,:,0]) weights_red = np.array([[0, 1], [0, 0]]) for i in range(1, z.shape[0] - 1,2): for j in range(1, z.shape[1] - 1,2): demosaicked_red[i-1:i+1, j-1:j+1] = np.sum(z[i-1:i+1, j-1:j+1,0] * weights_red) demosaicked_green = np.empty_like(z[:,:,1]) weights_green = np.array([[1, 0], [0, 1]]) for i in range(1, z.shape[0] - 1,2): for j in range(1, z.shape[1] - 1,2): demosaicked_green[i-1:i+1, j-1:j+1] = np.sum(z[i-1:i+1, j-1:j+1,1] * weights_green)/2 weights_blue = np.array([[0, 0], [1, 0]]) demosaicked_blue = np.empty_like(z[:,:,2]) for i in range(1, z.shape[0] - 1,2): for j in range(1, z.shape[1] - 1,2): demosaicked_blue[i-1:i+1, j-1:j+1] = np.sum(z[i-1:i+1, j-1:j+1,2] * weights_blue) demosaicked_image = np.dstack((demosaicked_red, demosaicked_green, demosaicked_blue)) else: demosaicked_red = np.empty_like(z[:,:,0]) weights_red = np.array([[0, 0, 1, 1 ], [0, 0, 1, 1 ], [0, 0, 0, 0 ], [0, 0, 0, 0 ]]) for i in range(2, z.shape[0] - 2, 4): for j in range(2, z.shape[1] - 2, 4): demosaicked_red[i-2:i+2, j-2:j+2] = np.sum(z[i-2:i+2, j-2:j+2,0] * weights_red)/4 demosaicked_green = np.empty_like(z[:,:,1]) weights_green = np.array([[1, 1, 0, 0 ], [1, 1, 0, 0 ], [0, 0, 1, 1 ], [0, 0, 1, 1 ]]) for i in range(2, z.shape[0] - 2, 4): for j in range(2, z.shape[1] - 2, 4): demosaicked_green[i-2:i+2, j-2:j+2] = np.sum(z[i-2:i+2, j-2:j+2,1] * weights_green)/8 weights_blue = np.array([[0, 0, 0, 0 ], [0, 0, 0, 0 ], [1, 1, 0, 0 ], [1, 1, 0, 0 ]]) demosaicked_blue = np.empty_like(z[:,:,2]) for i in range(2, z.shape[0] - 2, 4): for j in range(2, z.shape[1] - 2, 4): demosaicked_blue[i-2:i+2, j-2:j+2] = np.sum(z[i-2:i+2, j-2:j+2,2] * weights_blue)/4 demosaicked_image = np.dstack((demosaicked_red, demosaicked_green, demosaicked_blue)) return demosaicked_image def extract_padded(M, size, i, j): N_i, N_j = M.shape res = np.zeros((size, size)) middle_size = int((size - 1) / 2) for ii in range(- middle_size, middle_size + 1): for jj in range(- middle_size, middle_size + 1): if i + ii >= 0 and i + ii < N_i and j + jj >= 0 and j + jj < N_j: res[middle_size + ii, middle_size + jj] = M[i + ii, j + jj] return res def varying_kernel_convolution(M, K_list): N_i, N_j = M.shape res = np.zeros_like(M) for i in range(N_i): for j in range(N_j): res[i, j] = np.sum(extract_padded(M, K_list[4 * (i % 4) + j % 4].shape[0], i, j) * K_list[4 * (i % 4) + j % 4]) np.clip(res, 0, 1, res) return res K_identity = np.zeros((5, 5)) K_identity[2, 2] = 1 K_red_0 = np.zeros((5, 5)) K_red_0[2, :] = np.array([-3, 13, 0, 0, 2]) / 12 K_red_1 = np.zeros((5, 5)) K_red_1[2, :] = np.array([2, 0, 0, 13, -3]) / 12 K_red_8 = np.zeros((5, 5)) K_red_8[:2, :2] = np.array([[-1, -1], [-1, 9]]) / 6 K_red_9 = np.zeros((5, 5)) K_red_9[:2, 3:] = np.array([[-1, -1], [9, -1]]) / 6 K_red_10 = np.zeros((5, 5)) K_red_10[:, 2] = np.array([-3, 13, 0, 0, 2]) / 12 K_red_12 = np.zeros((5, 5)) K_red_12[3:, :2] = np.array([[-1, 9], [-1, -1]]) / 6 K_red_13 = np.zeros((5, 5)) K_red_13[3:, 3:] = np.array([[9, -1], [-1, -1]]) / 6 K_red_14 = np.zeros((5, 5)) K_red_14[:, 2] = np.array([2, 0, 0, 13, -3]) / 12 K_list_red = [K_red_0, K_red_1, K_identity, K_identity, K_red_0, K_red_1, K_identity, K_identity, K_red_8, K_red_9, K_red_10, K_red_10, K_red_12, K_red_13, K_red_14, K_red_14] K_green_2 = np.zeros((5, 5)) K_green_2[2, :] = [-3, 13, 0, 0, 2] K_green_2[:, 2] = [-3, 13, 0, 0, 2] K_green_2 = K_green_2 / 24 K_green_3 = np.zeros((5, 5)) K_green_3[2, :] = [2, 0, 0, 13, -3] K_green_3[:, 2] = [-3, 13, 0, 0, 2] K_green_3 = K_green_3 / 24 K_green_6 = np.zeros((5, 5)) K_green_6[2, :] = [-3, 13, 0, 0, 2] K_green_6[:, 2] = [2, 0, 0, 13, -3] K_green_6 = K_green_6 / 24 K_green_7 = np.zeros((5, 5)) K_green_7[2, :] = [2, 0, 0, 13, -3] K_green_7[:, 2] = [2, 0, 0, 13, -3] K_green_7 = K_green_7 / 24 K_list_green = [K_identity, K_identity, K_green_2, K_green_3, K_identity, K_identity, K_green_6, K_green_7, K_green_2, K_green_3, K_identity, K_identity, K_green_6, K_green_7, K_identity, K_identity] K_list_blue = [K_red_10, K_red_10, K_red_8, K_red_9, K_red_14, K_red_14, K_red_12, K_red_13, K_identity, K_identity, K_red_0, K_red_1, K_identity, K_identity, K_red_0, K_red_1] ker_bayer_red_blue = np.array([[1, 2, 1], [2, 4, 2], [1, 2, 1]]) / 4 ker_bayer_green = np.array([[0, 1, 0], [1, 4, 1], [0, 1, 0]]) / 4