
Image Demosaicing for Bayer and Quad-Bayer Pattern

Brice CONVERSa

aGrenoble INP Phelma SICOM, brice.convers@grenoble-inp.org,

1. Introduction

Numerous RGB cameras in the commercial sector employ
Color Filter Array (CFA (5)) technology. This technology in-
volves an array of red, green, or blue filters placed atop the sen-
sors, usually organized in periodic patterns. The incident light is
consequently filtered by each filter, before being captured by the
sensor. The typical process of acquiring images utilizes a prede-
fined CFA pattern to allocate a color to each pixel of the sensor.
You can observe these pattern in Fig 1. There are several types
of Bayer pattern. These differ according to the order of each Red,
Green and Blue pixel. In our project, we are only interested in the
GRBG type, which means that the pixels in the pattern alternate:
Green, Red, Green and Blue. There is an example in the equation
1. For other types of Bayer pattern, the logic remains the same.

The aim of this project is to reconstruct CFA images in order
to recover a color image composed of RGB components for each
pixel.

Bayer Pattern =
[

G R
B G

]
(1)

Figure 1: Visualization of two Bayer pattern

2. Project Details

2.1. Tested Images

In this project, we test our demosaicing algorithms on four im-
ages found on the dataset of the National Gallery of Art, USA
(7). Since these images represent four paintings, it was necessary
to add other real-life pictures to have more accurate tests. That
is why two pictures taken in Japan have been included. (img 5
was taken in Shikotsu lake in Hokkaido and img 6 was taken in
Shosenkyo). The paintings have a size of (1024×1024) and the
pictures have a size of (5444×3629).

2.2. Implemented Methods

To retrieve an original image, there is a first implementation of a
basic interpolation explained in (6). In this document, this method
will not be explained. This will simply be a basic comparison for
further tests.

After research on different demosaicing algorithms, a method
proposed in (3) has been chosen for this project. We will call it
as Menon method. Basically, this new method is based also on
interpolation, and takes advantage of other information such as
edges and the preponderant pixel type, which is in our case: The
Green pixel. This method has been developed to solve a Bayer
pattern problem visible on the left part of Fig 1. Since Menon
method seems to be one of the most advanced algorithms, to solve
the Quad Bayer pattern we will also use this method. However,
we will first apply a transformation on the pattern to act as a Bayer
pattern.

2.3. Code Architecture

In this part, we deal with the most important parts of the
code: Menon method. You can find more information on the
README.py in (1). The Menon method lives in the menon.py
file. We will explain more about the algorithm in the next part.
The DataHandler.py file is a class which manages all the data.
On this file you can find entry point to execute multiple tests. All
the functionalities such as plot or measure can be proceeded with
this file. However, to fit the original project framework, it is also
possible to execute the Menon method directly with the function
run reconstruction in the brice convers “ reconstruct.py file. Fi-
nally, the dataEvaluation.py file is used to apply measures be-
tween original and retrieval images.

Originally, this project was to retrieve a colored image from
a gray image produced by a camera sensor. This gray image is
normally in the Raw format. However, for the sake of simplicity,
we simulate this camera effect with a method called direct in CFA
class to reconstruct Color Array Filter image (gray image). An
example is provided on the Fig 2.

Figure 2: Example for one original image (left) and one raw image (right) gener-
ated from the original image

3. Focus on Menon Method (Bayer pattern)

In this part, we will explain the method chosen to demosaicing
CFA images with Bayer pattern. We will only explain the main

Preprint submitted to Grenoble INP Phelma & Deep Learning Project January 30, 2024



characteristics of the method, and we will not develop the theo-
retical process to obtain it. The research paper which explains the
whole process is available in (3).

3.1. Main Process
In this section, I explain how the algorithm works. The Fig

3 shows different steps to demosaicing a raw image. First, in the
function demosaicing CFA Bayer Menon2007, for each color, we
split the original mask given by the method get bayer mask from
the CFA class. We use the function tensor mask to RGB mask.
Originally, this mask was a tensor with three dimensions: the first
one for the image width, the second one for the image length, and
the last one for the color pixel intensity. We suppose by conven-
tion that we sort color pixels by order: RGB (Red, Green and
Blue)‘. In the first part, we transform this mask into three tensors
of dimension 2 for each color. For a color-related tensor, we have
for each known pixel the intensity of the color, and for the rest of
the pixels we have zero values.

Figure 3: General Schema of Menon Method from (3)

3.2. Determine the Green Image
Then, we know that in a Bayer filter, we have twice as many

green pixels as red or blue ones. That is why, firstly, we are going
to determine the green image because we have more information.
Secondly, we will determine red and blue images from this green
prediction.

The goal of this first step is to determine the only green image
by directional interpolation. With this technique, we determine
the decision of where the most suitable direction of interpolations
is. Then it adapts the interpolation according to this direction to
make better results. To do so, we first compute estimates GH and
GV for the green component, by a 1D-convolution according to
the horizontal axis for GH and vertical axis for GH . The filter is a
five coefficient FIR filter. Finite Impulse Response filter is a type
of digital filter with a finite duration response to an input signal.
Based on the research paper in (3), we take two filters as follows
h1 and h2.

h1 = [0.0, 0.5, 0.0, 0.5, 0.0] (2)

h1 = [−0.25, 0.0, 0.5, 0.0,−0.25] (3)

After the convolution of the green component both horizon-
tally and vertically, resulting in two green images, a crucial de-
cision must be made to choose the filtering direction that yields
optimal performance. As elucidated in earlier sections, a notable
characteristic of the images is the smoothness of color differences.
These differences tend to change gradually, exhibiting abrupt vari-
ations primarily along edges. Consequently, an image typically
exhibits higher gradient values for color differences across edges
than along them. Exploiting this property allows the identification
of edges in a natural image, enabling the decision-making step to
determine the most suitable interpolation direction.

To determine the whole green image, we need to use the in-
formation of blue and red pixels. That is why we mix up this
information with the chrominance. Within every red or blue loca-
tion (where the sensor captured red or blue values), we compute
the chrominance values (CH for horizontal chrominance and CV

for vertical chrominance) as follows.

Redpixels : CH = R −GH , orCV = R −GV (4)

Bluepixels : CH = B −GH , orCV = R −GV (5)

We want to extract edges of these chrominances. So first we
compute a difference between each pixel and its neighbors. To
avoid any issue with boundaries, we use reflect padding on arrays.
We take the absolute value of this difference because we want the
value of this variation only, and it is not necessary to know the
direction of this variation (positive or negative).

Then, we define a sufficiently large neighborhood with a size of
(5, 5) called k according to the research paper in (3). This kernel
will be used to weigh directional differences during convolution.
It is possible to see the detail of k in the equation 6.

k =


0.0 0.0 1.0 0.0 1.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 3.0 0.0 3.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 1.0 0.0 1.0

 (6)

Finally, with this kernel k, we use convolution on CH and CV to
obtain the pair of classifiers δH and δV . It provides an evaluation of
the local fluctuations in color differences along the horizontal and
vertical axes. Respectively, these assessments serve to estimate
the orientation of edges. If the value of δV is less than δH , it
suggests the presence of a horizontal edge as opposed to a vertical
one. Regarding all red and blue pixels, we determine the green
values based on the following criterion.

G = GV : i f (δH > δV )else(GH) (7)

We can now easily determine the final version of the green im-
age with this criterion.

In the following part, we are also going to use the classifier δH

and δV because edges have been calculated for RGB colors. To
find the blue image, we interpolate the color difference between
R and G. For the red image, we are going to interpolate the differ-
ence between B and G.

3.3. Refinement Step

We previously obtained an image very close to the original.
Nevertheless, despite a precise choice of edge directions, the re-
constructed image may still exhibit various errors attributed to in-
terpolation artifacts.

According to the research paper, (3) these errors may arise from
the approximations made during filter design. Additionally, the
low-pass characteristics of the filters employed for interpolating
the green component and color differences can contribute to the
introduction of such errors. Note that these artifacts mainly affect
the regions with high-frequency content.

We suggest addressing these errors by leveraging the inter-
channel correlation in the high-frequency bands of the three pri-
mary colors. A viable approach involves segregating low and
high-frequency components within each pixel and substituting the
high frequencies of the unknown components with those from the
Bayer-known component. The low-frequency component remains

2



unaltered, as the low-frequency components of the color channels
exhibit lower correlation. The general process can be found on
the research paper(3).

4. Demosaicing Quad-Bayer Pattern

In this section, we will see how we retrieve an image from a
Quad-Bayer pattern. As a reminder, we can visualize the Quad-
Bayer pattern in Fig 1 (right). We can understand from this figure
that a Quad-Bayer pattern is an underlined category of the Bayer
pattern present in the same figure. Indeed, for each sort of pixel,
we have four identical pixels which form a square area.

We already have a method that theoretically works very well
(Menon) but only for Bayer filters. That is why, in this project,
the idea was to transform a Quad-Bayer filter into a Bayer filter
in order to use the same method. As we saw earlier, the structure
of the Quad-Bayer suggests that we could simply downsample to
transform each quadruplet of pixels of the same type into the same
final pixel. This would reduce by 4 the number of pixels, i.e. a
reduction in width and height by a factor of 2.

The pixels obtained would then be estimates made, for exam-
ple, with an average. So, in theory, we would obtain a pixel that
summarizes more information and would be a better estimate than
a pixel drawn at random from the four. This would even reduce
image noise. However, in our specifications, we want the same
output size as the input. To achieve this, we use open-cv’s resize
function, which performs a simple interpolation to increase the
size by 2. To sum up, the final pipeline chosen is: A first step of
down-sampling to get back to a Bayer filter. Then we have the
Menon method, which recolors the image. Then, we have an in-
terpolation step to return to the same input size. We will see more
about performances in the section of 5.

5. Results

In this section, we will look at possible results for the Bayer and
Quad-Bayer patterns. We have tested two methods and another
with the refinement variant. The first method is simple interpola-
tion, which was coded as an example. Next, we look at the results
for Menon’s method without refinement. Finally, we will look at
the Menon method with the refinement step. To measure results
quantitatively, we use the following three metrics: SSIM, PSNR
and MSE.

• The SSIM (Structural Similarity Index) metric measures the
structural similarity between two images. Since we use a
method that uses edges, it is an important metric.

• The PSNR (Peak Signal-to-Noise Ratio) metric measures
quality in terms of the signal-to-noise ratio.

• The MSE (Mean Squared Error) metric measures the average
squared difference between pixels in two images. This metric
is less informative compared to the others because it does not
include the structure of the image or the noise. We will also
perform this metric on each channel (R, G or B) to see the
difference.

5.1. Bayer Filter
The results are summarized in Table 1 for Bayer pattern.
We can see that we obtained an SSIM score of 0.983 for the

first image. This is an increase of 3.5% and this is a good per-
formance. However, this comes with an increase in the compu-
tational time by 39%. We note that all other metrics show an

Paintings
Method Interpolation Menon

whithout
refine-
ment

Menon

SSIM 0.950 0.9827 0.9834
PSNR 34.63 39.82 39.95
MSE (all dimen-
sions)

3.4 × 10−4 1.0 × 10−4 1.0 × 10−4

MSE (Red Pixels) 4.1 × 10−4 1.2 × 10−4 1.3 × 10−4

MSE (Green Pixels) 1.7 × 10−4 6.9 × 10−5 5.8 × 10−5

MSE (Blue Pixels) 4.4 × 10−4 1.1 × 10−4 1.1 × 10−4

Computational Time 1.7 2.1 2.8

Table 1: Results of img 0 with a Bayer pattern

Figure 4: Demosaicing for the image called img 1 with Menon method and refine-
ment

increase in performance, and this example gives a good overview
of the scores for the paintings.

We can see that the results are in line with the theory and
that our final method performs best. More precisely, the Menon
method works better than conventional interpolation. And when
we activate the refinement option, we get even better results, even
if it is not much. This is because in this method, we make even
better use of information by managing contours and the prepon-
derance of Green pixels. We also notice that the more complex
our methods become, the longer they take. Finally, we note that
we obtained a lower MSE for Green pixels. This is consistent
with the fact that we have more green pixels and therefore more
information to interpolate.

We obtained better results with real pictures, such as image 5.
we have achieved an SSIM score of 0.995. This is an increase of
4.7%. Perhaps, the reason is that in a real picture, we can easier
determine edges because textures are less blurred.

In the Fig 4, 5 and 6 we can observe the comparison of raw
image and reconstructed image for two examples. We can see the
result is very accurate, and it is almost impossible to see differ-
ences. In the Fig 4 or 5, we can slightly see some differences. For
example, sometimes the shade is not identical. The Fig 6 is more
difficult, and it is because of the SSIM score of 0.995.

To conclude, we saw that we have been able to achieve excel-
lent results with the Menon method we have implemented. We
observed that the results were better on real photos than on paint-
ings. This may be due to the fact that, with our examples, the
contours were easier to determine, or the color ranges were easier
to interpolate because they were more restricted (example img 5).

5.2. Quad-Bayer Filter

In this section, we will see the results of the Quad-Bayer filter
method, and we will try to explain them.

In this part, we first study the influence of the interpolation type
in the cv2.resize function. We see in Table 2 that for the img 0
image test, the inter cubic method is the best for the last interpo-
lation. That is why, this method has been chosen for the next part.

3



Figure 5: Demosaicing for the image called img 2 with Menon method and refine-
ment

Figure 6: Demosaicing for the image called img 5 with Menon method and refine-
ment

It could be that this method works best because it takes a larger
area of information (4×4) and is therefore a better estimate. We
note that the inter lanczos4 method, which takes an area of (8×8),
gives similar results.

Then, still using our reference img 0 image, we varied the
method types to visualize the different results we obtained. The
results are visible in the Table 3.

To begin with, we note that overall, the results for all the meth-
ods are much poorer than in the case of Bayer filter. This is also
the case for the interpolation method proposed in the project. We
explain this by the fact that a Quad-Bayer pattern certainly has
hardware advantages. However, from an information-theoretic
point of view, the color data is much more concentrated in clus-
ters. Whereas in the Bayer filter case, the information is more
diffuse. We therefore presume that during the various interpola-
tions, regardless of the method, we have more uncertainty.

The new method for Quad-Bayer pattern is much faster than
simple interpolation. One hypothesis is that since we are perform-
ing our complex algorithm (surely dynamically limiting) on an
image halved in size, this makes the Menon method much faster
because we interpolate to half the size at the end.

Next, we can see that the method gives better results than sim-
ple interpolation. We have an increase of 1.4%, which is not neg-
ligible for such high precision. However, the refinement part of
the method does not really improve the results. It is hard to see
why, but perhaps it is because we have reached an asymptote in
terms of possible interpolations, and it is hardly possible to do
better. As a reminder, it is theoretically more difficult to achieve
this demosaicing because we have 4 times less information as we
have divided our starting pixels by 4.

We also note that the MSE for green pixels is again less impor-
tant. Again, this is an expected result, but what is surprising is
that the difference is minimal with the other pixels.

Finally, we can see examples of image reconstruction in Fig 8,
9, 10 and 11. The results are very satisfactory, but when we zoom
in we notice slight differences. These differences are similar to a
blur applied to the image. This can be explained by the fact that,
as we have down and up sampling, we lose detail in the image.
In this section, we have not tested landscape images. As the sizes
are not a multiple of two, there is a problem in the project code.
This has not yet been fixed.

In conclusion, in this section, we have once again obtained bet-
ter results for the Quad-Bayer pattern using the Menon method.

Figure 7: Demosaicing for the image called img 6 with Menon method and refine-
ment

Interpolation Methods for cv2.resize Function
Name INTER

NEAREST
INTER
LINEAR

INTER
AREA

INTER
NEAREST

INTER
CUBIC

INTER
LANCZOS4

SSIM 0.898 0.914 0.898 0.898 0.923 0.922

Table 2: Results of SSIM score for various interpolation method for the upsam-
pling. It was img 0 for the test.

In this part, the refinement mode is not really necessary. Further-
more, we noticed that the images were much less detailed than in
the Bayer pattern part due to the conversion Quad-Bayer pattern
into Bayer pattern.

6. Conclusion

To conclude this project, it was possible to achieve excellent
results with a method detailed in (3). We observed that this im-
provement also went hand in hand with an increase in computa-
tional time for the Bayer pattern. As far as the Quad-Bayer pattern
is concerned, the Menon method gives less good results, but this is
unavoidable due to the choice of conversion between Quad-Bayer
pattern and Bayer pattern.

During state-of-the-art research, deep learning techniques
based on neural networks were found. These were not selected,
however, as they require large databases for training. In addition,
databases are often specialized and in our case, it would have been
difficult to carry out our tests on both paintings and landscape pho-
tos.

References

[1] Repository GitHub for the project, Brice Convers
[2] Repository GitHub for the code implementation, colour-science
[3] Research paper from IEEE which explain the Menon method, Daniele Menon;

Stefano Andriani; Giancarlo Calvagno
[4] Repository GitHub for the project framework, Mauro Dalla Mura; Matthieu

Muller
[5] Wikipedia page for Bayer filter, Wikipedia
[6] Thesis Model Based Signal Processing Techniques for Nonconventional Op-

tical Imaging Systems and the user’s manual Pyxalis Image Viewer, Daniele
Picone

[7] National Gallery of Art, USA

4

https://github.com/Worl0r/Image_Demosaicing_for_Color_Filter_Array
https://github.com/colour-science/colour-demosaicing/tree/develop
https://ieeexplore.ieee.org/document/4032820
https://gricad-gitlab.univ-grenoble-alpes.fr/mullemat/sicom_image_analysis_project
https://en.wikipedia.org/wiki/Bayer_filter
https://theses.hal.science/tel-03596486
https://theses.hal.science/tel-03596486
https://www.nga.gov/


Paintings
Method Interpolation Menon

whithout
refine-
ment

Menon

SSIM 0.910 0.923 0.923
PSNR 30.9 32.7 32.7
MSE (all dimen-
sions)

7.9 × 10−4 5.2 × 10−4 5.2 × 10−4

MSE (Red Pixels) 1.0 × 10−3 6.0 × 10−4 6.1 × 10−4

MSE (Green Pixels) 2.7 × 10−4 4.2 × 10−4 4.1 × 10−4

MSE (Blue Pixels) 1.1 × 10−4 5.5 × 10−4 5.5 × 10−4

Computational Time
(s)

157.9 2.39 2.54

Table 3: Results of img 0 with a Quad-Bayer pattern

Figure 8: Demosaicing for the image called img 1 with Menon method and refine-
ment

Figure 9: Demosaicing for the image called img 2 with Menon method and refine-
ment

Figure 10: Demosaicing for the image called img 3 with Menon method and re-
finement

Figure 11: Demosaicing for the image called img 4 with Menon method and re-
finement

5


	Introduction
	Project Details
	Tested Images
	Implemented Methods
	Code Architecture

	Focus on Menon Method (Bayer pattern)
	Main Process
	Determine the Green Image
	Refinement Step

	Demosaicing Quad-Bayer Pattern
	Results
	Bayer Filter
	Quad-Bayer Filter

	Conclusion

