diff --git a/src/methods/Mirabito Jules/reconstruct.py b/src/methods/Mirabito Jules/reconstruct.py
new file mode 100644
index 0000000000000000000000000000000000000000..219e2588f8c094d5a134ea8e41601796b71fc2a2
--- /dev/null
+++ b/src/methods/Mirabito Jules/reconstruct.py	
@@ -0,0 +1,66 @@
+"""The main file for the reconstruction.
+This file should NOT be modified except the body of the 'run_reconstruction' function.
+Students can call their functions (declared in others files of src/methods/your_name).
+"""
+
+
+import numpy as np
+
+
+from colour_demosaicing import (
+    demosaicing_CFA_Bayer_bilinear,
+    demosaicing_CFA_Bayer_Malvar2004,
+    demosaicing_CFA_Bayer_Menon2007,
+)
+
+
+def run_reconstruction(y: np.ndarray, cfa: str) -> np.ndarray:
+    """Performs demosaicking on y.
+
+    Args:
+        y (np.ndarray): Mosaicked image to be reconstructed.
+        cfa (str): Name of the CFA. Can be bayer or quad_bayer.
+
+    Returns:
+        np.ndarray: Demosaicked image.
+    """
+
+    #The code implemented here comes from an open-source python library that has optimized the two methods presented.
+    #This library is based on the "color" library, specific to color image processing.
+    #The source code for the following functions can be found in the "demosaicing" folder in the following git hub: https://github.com/colour-science/colour-demosaicing
+    #Copyright 2015 Colour Developers -
+
+    if cfa == 'bayer' : 
+        #res = demosaicing_CFA_Bayer_bilinear(y,'GRBG')
+        res = demosaicing_CFA_Bayer_Menon2007(y,'GRBG')
+        #res = demosaicing_CFA_Bayer_Malvar2004(y,'GRBG')
+    else : 
+        print('Error - Not implemented')
+        return
+
+    return res
+
+####
+####
+####
+
+####      ####                ####        #############
+####      ######              ####      ##################
+####      ########            ####      ####################
+####      ##########          ####      ####        ########
+####      ############        ####      ####            ####
+####      ####  ########      ####      ####            ####
+####      ####    ########    ####      ####            ####
+####      ####      ########  ####      ####            ####
+####      ####  ##    ######  ####      ####          ######
+####      ####  ####      ##  ####      ####    ############
+####      ####  ######        ####      ####    ##########
+####      ####  ##########    ####      ####    ########
+####      ####      ########  ####      ####
+####      ####        ############      ####
+####      ####          ##########      ####
+####      ####            ########      ####
+####      ####              ######      ####
+
+# 2023
+# Authors: Mauro Dalla Mura and Matthieu Muller