{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", "# <!-- TITLE --> [GTS6] - CNN with GTSRB dataset - Full convolutions as a batch\n", "<!-- DESC --> Episode 6 : Run Full convolution notebook as a batch\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", "## Objectives :\n", " - Run a notebook code as a **job**\n", " - Follow up with Tensorboard\n", " \n", "The German Traffic Sign Recognition Benchmark (GTSRB) is a dataset with more than 50,000 photos of road signs from about 40 classes. \n", "The final aim is to recognise them ! \n", "Description is available there : http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset\n", "\n", "\n", "## What we're going to do :\n", "Our main steps:\n", " - Run Full-convolution.ipynb as a batch :\n", " - Notebook mode\n", " - Script mode \n", " - Tensorboard follow up" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Step 0 - Just for convenience" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", "\n", "div.warn { \n", " background-color: #fcf2f2;\n", " border-color: #dFb5b4;\n", " border-left: 5px solid #dfb5b4;\n", " padding: 0.5em;\n", " font-weight: bold;\n", " font-size: 1.1em;;\n", " }\n", "\n", "\n", "\n", "div.nota { \n", " background-color: #DAFFDE;\n", " border-left: 5px solid #92CC99;\n", " padding: 0.5em;\n", " }\n", "\n", "div.todo:before { content:url();\n", " float:left;\n", " margin-right:20px;\n", " margin-top:-20px;\n", " margin-bottom:20px;\n", "}\n", "div.todo{\n", " font-weight: bold;\n", " font-size: 1.1em;\n", " margin-top:40px;\n", "}\n", "div.todo ul{\n", " margin: 0.2em;\n", "}\n", "div.todo li{\n", " margin-left:60px;\n", " margin-top:0;\n", " margin-bottom:0;\n", "}\n", "\n", "\n", "</style>\n", "\n" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "FIDLE 2020 - Practical Work Module\n", "Version : 0.57 DEV\n", "Run time : Thursday 10 September 2020, 21:34:05\n", "TensorFlow version : 2.2.0\n", "Keras version : 2.3.0-tf\n", "Current place : Fidle at IDRIS\n", "Dataset dir : /gpfswork/rech/mlh/commun/datasets\n", "Update keras cache : Done\n" ] } ], "source": [ "import sys\n", "\n", "sys.path.append('..')\n", "import fidle.pwk as ooo\n", "place, datasets_dir = ooo.init()\n", "\n", "ooo.mkdir('./run')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 1 - How to run a notebook as a batch ?\n", "\n", "Two simple solutions are possible :-)\n", "\n", " - **Option 1 - Run notebook in a command line (a good choice)**\n", "\n", " Very simple.\n", " The result is the executed notebook, so we can retrieve all the cell'soutputs of the notebook : \n", " ```jupyter nbconvert (...) --to notebook --execute <notebook>``` \n", "\n", " For example : \n", " ```jupyter nbconvert --ExecutePreprocessor.timeout=-1 --to notebook --execute my_notebook.ipynb'```\n", " The result will be a notebook: 'my_notebook.nbconvert.ipynb'.\n", "\n", " - **Option 2 - Run notebook as a script**\n", "\n", " Very simple too, but with some constraints on the notebook. \n", " We will convert the notebook to a Python script (IPython, to be precise) : \n", " ```jupyter nbconvert --to script <notebook>``` \n", " Then we can execute this script : \n", " ```ipython <script>```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 2 - Run as a script\n", "\n", "Maybe not always the best solution, but this solution is very rustic ! \n", "\n", "### 2.1 - Convert to IPython script :" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-rw-r--r-- 1 uja62cb mlh 13294 Sep 10 21:34 ./run/full_convolutions.py\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "[NbConvertApp] Converting notebook 05-Full-convolutions.ipynb to script\n", "[NbConvertApp] Writing 13294 bytes to ./run/full_convolutions.py\n" ] } ], "source": [ "%%bash\n", "jupyter nbconvert --to script --output='./run/full_convolutions' '05-Full-convolutions.ipynb'\n", "ls -l ./run/*.py" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.2 - Batch submission\n", "\n", "See the two examples of bash launch script :\n", " - `batch_oar.sh` GRICAD example, using OAR\n", " - `batch_slurm.sh` IDRIS example, using Slurm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Example at IDRIS\n", "\n", "On the frontal :\n", "```bash\n", "# hostname\n", "jean-zay2\n", "\n", "\n", "# sbatch $WORK/fidle/GTSRB/batch_slurm.sh \n", "Submitted batch job 249794\n", "\n", "#squeue -u $USER\n", " JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)\n", " 249794 gpu_p1 GTSRB Fu uja62cb PD 0:00 1 (Resources)\n", "\n", "# ls -l _batch/\n", "total 32769\n", "-rw-r--r-- 1 uja62cb gensim01 13349 Sep 10 11:32 GTSRB_249794.err\n", "-rw-r--r-- 1 uja62cb gensim01 489 Sep 10 11:31 GTSRB_249794.out\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Example at GRICAD\n", "\n", "Have to be done on the frontal :\n", "```bash\n", "# hostname\n", "f-dahu\n", "\n", "# pwd\n", "/home/paroutyj\n", "\n", "# oarsub -S ~/fidle/GTSRB/batch_oar.sh\n", "[GPUNODE] Adding gpu node restriction\n", "[ADMISSION RULE] Modify resource description with type constraints\n", "\n", "#oarstat -u\n", "Job id S User Duration System message\n", "--------- - -------- ---------- ------------------------------------------------\n", "5878410 R paroutyj 0:19:56 R=8,W=1:0:0,J=I,P=fidle,T=gpu (Karma=0.005,quota_ok)\n", "5896266 W paroutyj 0:00:00 R=8,W=1:0:0,J=B,N=Full convolutions,P=fidle,T=gpu\n", "\n", "# ls -l\n", "total 8\n", "-rw-r--r-- 1 paroutyj l-simap 0 Feb 28 15:58 batch_oar_5896266.err\n", "-rw-r--r-- 1 paroutyj l-simap 5703 Feb 28 15:58 batch_oar_5896266.out\n", "```\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<div class='todo'>\n", " Your mission if you accept it: Run our full_convolution code in batch mode.<br>\n", " For that :\n", " <ul>\n", " <li>Validate the full_convolution notebook on short tests</li>\n", " <li>Submit it in batch mode for validation</li>\n", " <li>Modify the notebook for a full run and submit it :-)</li>\n", " </ul>\n", " \n", "</div>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.7" } }, "nbformat": 4, "nbformat_minor": 4 }