Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • samanost/sicom_image_analysis_project
  • gerayelk/sicom_image_analysis_project
  • jelassiy/sicom_image_analysis_project
  • chardoto/sicom_image_analysis_project
  • chaarim/sicom_image_analysis_project
  • domers/sicom_image_analysis_project
  • elmurrt/sicom_image_analysis_project
  • sadonest/sicom_image_analysis_project
  • kouddann/sicom_image_analysis_project
  • mirabitj/sicom-image-analysis-project-mirabito
  • plotj/sicom_image_analysis_project
  • torrem/sicom-image-analysis-project-maxime-torre
  • dzike/sicom_image_analysis_project
  • daip/sicom_image_analysis_project
  • casanovv/sicom_image_analysis_project
  • girmarti/sicom_image_analysis_project
  • lioretn/sicom_image_analysis_project
  • lemoinje/sicom_image_analysis_project
  • ouahmanf/sicom_image_analysis_project
  • vouilloa/sicom_image_analysis_project
  • diopb/sicom_image_analysis_project
  • davidale/sicom_image_analysis_project
  • enza/sicom_image_analysis_project
  • conversb/sicom_image_analysis_project
  • mullemat/sicom_image_analysis_project
25 results
Show changes
Showing
with 2086 additions and 0 deletions
"""A file containing a (pretty useless) reconstruction.
It serves as example of how the project works.
This file should NOT be modified.
"""
import numpy as np
from scipy.signal import convolve2d
from src.forward_model import CFA
def new_interpolation(op: CFA, y: np.ndarray) -> np.ndarray:
"""Performs a simple interpolation of the lost pixels.
Args:
op (CFA): CFA operator.
y (np.ndarray): Mosaicked image.
Returns:
np.ndarray: Demosaicked image.
"""
z = op.adjoint(y)
if op.cfa == 'bayer':
demosaicked_red = np.empty_like(z[:,:,0])
weights_red = np.array([[0, 1],
[0, 0]])
for i in range(1, z.shape[0] - 1,2):
for j in range(1, z.shape[1] - 1,2):
demosaicked_red[i-1:i+1, j-1:j+1] = np.sum(z[i-1:i+1, j-1:j+1,0] * weights_red)
demosaicked_green = np.empty_like(z[:,:,1])
weights_green = np.array([[1, 0],
[0, 1]])
for i in range(1, z.shape[0] - 1,2):
for j in range(1, z.shape[1] - 1,2):
demosaicked_green[i-1:i+1, j-1:j+1] = np.sum(z[i-1:i+1, j-1:j+1,1] * weights_green)/2
weights_blue = np.array([[0, 0],
[1, 0]])
demosaicked_blue = np.empty_like(z[:,:,2])
for i in range(1, z.shape[0] - 1,2):
for j in range(1, z.shape[1] - 1,2):
demosaicked_blue[i-1:i+1, j-1:j+1] = np.sum(z[i-1:i+1, j-1:j+1,2] * weights_blue)
demosaicked_image = np.dstack((demosaicked_red, demosaicked_green, demosaicked_blue))
else:
demosaicked_red = np.empty_like(z[:,:,0])
weights_red = np.array([[0, 0, 1, 1 ],
[0, 0, 1, 1 ],
[0, 0, 0, 0 ],
[0, 0, 0, 0 ]])
for i in range(2, z.shape[0] - 2, 4):
for j in range(2, z.shape[1] - 2, 4):
demosaicked_red[i-2:i+2, j-2:j+2] = np.sum(z[i-2:i+2, j-2:j+2,0] * weights_red)/4
demosaicked_green = np.empty_like(z[:,:,1])
weights_green = np.array([[1, 1, 0, 0 ],
[1, 1, 0, 0 ],
[0, 0, 1, 1 ],
[0, 0, 1, 1 ]])
for i in range(2, z.shape[0] - 2, 4):
for j in range(2, z.shape[1] - 2, 4):
demosaicked_green[i-2:i+2, j-2:j+2] = np.sum(z[i-2:i+2, j-2:j+2,1] * weights_green)/8
weights_blue = np.array([[0, 0, 0, 0 ],
[0, 0, 0, 0 ],
[1, 1, 0, 0 ],
[1, 1, 0, 0 ]])
demosaicked_blue = np.empty_like(z[:,:,2])
for i in range(2, z.shape[0] - 2, 4):
for j in range(2, z.shape[1] - 2, 4):
demosaicked_blue[i-2:i+2, j-2:j+2] = np.sum(z[i-2:i+2, j-2:j+2,2] * weights_blue)/4
demosaicked_image = np.dstack((demosaicked_red, demosaicked_green, demosaicked_blue))
return demosaicked_image
def extract_padded(M, size, i, j):
N_i, N_j = M.shape
res = np.zeros((size, size))
middle_size = int((size - 1) / 2)
for ii in range(- middle_size, middle_size + 1):
for jj in range(- middle_size, middle_size + 1):
if i + ii >= 0 and i + ii < N_i and j + jj >= 0 and j + jj < N_j:
res[middle_size + ii, middle_size + jj] = M[i + ii, j + jj]
return res
def varying_kernel_convolution(M, K_list):
N_i, N_j = M.shape
res = np.zeros_like(M)
for i in range(N_i):
for j in range(N_j):
res[i, j] = np.sum(extract_padded(M, K_list[4 * (i % 4) + j % 4].shape[0], i, j) * K_list[4 * (i % 4) + j % 4])
np.clip(res, 0, 1, res)
return res
K_identity = np.zeros((5, 5))
K_identity[2, 2] = 1
K_red_0 = np.zeros((5, 5))
K_red_0[2, :] = np.array([-3, 13, 0, 0, 2]) / 12
K_red_1 = np.zeros((5, 5))
K_red_1[2, :] = np.array([2, 0, 0, 13, -3]) / 12
K_red_8 = np.zeros((5, 5))
K_red_8[:2, :2] = np.array([[-1, -1], [-1, 9]]) / 6
K_red_9 = np.zeros((5, 5))
K_red_9[:2, 3:] = np.array([[-1, -1], [9, -1]]) / 6
K_red_10 = np.zeros((5, 5))
K_red_10[:, 2] = np.array([-3, 13, 0, 0, 2]) / 12
K_red_12 = np.zeros((5, 5))
K_red_12[3:, :2] = np.array([[-1, 9], [-1, -1]]) / 6
K_red_13 = np.zeros((5, 5))
K_red_13[3:, 3:] = np.array([[9, -1], [-1, -1]]) / 6
K_red_14 = np.zeros((5, 5))
K_red_14[:, 2] = np.array([2, 0, 0, 13, -3]) / 12
K_list_red = [K_red_0, K_red_1, K_identity, K_identity, K_red_0, K_red_1, K_identity, K_identity, K_red_8, K_red_9, K_red_10, K_red_10, K_red_12, K_red_13, K_red_14, K_red_14]
K_green_2 = np.zeros((5, 5))
K_green_2[2, :] = [-3, 13, 0, 0, 2]
K_green_2[:, 2] = [-3, 13, 0, 0, 2]
K_green_2 = K_green_2 / 24
K_green_3 = np.zeros((5, 5))
K_green_3[2, :] = [2, 0, 0, 13, -3]
K_green_3[:, 2] = [-3, 13, 0, 0, 2]
K_green_3 = K_green_3 / 24
K_green_6 = np.zeros((5, 5))
K_green_6[2, :] = [-3, 13, 0, 0, 2]
K_green_6[:, 2] = [2, 0, 0, 13, -3]
K_green_6 = K_green_6 / 24
K_green_7 = np.zeros((5, 5))
K_green_7[2, :] = [2, 0, 0, 13, -3]
K_green_7[:, 2] = [2, 0, 0, 13, -3]
K_green_7 = K_green_7 / 24
K_list_green = [K_identity, K_identity, K_green_2, K_green_3, K_identity, K_identity, K_green_6, K_green_7, K_green_2, K_green_3, K_identity, K_identity, K_green_6, K_green_7, K_identity, K_identity]
K_list_blue = [K_red_10, K_red_10, K_red_8, K_red_9, K_red_14, K_red_14, K_red_12, K_red_13, K_identity, K_identity, K_red_0, K_red_1, K_identity, K_identity, K_red_0, K_red_1]
ker_bayer_red_blue = np.array([[1, 2, 1], [2, 4, 2], [1, 2, 1]]) / 4
ker_bayer_green = np.array([[0, 1, 0], [1, 4, 1], [0, 1, 0]]) / 4
"""The main file for the reconstruction.
This file should NOT be modified except the body of the 'run_reconstruction' function.
Students can call their functions (declared in others files of src/methods/your_name).
"""
import numpy as np
from src.forward_model import CFA
from src.methods.Yosra_Jelassi.new_reconstruction import new_interpolation
def run_reconstruction(y: np.ndarray, cfa: str) -> np.ndarray:
"""Performs demosaicking on y.
Args:
y (np.ndarray): Mosaicked image to be reconstructed.
cfa (str): Name of the CFA. Can be bayer or quad_bayer.
Returns:
np.ndarray: Demosaicked image.
"""
# Performing the reconstruction.
# TODO
input_shape = (y.shape[0], y.shape[1], 3)
op = CFA(cfa, input_shape)
res = new_interpolation(op, y)
return res
####
####
####
#### #### #### #############
#### ###### #### ##################
#### ######## #### ####################
#### ########## #### #### ########
#### ############ #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ## ###### #### #### ######
#### #### #### ## #### #### ############
#### #### ###### #### #### ##########
#### #### ########## #### #### ########
#### #### ######## #### ####
#### #### ############ ####
#### #### ########## ####
#### #### ######## ####
#### #### ###### ####
# 2023
# Authors: Mauro Dalla Mura and Matthieu Muller
File added
"""The main file for the reconstruction.
This file should NOT be modified except the body of the 'run_reconstruction' function.
Students can call their functions (declared in others files of src/methods/your_name).
"""
import numpy as np
import cv2 as cv
from skimage.filters import rank
from src.forward_model import CFA
from skimage.morphology import disk
import matplotlib.pyplot as plt
def run_reconstruction(y: np.ndarray, cfa: str) -> np.ndarray:
"""Performs demosaicking on y.
Args:
y (np.ndarray): Mosaicked image to be reconstructed.
cfa (str): Name of the CFA. Can be bayer or quad_bayer.
Returns:
np.ndarray: Demosaicked image.
"""
# Performing the reconstruction.
# TODO
input_shape = (y.shape[0], y.shape[1], 3)
op = CFA(cfa, input_shape)
z = op.adjoint(y)
################# MY CODE ############################
if op.cfa == 'quad_bayer' :
# Transform into a Bayer-patterned image
y = QuadBayer_to_Bayer(y, op, vizualize=False)
# Demosaïck the image
res = demosaicking_bayer(y)
if op.cfa == 'bayer':
res = demosaicking_bayer(y)
####################################################
return res
def get_color(mask, i, j):
"""
Returns the index of the chanel that contains already a color at a pixel localization.
Args :
mask (np.ndarray) : mask of the used cfa.
i (int): index of the line of the pixel.
j (int): index of the column of the pixel.
Returns
int: the index of the color avaible at the indicated pixel.
"""
if mask[i,j,0] == 1:
return 0
if mask[i,j,1] == 1:
return 1
if mask[i,j,2] == 1:
return 2
return None
def demosaicking_bayer(y):
"""
Performs High-Quality Linear Interpolation on a Bayer-patterned image.
Args :
y (np.ndarray): Mosaicked image to be reconstructed.
Returns
np.ndarray: Demosaicked image.
"""
input_shape = (y.shape[0], y.shape[1], 3)
op = CFA("bayer", input_shape)
res = np.empty(op.input_shape)
for i in range (2, input_shape[0]-2):
for j in range (2, input_shape[0]-2):
patch = y[i-2:i+3, j-2:j+3]
channel = get_color(op.mask, i, j)
# If the Red value is avaible
if channel == 0:
res[i, j, 0] = y[i,j]
# Interpolate the Green value
res[i, j, 1] = np.sum(patch*G_at_R)/8
#Interpolate the Blue value
res[i, j, 2] = np.sum(patch* B_at_R)/8
# If the Green value is avaible
if channel == 1 :
res[i, j, 1] = y[i,j]
# Interpolation of the Red value
if get_color(op.mask, i, j+1) == 0:
res[i,j,0] = np.sum(patch*R_at_G_row)/8
else :
res[i,j,0] = np.sum(patch*R_at_G_column)/8
# Interpolation of the Blue value
if get_color(op.mask, i, j+1) == 2:
res[i,j,2] = np.sum(patch* B_at_G_row)/8
else :
res[i,j,2] = np.sum(patch * B_at_G_column)/8
# If the Blue value is avaible
if channel == 2:
res[i, j, 2] = y[i,j]
# Interpolate the Red value
res[i, j, 1] = np.sum(patch* G_at_B)/8
#Interpolate the Red value
res[i, j, 0] = np.sum(patch* R_at_B)/8
return res
def QuadBayer_to_Bayer(y, op, vizualize=False):
"""
Applies the swapping method to transform a QuadBayer-patterned image into a Bayer-patterned image
Args :
y (np.ndarray): Mosaicked image to be tranformed
op (CFA) : the CFA object
vizualize (Boolean) : show the evolution of the mask if True
Returns :
(np.ndarray): a bayer-patterned image
"""
input_shape = (y.shape[0], y.shape[1], 3)
if vizualize :
fig, axs = plt.subplots(1, 4, figsize=(15,15))
axs[0].imshow(op.mask[0:10, 0:10, :])
axs[0].set_title('Original mask')
# Step 1 : Swap 2 columns every 2 columns
temp = np.zeros((input_shape[0], 1))
temp_mask = np.zeros((input_shape[0], 1, 3))
for col in range (1, input_shape[0]-1, 4):
temp = np.copy(y[:, col])
y[:, col] = np.copy(y[:, col+1])
y[:, col+1] = np.copy(temp)
if vizualize:
temp_mask = np.copy(op.mask[:, col,:])
op.mask[:, col,:] = np.copy(op.mask[:, col+1,:])
op.mask[:, col+1,:] = np.copy(temp_mask)
if vizualize:
axs[1].imshow(op.mask[0:10, 0:10, :])
axs[1].set_title('Mask after first step')
#Step 2 : Swap 2 lines every 2 lines
temp = np.zeros((1, input_shape[1]))
temp_mask = np.zeros((1, input_shape[1],3))
for line in range (1, input_shape[1], 4):
temp = np.copy(y[line, :])
y[line, :] = np.copy(y[line+1, :])
y[line+1, :] = np.copy(temp)
if vizualize:
temp_mask = np.copy(op.mask[line, :, :])
op.mask[line, :, :] = np.copy(op.mask[line+1, :, :])
op.mask[line+1, :, :] = np.copy(temp_mask)
if vizualize:
axs[2].imshow(op.mask[0:10, 0:10, :])
axs[2].set_title('Mask after second step')
# 3: Swap back some diagonal greens
temp_mask = np.zeros((1,1,3))
for i in range(0, input_shape[0], 4):
for j in range(2, input_shape[1], 4):
temp = y[i, j]
y[i, j] = y[i+1, j-1]
y[i+1, j-1] = temp
if vizualize:
temp_mask = op.mask[i, j, :]
op.mask[i, j, :] = np.copy(op.mask[i+1, j-1, :])
op.mask[i+1, j-1, :] = np.copy(temp_mask)
if vizualize:
axs[3].imshow(op.mask[0:10, 0:10, :])
axs[3].set_title('Mask after third step')
plt.tight_layout()
plt.show()
return y
# Defining the mask
# Interpolate the Green
# Green at Red
G_at_R = [[ 0, 0,-1, 0, 0],
[ 0, 0, 2, 0, 0],
[-1, 2, 4, 2,-1],
[ 0, 0, 2, 0, 0],
[ 0, 0,-1, 0, 0]]
# Green at Blue
G_at_B = [[ 0, 0,-1, 0, 0],
[ 0, 0, 2, 0, 0],
[-1, 2, 4, 2,-1],
[ 0, 0, 2, 0, 0],
[ 0, 0,-1, 0, 0]]
#Interpolate the Red
# R at G in R row, B column
R_at_G_row = [[ 0, 0, 0.5, 0, 0],
[0, -1, 0 ,-1, 0],
[-1, 4, 5 , 4,-1],
[0, -1, 0 ,-1, 0],
[0, 0, 0.5, 0 , 0]]
# R at G in B row, R column
R_at_G_column = [[0, 0,-1, 0, 0],
[0,-1, 4,-1, 0],
[0.5,0, 5,0,0.5],
[ 0 ,-1,4,-1, 0],
[0,0,-1,0,0]]
# Red at Blue
R_at_B = [[0, 0, -1.5, 0, 0],
[0, 2, 0, 2, 0],
[-1.5, 0, 6, 0, -1.5],
[0, 2, 0, 2, 0],
[0, 0, -1.5, 0, 0]]
#Intelropation for Blue
# Blue at Green in B row, R column
B_at_G_row = [[ 0, 0, 0.5, 0, 0],
[0, -1, 0 ,-1, 0],
[-1, 4, 5 , 4,-1],
[0, -1, 0 ,-1, 0],
[0, 0, 0.5, 0 , 0]]
B_at_G_column = [[0, 0,-1, 0, 0],
[0,-1, 4,-1, 0],
[0.5,0, 5,0,0.5],
[ 0 ,-1,4,-1, 0],
[0,0,-1,0,0]]
B_at_R = [[0, 0, -1.5, 0, 0],
[0, 2, 0, 2, 0],
[-1.5, 0, 6, 0, -1.5],
[0, 2, 0, 2, 0],
[0, 0, -1.5, 0, 0]]
####
####
####
#### #### #### #############
#### ###### #### ##################
#### ######## #### ####################
#### ########## #### #### ########
#### ############ #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ## ###### #### #### ######
#### #### #### ## #### #### ############
#### #### ###### #### #### ##########
#### #### ########## #### #### ########
#### #### ######## #### ####
#### #### ############ ####
#### #### ########## ####
#### #### ######## ####
#### #### ###### ####
# 2023
# Authors: Mauro Dalla Mura and Matthieu Muller
import numpy as np
def find_neighbors (z,chan,i,j,N,M):
"""Finds all the neighbors of a pixel on a given channel
Args:
z: image.
chan: chosen chanel.
i: line of the pixel
j: column of the pixel
N: number of lines
M: number of columns
Returns:
np.ndarray: Neighbors of the pixel in a list (including the pixel itself)
"""
P1 = z[(i-1)%N,(j-1)%M,chan]
P2 = z[(i-1)%N,j%M,chan]
P3 = z[(i-1)%N,(j+1)%M,chan]
P4 = z[i%N,(j-1)%M,chan]
P5 = z[i%N,j%M,chan]
P6 = z[i%N,(j+1)%M,chan]
P7 = z[(i+1)%N,(j-1)%M,chan]
P8 = z[(i+1)%N,j%M,chan]
P9 = z[(i+1)%N,(j+1)%M,chan]
return np.array([P1,P2,P3,P4,P5,P6,P7,P8,P9])
def find_dir_deriv(neighbors):
"""Calculates the directional derivative of a pixel.
Args:
neighbors: list of the neighbors of the pixel
Returns:
np.ndarray: directional derivatives in this order: Dx, Dy, Ddx, Ddy
"""
[P1,P2,P3,P4,P5,P6,P7,P8,P9] = neighbors
Dx = (P4 - P6)/2
Dy = (P2 - P8)/2
Dxd = (P3 - P7)/(2*np.sqrt(2))
Dyd = (P1 - P9)/(2*np.sqrt(2))
return [Dx,Dy,Dxd,Dyd]
def find_weights(z, neigh, dir_deriv,chan,i,j,N,M):
"""Finds all the neighbors of a pixel on a given channel
Args:
z: image.
dir_deriv: directional derivatives
chan: chosen chanel.
i: line of the pixel
j: column of the pixel
N: number of lines
M: number of columns
Returns:
np.ndarray: Weights from E1 to E9
"""
[Dx,Dy,Dxd,Dyd] = dir_deriv
[P1,P2,P3,P4,P5,P6,P7,P8,P9] = neigh
E = []
c = 1
for k in range (-1,2):
for k in range (-1,2):
n = find_neighbors(z,chan,i+k,j+k,N,M)
dd = find_dir_deriv(n)
if c == 1 or c == 9:
E.append(1/np.sqrt(1 + Dyd**2 + dd[3]**2))
elif c == 2 or c == 8:
E.append(1/np.sqrt(1 + Dy**2 + dd[1]**2))
elif c == 3 or c == 7:
E.append(1/np.sqrt(1 + Dxd**2 + dd[2]**2))
elif c == 4 or c == 6:
E.append(1/np.sqrt(1 + Dx**2 + dd[0]**2))
c += 1
return E
def interpolate(neigh,weights):
"""interpolates pixels from a grid where one of two pixels is missing regularly spaced
Args:
neigh: neighbors of the pixel.
weights: weight of the neighbors.
Returns:
np.ndarray: The value of the interpolated pixel
"""
[P1,P2,P3,P4,P5,P6,P7,P8,P9] = neigh
[E1,E2,E3,E4,E6,E7,E8,E9] = weights
num5 = E2*P2 + E4*P4 + E6*P6 + E8*P8
den5 = E2 + E4 + E6 + E8
I5 = num5/den5
return I5
def interpolate_RB(neigh, neigh_G, weights):
"""interpolates the central missing pixel from the red or blue channel from a bayer patern
Args:
neigh: neighbors of the pixel in the red or blue channel.
neigh_G: neighbors of the pixel in the green channel.
weights: weight of the neighbors.
Returns:
np.ndarray: The value of the interpolated pixel in the red or blue channel
"""
[P1,P2,P3,P4,P5,P6,P7,P8,P9] = neigh
[G1,G2,G3,G4,G5,G6,G7,G8,G9] = neigh_G
[E1,E2,E3,E4,E6,E7,E8,E9] = weights
num5 = ((E1*P1)/G1) + ((E3*P3)/G3) + ((E7*P7)/G7) + ((E9*P9)/G9)
den5 = E1 + E3 + E7 + E9
I5 = G5 * num5/den5
return I5
def correction_G(neigh_G ,neigh_R ,neigh_B, weights):
"""corrects the value of the green pixel in the third phase of the kimmel algorythme
Args:
neigh_G: neighbors of the pixel in the green channel.
neigh_R: neighbors of the pixel in the red channel.
neigh_B: neighbors of the pixel in the blue channel.
weights: weight of the neighbors.
Returns:
np.ndarray: The value of the corrected pixel in the green channel
"""
[G1,G2,G3,G4,G5,G6,G7,G8,G9] = neigh_G
[R1,R2,R3,R4,R5,R6,R7,R8,R9] = neigh_R
[B1,B2,B3,B4,B5,B6,B7,B8,B9] = neigh_B
[E1,E2,E3,E4,E6,E7,E8,E9] = weights
num_Gb5 = ((E2*G2)/B2) + ((E4*G4)/B4) + ((E6*G6)/B6) + ((E8*G8)/B8)
num_Gr5 = ((E2*G2)/R2) + ((E4*G4)/R4) + ((E6*G6)/R6) + ((E8*G8)/R8)
den5 = E2 + E4 + E6 + E8
Gb5 = B5 * num_Gb5/den5
Gr5 = R5 * num_Gr5/den5
G5 = (Gb5 + Gr5)/2
return Gr5
def correction_R(neigh_G, neigh_R, weights):
"""corrects the value of the red pixel in the third phase of the kimmel algorythme
Args:
neigh_G: neighbors of the pixel in the green channel.
neigh_R: neighbors of the pixel in the red channel.
weights: weight of the neighbors.
Returns:
np.ndarray: The value of the corrected pixel in the red channel
"""
[G1,G2,G3,G4,G5,G6,G7,G8,G9] = neigh_G
[R1,R2,R3,R4,R5,R6,R7,R8,R9] = neigh_R
[E1,E2,E3,E4,E6,E7,E8,E9] = weights
num_R5 = ((E1*R1)/G1) + ((E2*R2)/G2) + ((E3*R3)/G3) + ((E4*R4)/G4) + ((E6*R6)/G6) + ((E7*R7)/G7) + ((E8*R8)/G8) + ((E9*R9)/G9)
den5 = sum(weights)
R5 = G5 * num_R5/den5
return R5
def correction_B(neigh_G ,neigh_B, weights):
"""corrects the value of the blue pixel in the third phase of the kimmel algorythme
Args:
neigh_G: neighbors of the pixel in the green channel.
neigh_B: neighbors of the pixel in the blue channel.
weights: weight of the neighbors.
Returns:
np.ndarray: The value of the corrected pixel in the blue channel
"""
[G1,G2,G3,G4,G5,G6,G7,G8,G9] = neigh_G
[B1,B2,B3,B4,B5,B6,B7,B8,B9] = neigh_B
[E1,E2,E3,E4,E6,E7,E8,E9] = weights
num_B5 = ((E1*B1)/G1) + ((E2*B2)/G2) + ((E3*B3)/G3) + ((E4*B4)/G4) + ((E6*B6)/G6) + ((E7*B7)/G7) + ((E8*B8)/G8) + ((E9*B9)/G9)
den5 = sum(weights)
B5 = G5 * num_B5/den5
return B5
File added
"""The main file for the reconstruction.
This file should NOT be modified except the body of the 'run_reconstruction' function.
Students can call their functions (declared in others files of src/methods/your_name).
"""
import numpy as np
from src.forward_model import CFA
from src.methods.antoine_vouillon.functions import *
#!!!!!!!! It is normal that the reconstructions lasts several minutes (3min on my computer)
def run_reconstruction(y: np.ndarray, cfa: str) -> np.ndarray:
"""Performs demosaicking on y.
Args:
y (np.ndarray): Mosaicked image to be reconstructed.
cfa (str): Name of the CFA. Can be bayer or quad_bayer.
Returns:
np.ndarray: Demosaicked image.
"""
# Define constants and operators
cfa_name = 'bayer' # bayer or quad_bayer
input_shape = (y.shape[0], y.shape[1], 3)
op = CFA(cfa_name, input_shape)
img_res = op.adjoint(y)
N = img_res[:,:,0].shape[0]
M = img_res[:,:,0].shape[1]
#interpolating green channel
for i in range (N):
for j in range (M):
if img_res[i,j,1] ==0:
neighbors = find_neighbors(img_res,1,i,j,N,M)
dir_deriv = find_dir_deriv(neighbors)
weights = find_weights(img_res, neighbors, dir_deriv,1,i,j,N,M)
img_res[i,j,1] = interpolate(neighbors,weights)
img_res[img_res>1] = 1
img_res[img_res<0] = 0
#first intepolation of red channel
for i in range (1,N,2):
for j in range (0,M,2):
neighbors = find_neighbors(img_res,0,i,j,N,M)
neighbors_G = find_neighbors(img_res,1,i,j,N,M)
dir_deriv = find_dir_deriv(neighbors_G)
weights = find_weights(img_res,neighbors_G, dir_deriv,1,i,j,N,M)
img_res[i,j,0] = interpolate_RB(neighbors, neighbors_G, weights)
# second interpolation of red channel
for i in range (N):
for j in range (M):
if img_res[i,j,0] ==0:
neighbors = find_neighbors(img_res,0,i,j,N,M)
dir_deriv = find_dir_deriv(neighbors)
weights = find_weights(img_res,neighbors, dir_deriv,0,i,j,N,M)
img_res[i,j,0] = interpolate(neighbors,weights)
img_res[img_res>1] = 1
img_res[img_res<0] = 0
#first interpolation of blue channel
for i in range (0,N,2):
for j in range (1,M,2):
neighbors = find_neighbors(img_res,2,i,j,N,M)
neighbors_G = find_neighbors(img_res,1,i,j,N,M)
dir_deriv = find_dir_deriv(neighbors_G)
weights = find_weights(img_res,neighbors_G, dir_deriv,1,i,j,N,M)
img_res[i,j,2] = interpolate_RB(neighbors, neighbors_G, weights)
#second interpolation of blue channel
for i in range (N):
for j in range (M):
if img_res[i,j,2] ==0:
neighbors = find_neighbors(img_res,2,i,j,N,M)
dir_deriv = find_dir_deriv(neighbors)
weights = find_weights(img_res, neighbors, dir_deriv,2,i,j,N,M)
img_res[i,j,2] = interpolate(neighbors,weights)
img_res[img_res>1] = 1
img_res[img_res<0] = 0
return img_res
####
####
####
#### #### #### #############
#### ###### #### ##################
#### ######## #### ####################
#### ########## #### #### ########
#### ############ #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ## ###### #### #### ######
#### #### #### ## #### #### ############
#### #### ###### #### #### ##########
#### #### ########## #### #### ########
#### #### ######## #### ####
#### #### ############ ####
#### #### ########## ####
#### #### ######## ####
#### #### ###### ####
# 2023
# Authors: Mauro Dalla Mura and Matthieu Muller
"""A file containing a (pretty useless) reconstruction.
It serves as example of how the project works.
This file should NOT be modified.
"""
import numpy as np
from src.forward_model import CFA
import cv2
def MLRI_interpolation(op: CFA, y: np.ndarray) -> np.ndarray:
z = op.adjoint(y)
res = np.empty(op.input_shape)
if op.cfa == 'bayer':
green_estimation=green_estimate(y, z)
red_estimation=red_estimate(z,green_estimation)
blue_estimation=blue_estimate(z,green_estimation)
res[:, :, 0] = red_estimation
res[:, :, 1] = green_estimation
res[:, :, 2] = blue_estimation
else :
new_z = cv2.resize(z, (z.shape[1] // 2, z.shape[0] // 2), interpolation=cv2.INTER_AREA)
new_y=np.sum(new_z, axis=2)
new_z_upsampled = np.repeat(np.repeat(new_z, 2, axis=0), 2, axis=1)
new_y_upsampled=np.sum(new_z_upsampled, axis=2)
mask_out=cv2.merge([y-new_y_upsampled]*3)
res_downsampled = np.zeros_like(new_z)
green_estimation=green_estimate(new_y,new_z)
red_estimation=red_estimate(new_z,green_estimation)
blue_estimation=blue_estimate(new_z,green_estimation)
res_downsampled[:, :, 0] = red_estimation
res_downsampled[:, :, 1] = green_estimation
res_downsampled[:, :, 2] = blue_estimation
res_downsampled_upsampled= np.repeat(np.repeat(res_downsampled, 2, axis=0), 2, axis=1)
res=res_downsampled_upsampled+mask_out
return res
def green_estimate(y : np.ndarray, z : np.ndarray)-> np.ndarray:
# estimation of green by gradient based threshold free color filter array interpolation(GBTF)
(grh_est, grv_est,
gbh_est, gbv_est,
rgh_est, rgv_est,
bgh_est, bgv_est)=hamilton_and_adam_interpolation(y)
(HCDE,VCDE)=color_difference(grh_est, grv_est ,
gbh_est , gbv_est ,
rgh_est , rgv_est ,
bgh_est , bgv_est, z)
(gradient_H,gradient_V)=gradient_compute(HCDE, VCDE, y)
Weight_W, Weight_E, Weight_S, Weight_N=directionnal_weight(gradient_H, gradient_V)
green_estimation=final_estimation(Weight_W, Weight_E, Weight_S, Weight_N,
HCDE, VCDE,y, z)
return green_estimation
def red_estimate(z : np.ndarray, green_estimation : np.ndarray)-> np.ndarray:
# estimation of red by minimizing laplacian residuals interpolation (MLRI)
return red_blue_estimate(z, green_estimation, 0)
def blue_estimate(z : np.ndarray, green_estimation : np.ndarray)-> np.ndarray:
# estimation of blue by minimizing laplacian residuals interpolation (MLRI)
return red_blue_estimate(z, green_estimation, 2)
def red_blue_estimate(z : np.ndarray, green_estimation : np.ndarray, blue_red)-> np.ndarray:
# estimation of blue or red by minimizing laplacian residuals interpolation
# laplacian interpolation
F = np.array([
[0, 0, -1, 0, 0],
[0, 0, 0, 0, 0],
[-1, 0, 4, 0, -1],
[0, 0, 0, 0, 0],
[0, 0, -1, 0, 0]
], dtype=np.float32)
lap_rb = cv2.filter2D(z[:,:,blue_red], -1, F, borderType=cv2.BORDER_REPLICATE)
lap_green = cv2.filter2D(green_estimation * (z[:,:,blue_red]!=0), -1, F, borderType=cv2.BORDER_REPLICATE)
#estimate the residuals
mean_a,mean_b = guided_filter(green_estimation*(z[:,:,blue_red]!=0), z[:,:,blue_red],
lap_green*(z[:,:,blue_red]!=0) , lap_rb*(z[:,:,blue_red]!=0))
tentativeRB = mean_a * green_estimation + mean_b
residualRB = (z[:,:,blue_red]!=0) * (z[:,:,blue_red] - tentativeRB)
# Bilinear interpolation of the residuals
H = np.array([
[1/4, 1/2, 1/4],
[1/2, 1, 1/2],
[1/4, 1/2, 1/4]
], dtype=np.float32)
residualRB2 = cv2.filter2D(residualRB, -1, H, borderType=cv2.BORDER_REPLICATE)
rb_estimation = residualRB2 + tentativeRB
return rb_estimation
def hamilton_and_adam_interpolation(y : np.ndarray)-> (np.ndarray,np.ndarray,
np.ndarray,np.ndarray,
np.ndarray,np.ndarray,
np.ndarray,np.ndarray):
# interpolation method to all pixels in both vertical and horizontal directions.
grh_est=np.zeros_like(y)
grv_est=np.zeros_like(y)
gbh_est=np.zeros_like(y)
gbv_est=np.zeros_like(y)
rgh_est=np.zeros_like(y)
rgv_est=np.zeros_like(y)
bgh_est=np.zeros_like(y)
bgv_est=np.zeros_like(y)
rows,cols=y.shape
for i in range(rows):
for j in range(cols):
if (i%2==0 and j%2!=0):
# estimate horizontal green with red
if (j==1):
grh_est[i,j] =0
elif (j==cols-2) or (j==cols-1):
grh_est[i,j] = 2*y[i,j-2]-y[i,j-4]
else:
grh_est[i,j] = (y[i, j-1] + y[i, j+1]) / 2 + (2 * y[i, j] - y[i, j-2] - y[i, j+2]) / 4
# estimate vertical green with red
if (i==0):
grv_est[i,j] = 0
elif (i==rows-2)or (i==rows-1):
grv_est[i,j] = 2*y[i-2,j]-y[i-4,j]
else:
grv_est[i,j] = (y[i-1, j] + y[i+1, j]) / 2 + (2 * y[i, j] - y[i-2, j] - y[i+2, j]) / 4
if (i%2!=0 and j%2==0):
# estimate horizontal green with blue
if (j==0):
gbh_est[i,j] =0
elif (j==cols-2) or (j==cols-1):
gbh_est[i,j] = 2*y[i,j-2]-y[i,j-4]
else:
gbh_est[i,j] = (y[i, j-1] + y[i, j+1]) / 2 + (2 * y[i, j] - y[i, j-2] - y[i, j+2]) / 4
# estimate vertical green with blue
if (i==1):
gbv_est[i,j] = 0
elif (i==rows-2)or (i==rows-1):
gbv_est[i,j] = 2*y[i-2,j]-y[i-4,j]
else:
gbv_est[i,j] = (y[i-1, j] + y[i+1, j]) / 2 + (2 * y[i, j] - y[i-2, j] - y[i+2, j]) / 4
if (i%2==0 and j%2==0):
# estimate horizontal red with green
if (j==0):
rgh_est[i,j] = 0
elif (j==cols-2) or (j==cols-1):
rgh_est[i,j] = 2*y[i,j-2]-y[i,j-4]
else:
rgh_est[i,j] = (y[i, j-1] + y[i, j+1]) / 2 + (2 * y[i, j] - y[i, j-2] - y[i, j+2]) / 4
# estimate vertical blue with green
if (i==0):
bgv_est[i,j] = 0
elif (i==rows-2)or (i==rows-1):
bgv_est[i,j] = 2*y[i-2,j]-y[i-4,j]
else:
bgv_est[i,j] = (y[i-1, j] + y[i+1, j]) / 2 + (2 * y[i, j] - y[i-2, j] - y[i+2, j]) / 4
if (i%2!=0 and j%2!=0):
# estimate vertical red with green
if (i==1):
rgv_est[i,j] = 0
elif (i==rows-2)or (i==rows-1):
rgv_est[i,j] = 2*y[i-2,j]-y[i-4,j]
else:
rgv_est[i,j] = (y[i-1, j] + y[i+1, j]) / 2 + (2 * y[i, j] - y[i-2, j] - y[i+2, j]) / 4
# estimate horizontal blue with green
if (j==1):
bgh_est[i,j] = 0
elif (j==cols-2) or (j==cols-1):
bgh_est[i,j] = 2*y[i,j-2]-y[i,j-4]
else:
bgh_est[i,j] = (y[i, j-1] + y[i, j+1]) / 2 + (2 * y[i, j] - y[i, j-2] - y[i, j+2]) / 4
grh_est[:,1] = 2*grh_est[:,3]-grh_est[:,5]
grv_est[0,:] = 2*grv_est[2,:]-grv_est[4,:]
gbh_est[:,0] = 2*gbh_est[:,2]-gbh_est[:,4]
gbv_est[1,:] = 2*gbv_est[3,:]-gbv_est[5,:]
rgh_est[:,0] = 2*rgh_est[:,2]-rgh_est[:,4]
rgv_est[1,:] = 2*rgv_est[3,:]-rgv_est[5,:]
bgh_est[:,1] = 2*bgh_est[:,3]-bgh_est[:,5]
bgv_est[0,:] = 2*bgv_est[2,:]-bgv_est[4,:]
return grh_est, grv_est, gbh_est, gbv_est, rgh_est, rgv_est, bgh_est, bgv_est
def color_difference(grh_est : np.ndarray, grv_est : np.ndarray,
gbh_est : np.ndarray, gbv_est : np.ndarray,
rgh_est : np.ndarray, rgv_est : np.ndarray,
bgh_est : np.ndarray, bgv_est : np.ndarray,
z : np.ndarray)-> (np.ndarray, np.ndarray) :
# estimate the color difference array in horizontal and vertical directions
HCDE=z[:,:,1]-z[:,:,0]-z[:,:,2]
VCDE=HCDE.copy()
difference_rg_h=grh_est-rgh_est
difference_rg_v=grv_est-rgv_est
difference_bg_h=gbh_est-bgh_est
difference_bg_v=gbv_est-bgv_est
HCDE=HCDE+difference_rg_h+difference_bg_h
VCDE=VCDE+difference_rg_v+difference_bg_v
return HCDE,VCDE
def gradient_compute(HCDE : np.ndarray, VCDE : np.ndarray, y: np.ndarray)-> (np.ndarray, np.ndarray) :
# estimate the color difference gradient array in horizontal and vertical directions
new_gradient_vcde= cv2.copyMakeBorder(VCDE, 1,1,1,1, cv2.BORDER_CONSTANT,None,0)
new_gradient_hcde= cv2.copyMakeBorder(HCDE, 1,1,1,1, cv2.BORDER_CONSTANT,None,0)
gradient_V=np.zeros_like(y)
gradient_H=np.zeros_like(y)
rows,cols=y.shape
for i in range(rows):
for j in range(cols):
gradient_V[i,j]=np.abs(new_gradient_vcde[i,j+1]-new_gradient_vcde[i+2,j+1])
gradient_H[i,j]=np.abs(new_gradient_hcde[i+1,j]-new_gradient_hcde[i+1,j+2])
return gradient_H,gradient_V
def directionnal_weight(gradient_H : np.ndarray, gradient_V : np.ndarray)-> (np.ndarray, np.ndarray,
np.ndarray, np.ndarray):
# Calculate the weights for each direction by computing the reciprocal of power gradients
# in this direction within a local window 3*3
Kernel_Weight = np.ones((3, 3), dtype=np.float32)
Weight_H = cv2.filter2D(gradient_H, -1, Kernel_Weight, borderType=cv2.BORDER_REPLICATE)
Weight_V = cv2.filter2D(gradient_V, -1, Kernel_Weight, borderType=cv2.BORDER_REPLICATE)
Weight_W=cv2.copyMakeBorder(Weight_H,0,0,1,0, cv2.BORDER_REPLICATE,None,0)[:,:-1]
Weight_E=cv2.copyMakeBorder(Weight_H,0,0,0,1, cv2.BORDER_REPLICATE,None,0)[:,1:]
Weight_S=cv2.copyMakeBorder(Weight_V,0,1,0,0, cv2.BORDER_REPLICATE,None,0)[1:,:]
Weight_N=cv2.copyMakeBorder(Weight_V,1,0,0,0, cv2.BORDER_REPLICATE,None,0)[:-1,:]
Weight_W = 1.0 / (np.power(Weight_W, 2))
Weight_E = 1.0 / (np.power(Weight_E, 2))
Weight_S = 1.0 / (np.power(Weight_S, 2))
Weight_N = 1.0 / (np.power(Weight_N, 2))
return Weight_W, Weight_E, Weight_S, Weight_N
def final_estimation(Weight_W : np.ndarray, Weight_E : np.ndarray,
Weight_S : np.ndarray, Weight_N : np.ndarray,
HCDE : np.ndarray, VCDE : np.ndarray,
y : np.ndarray, z : np.ndarray,
size=9, sigma=1)-> np.ndarray:
# directional color differences and weight is computing together to estimate green
h = cv2.getGaussianKernel(size, sigma)
Ke = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1], dtype=np.float32) * h.T
Kw = np.array([1, 1, 1, 1, 1, 0, 0, 0, 0], dtype=np.float32) * h.T
Ke /= np.sum(Ke, axis=1)
Kw /= np.sum(Kw, axis=1)
Ks = np.transpose(Ke)
Kn = np.transpose(Kw)
difn = cv2.filter2D(VCDE, -1, Kn, borderType=cv2.BORDER_REPLICATE)
difs = cv2.filter2D(VCDE, -1, Ks, borderType=cv2.BORDER_REPLICATE)
difw = cv2.filter2D(HCDE, -1, Kw, borderType=cv2.BORDER_REPLICATE)
dife = cv2.filter2D(HCDE, -1, Ke, borderType=cv2.BORDER_REPLICATE)
Wt = Weight_W + Weight_E + Weight_N + Weight_S
final_estimation = (Weight_N * difn + Weight_S * difs + Weight_W * difw + Weight_E * dife) / Wt
green = final_estimation + y
green_estimate = green * (z[:,:,1]==0) + z[:,:,1]
return green_estimate
def guided_filter(guide : np.ndarray, to_interpolate : np.ndarray,
guide_laplacian : np.ndarray, to_interpolate_laplacian : np.ndarray,
r=11, eps=0)-> (np.ndarray, np.ndarray) :
# interpolate the red or blue value with a guided filter create with the green estimation
kernel = np.ones((r, r), dtype=np.float32)
mask_normalize = cv2.filter2D(np.ones_like(guide)*(to_interpolate!=0), -1, kernel, borderType=cv2.BORDER_CONSTANT)
mask_normalize_ab = cv2.filter2D(np.ones_like(guide), -1, kernel, borderType=cv2.BORDER_CONSTANT)
mean_p = cv2.filter2D(to_interpolate_laplacian, -1, kernel, borderType=cv2.BORDER_CONSTANT)/mask_normalize
mean_I = cv2.filter2D(guide_laplacian, -1, kernel, borderType=cv2.BORDER_CONSTANT)/mask_normalize
corr_I = cv2.filter2D(guide_laplacian*guide_laplacian, -1, kernel, borderType=cv2.BORDER_CONSTANT)/mask_normalize
corr_Ip = cv2.filter2D(guide_laplacian*to_interpolate_laplacian, -1, kernel, borderType=cv2.BORDER_CONSTANT)/mask_normalize
var_I = corr_I - mean_I*mean_I
cov_Ip = corr_Ip - mean_I*mean_p
a = cov_Ip / (var_I + eps)
mean_guide = cv2.filter2D(guide, -1, kernel, borderType=cv2.BORDER_CONSTANT)/mask_normalize
mean_to_interpolate = cv2.filter2D(to_interpolate, -1, kernel, borderType=cv2.BORDER_CONSTANT)/mask_normalize
b = mean_to_interpolate - a * mean_guide
mean_a = cv2.filter2D(a, -1, kernel, borderType=cv2.BORDER_CONSTANT)/mask_normalize_ab
mean_b = cv2.filter2D(b, -1, kernel, borderType=cv2.BORDER_CONSTANT)/mask_normalize_ab
return mean_a,mean_b
####
####
####
#### #### #### #############
#### ###### #### ##################
#### ######## #### ####################
#### ########## #### #### ########
#### ############ #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ## ###### #### #### ######
#### #### #### ## #### #### ############
#### #### ###### #### #### ##########
#### #### ########## #### #### ########
#### #### ######## #### ####
#### #### ############ ####
#### #### ########## ####
#### #### ######## ####
#### #### ###### ####
# 28/01/2024
# Authors: BACH Antoine
File added
"""The main file for the reconstruction.
This file should NOT be modified except the body of the 'run_reconstruction' function.
Students can call their functions (declared in others files of src/methods/your_name).
"""
import numpy as np
from src.forward_model import CFA
from src.methods.bach_antoine.MLRI_reconstruction import MLRI_interpolation
def run_reconstruction(y: np.ndarray, cfa: str) -> np.ndarray:
"""Performs demosaicking on y.
Args:
y (np.ndarray): Mosaicked image to be reconstructed.
cfa (str): Name of the CFA. Can be bayer or quad_bayer.
Returns:
np.ndarray: Demosaicked image.
"""
# Performing the reconstruction.
# TODO
input_shape = (y.shape[0], y.shape[1], 3)
op = CFA(cfa, input_shape)
res = MLRI_interpolation(op, y)
return res
####
####
####
#### #### #### #############
#### ###### #### ##################
#### ######## #### ####################
#### ########## #### #### ########
#### ############ #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ## ###### #### #### ######
#### #### #### ## #### #### ############
#### #### ###### #### #### ##########
#### #### ########## #### #### ########
#### #### ######## #### ####
#### #### ############ ####
#### #### ########## ####
#### #### ######## ####
#### #### ###### ####
# 28/01/2024
# Authors: BACH Antoine
File mode changed from 100755 to 100644
File mode changed from 100755 to 100644
File added
# Image Analysis Project
Numerous RGB cameras in the commercial sector employ Color Filter Array (CFA) technology.
This technology involves an array of red, green, or blue filters placed atop the sensors, usually
organized in periodic patterns. The incident light is consequently filtered by each filter, before
being captured by the sensor. The typical process of acquiring images utilizes a predefined CFA
pattern to allocate a color to each pixel of the sensor. The goal of this code project is to demosaicing these CFA Image.
You can check the report called **Image_Analysis_Project_Report_Brice_Convers** to find more information about it.
## How to use
To use the code project you can move the **main_template.py** outside the **src** file and execute it.
Or you can also call the **run_reconstruction** method in you programme.
```Python
import src.methods.brice_convers.dataHandler as DataHandler
import src.methods.brice_convers.dataEvaluation as DataEvaluation
import time
WORKING_DIRECOTRY_PATH = "SICOM_Image_Analysis/sicom_image_analysis_project/"
DataHandler = DataHandler.DataHandler(WORKING_DIRECOTRY_PATH)
DataEvaluation = DataEvaluation.DataEvaluation(DataHandler)
def main(DataHandler):
IMAGE_PATH = WORKING_DIRECOTRY_PATH + "images/"
CFA_NAME = "quad_bayer"
METHOD = "menon"
startTime = time.time()
DataHandler.list_images(IMAGE_PATH)
DataHandler.print_list_images()
DataHandler.compute_CFA_images(CFA_NAME)
DataHandler.compute_reconstruction_images(METHOD, {"cfa": CFA_NAME})
#The first agurment (ex: 3) is the image index in the list print by "DataHandler.print_list_images()"
DataHandler.plot_reconstructed_image(3, METHOD, {"cfa": CFA_NAME}, zoomSize="large")
DataEvaluation.print_metrics(3, METHOD)
endTime = time.time()
print("[INFO] Elapsed time: " + str(endTime - startTime) + "s")
print("[INFO] End")
if __name__ == "__main__":
main(DataHandler)
```
## TODO List:
- Fix menon method pour quad bayer pattern with landscape picture
## References:
[1] [*Research Paper:*](https://ieeexplore.ieee.org/document/4032820) Used for Menon Method.
## Authors
- [Brice Convers](https://briceconvers.com)
PIXEL_PATTERN = "RGB"
REFINING_STEP = True
from src.methods.brice_convers.dataHandler import DataHandler
from src.utils import psnr, ssim
from sklearn.metrics import f1_score, mean_squared_error
import numpy as np
class DataEvaluation:
def __init__(self, DataHandler: DataHandler):
DataEvaluation.DataHandler = DataHandler
def print_metrics(self, indexImage, method):
DataEvaluation.DataHandler.indexImageExists(indexImage)
img = DataEvaluation.DataHandler.load_image(indexImage)
res = DataEvaluation.DataHandler.get_reconstructed_image(indexImage, method)
ssimMetric = ssim(img, res)
psnrMetrc = psnr(img, res)
mse = mean_squared_error(img.flatten(), res.flatten())
mseRedPixels = mean_squared_error(img[:,:,0], res[:,:,0])
mseGreenPixels = mean_squared_error(img[:,:,1], res[:,:,1])
mseBluePixels = mean_squared_error(img[:,:,2], res[:,:,2])
miMetric = DataEvaluation.MI(img, res)
ccMetric = DataEvaluation.CC(img, res)
sadMetric = DataEvaluation.SAD(img, res)
lsMetric = DataEvaluation.LS(img, res)
print("[INFO] Metrics for image {}".format(indexImage))
print("#" * 30)
print(" SSIM: {:.6} ".format(ssimMetric))
print(" PSNR: {:.6} ".format(psnrMetrc))
print(" MSE : {:.3e} ".format(mse))
print(" MSE (R): {:.3e} ".format(mseRedPixels))
print(" MSE (G): {:.3e} ".format(mseGreenPixels))
print(" MSE (B): {:.3e} ".format(mseBluePixels))
print(" MI: {:.6} ".format(miMetric))
print(" CC: {:.6} ".format(ccMetric))
print(" SAD: {:.6} ".format(sadMetric))
print(" LS: {:.3e} ".format(lsMetric))
print("#" * 30)
#Mutual Information
def MI(img_mov, img_ref):
hgram, x_edges, y_edges = np.histogram2d(img_mov.ravel(), img_ref.ravel(), bins=20)
pxy = hgram / float(np.sum(hgram))
px = np.sum(pxy, axis=1) # marginal for x over y
py = np.sum(pxy, axis=0) # marginal for y over x
px_py = px[:, None] * py[None, :] # Broadcast to multiply marginals
# Now we can do the calculation using the pxy, px_py 2D arrays
nzs = pxy > 0 # Only non-zero pxy values contribute to the sum
return np.sum(pxy[nzs] * np.log(pxy[nzs] / px_py[nzs]))
# Cross Correlation
def CC(img_mov, img_ref):
# Vectorized versions of c,d,e
a = img_mov.astype('float64')
b = img_ref.astype('float64')
# Calculating mean values
AM = np.mean(a)
BM = np.mean(b)
c_vect = (a - AM) * (b - BM)
d_vect = (a - AM) ** 2
e_vect = (b - BM) ** 2
# Finally get r using those vectorized versions
r_out = np.sum(c_vect) / float(np.sqrt(np.sum(d_vect) * np.sum(e_vect)))
return r_out
#Sum of Absolute Differences
def SAD(img_mov, img_ref):
img1 = img_mov.astype('float64')
img2 = img_ref.astype('float64')
ab = np.abs(img1 - img2)
sav = np.sum(ab.ravel())
sav /= ab.ravel().shape[0]
return sav
#Sum of Least Squared Errors
def LS(img_mov, img_ref):
img1 = img_mov.astype('float64')
img2 = img_ref.astype('float64')
r = (img1 - img2)**2
sse = np.sum(r.ravel())
sse /= r.ravel().shape[0]
return sse
import os
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from src.forward_model import CFA
from pathlib import Path
from src.methods.baseline.reconstruct import run_reconstruction
from src.methods.brice_convers.reconstruct import run_reconstruction as run_reconstruction_brice_convers
from src.methods.brice_convers.utilities import folderExists
from src.utils import normalise_image, save_image, psnr, ssim
from skimage.io import imread
import numpy as np
class DataHandler:
def __init__(self, workingDirectoryPath = ""):
DataHandler.imagePaths =[]
DataHandler.imagePathsLabels = []
DataHandler.CFA_images = {}
DataHandler.reconstruction_images = {"interpolation": {}, "menon": {}}
DataHandler.IMAGE_TYPES = (".jpg", ".jpeg", ".png", ".bmp", ".tif", ".tiff")
DataHandler.WD_PATH = workingDirectoryPath
def list_files(self, basePath, interval, validExts=None, contains=None):
sum = 0
if interval is not None:
counter = interval[0]
lastFile = interval[1]
else:
counter = 0
lastFile = -1
# loop over the directory structure
for (rootDir, dirNames, filenames) in os.walk(basePath):
# loop over the filenames in the current directory
for filename in filenames:
# if the contains string is not none and the filename does not contain
# the supplied string, then ignore the file
if contains is not None and filename.find(contains) == -1:
continue
# determine the file extension of the current file
ext = filename[filename.rfind("."):].lower()
# check to see if the file is an image and should be processed
if validExts is None or ext.endswith(validExts):
if sum >= counter and (sum <= lastFile) or lastFile == -1:
# construct the path to the image and yield it
imagePath = os.path.join(rootDir, filename)
imageName = Path(imagePath).stem
DataHandler.imagePaths.append(imagePath)
DataHandler.imagePathsLabels.append(imageName)
sum += 1
def list_images(self, basePath, interval = None, contains=None):
# return the set of files that are valid
DataHandler.list_files(self, basePath, interval, validExts=DataHandler.IMAGE_TYPES, contains=contains)
print("[INFO] There are {} images.".format(len(DataHandler.imagePaths)))
def print_list_images(self):
print("[INFO] This is the order or your image in the list. IndexImage is the index in this table:")
print(DataHandler.imagePathsLabels)
def plot_input_images(self, rows=3, cols=3, figsize=(15, 5), max_images = 6, title="Input Images"):
fig = plt.figure(figsize=figsize)
fig.suptitle(title, fontsize=16)
for i, imagePath in enumerate(DataHandler.imagePaths):
if i >= max_images:
break
img = mpimg.imread(imagePath)
fig.add_subplot(rows, cols, i+1)
# image title
plt.title(imagePath.split(os.path.sep)[-1])
plt.text(0, -0.1, f"Shape of the image: {img.shape}.", fontsize=12, transform=plt.gca().transAxes)
plt.imshow(img)
plt.show()
def plot_raw_transformation(self, zoom = True, specificIndex = None, rows=8, cols=3, figsize=(15, 5), max_images = 24, title="Raw Transformation"):
fig, axs = plt.subplots(rows, cols, figsize=figsize)
fig.suptitle(title, fontsize=16)
for i, imagePath in enumerate(DataHandler.imagePaths):
if i >= max_images and max_images != -1:
break
if specificIndex is not None:
if i != specificIndex:
continue
nameImage = Path(imagePath).stem
if DataHandler.CFA_images.get(nameImage) is None:
print("[ERROR] There is no CFA image for the image {}.".format(nameImage))
continue
img = mpimg.imread(imagePath)
y = DataHandler.CFA_images[nameImage].direct(img)
z = DataHandler.CFA_images[nameImage].adjoint(y)
if specificIndex is None:
line = 2*i
subLine = 2*i+1
else:
line = 0
subLine = 1
axs[line, 0].imshow(img)
axs[line, 0].set_title('Input image')
axs[line, 1].imshow(y, cmap='gray')
axs[line, 1].set_title('Output image')
axs[line, 2].imshow(z)
axs[line, 2].set_title('Adjoint image')
if zoom:
axs[subLine, 0].imshow(img[800:864, 450:514])
axs[subLine, 0].set_title('Zoomed input image')
axs[subLine, 1].imshow(y[800:864, 450:514], cmap='gray')
axs[subLine, 1].set_title('Zoomed output image')
axs[subLine, 2].imshow(z[800:864, 450:514])
axs[subLine, 2].set_title('Zoomed adjoint image')
print("[INFO] There are {} ploted images.".format(max_images))
def plot_specific_raw_transformation(self, indexImage, zoom = True, rows=2, cols=3, figsize=(15, 5), title="Raw Transformation"):
DataHandler.plot_raw_transformation(self, zoom, indexImage, rows, cols, figsize, -1, title)
def compute_CFA_images(self, CFA_NAME):
for i, imagePath in enumerate(DataHandler.imagePaths):
nameImage = Path(imagePath).stem
DataHandler.compute_CFA_image(self, CFA_NAME, nameImage, i)
print("[INFO] There are {} CFA images.".format(len(DataHandler.CFA_images)))
def compute_reconstruction_image(self, method, indexImage, options = None):
if len(DataHandler.imagePaths) == 0:
print("[ERROR] There is no image in imagePaths")
return
# Test key method
if method not in DataHandler.reconstruction_images.keys():
print("[ERROR] The method {} is not valid.".format(method))
exit(1)
nameImage = Path(DataHandler.imagePaths[indexImage]).stem
if DataHandler.CFA_images.get(nameImage) is None:
print("[ERROR] There is no CFA image for the image {}.".format(nameImage))
exit(1)
img = DataHandler.load_image(self, indexImage)
img_CFA = DataHandler.CFA_images[nameImage].direct(img)
cfa = options.get("cfa")
if cfa is None:
print("[ERROR] You must specify the cfa.")
exit(1)
if method == "interpolation":
DataHandler.reconstruction_images[method].setdefault(nameImage, run_reconstruction(img_CFA, cfa))
if method == "menon":
DataHandler.reconstruction_images[method].setdefault(nameImage, run_reconstruction_brice_convers(img_CFA, cfa))
def compute_reconstruction_images(self, method, options = None):
for i in range(len(DataHandler.imagePaths)):
DataHandler.compute_reconstruction_image(self, method, i, options)
print("[INFO] There are {} images which have been reconstructed.".format(len(DataHandler.reconstruction_images[method])))
def plot_reconstructed_image(self, indexImage, method, cfa = {"cfa": "bayer"}, zoomSize = "small", rows=1, cols=4, figsize=(15, 5)):
# Test key method
if method not in DataHandler.reconstruction_images.keys():
print("[ERROR] The method {} is not valid.".format(method))
exit(1)
res = DataHandler.get_reconstructed_image(self, indexImage, method)
fig, axs = plt.subplots(rows, cols, figsize=figsize)
fig.suptitle("Reconstructed Image with method: {} and pattern type: {}".format(method, cfa["cfa"]), fontsize=16)
axs[0].imshow(DataHandler.load_image(self, indexImage))
axs[0].set_title('Original Image')
axs[1].imshow(res)
axs[1].set_title('Reconstructed Image')
if zoomSize == "small":
axs[2].imshow(DataHandler.load_image(self, indexImage)[800:864, 450:514])
axs[2].set_title('Zoomed Input Image')
axs[3].imshow(res[800:864, 450:514])
axs[3].set_title('Zoomed Reconstructed Image')
else:
axs[2].imshow(DataHandler.load_image(self, indexImage)[2000:2064, 2000:2064])
axs[2].set_title('Zoomed Input Image')
axs[3].imshow(res[2000:2064, 2000:2064])
axs[3].set_title('Zoomed Reconstructed Image')
outputPath = os.path.join(DataHandler.WD_PATH, "output")
folderExists(outputPath)
imageName = Path(DataHandler.imagePaths[indexImage]).stem
plotCompImagePath = os.path.join(outputPath, "Compararison_" + imageName + "_" + method + "_" + cfa["cfa"] + ".png")
#save_image( plotReconstructedImagePath, res)
fig.savefig(plotCompImagePath)
def get_reconstructed_image(self, indexImage, method):
# Test key method
if method not in DataHandler.reconstruction_images.keys():
print("[ERROR] The method {} is not valid.".format(method))
exit(1)
DataHandler.indexImageExists(self, indexImage)
nameImage = Path(DataHandler.imagePaths[indexImage]).stem
if DataHandler.reconstruction_images[method].get(nameImage) is None:
print("[ERROR] There is no reconstruction image for the image {} and for the method {}.".format(nameImage, method))
exit(1)
return DataHandler.reconstruction_images[method][nameImage]
def shape_of_recontructed_image(self, indexImage, method):
if DataHandler.reconstruction_images[method].get(Path(DataHandler.imagePaths[indexImage]).stem) is None:
print("[ERROR] There is no reconstruction image for the image {} and for the method {}.".format(Path(DataHandler.imagePaths[indexImage]).stem, method))
exit(1)
return DataHandler.reconstruction_images[method][Path(DataHandler.imagePaths[indexImage]).stem].shape
def compute_CFA_image(self, CFA_NAME, nameImage, indexImage):
DataHandler.CFA_images.setdefault(nameImage, CFA(CFA_NAME, DataHandler.shape_of_image(self, indexImage)))
def shape_of_image(self, indexImage):
img = mpimg.imread(DataHandler.imagePaths[indexImage])
return img.shape
def load_image(self, indexImage):
img = imread(DataHandler.imagePaths[indexImage])
img = normalise_image(img)
return img
def indexImageExists(self, indexImage):
if indexImage >= len(DataHandler.imagePaths):
print("[ERROR] The index {} is not valid.".format(indexImage))
import src.methods.brice_convers.dataHandler as DataHandler
import src.methods.brice_convers.dataEvaluation as DataEvaluation
import time
WORKING_DIRECOTRY_PATH = "SICOM_Image_Analysis/sicom_image_analysis_project/"
DataHandler = DataHandler.DataHandler(WORKING_DIRECOTRY_PATH)
DataEvaluation = DataEvaluation.DataEvaluation(DataHandler)
def main(DataHandler):
IMAGE_PATH = WORKING_DIRECOTRY_PATH + "images/"
CFA_NAME = "quad_bayer"
METHOD = "menon"
startTime = time.time()
DataHandler.list_images(IMAGE_PATH)
DataHandler.print_list_images()
DataHandler.compute_CFA_images(CFA_NAME)
DataHandler.compute_reconstruction_images(METHOD, {"cfa": CFA_NAME})
DataHandler.plot_reconstructed_image(0, METHOD, {"cfa": CFA_NAME}, zoomSize="large")
DataEvaluation.print_metrics(0, METHOD)
endTime = time.time()
print("[INFO] Elapsed time: " + str(endTime - startTime) + "s")
print("[INFO] End")
if __name__ == "__main__":
main(DataHandler)
"""
DDFAPD - Menon (2007) Bayer CFA Demosaicing
===========================================
*Bayer* CFA (Colour Filter Array) DDFAPD - *Menon (2007)* demosaicing.
References
----------
- :cite:`Menon2007c` : Menon, D., Andriani, S., & Calvagno, G. (2007).
Demosaicing With Directional Filtering and a posteriori Decision. IEEE
Transactions on Image Processing, 16(1), 132-141.
doi:10.1109/TIP.2006.884928
"""
import numpy as np
from colour.hints import ArrayLike, Literal, NDArrayFloat
from colour.utilities import as_float_array, ones, tsplit, tstack
from scipy.ndimage.filters import convolve, convolve1d
from src.forward_model import CFA
def tensor_mask_to_RGB_mask(mask: ArrayLike, pixelPattern: str = "RGB"):
# We extract image chanels from mask
for i, letter in enumerate(pixelPattern):
if letter == "R":
R_m = mask[:, :, i]
elif letter == "G":
G_m = mask[:, :, i]
elif letter == "B":
B_m = mask[:, :, i]
return R_m, G_m, B_m
def _cnv_h(x: ArrayLike, y: ArrayLike) -> NDArrayFloat:
"""Perform horizontal convolution."""
# we go through the rows because axis = -1
return convolve1d(x, y, mode="mirror")
def _cnv_v(x: ArrayLike, y: ArrayLike) -> NDArrayFloat:
"""Perform vertical convolution."""
return convolve1d(x, y, mode="mirror", axis=0)
def demosaicing_CFA_Bayer_Menon2007(
rawImage: ArrayLike,
mask: ArrayLike,
pixelPattern: str = "RGB",
refining_step: bool = True,
):
"""
Return the demosaiced *RGB* colourspace array from given *Bayer* CFA using
DDFAPD - *Menon (2007)* demosaicing algorithm.
Parameters
----------
CFA
*Bayer* CFA.
pattern
Arrangement of the colour filters on the pixel array.
refining_step
Perform refining step.
Returns
-------
:class:`numpy.ndarray`
*RGB* colourspace array.
Notes
-----
- The definition output is not clipped in range [0, 1] : this allows for
direct HDRI image generation on *Bayer* CFA data and post
demosaicing of the high dynamic range data as showcased in this
`Jupyter Notebook <https://github.com/colour-science/colour-hdri/\
blob/develop/colour_hdri/examples/\
examples_merge_from_raw_files_with_post_demosaicing.ipynb>`__.
References
----------
:cite:`Menon2007c`
"""
# We extract image chanels from mask
R_m, G_m, B_m = tensor_mask_to_RGB_mask(mask, pixelPattern)
# We extract known pixel intensities: when we have a zero in the mask, we have an unknown pixel intensity for the color
R = rawImage * R_m
G = rawImage * G_m
B = rawImage * B_m
# We define the horizontal and vertical filters
h_0 = as_float_array([0.0, 0.5, 0.0, 0.5, 0.0])
h_1 = as_float_array([-0.25, 0.0, 0.5, 0.0, -0.25])
# Green components interpolation along both horizontal and veritcal directions:
# For each unkown green pixel, we compute the gradient along both horizontal and vertical directions
G_H = np.where(G_m == 0, _cnv_h(rawImage, h_0) + _cnv_h(rawImage, h_1), G)
G_V = np.where(G_m == 0, _cnv_v(rawImage, h_0) + _cnv_v(rawImage, h_1), G)
# We calculate the chrominance differences along both horizontal and vertical directions
# For each unknown red and blue pixel, we compute the difference between the pixel intensity and the horizontal green component
C_H = np.where(R_m == 1, R - G_H, 0)
C_H = np.where(B_m == 1, B - G_H, C_H)
# Sale method with vertical green component
C_V = np.where(R_m == 1, R - G_V, 0)
C_V = np.where(B_m == 1, B - G_V, C_V)
# We compute the directional gradients along both horizontal and vertical directions
# First we pad our arrayes with zeros to avoid boundary effects. Acxtually, we pad with the last value of the array
# We add two columns to the right of the horizontal array and two rows at the bottom of the vertical array, with the reflect mode.
# Then we remove the first two columns of the horizontal array and the first two rows of the vertical array.
paded_D_H = np.pad(C_H, ((0, 0), (0, 2)), mode="reflect")[:, 2:]
paded_D_V = np.pad(C_V, ((0, 2), (0, 0)), mode="reflect")[2:, :]
# We compute the difference between the original array and the padded array.
# With the paded array, we have a difference between each pixel and the right neigborhood. We do not have issue with boundaries.
# It gives a measure of pixel intensity variation along the horizontal and vertical directions.
D_H = np.abs(C_H - paded_D_H)
D_V = np.abs(C_V - paded_D_V)
del h_0, h_1, C_V, C_H, paded_D_V, paded_D_H
# We define a sufficiently large neighborhood with a size of (5, 5).
k = as_float_array(
[
[0.0, 0.0, 1.0, 0.0, 1.0],
[0.0, 0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 3.0, 0.0, 3.0],
[0.0, 0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 1.0, 0.0, 1.0],
]
)
# We convolve the difference component with the neighborhood. This method is used to highlight directional variations in the image, in two direction.
d_H = convolve(D_H, k, mode="constant")
d_V = convolve(D_V, np.transpose(k), mode="constant")
del D_H, D_V
# We estimate the green channel with our classifier
mask = d_V >= d_H
G = np.where(mask, G_H, G_V)
# We estimate the mask which represents the best directional reconstruction
M = np.where(mask, 1, 0)
del d_H, d_V, G_H, G_V
## The, we estimate the red and blue channels
# We arrays with ones at the line where there is at least one red (blue) pixel in the red (blue) mask
R_r = np.transpose(np.any(R_m == 1, axis=1)[None]) * ones(R.shape)
B_r = np.transpose(np.any(B_m == 1, axis=1)[None]) * ones(B.shape)
# We define a new filter
k_b = as_float_array([0.5, 0, 0.5])
# We fill R array with the condition: if we are in a line where there is at least one red pixel in the red mask and we are on a green pixel in the green mask, we apply the filter horizontaly to the red channel.
# If not it means we are on a red pixel (only two possiblity) in the red mask, so we do not apply the filter because we know the red pixel
R = np.where(
np.logical_and(G_m == 1, R_r == 1),
G + _cnv_h(R, k_b) - _cnv_h(G, k_b),
R,
)
# Same but we test only the line where there is at least one blue pixel in the blue mask.
# When the condition is true, we apply the filter vertically because this time red pixel are aline vertically.
R = np.where(
np.logical_and(G_m == 1, B_r == 1) == 1,
G + _cnv_v(R, k_b) - _cnv_v(G, k_b),
R,
)
# It is the same logic for the blue image
B = np.where(
np.logical_and(G_m == 1, B_r == 1),
G + _cnv_h(B, k_b) - _cnv_h(G, k_b),
B,
)
B = np.where(
np.logical_and(G_m == 1, R_r == 1) == 1,
G + _cnv_v(B, k_b) - _cnv_v(G, k_b),
B,
)
# To finish R image we need to interpolate blue pixel. We use M to know wich direction is the best and then we interpolate the blue pixel with the filter.
R_b = np.where(
M == 1,
B + _cnv_h(R, k_b) - _cnv_h(B, k_b),
B + _cnv_v(R, k_b) - _cnv_v(B, k_b),
)
# Then we put the condition: if we are on a line where there is at least one blue pixel and we are on a blue pixel we take the previous interpolated value.
# If not we know the red pixel value and we keep it.
R = np.where(
np.logical_and(B_r == 1, B_m == 1),
R_b,
R,
)
# Same idea for the blue image.
B = np.where(
np.logical_and(R_r == 1, R_m == 1),
np.where(
M == 1,
R + _cnv_h(B, k_b) - _cnv_h(R, k_b),
R + _cnv_v(B, k_b) - _cnv_v(R, k_b),
),
B,
)
# We stack the channels in the last dimension to get the final image
RGB = tstack([R, G, B])
del R, G, B, k_b, R_r, B_r
# We optionally perform the refining step
if refining_step:
RGB = refining_step_Menon2007(RGB, tstack([R_m, G_m, B_m]), M)
del M, R_m, G_m, B_m
return RGB
def refining_step_Menon2007(
RGB: ArrayLike, RGB_m: ArrayLike, M: ArrayLike
) -> NDArrayFloat:
"""
Perform the refining step on given *RGB* colourspace array.
Parameters
----------
RGB
*RGB* colourspace array.
RGB_m
*Bayer* CFA red, green and blue masks.
M
Estimation for the best directional reconstruction.
Returns
-------
:class:`numpy.ndarray`
Refined *RGB* colourspace array.
"""
# Unpacking the RGB and RGB_m arrays.
R, G, B = tsplit(RGB)
R_m, G_m, B_m = tsplit(RGB_m)
M = as_float_array(M)
del RGB, RGB_m
# Updating of the green component.
R_G = R - G
B_G = B - G
# Definition of the low-pass filter.
FIR = ones(3) / 3
# When we are on a blue pixel, we convolve the pixel with the filter in function of the best direction.
B_G_m = np.where(
B_m == 1,
np.where(M == 1, _cnv_h(B_G, FIR), _cnv_v(B_G, FIR)),
0,
)
# Same for the red pixel.
R_G_m = np.where(
R_m == 1,
np.where(M == 1, _cnv_h(R_G, FIR), _cnv_v(R_G, FIR)),
0,
)
del B_G, R_G
# We update the green component for known red and blue pixels with the difference between the red or blue pixel intensity and the filtered pixel intensity.
G = np.where(R_m == 1, R - R_G_m, G)
G = np.where(B_m == 1, B - B_G_m, G)
# Updating of the red and blue components in the green locations.
# R_r is an array with ones at the line where there is at least one red pixel in the red mask.
R_r = np.transpose(np.any(R_m == 1, axis=1)[None]) * ones(R.shape)
# R_c is an array with ones at the column where there is at least one red pixel in the red mask.
R_c = np.any(R_m == 1, axis=0)[None] * ones(R.shape)
# B_r is an array with ones at the line where there is at least one blue pixel in the blue mask.
B_r = np.transpose(np.any(B_m == 1, axis=1)[None]) * ones(B.shape)
# B_c is an array with ones at the column where there is at least one blue pixel in the blue mask.
B_c = np.any(B_m == 1, axis=0)[None] * ones(B.shape)
R_G = R - G
B_G = B - G
k_b = as_float_array([0.5, 0.0, 0.5])
R_G_m = np.where(
np.logical_and(G_m == 1, B_r == 1),
_cnv_v(R_G, k_b),
R_G_m,
)
R = np.where(np.logical_and(G_m == 1, B_r == 1), G + R_G_m, R)
R_G_m = np.where(
np.logical_and(G_m == 1, B_c == 1),
_cnv_h(R_G, k_b),
R_G_m,
)
R = np.where(np.logical_and(G_m == 1, B_c == 1), G + R_G_m, R)
del B_r, R_G_m, B_c, R_G
B_G_m = np.where(
np.logical_and(G_m == 1, R_r == 1),
_cnv_v(B_G, k_b),
B_G_m,
)
B = np.where(np.logical_and(G_m == 1, R_r == 1), G + B_G_m, B)
B_G_m = np.where(
np.logical_and(G_m == 1, R_c == 1),
_cnv_h(B_G, k_b),
B_G_m,
)
B = np.where(np.logical_and(G_m == 1, R_c == 1), G + B_G_m, B)
del B_G_m, R_r, R_c, G_m, B_G
# Updating of the red (blue) component in the blue (red) locations.
R_B = R - B
R_B_m = np.where(
B_m == 1,
np.where(M == 1, _cnv_h(R_B, FIR), _cnv_v(R_B, FIR)),
0,
)
R = np.where(B_m == 1, B + R_B_m, R)
R_B_m = np.where(
R_m == 1,
np.where(M == 1, _cnv_h(R_B, FIR), _cnv_v(R_B, FIR)),
0,
)
B = np.where(R_m == 1, R - R_B_m, B)
del R_B, R_B_m, R_m
return tstack([R, G, B])
This diff is collapsed.