diff --git a/BHPD/01-DNN-Regression.ipynb b/BHPD/01-DNN-Regression.ipynb index 57cca597a6c388e04c536e9ae81689f87a31e840..1f2c7adb058124cd579114e0d757340b198fd7e3 100644 --- a/BHPD/01-DNN-Regression.ipynb +++ b/BHPD/01-DNN-Regression.ipynb @@ -1,5 +1,33 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "jupyter": { + "source_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "<svg viewBox=\"0 0 319.482 36.2319\" xmlns=\"http://www.w3.org/2000/svg\"><title>00-fidle-header-01</title><g data-name=\"Calque 2\" id=\"Calque_2\"><g data-name=\"Calque 4\" id=\"Calque_4\"><path d=\"M19.6212,13.4825a5.49,5.49,0,0,0,2.2409-.7517,2.75,2.75,0,0,1,1.0037-.3925A6.2169,6.2169,0,0,0,20.4184,5.353a7.2454,7.2454,0,0,0-5.0435-.8518,10.436,10.436,0,0,0-4.3281,2.2353c-.4328.3626-5.581,5.2428-7.7283,4.27C1.8658,10.3486,4.46,7.9537,3.27,5.7652a.0949.0949,0,0,0-.1584-.0105c-.6056.817-1.1976,1.7975-2.0041,1.3573A3.7988,3.7988,0,0,1,.1729,5.89.0941.0941,0,0,0,0,5.9434a9.9185,9.9185,0,0,0,2.4932,6.0532,15.0278,15.0278,0,0,0,10.339,5.3173c2.27.2261,7.6543-.49,9.8054-4.36a5.4574,5.4574,0,0,0-.5189.2577,6.04,6.04,0,0,1-2.448.8142c-.0748.0069-.1491.01-.2234.01a4.3218,4.3218,0,0,1-2.44-.9782.4573.4573,0,1,1,.3495-.4436l-.0023.0218A3.5637,3.5637,0,0,0,19.6212,13.4825ZM12.76,15.5084a8.3323,8.3323,0,0,1-1.9609.3562c-.4428,0-.627-.1255-.7147-.314-.2306-.4961.6005-1.2133,1.3378-1.7279a.2726.2726,0,0,1,.312.4472,4.4932,4.4932,0,0,0-1.1262,1.0351,5.352,5.352,0,0,0,2.0105-.3235.2728.2728,0,0,1,.1415.5269ZM19.0763,8.863a1.0412,1.0412,0,0,1,1.0109,1.0032.68.68,0,1,0-.6023.9942.7023.7023,0,0,0,.1263-.0126.9691.9691,0,0,1-.5349.1646,1.0763,1.0763,0,0,1,0-2.1494ZM15.5649,1.8843a.5453.5453,0,0,0,.2143.7407c.2638.1453.82-.1708,1.1567.3.1751.2449-.3665-1.11-.63-1.2554A.5449.5449,0,0,0,15.5649,1.8843Zm2.7777.0584c-.68.3984-.8055,2.0455-.63,1.8007a3.1,3.1,0,0,1,1.1567-.8456.5453.5453,0,0,0-.5264-.9551ZM17.6534.1266c-.3475.402-.11,1.4443-.0473,1.2532a2.216,2.216,0,0,1,.5595-.7875.3573.3573,0,0,0-.0087-.505A.3538.3538,0,0,0,17.6534.1266Z\" style=\"fill:#e12229\"/><path d=\"M1.2153,20.5941H4.63v.41H1.6973v2.748H4.3838v.41H1.6973v3.3427h-.482Z\" style=\"fill:#808285\"/><path d=\"M6.4356,20.5941v6.9111h-.482V20.5941Z\" style=\"fill:#808285\"/><path d=\"M8.1172,20.6864a11.3584,11.3584,0,0,1,1.7637-.1436,3.746,3.746,0,0,1,2.789.9434,3.2687,3.2687,0,0,1,.8614,2.3891,3.8064,3.8064,0,0,1-.9024,2.625A3.97,3.97,0,0,1,9.645,27.5565a14.7622,14.7622,0,0,1-1.5278-.0615Zm.4819,6.4087a8.71,8.71,0,0,0,1.1177.0512,2.96,2.96,0,0,0,3.312-3.24c.01-1.7534-.9638-2.9531-3.1787-2.9531a7.3436,7.3436,0,0,0-1.251.1025Z\" style=\"fill:#808285\"/><path d=\"M14.7525,20.5941h.4819v6.501h3.0864v.41H14.7525Z\" style=\"fill:#808285\"/><path d=\"M22.5977,24.07H19.8291v3.0249h3.0967v.41H19.3472V20.5941h3.4145v.41H19.8291V23.66h2.7686Z\" style=\"fill:#808285\"/><path d=\"M39.1846,4.6615h5.874v1.26H40.6753V9.9676h4.064V11.21h-4.064v5.4126H39.1846Z\"/><path d=\"M53.521,12.2748c0,3.2119-2.0054,4.5249-3.8506,4.5249-2.0942,0-3.727-1.6148-3.727-4.4185,0-2.9458,1.7568-4.5254,3.8511-4.5254C51.9771,7.8558,53.521,9.5418,53.521,12.2748Zm-6.0513.0708c0,1.7392.834,3.3183,2.2715,3.3183,1.4019,0,2.2539-1.5971,2.2539-3.354,0-1.4194-.5859-3.3-2.2539-3.3C48.1084,9.01,47.47,10.8016,47.47,12.3456Z\"/><path d=\"M55.3457,10.5711c0-.9228-.0356-1.7749-.0708-2.5376h1.3306l.0532,1.5791h.0537A2.453,2.453,0,0,1,58.93,7.8558a2.6754,2.6754,0,0,1,.3906.0357v1.455a1.8691,1.8691,0,0,0-.4614-.0356,2.0647,2.0647,0,0,0-1.9522,1.9346,3.2233,3.2233,0,0,0-.0708.7451v4.6318H55.3457Z\"/><path d=\"M60.7212,10.3226c0-.9228-.0356-1.58-.0708-2.2891h1.313l.0889,1.2955h.0351a2.6984,2.6984,0,0,1,2.4668-1.4732A2.3119,2.3119,0,0,1,66.7905,9.453h.0352a3.1059,3.1059,0,0,1,.94-1.065,2.5775,2.5775,0,0,1,1.6685-.5322c1.1533,0,2.6084.7808,2.6084,3.5137v5.2529H70.57V11.618c0-1.5083-.479-2.52-1.6684-2.52a1.8265,1.8265,0,0,0-1.668,1.3667,2.6842,2.6842,0,0,0-.1064.7808v5.3769H65.6548V11.3343c0-1.2422-.48-2.2363-1.6152-2.2363a1.9171,1.9171,0,0,0-1.7388,1.5083,2.6355,2.6355,0,0,0-.1064.7632v5.2529H60.7212Z\"/><path d=\"M78.7471,16.6224l-.1245-1.0293h-.0532A2.7825,2.7825,0,0,1,76.209,16.8,2.36,2.36,0,0,1,73.76,14.3334c0-2.0943,1.81-3.1768,4.72-3.1592v-.2129c0-.834-.2305-1.9873-1.792-1.97a3.6265,3.6265,0,0,0-1.9878.5859l-.3369-1.0293a5.0226,5.0226,0,0,1,2.5908-.6924c2.36,0,3.0166,1.5972,3.0166,3.39V14.6a14.2117,14.2117,0,0,0,.1245,2.0229Zm-.2485-4.4009c-1.3843-.018-3.23.23-3.23,1.9522a1.3139,1.3139,0,0,0,1.331,1.49A1.8733,1.8733,0,0,0,78.4453,14.28a1.5813,1.5813,0,0,0,.0533-.497Z\"/><path d=\"M84.0322,5.62V8.0335h2.0586V9.1869H84.0322v4.7558c0,1.0825.32,1.5972,1.0826,1.5972a3.0007,3.0007,0,0,0,.7988-.0889l.0708,1.1358a3.3086,3.3086,0,0,1-1.2778.1953,2.0439,2.0439,0,0,1-1.5791-.6211A3.1751,3.1751,0,0,1,82.542,13.96V9.1869H81.2993V8.0335H82.542V6.0282Z\"/><path d=\"M89.3369,5.6732a.8939.8939,0,0,1-.94.94.8716.8716,0,0,1-.8872-.94.9142.9142,0,1,1,1.8276,0ZM87.669,16.6224V8.0335h1.5083v8.5889Z\"/><path d=\"M98.5811,12.2748c0,3.2119-2.0054,4.5249-3.8506,4.5249-2.0943,0-3.7271-1.6148-3.7271-4.4185,0-2.9458,1.7569-4.5254,3.8511-4.5254C97.0371,7.8558,98.5811,9.5418,98.5811,12.2748Zm-6.0513.0708c0,1.7392.834,3.3183,2.2715,3.3183,1.4018,0,2.2539-1.5971,2.2539-3.354,0-1.4194-.5859-3.3-2.2539-3.3C93.1685,9.01,92.53,10.8016,92.53,12.3456Z\"/><path d=\"M100.4063,10.3226c0-.9228-.0357-1.58-.0708-2.2891h1.3305l.0713,1.2955h.0532a2.8837,2.8837,0,0,1,2.5733-1.4732c1.189,0,2.7329.7632,2.7329,3.46v5.3061H105.606V11.494c0-1.2778-.4258-2.396-1.7393-2.396a1.9934,1.9934,0,0,0-1.8633,1.5439,2.9606,2.9606,0,0,0-.0888.7457v5.2348h-1.5083Z\"/><path d=\"M114.4922,4.6615V16.6224h-1.4907V4.6615Z\"/><path d=\"M117.0816,10.3226c0-.9228-.0357-1.58-.0708-2.2891h1.3305l.0713,1.2955h.0532a2.8837,2.8837,0,0,1,2.5733-1.4732c1.1889,0,2.7329.7632,2.7329,3.46v5.3061h-1.4907V11.494c0-1.2778-.4263-2.396-1.7393-2.396a1.9934,1.9934,0,0,0-1.8633,1.5439,2.9606,2.9606,0,0,0-.0888.7457v5.2348h-1.5083Z\"/><path d=\"M127.8858,5.62V8.0335h2.0586V9.1869h-2.0586v4.7558c0,1.0825.32,1.5972,1.0825,1.5972a3,3,0,0,0,.7988-.0889l.0708,1.1358a3.3086,3.3086,0,0,1-1.2778.1953,2.044,2.044,0,0,1-1.5791-.6211,3.1751,3.1751,0,0,1-.5855-2.2007V9.1869h-1.2427V8.0335h1.2427V6.0282Z\"/><path d=\"M131.5225,10.5711c0-.9228-.0357-1.7749-.0708-2.5376h1.3305l.0533,1.5791h.0537a2.4529,2.4529,0,0,1,2.2178-1.7568,2.6767,2.6767,0,0,1,.3906.0357v1.455a1.87,1.87,0,0,0-.4615-.0356,2.0646,2.0646,0,0,0-1.9521,1.9346,3.2233,3.2233,0,0,0-.0708.7451v4.6318h-1.4907Z\"/><path d=\"M143.73,12.2748c0,3.2119-2.0054,4.5249-3.8506,4.5249-2.0942,0-3.727-1.6148-3.727-4.4185,0-2.9458,1.7568-4.5254,3.851-4.5254C142.1861,7.8558,143.73,9.5418,143.73,12.2748Zm-6.0513.0708c0,1.7392.834,3.3183,2.2715,3.3183,1.4019,0,2.2539-1.5971,2.2539-3.354,0-1.4194-.5859-3.3-2.2539-3.3C138.3174,9.01,137.6787,10.8016,137.6787,12.3456Z\"/><path d=\"M152.2988,4.1117V14.4574c0,.71.0352,1.5971.0708,2.165h-1.331l-.0708-1.3662h-.0532A2.7765,2.7765,0,0,1,148.3413,16.8c-1.8989,0-3.3364-1.7037-3.3364-4.3653,0-2.9282,1.6328-4.5786,3.4785-4.5786A2.4975,2.4975,0,0,1,150.7725,9.08h.0356V4.1117Zm-1.4907,7.3467a4.0759,4.0759,0,0,0-.0532-.6387,2.066,2.066,0,0,0-1.97-1.7569c-1.4732,0-2.2539,1.4727-2.2539,3.3008,0,1.7744.7451,3.2119,2.2182,3.2119a2.0693,2.0693,0,0,0,1.9873-1.7392,2.4285,2.4285,0,0,0,.0713-.6387Z\"/><path d=\"M161.24,14.28c0,.9048.0356,1.668.0713,2.3423h-1.3135l-.0889-1.26h-.0351A2.896,2.896,0,0,1,157.336,16.8c-1.4024,0-2.6978-.8692-2.6978-3.62V8.0335h1.4907V12.931c0,1.544.4258,2.6265,1.6861,2.6265a1.9727,1.9727,0,0,0,1.81-1.3487,2.6955,2.6955,0,0,0,.124-.7983V8.0335H161.24Z\"/><path d=\"M169.187,16.3382a5.0912,5.0912,0,0,1-2.165.4439c-2.36,0-3.94-1.6861-3.94-4.3653a4.2056,4.2056,0,0,1,4.2593-4.5429,4.4517,4.4517,0,0,1,1.8809.39l-.3369,1.1714a3.4208,3.4208,0,0,0-1.5616-.355c-1.7924,0-2.7153,1.5259-2.7153,3.2652,0,2.0053,1.1182,3.2119,2.6973,3.2119a3.8423,3.8423,0,0,0,1.6328-.355Z\"/><path d=\"M172.8755,5.62V8.0335h2.0586V9.1869h-2.0586v4.7558c0,1.0825.32,1.5972,1.0825,1.5972a3.0016,3.0016,0,0,0,.7989-.0889l.0708,1.1358a3.31,3.31,0,0,1-1.2774.1953,2.0446,2.0446,0,0,1-1.58-.6211,3.1751,3.1751,0,0,1-.5854-2.2007V9.1869h-1.2422V8.0335h1.2422V6.0282Z\"/><path d=\"M178.18,5.6732a.894.894,0,0,1-.94.94.8716.8716,0,0,1-.8872-.94.9142.9142,0,1,1,1.8276,0Zm-1.668,10.9492V8.0335H178.02v8.5889Z\"/><path d=\"M187.4238,12.2748c0,3.2119-2.0053,4.5249-3.8505,4.5249-2.0943,0-3.7271-1.6148-3.7271-4.4185,0-2.9458,1.7568-4.5254,3.8511-4.5254C185.88,7.8558,187.4238,9.5418,187.4238,12.2748Zm-6.0512.0708c0,1.7392.834,3.3183,2.2715,3.3183,1.4018,0,2.2539-1.5971,2.2539-3.354,0-1.4194-.586-3.3-2.2539-3.3C182.0112,9.01,181.3726,10.8016,181.3726,12.3456Z\"/><path d=\"M189.249,10.3226c0-.9228-.0356-1.58-.0708-2.2891h1.3306L190.58,9.329h.0532a2.8837,2.8837,0,0,1,2.5733-1.4732c1.1889,0,2.7329.7632,2.7329,3.46v5.3061h-1.4908V11.494c0-1.2778-.4257-2.396-1.7392-2.396a1.9933,1.9933,0,0,0-1.8633,1.5439,2.96,2.96,0,0,0-.0889.7457v5.2348H189.249Z\"/><path d=\"M206.14,16.6224l-.1245-1.0293h-.0533a2.7822,2.7822,0,0,1-2.36,1.2066,2.36,2.36,0,0,1-2.4488-2.4663c0-2.0943,1.81-3.1768,4.72-3.1592v-.2129c0-.834-.2305-1.9873-1.792-1.97a3.6265,3.6265,0,0,0-1.9878.5859l-.3369-1.0293a5.0226,5.0226,0,0,1,2.5908-.6924c2.36,0,3.0166,1.5972,3.0166,3.39V14.6a14.197,14.197,0,0,0,.1245,2.0229Zm-.2486-4.4009c-1.3842-.018-3.23.23-3.23,1.9522a1.314,1.314,0,0,0,1.3311,1.49,1.8733,1.8733,0,0,0,1.8457-1.3838,1.5842,1.5842,0,0,0,.0532-.497Z\"/><path d=\"M216.27,14.28c0,.9048.0357,1.668.0713,2.3423h-1.3134l-.0889-1.26h-.0352A2.8958,2.8958,0,0,1,212.3657,16.8c-1.4023,0-2.6977-.8692-2.6977-3.62V8.0335h1.4907V12.931c0,1.544.4258,2.6265,1.686,2.6265a1.9728,1.9728,0,0,0,1.81-1.3487,2.6955,2.6955,0,0,0,.124-.7983V8.0335H216.27Z\"/><path d=\"M222.2105,4.8211a16.8343,16.8343,0,0,1,2.8574-.248,5.9353,5.9353,0,0,1,4.2236,1.3306,5.6506,5.6506,0,0,1,1.668,4.4546,6.55,6.55,0,0,1-1.6328,4.7734,6.4641,6.4641,0,0,1-4.6846,1.58,19.2072,19.2072,0,0,1-2.4316-.1245Zm1.4907,10.6123a8.6866,8.6866,0,0,0,1.2422.0709c2.7685,0,4.4546-1.6148,4.4546-5.0928.0175-2.8926-1.3843-4.6319-4.2417-4.6319a7.5143,7.5143,0,0,0-1.4551.1241Z\"/><path d=\"M233.76,12.5584c.0351,2.2715,1.2773,3.0523,2.6616,3.0523a5.0475,5.0475,0,0,0,2.0942-.4082l.2662,1.0825a6.2363,6.2363,0,0,1-2.5733.4971c-2.4668,0-3.9043-1.7393-3.9043-4.33,0-2.644,1.4375-4.5962,3.709-4.5962,2.4844,0,3.1943,2.2715,3.1943,3.9575a7.0383,7.0383,0,0,1-.0356.7451Zm4.01-1.0825c.0181-1.2065-.479-2.5195-1.8989-2.5195-1.3838,0-1.9873,1.4019-2.0937,2.5195Z\"/><path d=\"M241.92,12.5584c.0352,2.2715,1.2774,3.0523,2.6616,3.0523a5.0484,5.0484,0,0,0,2.0943-.4082l.2661,1.0825a6.2354,6.2354,0,0,1-2.5732.4971c-2.4668,0-3.9043-1.7393-3.9043-4.33,0-2.644,1.4375-4.5962,3.7089-4.5962,2.4844,0,3.1944,2.2715,3.1944,3.9575a7.0326,7.0326,0,0,1-.0357.7451Zm4.01-1.0825c.018-1.2065-.479-2.5195-1.8989-2.5195-1.3838,0-1.9873,1.4019-2.0938,2.5195Z\"/><path d=\"M249.1753,10.8016c0-1.1709-.0356-2.0229-.0708-2.7681h1.3486l.0708,1.3487h.0357a2.9637,2.9637,0,0,1,2.68-1.5264c1.8989,0,3.3008,1.7036,3.3008,4.3833,0,3.1235-1.7217,4.5606-3.5318,4.5606a2.5778,2.5778,0,0,1-2.3066-1.2422h-.0357V20.1h-1.4907Zm1.4907,2.4312a2.5721,2.5721,0,0,0,.0708.6567,2.0817,2.0817,0,0,0,2.0054,1.7212c1.5083,0,2.2715-1.4194,2.2715-3.3184,0-1.7392-.7451-3.2119-2.2359-3.2119a2.2068,2.2068,0,0,0-2.0229,1.81,2.64,2.64,0,0,0-.0889.6387Z\"/><path d=\"M261.9126,4.6615h1.4907V15.3626H268v1.26h-6.0869Z\"/><path d=\"M270.1807,12.5584c.0351,2.2715,1.2773,3.0523,2.6616,3.0523a5.0475,5.0475,0,0,0,2.0942-.4082l.2662,1.0825a6.2363,6.2363,0,0,1-2.5733.4971c-2.4668,0-3.9043-1.7393-3.9043-4.33,0-2.644,1.4375-4.5962,3.709-4.5962,2.4844,0,3.1943,2.2715,3.1943,3.9575a7.0383,7.0383,0,0,1-.0356.7451Zm4.01-1.0825c.0181-1.2065-.479-2.5195-1.8989-2.5195-1.3838,0-1.9873,1.4019-2.0937,2.5195Z\"/><path d=\"M281.8013,16.6224l-.1245-1.0293h-.0532a2.7825,2.7825,0,0,1-2.36,1.2066,2.36,2.36,0,0,1-2.4487-2.4663c0-2.0943,1.81-3.1768,4.72-3.1592v-.2129c0-.834-.2305-1.9873-1.792-1.97a3.6265,3.6265,0,0,0-1.9878.5859l-.3369-1.0293a5.0226,5.0226,0,0,1,2.5908-.6924c2.36,0,3.0166,1.5972,3.0166,3.39V14.6a14.2117,14.2117,0,0,0,.1245,2.0229Zm-.2485-4.4009c-1.3843-.018-3.23.23-3.23,1.9522a1.3139,1.3139,0,0,0,1.331,1.49A1.8733,1.8733,0,0,0,281.5,14.28a1.5813,1.5813,0,0,0,.0533-.497Z\"/><path d=\"M285.3653,10.5711c0-.9228-.0357-1.7749-.0708-2.5376h1.33l.0532,1.5791h.0538A2.4528,2.4528,0,0,1,288.95,7.8558a2.6754,2.6754,0,0,1,.3906.0357v1.455a1.8683,1.8683,0,0,0-.4614-.0356,2.0645,2.0645,0,0,0-1.9521,1.9346,3.2233,3.2233,0,0,0-.0708.7451v4.6318h-1.4907Z\"/><path d=\"M290.7407,10.3226c0-.9228-.0356-1.58-.0708-2.2891h1.3306l.0713,1.2955h.0532a2.8837,2.8837,0,0,1,2.5733-1.4732c1.1889,0,2.7329.7632,2.7329,3.46v5.3061H295.94V11.494c0-1.2778-.4262-2.396-1.7392-2.396a1.9933,1.9933,0,0,0-1.8633,1.5439,2.96,2.96,0,0,0-.0889.7457v5.2348h-1.5083Z\"/><path d=\"M301.4561,5.6732a.894.894,0,0,1-.94.94.8717.8717,0,0,1-.8872-.94.9142.9142,0,1,1,1.8277,0Zm-1.668,10.9492V8.0335h1.5083v8.5889Z\"/><path d=\"M303.6734,10.3226c0-.9228-.0357-1.58-.0708-2.2891h1.3305l.0713,1.2955h.0532a2.8837,2.8837,0,0,1,2.5733-1.4732c1.1889,0,2.7329.7632,2.7329,3.46v5.3061h-1.4907V11.494c0-1.2778-.4263-2.396-1.7393-2.396a1.9934,1.9934,0,0,0-1.8633,1.5439,2.9606,2.9606,0,0,0-.0888.7457v5.2348h-1.5083Z\"/><path d=\"M319.482,8.0335c-.0357.6031-.0709,1.3306-.0709,2.4488v4.9336c0,2.0761-.373,3.1587-1.1,3.8686a4.0969,4.0969,0,0,1-2.8745.9937,4.9764,4.9764,0,0,1-2.5733-.6211l.355-1.1538a4.4973,4.4973,0,0,0,2.2534.5859c1.4375,0,2.4668-.7808,2.4668-2.8926v-.9228h-.0356a2.65,2.65,0,0,1-2.4131,1.313c-1.9522,0-3.3189-1.7744-3.3189-4.2056,0-2.9814,1.7569-4.5254,3.5318-4.5254a2.5526,2.5526,0,0,1,2.36,1.3667h.0357l.0532-1.189ZM317.92,11.2811a2.8078,2.8078,0,0,0-.0713-.6748,2.0058,2.0058,0,0,0-1.9165-1.5435c-1.331,0-2.2358,1.2774-2.2358,3.2471,0,1.8281.7983,3.1235,2.2183,3.1235a1.9791,1.9791,0,0,0,1.8989-1.5083,3.0968,3.0968,0,0,0,.1064-.7988Z\"/><line style=\"fill:#58595b\" x1=\"30.9665\" x2=\"30.9665\" y1=\"4.4557\" y2=\"27.3725\"/><path d=\"M39.5318,26.3089a1.7029,1.7029,0,0,0,.9038.273A.9567.9567,0,0,0,41.5,25.6087c0-.5253-.28-.8408-.8613-1.1069-.5884-.2451-1.1138-.6372-1.1138-1.3027a1.1968,1.1968,0,0,1,1.2886-1.1836,1.5069,1.5069,0,0,1,.84.21l-.126.273a1.3156,1.3156,0,0,0-.7421-.21.846.846,0,0,0-.9385.84c0,.539.3008.7915.8965,1.0712.707.3506,1.0786.7217,1.0786,1.3731a1.2716,1.2716,0,0,1-1.4009,1.2886,1.85,1.85,0,0,1-1.0088-.2871Z\"/><path d=\"M45.2383,25.097c0,1.2471-.75,1.772-1.4287,1.772-.75,0-1.3731-.6231-1.3731-1.7295,0-1.1768.68-1.772,1.4219-1.772C44.65,23.3675,45.2383,24.0047,45.2383,25.097Zm-2.4722.0283c0,.75.4063,1.4707,1.0645,1.4707s1.0786-.7211,1.0786-1.4917c0-.5883-.2734-1.4638-1.0649-1.4638C43.0742,23.6405,42.7661,24.453,42.7661,25.1253Z\"/><path d=\"M46.0274,24.3758c0-.3081-.0137-.6445-.0279-.9384h.3013l.0142.6445h.0136a.9865.9865,0,0,1,.89-.7144.57.57,0,0,1,.1118.0069v.3222a.65.65,0,0,0-.126-.0073c-.4551,0-.7632.4136-.8335.9107a2.2667,2.2667,0,0,0-.021.3081v1.8911h-.3222Z\"/><path d=\"M49.5567,26.7992l-.0425-.4483h-.021a1.08,1.08,0,0,1-.9385.5181.88.88,0,0,1-.9175-.9243c0-.7842.6656-1.2256,1.8491-1.2188v-.0981c0-.4063-.07-.9873-.7773-.9873a1.3175,1.3175,0,0,0-.7354.2241l-.0981-.2383a1.6033,1.6033,0,0,1,.8823-.2588c.8125,0,1.0508.5879,1.0508,1.2534v1.3936a5.7383,5.7383,0,0,0,.042.7847Zm-.07-1.8c-.5883-.0142-1.5058.07-1.5058.9033a.6064.6064,0,0,0,.6094.6933.8715.8715,0,0,0,.8686-.6655.74.74,0,0,0,.0278-.2031Z\"/><path d=\"M50.69,23.4374l.77,2.15c.0913.2588.1679.5249.2241.7422h.0142c.0629-.21.1469-.476.2309-.7563l.7217-2.1362h.3428l-.8472,2.3183a5.9218,5.9218,0,0,1-1.0576,2.1782,2.1326,2.1326,0,0,1-.5606.3921l-.1259-.2729a1.7442,1.7442,0,0,0,.56-.4136,2.8488,2.8488,0,0,0,.49-.7915.5393.5393,0,0,0,.042-.1606.5.5,0,0,0-.0351-.14l-1.1138-3.11Z\"/><path d=\"M55.22,26.7992l-.0424-.4483h-.021a1.08,1.08,0,0,1-.9385.5181.88.88,0,0,1-.9175-.9243c0-.7842.6655-1.2256,1.8491-1.2188v-.0981c0-.4063-.07-.9873-.7773-.9873a1.3175,1.3175,0,0,0-.7354.2241l-.0981-.2383a1.6031,1.6031,0,0,1,.8823-.2588c.8125,0,1.0508.5879,1.0508,1.2534v1.3936a5.7383,5.7383,0,0,0,.042.7847Zm-.07-1.8c-.5883-.0142-1.5058.07-1.5058.9033a.6064.6064,0,0,0,.6093.6933.8716.8716,0,0,0,.8687-.6655.74.74,0,0,0,.0278-.2031Z\"/><path d=\"M58.418,25.1532l-.5186,1.646H57.57l1.5269-4.7207h.3154L60.94,26.7992h-.33l-.5322-1.646Zm1.5688-.273-.49-1.499a7.9831,7.9831,0,0,1-.2383-.91h-.021c-.063.3082-.14.5879-.2309.9034L58.5088,24.88Z\"/><path d=\"M61.63,24.3758c0-.3081-.0137-.6445-.0278-.9384h.3012l.0142.6445h.0137a.9865.9865,0,0,1,.89-.7144.57.57,0,0,1,.1118.0069v.3222a.6488.6488,0,0,0-.126-.0073c-.455,0-.7631.4136-.8335.9107a2.2669,2.2669,0,0,0-.0209.3081v1.8911H61.63Z\"/><path d=\"M63.9824,22.5057a.2576.2576,0,0,1-.2661.28.2536.2536,0,0,1-.2451-.28.2624.2624,0,0,1,.252-.28A.26.26,0,0,1,63.9824,22.5057Zm-.42,4.2935V23.4374h.3223v3.3618Z\"/><path d=\"M66.5806,26.7992l-.042-.4483h-.0215a1.08,1.08,0,0,1-.9385.5181.88.88,0,0,1-.9175-.9243c0-.7842.6656-1.2256,1.8492-1.2188v-.0981c0-.4063-.07-.9873-.7774-.9873a1.3172,1.3172,0,0,0-.7353.2241l-.0982-.2383a1.6034,1.6034,0,0,1,.8824-.2588c.8125,0,1.0507.5879,1.0507,1.2534v1.3936a5.7542,5.7542,0,0,0,.042.7847Zm-.07-1.8c-.5884-.0142-1.5059.07-1.5059.9033a.6064.6064,0,0,0,.6094.6933.8711.8711,0,0,0,.8686-.6655.7406.7406,0,0,0,.0279-.2031Z\"/><path d=\"M67.7061,26.3719a1.32,1.32,0,0,0,.6792.2173.6363.6363,0,0,0,.7217-.6377c0-.3428-.1822-.5532-.63-.7632-.4976-.2309-.8057-.5112-.8057-.9316a.9043.9043,0,0,1,.9736-.8892,1.1917,1.1917,0,0,1,.6866.2032l-.1333.2661a.9605.9605,0,0,0-.5952-.1963.5631.5631,0,0,0-.6094.5674c0,.3291.1963.476.6162.6865.4766.2168.8193.49.8193,1.0083a.9567.9567,0,0,1-1.0644.96,1.3757,1.3757,0,0,1-.7774-.2242Z\"/><path d=\"M69.7993,27.6815a9.6118,9.6118,0,0,0,.3638-1.4849l.4272-.07a8.7922,8.7922,0,0,1-.539,1.52Z\"/><path d=\"M74.7842,24.453H73.0894v2.0659h1.9048v.28H72.7671V22.0785h2.1221v.28h-1.8v1.814h1.6948Z\"/><path d=\"M75.707,24.3758c0-.3081-.0136-.6445-.0278-.9384h.3013l.0141.6445h.0137a.9865.9865,0,0,1,.89-.7144.57.57,0,0,1,.1118.0069v.3222a.65.65,0,0,0-.126-.0073c-.4551,0-.7632.4136-.8335.9107a2.2507,2.2507,0,0,0-.021.3081v1.8911H75.707Z\"/><path d=\"M78.0591,22.5057a.2576.2576,0,0,1-.2661.28.2535.2535,0,0,1-.2451-.28.2623.2623,0,0,1,.2519-.28A.26.26,0,0,1,78.0591,22.5057Zm-.42,4.2935V23.4374h.3223v3.3618Z\"/><path d=\"M81.0772,26.6659a1.8118,1.8118,0,0,1-.8472.1963,1.5146,1.5146,0,0,1-1.4712-1.7159,1.6209,1.6209,0,0,1,1.5762-1.7788,1.514,1.514,0,0,1,.7563.1822l-.1123.2729a1.38,1.38,0,0,0-.686-.1753c-.8125,0-1.2046.7217-1.2046,1.4849,0,.89.49,1.45,1.19,1.45a1.592,1.592,0,0,0,.7144-.168Z\"/><path d=\"M86.8462,24.5511c-.0425-.7143-.0981-1.541-.0845-2.0732h-.0278c-.147.5254-.3223,1.0718-.5674,1.7651l-.9033,2.5562H85.06L84.2124,24.32c-.2519-.7354-.4341-1.3028-.56-1.8418h-.021c-.0074.5674-.042,1.3515-.0913,2.1362l-.126,2.1851h-.3223l.3154-4.7207h.3711l.9107,2.6338c.2031.6162.3569,1.0712.4829,1.5546h.021c.1123-.4692.2661-.9106.4834-1.5478l.9248-2.6406H87l.2945,4.7207h-.3223Z\"/><path d=\"M89.9038,26.7992l-.042-.4483H89.84a1.08,1.08,0,0,1-.9384.5181.88.88,0,0,1-.9175-.9243c0-.7842.6655-1.2256,1.8491-1.2188v-.0981c0-.4063-.07-.9873-.7773-.9873a1.3175,1.3175,0,0,0-.7354.2241l-.0981-.2383a1.6031,1.6031,0,0,1,.8823-.2588c.8125,0,1.0508.5879,1.0508,1.2534v1.3936a5.7383,5.7383,0,0,0,.042.7847Zm-.07-1.8c-.5884-.0142-1.5058.07-1.5058.9033a.6064.6064,0,0,0,.6093.6933.8712.8712,0,0,0,.8687-.6655.74.74,0,0,0,.0278-.2031Z\"/><path d=\"M91.1621,21.8617h.3223v4.9375h-.3223Z\"/><path d=\"M94.9649,21.8617V26.05c0,.2172.0136.5463.0278.7495h-.294l-.0209-.5816h-.021a1.1045,1.1045,0,0,1-1.0508.6514c-.7212,0-1.2959-.6372-1.2959-1.7017,0-1.1484.63-1.8,1.352-1.8a1.0329,1.0329,0,0,1,.96.5459h.0142V21.8617Zm-.3291,2.8852a2.1212,2.1212,0,0,0-.021-.2871.9719.9719,0,0,0-.9248-.8193c-.6724,0-1.05.6655-1.05,1.499,0,.7564.3217,1.4565,1.0224,1.4565a.9822.9822,0,0,0,.9453-.84,1.07,1.07,0,0,0,.0284-.2661Z\"/><path d=\"M98.5488,25.097c0,1.2471-.7495,1.772-1.4287,1.772-.7495,0-1.373-.6231-1.373-1.7295,0-1.1768.68-1.772,1.4219-1.772C97.9605,23.3675,98.5488,24.0047,98.5488,25.097Zm-2.4721.0283c0,.75.4062,1.4707,1.0644,1.4707s1.0786-.7211,1.0786-1.4917c0-.5883-.2734-1.4638-1.0649-1.4638C96.3848,23.6405,96.0767,24.453,96.0767,25.1253Z\"/><path d=\"M99.3384,24.2357c0-.3433-.0137-.5391-.0278-.7983h.3012l.021.5463h.0142a1.1257,1.1257,0,0,1,1.0293-.6162c.3364,0,1.0508.189,1.0508,1.3238v2.1079h-.3223V24.7469c0-.5742-.189-1.1-.8193-1.1a.9326.9326,0,0,0-.8828.7495.9662.9662,0,0,0-.042.2945v2.1079h-.3223Z\"/><path d=\"M104.4,26.7992l-.0425-.4483h-.021a1.08,1.08,0,0,1-.9384.5181.88.88,0,0,1-.9175-.9243c0-.7842.6655-1.2256,1.8491-1.2188v-.0981c0-.4063-.07-.9873-.7773-.9873a1.3175,1.3175,0,0,0-.7354.2241l-.0981-.2383a1.6028,1.6028,0,0,1,.8823-.2588c.8125,0,1.0508.5879,1.0508,1.2534v1.3936a5.7383,5.7383,0,0,0,.042.7847Zm-.07-1.8c-.5884-.0142-1.5059.07-1.5059.9033a.6064.6064,0,0,0,.6094.6933.8717.8717,0,0,0,.8687-.6655.74.74,0,0,0,.0278-.2031Z\"/><path d=\"M108.0689,21.8617V26.05c0,.2172.0136.5463.0278.7495h-.2939l-.021-.5816h-.021a1.1045,1.1045,0,0,1-1.0508.6514c-.7212,0-1.2959-.6372-1.2959-1.7017,0-1.1484.63-1.8,1.352-1.8a1.0329,1.0329,0,0,1,.96.5459h.0142V21.8617Zm-.3291,2.8852a2.0459,2.0459,0,0,0-.0215-.2871.9714.9714,0,0,0-.9243-.8193c-.6724,0-1.05.6655-1.05,1.499,0,.7564.3217,1.4565,1.0224,1.4565a.9822.9822,0,0,0,.9453-.84,1.07,1.07,0,0,0,.0284-.2661Z\"/><path d=\"M111.6528,25.097c0,1.2471-.7495,1.772-1.4287,1.772-.75,0-1.373-.6231-1.373-1.7295,0-1.1768.68-1.772,1.4219-1.772C111.0645,23.3675,111.6528,24.0047,111.6528,25.097Zm-2.4721.0283c0,.75.4057,1.4707,1.0644,1.4707s1.0786-.7211,1.0786-1.4917c0-.5883-.2734-1.4638-1.0644-1.4638C109.4888,23.6405,109.1807,24.453,109.1807,25.1253Z\"/><path d=\"M111.9317,27.6815a9.6124,9.6124,0,0,0,.3637-1.4849l.4273-.07a8.7994,8.7994,0,0,1-.5391,1.52Z\"/><path d=\"M115.7681,22.0785h.3222v3.334c0,1.1-.5043,1.4565-1.1767,1.4565a1.5443,1.5443,0,0,1-.49-.084l.0629-.2729a1.0861,1.0861,0,0,0,.4131.0771c.5606,0,.8687-.2524.8687-1.2329Z\"/><path d=\"M117.188,25.055c0,1.1626.5532,1.5269,1.1489,1.5269a1.5525,1.5525,0,0,0,.8052-.1748l.084.2519a1.885,1.885,0,0,1-.9312.2032c-.8964,0-1.4292-.7-1.4292-1.6949,0-1.1064.5674-1.8,1.3589-1.8.9737,0,1.1695.9663,1.1695,1.4844a1.7348,1.7348,0,0,1-.0069.2031Zm1.87-.2588c.0069-.5747-.2309-1.1557-.8755-1.1557-.6372,0-.9243.63-.98,1.1557Z\"/><path d=\"M121.83,26.7992l-.0425-.4483h-.021a1.08,1.08,0,0,1-.9385.5181.8794.8794,0,0,1-.9174-.9243c0-.7842.6655-1.2256,1.8491-1.2188v-.0981c0-.4063-.07-.9873-.7774-.9873a1.3172,1.3172,0,0,0-.7353.2241l-.0982-.2383a1.6034,1.6034,0,0,1,.8824-.2588c.8125,0,1.0507.5879,1.0507,1.2534v1.3936a5.7542,5.7542,0,0,0,.042.7847Zm-.07-1.8c-.5884-.0142-1.5059.07-1.5059.9033a.6064.6064,0,0,0,.6094.6933.8717.8717,0,0,0,.8687-.6655.744.744,0,0,0,.0278-.2031Z\"/><path d=\"M123.0889,24.2357c0-.3433-.0137-.5391-.0278-.7983h.3012l.021.5463h.0142a1.1255,1.1255,0,0,1,1.0293-.6162c.3364,0,1.0508.189,1.0508,1.3238v2.1079h-.3223V24.7469c0-.5742-.189-1.1-.8193-1.1a.9327.9327,0,0,0-.8829.7495.9692.9692,0,0,0-.042.2945v2.1079h-.3222Z\"/><path d=\"M127.8423,24.7821v.28H126.19v-.28Z\"/><path d=\"M128.584,22.0785h.3223v4.4477h1.8911v.273H128.584Z\"/><path d=\"M133.6392,25.9725c0,.3223.0141.5816.0278.8267h-.2939l-.0284-.5254h-.0136a1.1575,1.1575,0,0,1-1.0157.5952c-.4624,0-1.03-.28-1.03-1.4077V23.4374h.3222v1.9541c0,.6933.1822,1.1977.7847,1.1977a.9653.9653,0,0,0,.8755-.6514,1.4307,1.4307,0,0,0,.0488-.3574v-2.143h.3223Z\"/><path d=\"M136.7466,26.6659a1.8111,1.8111,0,0,1-.8472.1963,1.5146,1.5146,0,0,1-1.4712-1.7159,1.6209,1.6209,0,0,1,1.5762-1.7788,1.5144,1.5144,0,0,1,.7564.1822l-.1123.2729a1.38,1.38,0,0,0-.6861-.1753c-.8125,0-1.2046.7217-1.2046,1.4849,0,.89.49,1.45,1.19,1.45a1.5915,1.5915,0,0,0,.7143-.168Z\"/><path d=\"M138.88,22.1346a4.5182,4.5182,0,0,1,.9033-.0908,1.5666,1.5666,0,0,1,1.1416.3848,1.2394,1.2394,0,0,1,.3506.9316,1.3833,1.3833,0,0,1-.2944.9175,1.6368,1.6368,0,0,1-1.2954.54,2.0535,2.0535,0,0,1-.4834-.042v2.024H138.88Zm.3223,2.3535a1.6865,1.6865,0,0,0,.49.0557,1.1055,1.1055,0,0,0,1.2539-1.1626c0-.6792-.4414-1.0576-1.1768-1.0576a2.5519,2.5519,0,0,0-.5673.0493Z\"/><path d=\"M143.523,26.7992l-.042-.4483H143.46a1.08,1.08,0,0,1-.9385.5181.88.88,0,0,1-.9175-.9243c0-.7842.6656-1.2256,1.8492-1.2188v-.0981c0-.4063-.07-.9873-.7774-.9873a1.3172,1.3172,0,0,0-.7353.2241l-.0982-.2383a1.6033,1.6033,0,0,1,.8823-.2588c.8125,0,1.0508.5879,1.0508,1.2534v1.3936a5.7542,5.7542,0,0,0,.042.7847Zm-.07-1.8c-.5884-.0142-1.5059.07-1.5059.9033a.6064.6064,0,0,0,.6094.6933.8711.8711,0,0,0,.8686-.6655.7406.7406,0,0,0,.0279-.2031Z\"/><path d=\"M144.7813,24.3758c0-.3081-.0137-.6445-.0279-.9384h.3013l.0142.6445h.0136a.9865.9865,0,0,1,.89-.7144.57.57,0,0,1,.1118.0069v.3222a.65.65,0,0,0-.126-.0073c-.4551,0-.7632.4136-.8335.9107a2.2667,2.2667,0,0,0-.021.3081v1.8911h-.3222Z\"/><path d=\"M149.1441,25.097c0,1.2471-.75,1.772-1.4288,1.772-.75,0-1.373-.6231-1.373-1.7295,0-1.1768.68-1.772,1.4219-1.772C148.5557,23.3675,149.1441,24.0047,149.1441,25.097Zm-2.4722.0283c0,.75.4058,1.4707,1.0644,1.4707s1.0787-.7211,1.0787-1.4917c0-.5883-.2735-1.4638-1.0645-1.4638C146.98,23.6405,146.6719,24.453,146.6719,25.1253Z\"/><path d=\"M152.2656,25.9725c0,.3223.0142.5816.0279.8267H152l-.0283-.5254h-.0137a1.1573,1.1573,0,0,1-1.0156.5952c-.4624,0-1.03-.28-1.03-1.4077V23.4374h.3223v1.9541c0,.6933.1821,1.1977.7847,1.1977a.9651.9651,0,0,0,.8754-.6514,1.4259,1.4259,0,0,0,.0489-.3574v-2.143h.3222Z\"/><path d=\"M153.7486,22.492v.9454h.8618v.2661h-.8618v2.22c0,.4341.1333.6655.4482.6655a.9511.9511,0,0,0,.33-.0493l.042.2524a1.0881,1.0881,0,0,1-.42.07.6635.6635,0,0,1-.5391-.2242,1.2231,1.2231,0,0,1-.1894-.7915v-2.143h-.5181v-.2661h.5181v-.8335Z\"/><path d=\"M155.2739,23.4374l.7706,2.15c.0913.2588.1679.5249.2241.7422h.0141c.063-.21.147-.476.231-.7563l.7217-2.1362h.3427l-.8471,2.3183a5.9234,5.9234,0,0,1-1.0576,2.1782,2.1342,2.1342,0,0,1-.5606.3921l-.126-.2729a1.7435,1.7435,0,0,0,.5606-.4136,2.8488,2.8488,0,0,0,.49-.7915.5425.5425,0,0,0,.042-.1606.5033.5033,0,0,0-.0351-.14l-1.1138-3.11Z\"/><path d=\"M160.9238,24.7821v.28H159.271v-.28Z\"/><path d=\"M165.88,26.659a2.5778,2.5778,0,0,1-1.0855.2032c-1.0224,0-2.0029-.6866-2.0029-2.3882a2.1666,2.1666,0,0,1,2.1362-2.4585,2.059,2.059,0,0,1,.9312.1753l-.105.28a1.9024,1.9024,0,0,0-.84-.1752c-1.0366,0-1.7862.7353-1.7862,2.164,0,1.3941.6934,2.1221,1.7583,2.1221a2.1044,2.1044,0,0,0,.9034-.189Z\"/><path d=\"M166.6143,26.7992V22.0785h.3081l1.5762,2.6826c.3359.5952.602,1.0928.8193,1.583l.0137-.0073c-.0489-.7144-.0557-1.2325-.0557-1.9888v-2.27h.3149v4.7207h-.3081l-1.562-2.6895a14.8192,14.8192,0,0,1-.8262-1.583l-.0141.0073c.042.6231.042,1.1343.042,1.9961v2.2691Z\"/><path d=\"M170.6528,22.1415a4.1574,4.1574,0,0,1,.9034-.0977,1.5722,1.5722,0,0,1,1.17.3779,1.2161,1.2161,0,0,1,.3223.8545,1.2421,1.2421,0,0,1-.8829,1.2329v.0137c.3785.1123.6026.4692.7144,1.0435a6.03,6.03,0,0,0,.3223,1.2329h-.336a6.8787,6.8787,0,0,1-.2871-1.1626c-.1333-.6792-.4136-.9805-1.0088-1.0015h-.5952v2.1641h-.3223Zm.3223,2.2343h.6026a1.0322,1.0322,0,0,0,1.1416-1.0434c0-.6934-.4483-1.0156-1.1768-1.0156a2.4105,2.4105,0,0,0-.5674.0561Z\"/><path d=\"M173.7608,26.3089a1.7029,1.7029,0,0,0,.9038.273.9567.9567,0,0,0,1.0644-.9732c0-.5253-.28-.8408-.8613-1.1069-.5884-.2451-1.1138-.6372-1.1138-1.3027a1.1968,1.1968,0,0,1,1.2886-1.1836,1.5069,1.5069,0,0,1,.84.21l-.1259.273a1.3162,1.3162,0,0,0-.7422-.21.846.846,0,0,0-.9385.84c0,.539.3013.7915.8965,1.0712.707.3506,1.0786.7217,1.0786,1.3731a1.2716,1.2716,0,0,1-1.4009,1.2886,1.85,1.85,0,0,1-1.0088-.2871Z\"/><path d=\"M176.3574,27.0794l1.9893-5.0708h.3218l-2.003,5.0708Z\"/><path d=\"M179.06,26.3089a1.7032,1.7032,0,0,0,.9038.273.9567.9567,0,0,0,1.0644-.9732c0-.5253-.28-.8408-.8613-1.1069-.5884-.2451-1.1137-.6372-1.1137-1.3027a1.1967,1.1967,0,0,1,1.2885-1.1836,1.5076,1.5076,0,0,1,.84.21l-.126.273a1.3162,1.3162,0,0,0-.7422-.21.8461.8461,0,0,0-.9385.84c0,.539.3013.7915.8965,1.0712.707.3506,1.0786.7217,1.0786,1.3731a1.2716,1.2716,0,0,1-1.4009,1.2886,1.8506,1.8506,0,0,1-1.0088-.2871Z\"/><path d=\"M182.7139,25.1532l-.5186,1.646h-.3291l1.5269-4.7207h.3154l1.5269,4.7207h-.33l-.5322-1.646Zm1.5688-.273-.49-1.499a7.9831,7.9831,0,0,1-.2383-.91h-.021c-.063.3082-.14.5879-.2309.9034l-.4976,1.5058Z\"/><path d=\"M185.94,22.1415a4.1574,4.1574,0,0,1,.9034-.0977,1.573,1.573,0,0,1,1.17.3779,1.2161,1.2161,0,0,1,.3223.8545,1.2421,1.2421,0,0,1-.8829,1.2329v.0137c.3785.1123.6026.4692.7144,1.0435a6.03,6.03,0,0,0,.3223,1.2329h-.336a6.9309,6.9309,0,0,1-.2871-1.1626c-.1333-.6792-.4136-.9805-1.0088-1.0015h-.5952v2.1641H185.94Zm.3223,2.2343h.6021a1.0324,1.0324,0,0,0,1.1421-1.0434c0-.6934-.4483-1.0156-1.1768-1.0156a2.4105,2.4105,0,0,0-.5674.0561Z\"/><path d=\"M189.5108,22.0785v4.7207h-.3223V22.0785Z\"/><path d=\"M190.0425,27.0794l1.9893-5.0708h.3217l-2.0029,5.0708Z\"/><path d=\"M192.8843,22.1415a5.6628,5.6628,0,0,1,1.0225-.0977,2.2048,2.2048,0,0,1,1.625.5459,2.3043,2.3043,0,0,1,.6093,1.7231,2.6826,2.6826,0,0,1-.5883,1.8492,2.3067,2.3067,0,0,1-1.7862.6723,7.2309,7.2309,0,0,1-.8823-.042Zm.3223,4.3847a5.0445,5.0445,0,0,0,.6025.0279c1.2676,0,1.9956-.7212,1.9956-2.2134a1.7565,1.7565,0,0,0-1.9116-2.0171,4.1658,4.1658,0,0,0-.6865.0561Z\"/><path d=\"M198.9473,24.453h-1.6948v2.0659h1.9047v.28H196.93V22.0785h2.1221v.28h-1.8v1.814h1.6948Z\"/><path d=\"M200.9282,26.7992l-1.4218-4.7207h.3359l.7427,2.4653c.1958.6445.3852,1.2891.5039,1.8423h.021a18.4512,18.4512,0,0,1,.5327-1.8423l.8052-2.4653h.3364l-1.5552,4.7207Z\"/><path d=\"M203.3213,22.0785h.3223v4.4477h1.8911v.273h-2.2134Z\"/><path d=\"M209.28,24.4037c0,1.6953-.8892,2.4653-1.8628,2.4653-.9946,0-1.8-.833-1.8-2.395,0-1.604.8335-2.4654,1.87-2.4654C208.4956,22.0086,209.28,22.849,209.28,24.4037Zm-3.3267.0634c0,1.0152.49,2.1289,1.4917,2.1289,1.0088,0,1.4991-1.0854,1.4991-2.1782,0-.9663-.4414-2.1362-1.4917-2.1362C206.3945,22.2816,205.9531,23.4164,205.9531,24.4671Z\"/><path d=\"M213.0806,26.617a3.1243,3.1243,0,0,1-1.19.231,1.9628,1.9628,0,0,1-1.4781-.5742,2.5346,2.5346,0,0,1-.6162-1.8,2.1931,2.1931,0,0,1,2.2129-2.4444,2.35,2.35,0,0,1,.9595.189l-.105.2734a1.968,1.968,0,0,0-.8682-.1752c-1.0859,0-1.8632.7353-1.8632,2.1152,0,1.4287.7353,2.1289,1.8071,2.1289a1.89,1.89,0,0,0,.8125-.1328V24.7259h-.9805V24.46h1.31Z\"/><line style=\"fill:none;stroke:#e6e7e8;stroke-miterlimit:10;stroke-width:0.25px\" x1=\"0.9591\" x2=\"318.4111\" y1=\"36.1069\" y2=\"36.1069\"/><circle cx=\"316.0167\" cy=\"24.4233\" r=\"2.4525\" style=\"fill:#fff\"/><path d=\"M316.0588,21.7158a2.68,2.68,0,0,1,2.7012,2.6964,2.5676,2.5676,0,0,1-.7706,1.8971,2.6614,2.6614,0,0,1-1.9306.7993,2.7128,2.7128,0,0,1-2.6916-2.6963,2.6375,2.6375,0,0,1,.7945-1.9115A2.5844,2.5844,0,0,1,316.0588,21.7158Zm.01.4864a2.0913,2.0913,0,0,0-1.5552.65,2.1532,2.1532,0,0,0-.66,1.56,2.236,2.236,0,0,0,2.2147,2.2053,2.1652,2.1652,0,0,0,1.57-.66,2.0638,2.0638,0,0,0,.6356-1.5457,2.2112,2.2112,0,0,0-2.2052-2.21Zm-1.2038,1.83a1.2035,1.2035,0,0,1,.4-.768,1.1766,1.1766,0,0,1,.7848-.272,1.3061,1.3061,0,0,1,1.0112.4092,1.4923,1.4923,0,0,1,.3755,1.05,1.4426,1.4426,0,0,1-.39,1.0327,1.3308,1.3308,0,0,1-1.0113.4117,1.2,1.2,0,0,1-.79-.2745,1.1664,1.1664,0,0,1-.4-.78h.6791q.024.4913.5923.4912a.535.535,0,0,0,.4574-.2456,1.3686,1.3686,0,0,0,.0146-1.3072.6073.6073,0,0,0-1.0642.2527h.1974l-.5344.5345-.5344-.5345Z\"/><path d=\"M299.4332,24.4109a2.3488,2.3488,0,0,1-.3325,1.1994,2.3808,2.3808,0,0,1-.8936.8844,2.5227,2.5227,0,0,1-1.2365.3252,2.486,2.486,0,0,1-2.14-1.21,2.4133,2.4133,0,0,1,0-2.4091,2.4865,2.4865,0,0,1,2.14-1.21,2.5217,2.5217,0,0,1,1.2365.3253,2.4316,2.4316,0,0,1,1.2261,2.094Z\" style=\"fill:#fff;fill-rule:evenodd\"/><path d=\"M296.9394,21.7338a2.7132,2.7132,0,0,1,1.9535.7827,2.5825,2.5825,0,0,1,.5923.864,2.88,2.88,0,0,1,.1974,1.0368,2.519,2.519,0,0,1-.7793,1.87,2.7958,2.7958,0,0,1-1.9639.8031,2.78,2.78,0,0,1-1.039-.2033,2.8325,2.8325,0,0,1-.8937-.59,2.69,2.69,0,0,1-.5922-.864,2.6172,2.6172,0,0,1-.2078-1.0165,2.6295,2.6295,0,0,1,.81-1.9008,2.625,2.625,0,0,1,1.9223-.7827Zm.01.4879a2.1488,2.1488,0,0,0-1.5794.64,2.2237,2.2237,0,0,0-.4987.7115,2.1455,2.1455,0,0,0-.1663.8437,2.0485,2.0485,0,0,0,.1663.8234,2.1178,2.1178,0,0,0,.4987.7115,2.2461,2.2461,0,0,0,.7274.4778,2.19,2.19,0,0,0,.852.1626,2.2271,2.2271,0,0,0,.8521-.1626,2.5219,2.5219,0,0,0,.7481-.4778,2.054,2.054,0,0,0,.6338-1.5349,2.0762,2.0762,0,0,0-.1662-.8437,2.1586,2.1586,0,0,0-.478-.7115,2.2061,2.2061,0,0,0-1.59-.64Zm-.0312,1.7484-.374.1829a.3141.3141,0,0,0-.1351-.1626.3877.3877,0,0,0-.1663-.0508c-.2389,0-.3636.1524-.3636.4777a.5391.5391,0,0,0,.0935.3355.3067.3067,0,0,0,.27.1321.3459.3459,0,0,0,.3429-.2236l.3325.1626a.7185.7185,0,0,1-.3013.305.7291.7291,0,0,1-.4156.1118.8106.8106,0,0,1-.5923-.2135.8529.8529,0,0,1-.2286-.61.8359.8359,0,0,1,.2286-.61.7842.7842,0,0,1,.5819-.2236.7632.7632,0,0,1,.7273.3863Zm1.5794,0-.3636.1829a.3648.3648,0,0,0-.3118-.2134c-.2389,0-.3636.1524-.3636.4777a.5391.5391,0,0,0,.0935.3355.3067.3067,0,0,0,.27.1321.355.355,0,0,0,.3429-.2236l.3429.1626a.8077.8077,0,0,1-.3117.305.7291.7291,0,0,1-.4156.1118.7487.7487,0,0,1-.81-.8234.7959.7959,0,0,1,.2286-.61.8627.8627,0,0,1,1.2988.1627Z\" style=\"fill-rule:evenodd\"/><path d=\"M305.749,24.4515a2.24,2.24,0,0,1-.3221,1.1791,2.4008,2.4008,0,0,1-.8832.8742,2.5447,2.5447,0,0,1-1.2157.3151,2.4749,2.4749,0,0,1-1.2053-.3151,2.4293,2.4293,0,0,1-.8936-.8742,2.3192,2.3192,0,0,1,0-2.3582,2.4308,2.4308,0,0,1,.8936-.8742,2.4749,2.4749,0,0,1,1.2053-.3151,2.5447,2.5447,0,0,1,1.2157.3151,2.4023,2.4023,0,0,1,.8832.8742,2.2408,2.2408,0,0,1,.3221,1.1791Z\" style=\"fill:#fff;fill-rule:evenodd\"/><path d=\"M303.3176,21.7338a2.7048,2.7048,0,0,1,1.9431.7725,2.5792,2.5792,0,0,1,.8,1.911,2.45,2.45,0,0,1-.79,1.87,2.7008,2.7008,0,0,1-1.9535.8031,2.668,2.668,0,0,1-1.9327-.7929,2.5157,2.5157,0,0,1-.81-1.88,2.5982,2.5982,0,0,1,.81-1.911,2.6981,2.6981,0,0,1,1.9327-.7725Zm0,.4879a2.1655,2.1655,0,0,0-1.5794.64,2.13,2.13,0,0,0-.665,1.5552,2.07,2.07,0,0,0,.665,1.5349,2.1682,2.1682,0,0,0,1.5794.6506,2.2422,2.2422,0,0,0,1.6-.6608,1.98,1.98,0,0,0,.6442-1.5349,2.088,2.088,0,0,0-.6546-1.545,2.1891,2.1891,0,0,0-1.59-.64Zm.7378,1.5247v1.0978h-.3118v1.3011h-.852V24.8442H302.58V23.7464a.1665.1665,0,0,1,.0519-.1219.1742.1742,0,0,1,.1247-.0509h1.1222a.174.174,0,0,1,.1247.0509.1662.1662,0,0,1,.052.1219Zm-1.1222-.6912a.3845.3845,0,1,1,.3844.3761.3375.3375,0,0,1-.3844-.3761Z\" style=\"fill-rule:evenodd\"/><path d=\"M312.122,24.4007a2.4128,2.4128,0,0,1-.3325,1.21,2.4383,2.4383,0,0,1-.9143.8844,2.4959,2.4959,0,0,1-3.377-.8844,2.4128,2.4128,0,0,1-.3325-1.21,2.3578,2.3578,0,0,1,.3325-1.21,2.5034,2.5034,0,0,1,3.377-.8844,2.4375,2.4375,0,0,1,.9143.8844,2.3578,2.3578,0,0,1,.3325,1.21Z\" style=\"fill:#fff;fill-rule:evenodd\"/><path d=\"M311.6337,22.5063a2.817,2.817,0,0,0-3.8758,0,2.5983,2.5983,0,0,0-.81,1.911,2.548,2.548,0,0,0,.81,1.88,2.6679,2.6679,0,0,0,1.9327.7929,2.774,2.774,0,0,0,1.9639-.7929,2.5323,2.5323,0,0,0,.7793-1.88,2.5792,2.5792,0,0,0-.8-1.911Zm-.3429,3.4357a2.2248,2.2248,0,0,1-1.6.6608,2.1919,2.1919,0,0,1-1.5794-.6506,2.0756,2.0756,0,0,1-.665-1.5451,2.3219,2.3219,0,0,1,.1143-.7115l.7274.3151h-.052v.3253h.26c0,.0407-.01.0813-.01.1321v.0712h-.2494v.3253h.3013a1.25,1.25,0,0,0,.26.5794,1.3587,1.3587,0,0,0,1.1118.5082,1.6125,1.6125,0,0,0,.717-.1626l-.1039-.4981a1.523,1.523,0,0,1-.53.1118A.8246.8246,0,0,1,309.4,25.18a.8144.8144,0,0,1-.1455-.3151h.9975l1.4131.61a1.7768,1.7768,0,0,1-.374.4675Zm-1.7768-1.4027h0Zm.852-.2033h.0416v-.3253h-.7793l-.3118-.1321a.3816.3816,0,0,1,.0936-.1525.7007.7007,0,0,1,.5611-.244,1.5316,1.5316,0,0,1,.5091.1017l.1351-.5082a1.8313,1.8313,0,0,0-.6962-.1322,1.4183,1.4183,0,0,0-1.06.4574c-.0519.061-.1039.1423-.1558.2135l-.8936-.3863a2.0314,2.0314,0,0,1,.3013-.3659,2.1747,2.1747,0,0,1,1.5794-.6506,2.1982,2.1982,0,0,1,1.59.6506,2.0628,2.0628,0,0,1,.6546,1.5552,2.5876,2.5876,0,0,1-.0623.5692l-1.5067-.6505Z\" style=\"fill-rule:evenodd\"/></g></g></svg>" + ], + "text/plain": [ + "<IPython.core.display.SVG object>" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import SVG\n", + "SVG(\"../fidle/img/00-Fidle-header-01.svg\")" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/README.ipynb b/README.ipynb index bd577f03ff24920c04832793085be0d8c7c87d89..06431dc766e73c3807c436b24ca6f150fe51db16 100644 --- a/README.ipynb +++ b/README.ipynb @@ -1,86 +1,136 @@ { "cells": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<img width=\"800px\" src=\"fidle/img/00-Fidle-header-01.svg\"></img>\n", - "\n", - "# Available notebooks" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<!-- INDEX_BEGIN -->\n", - "[[NP1] - A short introduction to Numpy](Prerequisites/Numpy.ipynb) \n", - " Numpy is an essential tool for the Scientific Python. \n", - "[[LINR1] - Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb) \n", - " Direct determination of linear regression \n", - "[[GRAD1] - Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb) \n", - " An example of gradient descent in the simple case of a linear regression. \n", - "[[POLR1] - Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb) \n", - " Illustration of the problem of complexity with the polynomial regression \n", - "[[LOGR1] - Logistic regression, in pure Tensorflow](LinearReg/04-Logistic-Regression.ipynb) \n", - " Logistic Regression with Mini-Batch Gradient Descent using pure TensorFlow. \n", - "[[MNIST1] - Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb) \n", - " Example of classification with a fully connected neural network \n", - "[[BHP1] - Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb) \n", - " A Simple regression with a Dense Neural Network (DNN) - BHPD dataset \n", - "[[BHP2] - Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb) \n", - " More advanced example of DNN network code - BHPD dataset \n", - "[[GTS1] - CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb) \n", - " Episode 1: Data analysis and creation of a usable dataset \n", - "[[GTS2] - CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb) \n", - " Episode 2 : First convolutions and first results \n", - "[[GTS3] - CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb) \n", - " Episode 3: Monitoring and analysing training, managing checkpoints \n", - "[[GTS4] - CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb) \n", - " Episode 4: Improving the results with data augmentation \n", - "[[GTS5] - CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb) \n", - " Episode 5: A lot of models, a lot of datasets and a lot of results. \n", - "[[GTS6] - CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Full-convolutions-batch.ipynb) \n", - " Episode 6 : Run Full convolution notebook as a batch \n", - "[[GTS7] - Full convolutions Report](GTSRB/07-Full-convolutions-reports.ipynb) \n", - " Displaying the reports of the different jobs \n", - "[[TSB1] - Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb) \n", - " 4 ways to use Tensorboard from the Jupyter environment \n", - "[[IMDB1] - Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb) \n", - " A very classical example of word embedding for text classification (sentiment analysis) \n", - "[[IMDB2] - Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb) \n", - " Example of reusing a previously saved model \n", - "[[IMDB3] - Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb) \n", - " Still the same problem, but with a network combining embedding and LSTM \n", - "[[VAE1] - Variational AutoEncoder (VAE) with MNIST](VAE/01-VAE-with-MNIST.ipynb) \n", - " First generative network experience with the MNIST dataset \n", - "[[VAE2] - Variational AutoEncoder (VAE) with MNIST - Analysis](VAE/02-VAE-with-MNIST-post.ipynb) \n", - " Use of the previously trained model, analysis of the results \n", - "[[VAE3] - About the CelebA dataset](VAE/03-Prepare-CelebA.ipynb) \n", - " New VAE experience, but with a larger and more fun dataset \n", - "[[VAE4] - Preparation of the CelebA dataset](VAE/04-Prepare-CelebA-batch.ipynb) \n", - " Preparation of a clustered dataset, batchable \n", - "[[VAE5] - Checking the clustered CelebA dataset](VAE/05-Check-CelebA.ipynb) \n", - " Verification of prepared data from CelebA dataset \n", - "[[VAE6] - Variational AutoEncoder (VAE) with CelebA (small)](VAE/06-VAE-with-CelebA-s.ipynb) \n", - " VAE with a more fun and realistic dataset - small resolution and batchable \n", - "[[VAE7] - Variational AutoEncoder (VAE) with CelebA (medium)](VAE/07-VAE-with-CelebA-m.ipynb) \n", - " VAE with a more fun and realistic dataset - medium resolution and batchable \n", - "[[VAE12] - Variational AutoEncoder (VAE) with CelebA - Analysis](VAE/12-VAE-withCelebA-post.ipynb) \n", - " Use of the previously trained model with CelebA, analysis of the results \n", - "[[BASH1] - OAR batch script](VAE/batch-oar.sh) \n", - " Bash script for OAR batch submission of a notebook \n", - "[[BASH2] - SLURM batch script](VAE/batch-slurm.sh) \n", - " Bash script for SLURM batch submission of a notebook \n", - "<!-- INDEX_END -->" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, + "cell_type": "code", + "execution_count": 1, + "metadata": { + "jupyter": { + "source_hidden": true + } + }, + "outputs": [ + { + "data": { + "text/markdown": [ + "[<img width=\"600px\" src=\"fidle/img/00-Fidle-titre-01.svg\"></img>](#)\n", + "\n", + "## A propos\n", + "\n", + "This repository contains all the documents and links of the **Fidle Training**. \n", + "\n", + "The objectives of this training, co-organized by the Formation Permanente CNRS and the SARI and DEVLOG networks, are :\n", + " - Understanding the **bases of deep learning** neural networks (Deep Learning)\n", + " - Develop a **first experience** through simple and representative examples\n", + " - Understand the different types of networks, their **architectures** and their **use cases**.\n", + " - Understanding **Tensorflow/Keras and Jupyter lab** technologies on the GPU\n", + " - Apprehend the **academic computing environments** Tier-2 (meso) and/or Tier-1 (national)\n", + "\n", + "## Course materials\n", + "**[<img width=\"50px\" src=\"fidle/img/00-Fidle-pdf.svg\"></img>\n", + "Get the course slides](https://cloud.univ-grenoble-alpes.fr/index.php/s/z7XZA36xKkMcaTS)** \n", + "\n", + "\n", + "\n", + "<!--  -->\n", + "Useful information is also available in the [wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home)\n", + "\n", + "\n", + "## Jupyter notebooks\n", + "\n", + "[](https://mybinder.org/v2/git/https%3A%2F%2Fgricad-gitlab.univ-grenoble-alpes.fr%2Ftalks%2Fdeeplearning.git/master?urlpath=lab/tree/index.ipynb)\n", + "\n", + "\n", + "<!-- DO NOT REMOVE THIS TAG !!! -->\n", + "<!-- INDEX -->\n", + "<!-- INDEX_BEGIN -->\n", + "[[NP1] - A short introduction to Numpy](Prerequisites/Numpy.ipynb) \n", + " Numpy is an essential tool for the Scientific Python. \n", + "[[LINR1] - Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb) \n", + " Direct determination of linear regression \n", + "[[GRAD1] - Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb) \n", + " An example of gradient descent in the simple case of a linear regression. \n", + "[[POLR1] - Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb) \n", + " Illustration of the problem of complexity with the polynomial regression \n", + "[[LOGR1] - Logistic regression, in pure Tensorflow](LinearReg/04-Logistic-Regression.ipynb) \n", + " Logistic Regression with Mini-Batch Gradient Descent using pure TensorFlow. \n", + "[[MNIST1] - Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb) \n", + " Example of classification with a fully connected neural network \n", + "[[BHP1] - Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb) \n", + " A Simple regression with a Dense Neural Network (DNN) - BHPD dataset \n", + "[[BHP2] - Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb) \n", + " More advanced example of DNN network code - BHPD dataset \n", + "[[GTS1] - CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb) \n", + " Episode 1: Data analysis and creation of a usable dataset \n", + "[[GTS2] - CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb) \n", + " Episode 2 : First convolutions and first results \n", + "[[GTS3] - CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb) \n", + " Episode 3: Monitoring and analysing training, managing checkpoints \n", + "[[GTS4] - CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb) \n", + " Episode 4: Improving the results with data augmentation \n", + "[[GTS5] - CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb) \n", + " Episode 5: A lot of models, a lot of datasets and a lot of results. \n", + "[[GTS6] - CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Full-convolutions-batch.ipynb) \n", + " Episode 6 : Run Full convolution notebook as a batch \n", + "[[GTS7] - Full convolutions Report](GTSRB/07-Full-convolutions-reports.ipynb) \n", + " Displaying the reports of the different jobs \n", + "[[TSB1] - Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb) \n", + " 4 ways to use Tensorboard from the Jupyter environment \n", + "[[IMDB1] - Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb) \n", + " A very classical example of word embedding for text classification (sentiment analysis) \n", + "[[IMDB2] - Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb) \n", + " Example of reusing a previously saved model \n", + "[[IMDB3] - Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb) \n", + " Still the same problem, but with a network combining embedding and LSTM \n", + "[[VAE1] - Variational AutoEncoder (VAE) with MNIST](VAE/01-VAE-with-MNIST.ipynb) \n", + " First generative network experience with the MNIST dataset \n", + "[[VAE2] - Variational AutoEncoder (VAE) with MNIST - Analysis](VAE/02-VAE-with-MNIST-post.ipynb) \n", + " Use of the previously trained model, analysis of the results \n", + "[[VAE3] - About the CelebA dataset](VAE/03-Prepare-CelebA.ipynb) \n", + " New VAE experience, but with a larger and more fun dataset \n", + "[[VAE4] - Preparation of the CelebA dataset](VAE/04-Prepare-CelebA-batch.ipynb) \n", + " Preparation of a clustered dataset, batchable \n", + "[[VAE5] - Checking the clustered CelebA dataset](VAE/05-Check-CelebA.ipynb) \n", + " Verification of prepared data from CelebA dataset \n", + "[[VAE6] - Variational AutoEncoder (VAE) with CelebA (small)](VAE/06-VAE-with-CelebA-s.ipynb) \n", + " VAE with a more fun and realistic dataset - small resolution and batchable \n", + "[[VAE7] - Variational AutoEncoder (VAE) with CelebA (medium)](VAE/07-VAE-with-CelebA-m.ipynb) \n", + " VAE with a more fun and realistic dataset - medium resolution and batchable \n", + "[[VAE12] - Variational AutoEncoder (VAE) with CelebA - Analysis](VAE/12-VAE-withCelebA-post.ipynb) \n", + " Use of the previously trained model with CelebA, analysis of the results \n", + "[[BASH1] - OAR batch script](VAE/batch-oar.sh) \n", + " Bash script for OAR batch submission of a notebook \n", + "[[BASH2] - SLURM batch script](VAE/batch-slurm.sh) \n", + " Bash script for SLURM batch submission of a notebook \n", + "<!-- INDEX_END -->\n", + "\n", + "\n", + "## Installation\n", + "\n", + "A procedure for **configuring** and **starting Jupyter** is available in the **[Wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/howto-jupyter)**.\n", + "\n", + "## Licence\n", + "\n", + "[<img width=\"100px\" src=\"fidle/img/00-fidle-CC BY-NC-SA.svg\"></img>](https://creativecommons.org/licenses/by-nc-sa/4.0/) \n", + "\\[en\\] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0) \n", + "\\[Fr\\] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International \n", + "See [License](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). \n", + "See [Disclaimer](https://creativecommons.org/licenses/by-nc-sa/4.0/#). \n", + "\n", + "\n", + "----\n", + "[<img width=\"80px\" src=\"fidle/img/00-Fidle-logo-01.svg\"></img>](#)" + ], + "text/plain": [ + "<IPython.core.display.Markdown object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "---\n", - "<img width=\"80px\" src=\"fidle/img/00-Fidle-logo-01.svg\"></img>" + "from IPython.display import display,Markdown\n", + "display(Markdown(open('README.md', 'r').read()))" ] } ], diff --git a/fidle/Charte.ipynb b/fidle/Example.ipynb similarity index 91% rename from fidle/Charte.ipynb rename to fidle/Example.ipynb index fbd6f0fd67366e60fc095edf625720b10cca80c5..c69dff70c5824f044d8ff664b611df24ad79d65c 100644 --- a/fidle/Charte.ipynb +++ b/fidle/Example.ipynb @@ -30,13 +30,6 @@ "---\n", "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": {