Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • samanost/sicom_image_analysis_project
  • gerayelk/sicom_image_analysis_project
  • jelassiy/sicom_image_analysis_project
  • chardoto/sicom_image_analysis_project
  • chaarim/sicom_image_analysis_project
  • domers/sicom_image_analysis_project
  • elmurrt/sicom_image_analysis_project
  • sadonest/sicom_image_analysis_project
  • kouddann/sicom_image_analysis_project
  • mirabitj/sicom-image-analysis-project-mirabito
  • plotj/sicom_image_analysis_project
  • torrem/sicom-image-analysis-project-maxime-torre
  • dzike/sicom_image_analysis_project
  • daip/sicom_image_analysis_project
  • casanovv/sicom_image_analysis_project
  • girmarti/sicom_image_analysis_project
  • lioretn/sicom_image_analysis_project
  • lemoinje/sicom_image_analysis_project
  • ouahmanf/sicom_image_analysis_project
  • vouilloa/sicom_image_analysis_project
  • diopb/sicom_image_analysis_project
  • davidale/sicom_image_analysis_project
  • enza/sicom_image_analysis_project
  • conversb/sicom_image_analysis_project
  • mullemat/sicom_image_analysis_project
25 results
Show changes
Showing
with 1887 additions and 0 deletions
from src.methods.brice_convers.dataHandler import DataHandler
from src.utils import psnr, ssim
from sklearn.metrics import f1_score, mean_squared_error
import numpy as np
class DataEvaluation:
def __init__(self, DataHandler: DataHandler):
DataEvaluation.DataHandler = DataHandler
def print_metrics(self, indexImage, method):
DataEvaluation.DataHandler.indexImageExists(indexImage)
img = DataEvaluation.DataHandler.load_image(indexImage)
res = DataEvaluation.DataHandler.get_reconstructed_image(indexImage, method)
ssimMetric = ssim(img, res)
psnrMetrc = psnr(img, res)
mse = mean_squared_error(img.flatten(), res.flatten())
mseRedPixels = mean_squared_error(img[:,:,0], res[:,:,0])
mseGreenPixels = mean_squared_error(img[:,:,1], res[:,:,1])
mseBluePixels = mean_squared_error(img[:,:,2], res[:,:,2])
miMetric = DataEvaluation.MI(img, res)
ccMetric = DataEvaluation.CC(img, res)
sadMetric = DataEvaluation.SAD(img, res)
lsMetric = DataEvaluation.LS(img, res)
print("[INFO] Metrics for image {}".format(indexImage))
print("#" * 30)
print(" SSIM: {:.6} ".format(ssimMetric))
print(" PSNR: {:.6} ".format(psnrMetrc))
print(" MSE : {:.3e} ".format(mse))
print(" MSE (R): {:.3e} ".format(mseRedPixels))
print(" MSE (G): {:.3e} ".format(mseGreenPixels))
print(" MSE (B): {:.3e} ".format(mseBluePixels))
print(" MI: {:.6} ".format(miMetric))
print(" CC: {:.6} ".format(ccMetric))
print(" SAD: {:.6} ".format(sadMetric))
print(" LS: {:.3e} ".format(lsMetric))
print("#" * 30)
#Mutual Information
def MI(img_mov, img_ref):
hgram, x_edges, y_edges = np.histogram2d(img_mov.ravel(), img_ref.ravel(), bins=20)
pxy = hgram / float(np.sum(hgram))
px = np.sum(pxy, axis=1) # marginal for x over y
py = np.sum(pxy, axis=0) # marginal for y over x
px_py = px[:, None] * py[None, :] # Broadcast to multiply marginals
# Now we can do the calculation using the pxy, px_py 2D arrays
nzs = pxy > 0 # Only non-zero pxy values contribute to the sum
return np.sum(pxy[nzs] * np.log(pxy[nzs] / px_py[nzs]))
# Cross Correlation
def CC(img_mov, img_ref):
# Vectorized versions of c,d,e
a = img_mov.astype('float64')
b = img_ref.astype('float64')
# Calculating mean values
AM = np.mean(a)
BM = np.mean(b)
c_vect = (a - AM) * (b - BM)
d_vect = (a - AM) ** 2
e_vect = (b - BM) ** 2
# Finally get r using those vectorized versions
r_out = np.sum(c_vect) / float(np.sqrt(np.sum(d_vect) * np.sum(e_vect)))
return r_out
#Sum of Absolute Differences
def SAD(img_mov, img_ref):
img1 = img_mov.astype('float64')
img2 = img_ref.astype('float64')
ab = np.abs(img1 - img2)
sav = np.sum(ab.ravel())
sav /= ab.ravel().shape[0]
return sav
#Sum of Least Squared Errors
def LS(img_mov, img_ref):
img1 = img_mov.astype('float64')
img2 = img_ref.astype('float64')
r = (img1 - img2)**2
sse = np.sum(r.ravel())
sse /= r.ravel().shape[0]
return sse
This diff is collapsed.
import src.methods.brice_convers.dataHandler as DataHandler
import src.methods.brice_convers.dataEvaluation as DataEvaluation
import time
WORKING_DIRECOTRY_PATH = "SICOM_Image_Analysis/sicom_image_analysis_project/"
DataHandler = DataHandler.DataHandler(WORKING_DIRECOTRY_PATH)
DataEvaluation = DataEvaluation.DataEvaluation(DataHandler)
def main(DataHandler):
IMAGE_PATH = WORKING_DIRECOTRY_PATH + "images/"
CFA_NAME = "quad_bayer"
METHOD = "menon"
startTime = time.time()
DataHandler.list_images(IMAGE_PATH)
DataHandler.print_list_images()
DataHandler.compute_CFA_images(CFA_NAME)
DataHandler.compute_reconstruction_images(METHOD, {"cfa": CFA_NAME})
DataHandler.plot_reconstructed_image(0, METHOD, {"cfa": CFA_NAME}, zoomSize="large")
DataEvaluation.print_metrics(0, METHOD)
endTime = time.time()
print("[INFO] Elapsed time: " + str(endTime - startTime) + "s")
print("[INFO] End")
if __name__ == "__main__":
main(DataHandler)
This diff is collapsed.
This diff is collapsed.
import os
import cv2
def folderExists(path):
CHECK_FOLDER = os.path.isdir(path)
# If folder doesn't exist, it creates it.
if not CHECK_FOLDER:
os.makedirs(path)
print("[DATA] You created a new folder : " + str(path))
import numpy as np
def quad_bayer_to_bayer(quad_bayer_pattern):
# We test that thee quad bayer size fit with a multiple of 2 for width and height). If not, we pad it.
if quad_bayer_pattern.shape[0] % 2 != 0 or quad_bayer_pattern.shape[1] % 2 != 0:
print("[INFO] The quad bayer pattern size is not valid. We need to pad it.")
pad_schema = []
if quad_bayer_pattern.shape[0] % 2 != 0:
pad_schema.append([0, 1])
if quad_bayer_pattern.shape[1] % 2 != 0:
pad_schema.append([0, 1])
else:
pad_schema.append([0, 0])
quad_bayer_pattern = np.pad(quad_bayer_pattern, pad_schema, mode="reflect")[:, 2:]
# we create a new bayer pattern with the good size
bayer_pattern = np.zeros((quad_bayer_pattern.shape[0] // 2, quad_bayer_pattern.shape[1] // 2))
# We combine adjacent pixels to create the Bayer pattern
for i in range(0, quad_bayer_pattern.shape[0], 2):
for j in range(0, quad_bayer_pattern.shape[1], 2):
bayer_pattern[i // 2, j // 2] = (
quad_bayer_pattern[i, j] +
quad_bayer_pattern[i, j + 1] +
quad_bayer_pattern[i + 1, j] +
quad_bayer_pattern[i + 1, j + 1]
) / 4
# We resize bayer iamge to the original image size
#return cv2.resize(bayer_pattern, quad_bayer_pattern.shape, interpolation=cv2.INTER_CUBIC)
return bayer_pattern
This diff is collapsed.
This diff is collapsed.
File added
File added
This diff is collapsed.
This diff is collapsed.
File added
This diff is collapsed.
This diff is collapsed.
File added
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.