diff --git a/src/methods/chaari_mohamed/fonctions.ipynb b/src/methods/chaari_mohamed/fonctions.ipynb deleted file mode 100644 index c94e976282662746f97d5eed762f16acbf3c824b..0000000000000000000000000000000000000000 --- a/src/methods/chaari_mohamed/fonctions.ipynb +++ /dev/null @@ -1,142 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 24, - "id": "ec6da321", - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from scipy.signal import convolve2d\n", - "from src.forward_model import CFA\n", - "\n", - "def bilinear_demosaicing(op: CFA, y: np.ndarray) -> np.ndarray:\n", - " \"\"\"\n", - " Bilinear demosaicing method.\n", - "\n", - " Args:\n", - " op (CFA): CFA operator.\n", - " y (np.ndarray): Mosaicked image.\n", - "\n", - " Returns:\n", - " np.ndarray: Demosaicked image.\n", - " \"\"\"\n", - " # Copie des valeurs directement connues pour chaque canal\n", - " red = y[:, :, 0]\n", - " green = y[:, :, 1]\n", - " blue = y[:, :, 2]\n", - "\n", - " # Création des masques pour chaque couleur selon le motif CFA\n", - " mask_red = (op.mask == 0) # Supposons que 0 correspond au rouge dans le masque\n", - " mask_green = (op.mask == 1) # Supposons que 1 correspond au vert\n", - " mask_blue = (op.mask == 2) # Supposons que 2 correspond au bleu\n", - "\n", - " # Interpolation bilinéaire pour le rouge et le bleu\n", - " # Note: np.multiply multiplie les éléments correspondants des tableaux, c'est pourquoi nous utilisons np.multiply au lieu de *\n", - " red_interp = convolve2d(np.multiply(red, mask_red), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')\n", - " blue_interp = convolve2d(np.multiply(blue, mask_blue), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')\n", - "\n", - " # Interpolation bilinéaire pour le vert\n", - " # Pour le vert, nous utilisons un autre noyau car il y a plus de pixels verts\n", - " green_interp = convolve2d(np.multiply(green, mask_green), [[0, 1/4, 0], [1/4, 1, 1/4], [0, 1/4, 0]], mode='same')\n", - "\n", - " # Création de l'image interpolée\n", - " demosaicked_image = np.stack((red_interp, green_interp, blue_interp), axis=-1)\n", - "\n", - " # Correction des valeurs interpolées: on réapplique les valeurs connues pour éviter le flou\n", - " demosaicked_image[:, :, 0][mask_red] = red[mask_red]\n", - " demosaicked_image[:, :, 1][mask_green] = green[mask_green]\n", - " demosaicked_image[:, :, 2][mask_blue] = blue[mask_blue]\n", - "\n", - " # Clip pour s'assurer que toutes les valeurs sont dans la plage [0, 1]\n", - " demosaicked_image = np.clip(demosaicked_image, 0, 1)\n", - "\n", - " return demosaicked_image\n" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "cf379598", - "metadata": {}, - "outputs": [], - "source": [ - "def quad_bayer_demosaicing(op: CFA, y: np.ndarray) -> np.ndarray:\n", - " \"\"\"\n", - " Demosaicing method for Quad Bayer CFA pattern.\n", - "\n", - " Args:\n", - " op (CFA): CFA operator.\n", - " y (np.ndarray): Mosaicked image.\n", - "\n", - " Returns:\n", - " np.ndarray: Demosaicked image.\n", - " \"\"\"\n", - " \n", - " # Interpolation bilinéaire pour chaque canal\n", - " red_interp = convolve2d(np.multiply(y[:, :, 0], op.mask == 0), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')\n", - " green_interp = convolve2d(np.multiply(y[:, :, 1], op.mask == 1), [[0, 1/4, 0], [1/4, 1, 1/4], [0, 1/4, 0]], mode='same')\n", - " blue_interp = convolve2d(np.multiply(y[:, :, 2], op.mask == 2), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')\n", - "\n", - " # Assemblage de l'image interpolée\n", - " demosaicked_image = np.stack((red_interp, green_interp, blue_interp), axis=-1)\n", - "\n", - " # Réapplication des valeurs connues\n", - " demosaicked_image[:, :, 0][op.mask == 0] = y[:, :, 0][op.mask == 0]\n", - " demosaicked_image[:, :, 1][op.mask == 1] = y[:, :, 1][op.mask == 1]\n", - " demosaicked_image[:, :, 2][op.mask == 2] = y[:, :, 2][op.mask == 2]\n", - "\n", - " # Clip des valeurs pour les maintenir dans la plage appropriée\n", - " demosaicked_image = np.clip(demosaicked_image, 0, 1)\n", - "\n", - " return demosaicked_image\n" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "3eec062c", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a6630396", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "ef4e59c8", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.16" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/src/methods/chaari_mohamed/fonctions.py b/src/methods/chaari_mohamed/fonctions.py new file mode 100644 index 0000000000000000000000000000000000000000..4529c7a934edde76820dedd4ef0331ee77223f99 --- /dev/null +++ b/src/methods/chaari_mohamed/fonctions.py @@ -0,0 +1,77 @@ +import numpy as np +from scipy.signal import convolve2d +from src.forward_model import CFA + +def bilinear_demosaicing(op: CFA, y: np.ndarray) -> np.ndarray: + """ + Bilinear demosaicing method. + + Args: + op (CFA): CFA operator. + y (np.ndarray): Mosaicked image. + + Returns: + np.ndarray: Demosaicked image. + """ + # Copie des valeurs directement connues pour chaque canal + red = y[:, :, 0] + green = y[:, :, 1] + blue = y[:, :, 2] + + # Création des masques pour chaque couleur selon le motif CFA + mask_red = (op.mask == 0) # Supposons que 0 correspond au rouge dans le masque + mask_green = (op.mask == 1) # Supposons que 1 correspond au vert + mask_blue = (op.mask == 2) # Supposons que 2 correspond au bleu + + # Interpolation bilinéaire pour le rouge et le bleu + # Note: np.multiply multiplie les éléments correspondants des tableaux, c'est pourquoi nous utilisons np.multiply au lieu de * + red_interp = convolve2d(np.multiply(red, mask_red), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same') + blue_interp = convolve2d(np.multiply(blue, mask_blue), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same') + + # Interpolation bilinéaire pour le vert + # Pour le vert, nous utilisons un autre noyau car il y a plus de pixels verts + green_interp = convolve2d(np.multiply(green, mask_green), [[0, 1/4, 0], [1/4, 1, 1/4], [0, 1/4, 0]], mode='same') + + # Création de l'image interpolée + demosaicked_image = np.stack((red_interp, green_interp, blue_interp), axis=-1) + + # Correction des valeurs interpolées: on réapplique les valeurs connues pour éviter le flou + demosaicked_image[:, :, 0][mask_red] = red[mask_red] + demosaicked_image[:, :, 1][mask_green] = green[mask_green] + demosaicked_image[:, :, 2][mask_blue] = blue[mask_blue] + + # Clip pour s'assurer que toutes les valeurs sont dans la plage [0, 1] + demosaicked_image = np.clip(demosaicked_image, 0, 1) + + return demosaicked_image + + +def quad_bayer_demosaicing(op: CFA, y: np.ndarray) -> np.ndarray: + """ + Demosaicing method for Quad Bayer CFA pattern. + + Args: + op (CFA): CFA operator. + y (np.ndarray): Mosaicked image. + + Returns: + np.ndarray: Demosaicked image. + """ + + # Interpolation bilinéaire pour chaque canal + red_interp = convolve2d(np.multiply(y[:, :, 0], op.mask == 0), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same') + green_interp = convolve2d(np.multiply(y[:, :, 1], op.mask == 1), [[0, 1/4, 0], [1/4, 1, 1/4], [0, 1/4, 0]], mode='same') + blue_interp = convolve2d(np.multiply(y[:, :, 2], op.mask == 2), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same') + + # Assemblage de l'image interpolée + demosaicked_image = np.stack((red_interp, green_interp, blue_interp), axis=-1) + + # Réapplication des valeurs connues + demosaicked_image[:, :, 0][op.mask == 0] = y[:, :, 0][op.mask == 0] + demosaicked_image[:, :, 1][op.mask == 1] = y[:, :, 1][op.mask == 1] + demosaicked_image[:, :, 2][op.mask == 2] = y[:, :, 2][op.mask == 2] + + # Clip des valeurs pour les maintenir dans la plage appropriée + demosaicked_image = np.clip(demosaicked_image, 0, 1) + + return demosaicked_image