diff --git a/2-produce-graph/pie--datacite-type.png b/2-produce-graph/pie--datacite-type.png index c161e826007b7302b5d614f5da60e505be044ce5..f6d3ac4241e75ab36088151f1ba4398216e02d75 100644 Binary files a/2-produce-graph/pie--datacite-type.png and b/2-produce-graph/pie--datacite-type.png differ diff --git a/2-produce-graph/pie-data-type.py b/2-produce-graph/pie-data-type.py index 074b8f73397df72af4dff9f41b60d92656188450..e1b8a46948e83dc2ef90757c6d29358d08118d8d 100644 --- a/2-produce-graph/pie-data-type.py +++ b/2-produce-graph/pie-data-type.py @@ -17,7 +17,7 @@ df_type = df["resourceTypeGeneral"].value_counts() #define a color palette to use ### see color palett https://matplotlib.org/stable/users/explain/colors/colormaps.html -colors = [plt.cm.Pastel1(i) for i in range(len(df_type))] +colors = [plt.cm.tab20(i) for i in range(len(df_type))] random.shuffle(colors) ## so that blue is not more the first item plt.subplots(figsize=(10, 7)) @@ -25,7 +25,7 @@ plt.subplots(figsize=(10, 7)) plt.pie(df_type, colors = colors, autopct=lambda p: '{:.0f}%'.format(round(p)) if p > 1 else '', startangle = 160) ## auto pct only if value > 1 -plt.legend(df_type.index, loc = (0.85, 0.2) ) +plt.legend(df_type.index, loc = (0.80, 0.2), framealpha = 0.95) plt.title(f"Type of datasets", fontsize = 20, x = 0.5, y = 1.03, alpha = 0.6) plt.suptitle(f"n = {len(df)}", fontsize = 11, x = 0.5, y = 0.9, alpha = 0.6) @@ -33,6 +33,6 @@ plt.tight_layout(h_pad = 0) plt.savefig("pie--datacite-type.png") print(f"\ngraph produced pie--datacite-type.png") -plt.show() +# plt.show() # print(len(df)) \ No newline at end of file