diff --git a/src/methods/EL-MURR-Theresa/malvar.py b/src/methods/EL-MURR-Theresa/malvar.py new file mode 100644 index 0000000000000000000000000000000000000000..4a002a8d3dcb77425d8d448d6c30ca4eab0aee4a --- /dev/null +++ b/src/methods/EL-MURR-Theresa/malvar.py @@ -0,0 +1,157 @@ +import numpy as np +from scipy.signal import correlate2d +from src.forward_model import CFA + +def malvar_he_cutler(y: np.ndarray, op: CFA ) -> np.ndarray: + """Performs demosaicing using the malvar-he-cutler algorithm + + Args: + op (CFA): CFA operator. + y (np.ndarray): Mosaicked image. + + Returns: + np.ndarray: Demosaicked image. + """ + + red_mask, green_mask, blue_mask = [op.mask[:, :, 0], op.mask[:, :, 1], op.mask[:, :, 2]] + mosaicked_image = np.float32(y) + demosaicked_image = np.empty(op.input_shape) + + if op.cfa == 'quad_bayer': + filters = get_quad_bayer_filters() + else: + filters = get_default_filters() + + demosaicked_image = apply_demosaicking_filters( + mosaicked_image,demosaicked_image, red_mask, green_mask, blue_mask, filters + ) + + return demosaicked_image + +def get_quad_bayer_filters(): + coefficient_scale = 0.03125 + return { + "G_at_R_and_B": np.array([ + [0, 0, 0, 0, -1, -1, 0, 0, 0, 0], + [0, 0, 0, 0, -1, -1, 0, 0, 0, 0], + [0, 0, 0, 0, 2, 2, 0, 0, 0, 0], + [0, 0, 0, 0, 2, 2, 0, 0, 0, 0], + [-1, -1, 2, 2, 4, 4, 2, 2, -1, -1], + [-1, -1, 2, 2, 4, 4, 2, 2, -1, -1], + [0, 0, 0, 0, 2, 2, 0, 0, 0, 0], + [0, 0, 0, 0, 2, 2, 0, 0, 0, 0], + [0, 0, 0, 0, -1, -1, 0, 0, 0, 0], + [0, 0, 0, 0, -1, -1, 0, 0, 0, 0] + ]) * coefficient_scale, + "R_at_GR_and_B_at_GB": np.array([ + [0, 0, 0, 0, 0.5, 0.5, 0, 0, 0, 0], + [0, 0, 0, 0, 0.5, 0.5, 0, 0, 0, 0], + [0, 0, -1, -1, 0, 0, -1, -1, 0, 0], + [0, 0, -1, -1, 0, 0, -1, -1, 0, 0], + [-1, -1, 4, 4, 5, 5, 4, 4, -1, -1], + [-1, -1, 4, 4, 5, 5, 4, 4, -1, -1], + [0, 0, -1, -1, 0, 0, -1, -1, 0, 0], + [0, 0, -1, -1, 0, 0, -1, -1, 0, 0], + [0, 0, 0, 0, 0.5, 0.5, 0, 0, 0, 0], + [0, 0, 0, 0, 0.5, 0.5, 0, 0, 0, 0] + ]) * coefficient_scale, + "R_at_GB_and_B_at_GR": np.array([ + [0, 0, 0, 0, -1, -1, 0, 0, 0, 0], + [0, 0, 0, 0, -1, -1, 0, 0, 0, 0], + [0, 0, -1, -1, 4, 4, -1, -1, 0, 0], + [0, 0, -1, -1, 4, 4, -1, -1, 0, 0], + [0.5, 0.5, 0, 0, 5, 5, 0, 0, 0.5, 0.5], + [0.5, 0.5, 0, 0, 5, 5, 0, 0, 0.5, 0.5], + [0, 0, -1, -1, 4, 4, -1, -1, 0, 0], + [0, 0, -1, -1, 4, 4, -1, -1, 0, 0], + [0, 0, 0, 0, -1, -1, 0, 0, 0, 0], + [0, 0, 0, 0, -1, -1, 0, 0, 0, 0] + ]) * coefficient_scale, + "R_at_B_and_B_at_R": np.array([ + [0, 0, 0, 0, -1.5, -1.5, 0, 0, 0, 0], + [0, 0, 0, 0, -1.5, -1.5, 0, 0, 0, 0], + [0, 0, 2, 2, 0, 0, 2, 2, 0, 0], + [0, 0, 2, 2, 0, 0, 2, 2, 0, 0], + [-1.5, -1.5, 0, 0, 6, 6, 0, 0, -1.5, -1.5], + [-1.5, -1.5, 0, 0, 6, 6, 0, 0, -1.5, -1.5], + [0, 0, 2, 2, 0, 0, 2, 2, 0, 0], + [0, 0, 2, 2, 0, 0, 2, 2, 0, 0], + [0, 0, 0, 0, -1.5, -1.5, 0, 0, 0, 0], + [0, 0, 0, 0, -1.5, -1.5, 0, 0, 0, 0] + ]) * coefficient_scale, + } + +def get_default_filters(): + coefficient_scale = 0.125 + return { + "G_at_R_and_B": np.array([ + [0, 0, -1, 0, 0], + [0, 0, 2, 0, 0], + [-1, 2, 4, 2, -1], + [0, 0, 2, 0, 0], + [0, 0, -1, 0, 0] + ]) * coefficient_scale, + "R_at_GR_and_B_at_GB": np.array([ + [0, 0, 0.5, 0, 0], + [0, -1, 0, -1, 0], + [-1, 4, 5, 4, -1], + [0, -1, 0, -1, 0], + [0, 0, 0.5, 0, 0] + ]) * coefficient_scale, + "R_at_GB_and_B_at_GR": np.array([ + [0, 0, -1, 0, 0], + [0, -1, 4, -1, 0], + [0.5, 0, 5, 0, 0.5], + [0, -1, 4, -1, 0], + [0, 0, -1, 0, 0] + ]) * coefficient_scale, + "R_at_B_and_B_at_R": np.array([ + [0, 0, -1.5, 0, 0], + [0, 2, 0, 2, 0], + [-1.5, 0, 6, 0, -1.5], + [0, 2, 0, 2, 0], + [0, 0, -1.5, 0, 0] + ]) * coefficient_scale, + } + +def apply_demosaicking_filters(image, res, red_mask, green_mask, blue_mask, filters): + red_channel = image * red_mask + green_channel = image * green_mask + blue_channel = image * blue_mask + + # Create the green channel after applying a filter + green_channel = np.where( + np.logical_or(red_mask == 1, blue_mask == 1), + correlate2d(image, filters['G_at_R_and_B'], mode="same", boundary="symm"), + green_channel + ) + + + # Define masks for extracting pixel values + red_row_mask = np.any(red_mask == 1, axis=1)[:, np.newaxis].astype(np.float32) + red_col_mask = np.any(red_mask == 1, axis=0)[np.newaxis].astype(np.float32) + + blue_row_mask = np.any(blue_mask == 1, axis=1)[:, np.newaxis].astype(np.float32) + blue_col_mask = np.any(blue_mask == 1, axis=0)[np.newaxis].astype(np.float32) + + def update_channel(channel, row_mask, col_mask, filter_key): + return np.where( + np.logical_and(row_mask == 1, col_mask == 1), + correlate2d(image, filters[filter_key], mode="same", boundary="symm"), + channel + ) + +# Update the red channel and blue channel + red_channel = update_channel(red_channel, red_row_mask, blue_col_mask, 'R_at_GR_and_B_at_GB') + red_channel = update_channel(red_channel, blue_row_mask, red_col_mask, 'R_at_GB_and_B_at_GR') + + blue_channel = update_channel(blue_channel, blue_row_mask, red_col_mask, 'R_at_GR_and_B_at_GB') + blue_channel = update_channel(blue_channel, red_row_mask, blue_col_mask, 'R_at_GB_and_B_at_GR') + + # Update R channel and B channel again + red_channel = update_channel(red_channel, blue_row_mask, blue_col_mask, 'R_at_B_and_B_at_R') + blue_channel = update_channel(blue_channel, red_row_mask, red_col_mask, 'R_at_B_and_B_at_R') + res[:, :, 0] = red_channel + res[:, :, 1] = green_channel + res[:, :, 2] = blue_channel + return res \ No newline at end of file