diff --git a/BHPD/01-DNN-Regression.ipynb b/BHPD/01-DNN-Regression.ipynb index 68b1a22481ccee858fe34240b635b3289f177e39..95599165d894f5ca02801743f0e638b31bb94024 100644 --- a/BHPD/01-DNN-Regression.ipynb +++ b/BHPD/01-DNN-Regression.ipynb @@ -1,40 +1,13 @@ { "cells": [ - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAABxCAYAAABGIonyAAAACXBIWXMAACKJAAAiiQFacMqNAAAgAElEQVR4nO2dT2wcR77fq/Tnts/y7CUJHpaSZ04mXiAuhrcgEA2QtyDSHkZ43udAMhCMjiufSAgQRFmwQJ4sP7wLeYgkYLELkAfLZxKwjCQ3EpYQgLeZlZgASS4ayZub1+rgN/oVVayp6q7q6a7pHn4/QIPDme76X9X1q9+vfiWTJBHTyGFrdkEIsSqEeDbTO7g5lZkEAAAAAAAAADA1nJniqiQB/VIF0gEAAAAAAAAAAGRyaoqLaIH/PppwOgAAAAAAAAAAgEymWYP+lK6Z3gEEdAAAAAAAAAAAlWeaBfQnQogXFUgHAAAAAAAAAACQSe2dxB22ZueEENeFEFfo70zv4GkFkgUAAAAAAAAAAAQxDXvQaa/5H4QQ59lr+zEOW7MPDluzyWFr9slha/b6ZJMKAAAAAAAAAADYmQYB/Yn2+RIfrzaEP/+B/70shPgwfvIAAAAAAAAAAIBsar8HfaZ38OKwNfuFJnxfZwdx6rMOzN8BAAAAAAAAAFSSqXASN9M7eKA+H7ZmdS250qa/EULcnOkdPIufOgAAAAAAAAAAIJvaO4lLg/aeCyEes3D+uropBQAAAAAAAABw0pnmY9aIxzO9AziGAwAAAAAAAABQeaZagw4AAADERkppvlh3kyRZQkUAAAAAIIvaa9A1r+1zhpd22m9OZu0vyJHchJKXyae//+zDP//pjzC/BwAAAAAAAIATTu0E9MPW7Bx7ZyfB/KLnM2/YgzsdyfakYvvR52J4l7dodPKykiTJetnpBeCkAG0rAAAUg5RyUQjR5sAW+W9D+06nb1w09u6jKuoD3p9gWqmNgH7YmiWh/KavUG5wjs9Bp+vhYWuWHMc9mukd4Ng1AApASrkshFjmidAmL+QMULYAgDxgTAE52Ql4rMnXEVJKamPbQoj1JEn6qAQA4oPxX4hTFUhDKoet2SuHrVkyUX+YUzi3cU0I8f1ha/aRcSwbACAQKWVXCLHGAymh/gcAAIwpoE40uL31pJQbUsoGag+AeGD8f4eXgH7Ymr0QW5DlOEnD/a0Q4nxJ0ZCg/ozN5gEA7wbHtpSyE1AWtnu7KMvpJEf7AGgzGFPApBmasBtXlkZOCeqLk08+ACeGEz/+E6cOW7NP0m5gwZwE5QexEnXYml0VQvxFCHEpQnQk/D89gUI67dOROS7sP59CaMWStQU9IcRe4GBom+TAFHWKGLN9ALQZjClgUqi5Tov2JhvXr4UQdC2xGa2tjZEWb4e1egCA8jnx479gDfrlw9bszZR7HrAQe63sxLDWnLyv3yk7LoNzJ1RIB0CxwRPoZo4S2bR8h4Wc6WKc9gHQZkLBmAKiQPtakyQhIf6GEKJFe10d8dJik83RHACgWE78+C80E/dVEo7NH1lwv6b9v2DeUxQc9rMC95mHAiEdgBzQ5IY1ENtsPngDlhYAgLxgTAGTgIV1amfzDo3dFvakA1AuGP/fQV7cX7KG/AkJyeoIMhbOv46RCPbQ/jBGXBmQkP6Ijz4DAHjCA+ouygsAUAQYU8CkoKPWpJRL7BFeF8ib7FnapWUHABQAxv93GvQX/Jk01y/Ys/mziML5akWEc8VFThMAAAAAADhh8HnoVy25XpZSYqsPAKBUTrEDOMU5NmmPYmZOiwET2G/uw00cvwYAAAAAcDJhLZ5tPyxOsQAAlMop3vftS8i9Tkj45SPUSnc8lxNaqEhznAcAAAAAAKYb295XeHQHAJSKqUFP46Xanz4O7ITtaaQj1MYBAvoYkAmYlJJMwcipCp0jmvBFn3f4t2AzMTqPVAtreFnu6XK8r/ie5RxhdPiIoB0t3Vs+R61oxwupZ/f42eW8DmboOQ53jcN9paVfhd/1DV9LmzX/QoiRMtKukTNhLffs5Mhj4W3Gs67bHPYOx/WKP69V7fzbWPkpoX2M3W8d6SxlnLHE09DSp8ezx319rHZilrejzEt73kiL2X6O9WvO78hYc1LGFFGjcaXo94aoWFuNQZIkfcte2GYej+7cbtYsZVDIOFJGHJ5tvam1ddXGXhU5BleFMuuwpP4aa85c6HgXOv5XZUzWZIc9431D5dsx7k1Pc5Ik4mXz4ycvmx8nGdcjunec62Xz4ysvmx+/9oirKteVcfOcdf3jp/+0UHYcdFFVG9dOSfE0+XgdMz7XRZ2uGRB+wwzH+G3HEs9yQBhtRxj6Ref6ti1pa/N5v2nPviLzuID8tgPL0yt8jzymXYtFtq8y2wyXX1p78Yk3qI2W2Tdj5aeE9jF2v405zhhxdbhf+cTRyNMfbPkPTONYz2v5zBq/nHGclDGlDuNKWe+NqrTVjPBzt5uUMJdDxidHffj2j1ztoqw4bGO3Ns7Rb2uecXqX16TrO3Ydltxfi5gzRx/vQut10mMyvcNYNsiKY0/JD/yMM4/qmLUnHgsDPvc4Ycdr37L5+CR4I4T4gf/6cmVCaa0lrF3eCzT/oga656OZFu96nO3oE8ErijscXnAYvLLW9gyDJn87+gq6lvesVfUGH9XiW0Y7geUZGv5EKbvNsKOfEbjuep7xqvgmfgZuXfNTRL/Vnil9nNHiopf6luHJOS2Onbodw8Ramy3OZ0ib2C4xWbmJ9B6qej+c6vfGBLB5k/bSCmvt0XeMC24XZcbhGLvb2tidaenEKK1w7Y6pi1CHpfXXgubMlZ93TDKNbHGw4zkmtE35wQUdsyZmegfkuf1BivD8ZqZ3kEtA5/PVH03YpP0xmayTiT47f3vguf+9tHPfpw0eKDYs2Rrwy011nkXLgDBc3ZJSUiezOWTxYSNwcmnS5JVg/eXR58s2gKkBcl5b/dRR+XWlifK77xpUNLaNgWWfy1MNuk3WfJkvPQq/z05uXOHqv60Zv/cdznHUb2MzqTajLcToZTbg+BqOOlMrsPNF5L1ISspPrPYR1G9jthkWzl0v9b6WTz2eNgu6tUCbpLnqYKCVqZlXc+w6sWOKqN64UtZ740TCx66ZWc+cjDva44DrR7X5BteFHt7R/MIlYMWMw4Ft3NjnuNuORc1FTqvNO34liVS+k+ivY82Z6zCPipFGFs7Nd53CNU9Q7930s92VKv1l8+PVFLPyXObtFTFpf6Gl5wLnk/6+8Hm+DFMZ/ZoGE3eLmcaRmYwyhTLub/Ak1vbMiOm4R166lu+2OP5lT/PJnvFs00ivzcQt4Y75yvVs8t48zmYim1kHmnmttSyTdPOdXqz2kcMcKVqbyajrPdNULMM8tnAzvRxlFz0/RYwf4/bbyG3GljZX/26k9HHfOo1uNszpdpm0r7lM/bQFyaxtElM7pkyqHwaUXWnvjZNo4s7hmuarWeVka487KfVhMxXfmHQcrjLVPlvbmbIoKru9l1XfseowiTDPszxT9Jy58PEuT71OII0dx7Nbjm2w3ZB5guSHBGuWXzi06L8L0aBzWKQ1v+z7TIncnekdrLIm/5mWv+eex8l9MtM78HWkF8ynv/9s4c9/+mNp4SssDhN2kyRZKiBcNckzV5NvZGkhHBoq0iqnrlxZ8jLQVsh2Oe5UjUyKY5rNJEluOJ5xaWcUK0mSWFfE2AGFzclFyyOtDZ8VbjZTNY9/mffQ0o/dPkKej91mUuqaymUpxQTMtjJKq9WttDSGElr2k8hPEePHOP02ZpvhuHoWbUVqXI7VekVWnY6YGiZJMqKyK/J5coxjMU8dcBvKHDM80jS1Y4ojfUfPVmRcKeW9MYm2GkKJc52gdJNjKKM9bidJkqo5drRF5xwhRhwiva1njheO+AYcZx7NfVbaCqlvEbF8RcnzvJLnzKWMd3nqNWYaU945TjmAn2ummMMfy6Pagy7YQ/sDR5jex6sdtmZvsqBfBeFc57qx+BDlrPcK0+b9QCGXzdyza2lo6z4mgiwIm4NKO8c+ODXQ0OC5lDXQpEDPraSkd9OxF01wx3J2ynHOUw14idnSXikv5EwV2kw/bcDmuNYtpre5vPdGoI75Cem3MdtM1yJkb2bFxROkQiaGZcMLhqUJ5xOgCmOKqFI/nML3Rm3gtqO3R6oL68K/wYpm1qywtsMYcWTgNV44+lej6kfVxS7fyP21yDlz1ecdZaXR9s7ZTpMDOK6+7xaPU8b/DxxO1DKPVztszS4ctmZJMP96go7gbFzn715UKE1VoKHtw/O9bJoh28po+r6K49gGm0yh1YLv4JnGuudeIRs+ebY9W9ggxR3fHGSqKqDrTKLN+NS1cCyqVLFM65of334bs83Y4nIu3OnwZDWvH42Y2CaMN2oqnIsKvYdq1w9r9N6oE+bil1e74HvMtuFqhzHiSGM9YLyw9a+qOyScdPm6wi+qv8aaM4sJj3dlpbH0ecIxAZ216Nct91k162TKftiavc6C+fdCiPM+iYvM+cPW7CP2Qv9NBdNXW3h1yVxB2gwxW2LNsjnIL+bw9OnbCdPw8UpseyENfJx0OO4p2qPpyCpgweGPRYXajK8H6roILHXNT2a/jdlmWLNsWxUPGVsq7WCLTezMCSOZdFfSK3sWFXsP1bUfVvq9USdc7TEgC7Yz181xqvQ4PPAeLxz9q1nV89ErUr5pFNFfY82ZxYTHu8LT6Ggf24GWCJnpMjXogveaf2d8fe2wNfuMjkrTrie8YvCwooK5zjXWoMMre7HYVpfydERbQw1dXRt3crnvuTpqy19InkcmgQHP5qFqL8AqtBmvuhbuRZWqaZfqnB+ffhuzzdgsWoIE7hoIurbyrIPW30VV3kPTNK5AQM/GVddmPXq3C3W/5TtzXIoRRxr9HGbRpVoQFsykyzeUPP01ypxZTHa8KyuNtu9D5wmZ959xfH+d953rgvfFmu/bPpcz/dNqGl+EI42RRppzcmobzEIGnMEYe2iOwhjz+WjxaBqwpnHVgSq0mVh1HYu65se338ZsMyOTqLpqllMYexGiYlTmPVTVAhL1f29UgRGhzZEm29Fj3pBAYTnSrW300RhxpJFnvjVu/4rJpMu37P5apznzOJSVxijzBKuAzueFXxFC/Fh0hHVjpneAvetuTJOdvGYs4w7cdd03GQQ7LelWeNXZh6q0GTB5fOs+ZpspKq4qY+Y5jzasSmBMSWFK3ht1wmyP3ZwOB9OIEUfR1Kl/Tax8I/XXEzFnLpEo84QRE3fFTO+ANOifx8tvJfnhhOc/C3MAybVa5TBBgbDF0L5YPu5jYwomWWgzIJSYbcbUkk2btYWw5LHOwrnAmGJnyt4bE4V9U5i4tKExTHdr58SvZv0revmiv9aKQt45WbhM3IfM9A4eHbZm54QQf6hRyX3BJvrjmuM/Tzl2DoAoZJy9vsvXQJtkr2FwBwCAkwveG4VjK5u6L2yBioD+WjuKdu5sJVVAF++E9JvkrZ0drVWdH2Z6Bw/Ya7u5h94X0pqvzvQOntYgv2CKkVJ2LIO2Oj7I6qVYSjmNGj8AAAAe4L1RCuP4bdgtwMdDlgltjDhOMqWVL/orcJEpoIt3QjodpSZqIKRfYu/yq0KIOf7rq/0/Esz5TPebJOyXnN660zdMlHKtKjmO2sDL4t0qqQ4Nyks1PqtYoM2AHMRsMwMj/Cgr5ZEppDynLT9TNKZM43tjYqQcS+grJJFD3pAz+fMQI46xcBwzVpc2WWb5or/WD3OeUArOPegmJKQLIR7XoBgvs3M7ErBvCiE+4vPPX1rufc6//XamdzA8gu2wNfuUz3SHBj0b08Qrr8mN7bkTvULIJk/mhHFlCgZttBkQSsw2Y/avaTQjHCnPgs/ojQ3GFGaK3xuTxBTORcYRVaamtYwxJEYcRVOn/hWlfNFfa0uU45K9BXTxXkj/poyElMCdw9bs8OxzEtRnegcXWFj/hAVyOdM7mGMhfk4TzC8JIe6ykzyQzsggwuY6odgGv5M+QI04q0qSpM5nFSvQZkAoMdvMyL5SKWXQ5CynsGszYyzLgZKtn9TO6ZQGxpT3xHhvxGyrE4XztWxJQ1qZmuVThnAXI46iqVP/ilW+0zrPm3aizBOCBHTBe9JL9O5ODt6+KzA82oP+8LA1+5r3pV/n78mEfZWE8sPWbEL3sGAueB/7aoFpmGaKmuiZk6mBzyH+U85Y53BWGLQZEErMNmOLK1TYyyMcjnsEUUh52OKq+hFNaWBMeU+M90bMtjpp1iymrCsZ5u1m+TRLWMCIEUcaeeqwTgJ6rPKd1nnetGNzEBnaJzIF+mABXbB3d9JCCyHe5HnewhsO71FB4Zmc4/3zd1hL/jV/vmTcRybvV0pKw9TBB/ObL6pOyEDmMPEp/MD/GpL3ZVBpTQbaDAglcpuxCWTdQK14HgHdhtcLP4e2eNdSnouOo6QqD8aUY0zqvVFWW50YUsoN26JNhvZcONqNTQs/DjHiSCXkXHDHPv7dgH38sYlVvlM5zzsB2NpH6CJ35liYS0AX789Jv1CAxvs5hyN43/flMcMbJx1kDv96QvHXFbOhNixOL6zwpNc26EHYGiVzQOYJdt6BO+beW7SZ+jHpvdlR2kySJH1HXF4vXxZA8gi6toWBzBc4582rHBQ8KbYJGRsF70XHmDJ5ynhvRGurk4KFc1ufv5ElVPIYYpZRN9QEdtJxeBAisNrqvbL9a4LlW/Y8DxSAo32QlYVXn+AFq8w5RW4BXbwT0l/P9A6usGl6Hm36GzY7v8DC+bhnl+cFwnl+VhzaC5+GumXTWsBUeYit8zsn/jz5cZ2j6YNZh40SNWpoM/UjZvuwEbPN2ITXtSyNEU/ecvVBdgpkms1Rn88SaNZyTtbWLeVJ4ewUOAnFmBKf0t8bE2ir0aCyklLuOSbP62yt4YPN43eRfUtEiiONJi9kpMLjprmA06/BXusY5Rt7ngeKw9Y+lrPaB9fhlk8qxhLQFXwc2YUcXt4fsSaehPPXfNTZN7zH/SNeBS/KjN7FN+wsDsJ5Dng1ecXyJE1o12waGVo9klLu2Bxk0Ap1VfI2YWyTwy1b5+cBfWfMyY8tvrUyXvZoM7UkWvuwEbPNsGBmm4iThnnDNJ2muFkQ3NP2q+YR7mwT1mXOnxlnxxAkgkxFuTxtZdDmSehInFrci/x7Vt1jTIlPrPdGtLZaNlQ21H85jTsOSw86j9rWvqzwGGJO4Bvct5azLFW4bXbTtgTEiMMDen7LNlZo46JNoKx8/4pUvrHneaAgHPME1T6si/lcr64xZvT+JEkKrS86Q5zPHzf3d9v4jjXwtjDmeD+4Tzh5oGPXrtO55yWF78Wnv/9s4c9/+mPpaZBSmhVN+3+WCgzfZRI24EFImTsuOkxAvc9+LCIv44Qx5rMjE8IkSaTlPuroPcdZi9tcng0Oq238duyFYAvfEl+T47Oxz/XTZM3SyEQlT5nEajPjtpcIfSco/EnkZ9z2UUS6Rdw208h4kfb5alju2eTfdI2iTxk3WMh3TcBUOdsEyhVzIuzZ75czzI4HWpmaeV1JOxt4mseUvOkr8nlHmFHeG5Noq75YylVo/VXH1ndNBqw5z3UGdkp7FFp71BcslPmyKldaGEgVZiPFYZapGvv0drarCZxtjsfWDlPHjVAc9Z0Lx1ystPKN2F8nOmfO83zO8T92GtPGQWUGr8adTlYdmvGd8U24LyzwLngK6pcPW7PPWHtOfBjBzJ008qTxfwCteXHQACSlNCelggeXTsYetX3e2wUPlgxphKSUSywkmIO3qzw3ecU3eEWc9tRIKdcd+8rajs9jgTZTHybRPmzEajNG/7Plqel4KW9yGoNNuTnOq44+L1LOER4KlD7mppY416WUgxSzyUbKnvpFh5mfChtjSmRivTcm0VbHxNVf09hk4dzmsdkLbo/CIeC5FonMe1KJEYcF5atDr0efuHIvdkyKMss39jwPFIs2Dtq2SaXtM99nK5LUOizExN0GCeozvYMF9s7+OMVU/SIL8ZdKFs4p/rtkik/HqEE4Lx4eeJcCzDvVarqXxuKkwWWy5DjSwSxHmljesE0mfIUF1mJF3ReGNlMfJtE+bMRqM2w2vZQmhJpxZGmiPOL07fOCJ8gtV558Hb7xXtBWDqdNmeFjTIlPrPfGJNpqBPrc31uucgmFx4SlnEdo9X3KJkYcljipX8971n+f+5f3NoEqUWb5xp7ngWLh+psPeM+tc1/I3OpTuAbdhPeYXz9szX7IJutXIntqf84a8ycQysuH92Xs8l4LZdLRNvZm9nmg267wMRuVgDt/i/e0LGpmY8r0dJe1doWUI68Wb2smVaru9jWTnUJBm6kPk2gfNmK1GbW3WUq5yfEsavH0tTxn9UHvyZOlzytT3IEW37aH8ND2rQ8O66p2HFKbNQBKE6ryejTu+AqzGFPiE+u9MYm26sG2Vs/tlIUkFd9ROyxCILfB7XGe2+OixQxaaKbSudITIw5LnGb9t7X49rWxovYnIpRZvrHneaBYlE8Xthjrals8FLueY+GxMbDwPeg+aML6Al/nC46CnM09YaH8RTm5KIZYe9ABAAAAAAAIoWw/LACcRCz96ph/htI16DZYk/2ILxLYL7BTOHVdCDB3J2H8BV9PJ+30DQAAAAAAAAAAMHGcknJMuz4RAd2EtdwvWOt9BGva5yyPvGbTeQAAAAAAAAAAoA7Ytr1VT0B3wZp2aMQBAAAAAAAAANQd04P7wPTrUpoXdwAAAAAAAAAAABx53Dc16COOFCGgAwAAAAAAAAAAnoQeUcinAGxZfho5zhUCOgAAAAAAAAAA4M8rKeWGlNI0WT8GCfJSymUhxI7l6Md12/Frld6DDgAAAAAAAAAAVAVNKKezz7tSSsFnmfcNh282k3bFvk17LiCgAwAAAAAAAAAA3tiEbpcgbmOTzz4f2H6EiTsAAAAAAAAAAODHLmvAQ6HnriZJcsMlnAto0AEAAAAAAAAAAD+SJCHP69tSyiYfm9Y0LgUJ5AMW5rdt+81tQEAHAAAAAAAAjJAkiUSpAGCHBW7rPvJxOCag3713fyfAfr515/ato1UA9eyd27dGOvLde/c3tFWFhuHBrq+tLOzeuX1r5Cw4G3fv3U/4/qWQ/PNzPvTv3L7VCgkbAAAAAAAAAADIi0uDvuIRntNu3kKX71dqfl29T0J7W3nBu3vvPv2+cuf2rc0Sa7XPm/PTCMkfAAAAAAAAAAAwFlYB/c7tW4Wr6klDfuf2rauuH+/eu99gG346J27j7r379Pnqndu3yhCU+yXlEQAAAAAAAAAAyEVl9qCzIE5a7U02iSeN+pYQIsiEHQAAAAAAAAAAqCOVPGbtzu1bN1hYX7x77/5yBZIEACgAKWUipfTycxFy76SoQxoBAAAAACaBlHJBSvlISvmC50zJqVOn3kgpn0opb0opPwxJlpTyupTyiR6elPI1f3c9NIsqvNOnT/+khfeCw7sSGNaHnKenWljJ2bNn/xeXwYJvWJU9B52FdNorvsbm76AApJRtKeWe1nB6UsruNJYtHX3AeQzOH5fRVjkps8a3qHdm48pMR1Hp5XjXPNOael8KzZLunRSlprHqiwCTTh+PYXqfeUV9gY8+Ae5y6xrvAvU+WBTH+7m1btXvHnWxQ+8dy/OdkHeRlLKhj+c8vm8Z8e3Z4tLym7jaBb8bzfTv2dKU1eb1tDrCVeVizW/Ku+CV9nuq8sIoK68+SmFa6mSN8pOR1zVLHqd2bgEAyIaF1adCiO+FENeEEOcvXbok6JqZmflACHFJCPG1lPKljyAspZyTUj4TQjwUQlzWw/vVr371K/7uIQvXcz7hnT59+lCF95vf/ObvVHjnzp07z+F9S3F6hnfl1KlTFN7XlLfz588LFd7f/va3v+cy+J4F/8xFicoK6IzaJ96ZeEqmAH5B77Czvnm+NqfYIV7H+Ftl1KRx3nLdiJFubWKbNalCf4xP1YXNSaavyY5NVd9Z4e96LmFt0rAQNJFFDRao9mjxm85k5W1k8/xXfx+oOnUtxNnq3KwLNXYdyy8Llxscn++7iMadQZIkm1yvPb5fT/9+xvMiZfxqc/rntfDoXbnhEIbT2vxRWrVwl7Swr3Ja17gt2ATgdcf7QHC9OcdhWvzQ7vNJLz2zw2O/Xifr/J01jRzPKz79Z90ou03DITAA4ITAAuhTJag+fPiQjiMTT58+HV4vXrwQf/nLX8S1a9fo+w9YEHZqv1lApvAuksD77bffHgvvr3/96+nvv/9+KAyT4C6E+DEjPPrtx7dv3/7m8uXL4scffxymSYX3+vVroYV3UUr5Q5qQzuF9+/bt27+jPFHe9PAorVQGVBYk+J85c+a/ZgnpVT8HfZf/Lnp4XQfZ0ERrM0kS3Ut/2oSm7nQ4f6TpaSRJ4r0QkSTJvMdthZMkSa76KDC9VEY0gV9MkmTXcU+H74OGElSFgdZ36O+mJoRW0Y9Je4L9Z4f7b8syJpp9ftjPSRPKwqYPZl1ss3UP1cU8C3ok8N5IkkQXILPGvq4mcG7wu8xcvLSOWRznIsfRSTuz1hiDd6WUfRbSNwPeIV1DOBaW8ZTCXuf62NGEb0U/5X1AYW+lvNcoj7u+6eX6GS5OGM/sSykprj3TJxAvuGxxPdrahuv9AQCYfobCNAmrDx48EB9+OCqLXrhwQTx69EhcuXJF/O53vxOs/X6dJMkTY3y6wOGdo/DoGcX16+9kcPpuYWFhKAxTfF988QU99w1pv5MkeWaEN8da86HQrMIgSKima25u7ig8+v3x48e0iEBm6xeSJHlthHdFhUcLB5QfGxQO/Xbz5k0K7x9ISBdC/FtXS6i0Bp3PWR/wZAaMT/ukrGizGWNbOzIQWt9sVD/bdZUXT8oa5uQTgAqyyUIZeN9/uyyIXfUU3hoszObdzqLY1sYX+tswhPNUtPF8XQsjZDFTjWf0PmgHbn9Q6fSah1jS6oTr4CqnKcQcXAm/rvfaoq+AzGN6hwXtkTbB393ghe6OeL/gQcL5SsDCDQDgBCClXCXhnLTFLuFch4TWO3fuDL85derUP1tuWbUJ5yRIP3nyZHjRZwUJwBQea+YfmIGdPXv2X+gvhR+G5EIAABNVSURBVKeE82fPng0F8o8++kh88sknotFoDIV0wcI/3UtpsIWn0kzCvks4V1BZUHhs9v4PXFZWqm7iLlighKauGAY84cqE96Lpe8q2TBM33kP4ivcC7qn9iLznbkd7dkd/lp+xTvi0fXukxd3ge51pSEGZGO66BE5tn2Bb28u4qKVDN8k082TNA6dZv6ewPXgh6dWeMetxL2VyqiZnaeaTHS7PEQ16Vr1n5GvLSKNrH6m573Rkf6vRLvX0bFjC80pz0WkcF0velo002PrPmnGPdzmNg22vskj/3rY3eawFNp/+6xrPhP94mJlP1S74JzVWqH3FmePiOGXAdFnzHLKtaVO8N0svgoE4vqXGB4p7P0kStcDs/S5jlEY5S7AtAjOtqfB9qSbrJlx/u7YFqByLqB1Or1Og59/2tTR2+XscVwsAMLlJ/5PgrIRzZe6tQ0IxXcTq6qq4ePGiIJNz3TSdtefXPvjgg4SEfQWZoFOY9Bxd9Jm+U9B3bE5+STdNJydtP//887+jz48fPx4K5Ur7/sMPPwzvoefoUgI6QXFTGigtnCYV3nVlJq9r4rNQCw1nzpz5z65brSbud+/dH5lkGND55LE0aGXsj16sWB5jQRMtmmhup00e2NxNaQD2+WW/zPvQdBO4Bl9qX7vSVje1/xusfdHN4zb5Rb9ixKvvm1OTr6vaZMwMJ42ONkHZ5snwMXNA+iylFBxmX9sXqGgan/e5TJRVB+0fHKhJimYmuKTdU1j7DUyv2lOo9oT2uQwXU+q+yelV5dWxaLm6rE2xTY6z6n0EFnL2OH2q3Drcpo7B9+5wnlWYlJ4dbpcqX6pd7nF9qT3JVF8bhllsZppLSmNutDiUL4kmm7v2tfoy+0+T63SgTapDymkcXAtCI9+zELjM6VHxL+bcitMw9lOn9l/XeBYwHvrk8waHo8p8W0ujz7iYG243bTP8LHjcWefyChXuFV2l0SWzbSnlPrfHJc/wzHJR77J+liZeM29X7Wk7y8zdkvZBmgCbkVYf9rlNhbDNpv62+L0XCLhsfNqWvtDt+wwA4ATBXsrPkYaYBFwSnEmr/Pz582EhkBBOwikJs/p3JKiT5vvzzz+nrygMpSofqqQ///xzqWvi6X7SdOuQ1pwEcwWFR6buHIYycx96USeBmhYMSChXgrmwmLwrKG5KwzfffGNNn/6MyosNtUhB5v2Uhu++++7vaQHBNMMXKXvQs14udTeT7nvsaZ86U3Dae85aC5pYUv7XzckRTwY7vD9RLwPaL9fjCcFVI+h9fTJvTpiklDc4zqamLaDJVdvYYzcUqjlNA9M5miUcK5aJqJrIOCcVSZKkCv2cp2P7JTmeruHM8Ko2kQsWKmxaJds+xKz0sibOtqcwa5I54An5vrHIYQoKXVMg8ah3G2scp56ffV6IMCesG3yv3v52ea/xhmUhYFMTvlR9kVCwosrEM81lpjEPa7w/VfUPSsuK5vRLaeX0/rPPlhNdi2CSWU4xYM0fleeS0ebz9KOG5vDKt/8e/abKNud46ITLU7Udc4+xz7g4DmpsCS5Pah+swV8LcVrJddrVFi4VS7wQ0mPh3yn4cx0c0wjzu6zBC1O7/C5zjW1Ky6wv2Kbt31bxqvax7JtnW1o9sVkENC3vg76W5l2O0/QXErL4ILTFqyz0RYQ2BHQAgIWh2llpn0mLToL4119/PfyfhFfSRtN3tF9bab7p0jTWRxpqko0Fm8GHooWnO3cbCugkQFPa6B61UCDeLQSoRYKhkzjSrB89uLAgWEBPTR/lRRf6XVDc3333nQrPT0C/c/tWlcyWmiUIy/2K5TEaJGTwJIImWmRKbjrqWebJoK3M122a6KzFDtaYCOXsj//va9pYNRnqpE12zXBSouwIzSkPC5y7psDpm/4UTDPvQQETlz3zC9Yy6RMwn/R2eX9gyKS+YWjzTO3MkeMhrr9UPOur65j8rluE347j3k3PdqkWatquhQpHmstMYx5sGrpd1nCmhe9y7BdcTiWxzO0rl7ZcE2aUUDjIEFR8yiPPeJiLvONiAMO8jpHWFRZsNzPqaMPYJtE3Fwr587xmMbFseRcprGb5tIjCDsyW2UJlnxdIzbo65jCN4uA+3rGNS5ZtCub4m0aeLQQuli3ji7J0GS7CaQupR8J6zgUCn+0CDcfnI7i9HnsnFmE1BACoDUOBVWm7SQgWrGFW3ymh1xS6dZPyItCE65FN8CouTWs/Amnj6XeVTsde+pFEU7zktT0ACuOJeXul96Dz+ee+q7vAE5qgJEnS4pf9lrG3MW1Svqvdc4Rt8qLtk35l25epmXMq1J5xXWPb0M5ldYVjo8Marra6eJLo2uPn6+m2yft6e5wWU4C9wRPN3HuOkySRlsvmWTktnW2eTIUKV7qAvi00rbkmKGxq99r2amfVu5lOYZtMWiw7lBbMlierEydzYugyRU5Lc9lpDIW14MN6Mtq3MMPXzifec7RXr3LicNrGVYZfEG/HVhbWeHFrT7VTOtlAryOP/jvE6G/B4+GYZI6LOoF10xfv+3IwnIZ9D4dx68aRdw2X+TZp5pMk+bX2Ljo2RnNenAt8VFds2TLPY5fNN0SHrRb0/rKf8j6YN45t83KQl5XWHNywvAtsC3P6PvRQ83aFzzvQ555lrR/u8VF4AICTw3AjuNoProRbJeyS8KoEXSX80ne6k7ei0Pa8vzaDVPHpTudMSAtO3uXJHJ20/mq/vMHIlxQvLQLbLgfWgKvuJE69eCCglwCbta4oLVBWDNpLP+s81Q6/nJWHWtsRYNvqOC/+3zSnbuqT7ZRwzLjVfsNFY6LQ1dIWDKezZ5zze0w7xxPYq2pfL+9dnQRtYRG8PGhoeRkYew47Wh6FzarFs951VDp9Jn5K+zcSr8ceYCceaZ54Gm1x8D75PeM6Qus/be1c47xWQx1LXFWbeOvCzLzpvMqn/4biOx4GkjouWgipG5XecRYUVtibd5p3/KHpPl/qHbOctqij3Wc63+uywJk6B+C4ljiPRwK1Nt6bgmNbHb/pCEs5TVtSx8xllIt3Wh3kVURsc/pU2Wa1Fxt9zzahnwJjddJHCwiqH4ZshQAATA1DqVgJs6Q5p73WZBpOF2muSdhV35GJN31HQrDStpP8rBXG8LP22xAS6pXnd2HZf66nwRCAj6WPhGn20C7OnTs3PL+ctN+DweDo3PKXL18O97LzfnYzfa/N9NECBO3Bt12O9FlXJ6ouoBfiHAekolb7M1/Q2iQgS/Db4AnzDdZw2PZQ93lC0tWE6k0jjD5Ptjdd4VhQguSIJjpDa5KFOlJmiS0Q9m3lwL/Ns7C3OCEhPa+mrGHkadsQ0PX6sXlizqz3MdLpvDegXdrISnMV0jiCw9JCt7bYYGFhifuPtb16xrXp6E91wqv/hlB0nQq/cTF33XDYYx1byu1rO+TYNT6Ga+Ax9treRd1AjfS6RaO8aymfX2u/p6XdXKhMIzStOp2cvgH2VdlqllOh86V9z+MIdQsX32cAACcIdnb2krTPyos7/SWBly4SzpUwroRh5Z1d89KuS+NDgfrhw4eJ7qXdB0d4w8+6MK8+v3nzZnjMGi0YkGaftOukaae96IZwPRKe7mGenifB33YpSDinxYlTp079T5uDOFFlAf3uvftttRrM56GDOKS9eI/t7bah9sB5no2qzDkXLQ6T8poKpmkQtvNMKrR9fWZ6nFpV1jSvTOj8dVWOoXGbguU2m1J3LQ72bObdvvVuptN2VJCpbUvL0/D5gH2iKg6fNE86japO+vrfDA2mcDhEjObwzUCl2SwvMz37BZuLC5Gz/xpp8h0PffOZRdq4OC6bObyFm6yos8wDngmuWx538gicOlbHoIGC966H1VjutLKWvzmGRYd6r+U1b9/mc9idYwr/pvtX2eYF6ML7KwCg9gxdmpP2XAnVJKibe7hJUFeQMExC/dmzZ/97kiRHAnCSJKRdfvzTTz/JkGPM6F7SfJOlui4A02eKg35T4VE6yGEdadAJchpHaVEabt1RHKUlSZLXWniPSMim+9PM5XWoTFTcb9++/S+u+yopoPPe8y2e2IQeVwLC0M8LF2pyaDlbWu0j9BLAjHPPXZMgdcTQhmNiY54znGpmqGmc0gT0hodw48KckAYL33n3f4bAk8/tHBPxpi5MKI/TmhfzXe03q7msZ73r4e+q7QcG3cB7c0/i09JcZho924Lp8PBIw+rx7NjttSBcixxmHtTYU8b+dpGzPELGQ998KlyCe9a4OA76kZC54DYYKujvegjo5nFmebzXdwMcpm27zNwN+mxGnnZfLk/73K422At9XkXErratK7i98GLyrmurmzrVgfOnxqFNbu9bJfZXAEANSZKEVMXfkEaahFvH3u0hJKySBpsctZ0+ffr//fzzz//BchudWfaSNM660O+C7qEzzqWUP6nFAp2ff/75M4qL7lGCMmnMKVzSltP1448/HnmXp3vYK/tLdca7ztu3b/+jYA/wWUI6hUdlwp7jnydJsuq6t3ICOmvO99ReQWjPi4Gd49C+6K7mLGdZmfiqSPjFu8tecdW9Xe0c6NQFE36BD/hl32aBx+WMSQmANu2WOnJoUUtrllmlmnC7PHT385i5c576Wp4W2UvxUTjsrGlDS29HO89Z3fPKVRbaPabDp7wOuZQXaKrzjpZub9NUZttHMxRS75Z0KidtquzWHHV0gyfKO3zvIp/13siz3zEgzYWnMa0tpLUhLY6O0d66xuKC2X82ShbQm7a2K973801LekynfmrSv8fOIY/GqXE0dT79N+VZ7/HQN5+MMmMf6d8Z4+JYcNhLLJj2jHJe5P99FjBXcmjQmzxOdrkvmePSmjZuKYdrI1plx7usw/2srfUzpVFOWwgRWe1AWzCwlktaWi3p1tOr/EhsWpy/ibQ+ZaRPd0CZNk6nhXeVx0KzTSyzT4ORY0+5HfX5mQ2tPpU2HoI7ACeX1XfK6Ofit7/97VAIN028SZglc/C7d+8Ov/vll1/+k66dVvB35G3uJQnV9Aw9S07myESeLvpM35E2XAnnSZJcYg28Gd6LX3755d8rIZ3CU3vISXimi8JR6aN7yAKe0uBIH61ADF3Bk5BOz5t75slUnsqAwlXCuTryzYnKHF2rX361s/rlV4n+ne+V9ix9T7+nhbX65Vft1S+/WuN7X61++VUn4/7MMIt8rqzrHz/9p4UY8fBkaoNftglfNDlYdNxPk6VXfJ8SJhrGPYvvmtDIs20tnh7fR3+7jnhG6oPTu2Wkte0Kh5/ZsYVl3LOsp5nDHikD83uOe09LzxZPQBL+a6aXymxNe17d60r7ovaseb0KTa+jDBMuo6YjDa4w6EPbcv8rPT8+9e6IwyzbHS4vCr9j3Nvk34/Vg0+7TKnXzLZaZBrT2gKX9ytbG8pIj1nOZt1v8TOJSktIOWX0KVe7TYx8u9Jjjiv62JM6TvmmNav/epRH5ngYkk/+ToVnG/+s42JRF7ePNeN9cKys08ojsYylWXWh2jyX+5ZRxzt6P+Kwe45wbGkfqRP+fjmjXRy9MzLqn+7bsuUzLa16uMalztAfGVdD+pSRvr0C+uiyZY6QVYYdjv+VpS2lPosLF67pvfh4swcZ409y5syZ/0Fbt7PKgsN7oj97/vz54WWESSsBFzzCu3D27Nn/ZoZ37tw5MzyK80OP8ObY4dvRsxcvXrSF98AnPJloZ7XdvXefBtnFO7dvBTsASnv27r37Ca/AbhpmfeoYtba22rrtoznnMPueGobdO7dv7Y/zXFl8+vvPFv78pz8+LTOOqsKmcz0+uzbmecvRYa0bTch+XdAZuaCmoC2ANE7SuOiCtPusWR7L034M6pRWAACIjZTyApuaL7AQS5u9f2Bh9om+59wHKeUchzdnCe8Rm9iHhLfA4VE6L7G2/Blfj1xO3FLC0/N60QjvgU2rb+NMpHpSwra5Z23Av+2zeRg5hAuZsDY9vcleNTyk5n2uDIo//K8+rLETpJMwCW3n2aMIphK0BZDGSRoXXSyNsSc7NnVKKwAARIUFUude61BYYB7ZCz5GeE+Vt/iCwqON6H4e41I4pkEHIBaaFnG+YC/FlYS1LDdO+KQboC2AFE7auAgAAACAUSCgg+iwc5zFk2zCCQAAOhgXAQAAACAgoINJwB5e+zALBACAd2BcBAAAAICAgA4AAAAAAAAAAFSDyp2DDgAAAAAAAAAAnEQgoAMAAAAAAAAAABUAAjoAAAAAAAAAAFABIKADAAAAAAAAAAAVAAI6AAAAAAAAAABQASCgAwAAAAAAAAAAFQACOgAAAAAAAAAAUAEgoAMAAAAAAAAAABUAAjoAAAAAAAAAAFABIKADAAAAAAAAAAAVAAI6AAAAAAAAAABQASCgAwAAAAAAAAAAFQACOgAAAAAAAAAAUAEgoAMAAAAAAAAAABUAAjoAAAAAAAAAAFABIKADAAAAAAAAAAAVAAI6AAAAAAAAAABQASCgAwAAAAAAAAAAFQACOgAAAAAAAAAAUAEgoAMAAAAAAAAAABUAAjoAAAAAAAAAAFABIKADAAAAAAAAAAAV4IxKwv/+P/93TgjxAJUCAAAAAAAAAACUxs1/86//1bOR0IUQ/x86yvFAAcv5HwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "<IPython.core.display.Image object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import sys\n", - "sys.path.append('..')\n", - "import fidle.header" - ] - }, { "cell_type": "markdown", "metadata": {}, "source": [ "<div style=\"text-align: left\">\n", - "<!-- <img src=\"../fidle/img/00-Fidle-header-01.svg\" style=\"width:800\" /> -->\n", + " <img src=\"../fidle/img/00-Fidle-header-01.svg\" style=\"width:800px\" />\n", "</div>\n", "\n", - "\n", "\n", "Deep Neural Network (DNN) - BHPD dataset\n", "========================================\n", @@ -57,24 +30,6 @@ " - Evaluate the result\n" ] }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAABxCAYAAABGIonyAAAACXBIWXMAACKJAAAiiQFacMqNAAAgAElEQVR4nO2dT2wcR77fq/Tnts/y7CUJHpaSZ04mXiAuhrcgEA2QtyDSHkZ43udAMhCMjiufSAgQRFmwQJ4sP7wLeYgkYLELkAfLZxKwjCQ3EpYQgLeZlZgASS4ayZub1+rgN/oVVayp6q7q6a7pHn4/QIPDme76X9X1q9+vfiWTJBHTyGFrdkEIsSqEeDbTO7g5lZkEAAAAAAAAADA1nJniqiQB/VIF0gEAAAAAAAAAAGRyaoqLaIH/PppwOgAAAAAAAAAAgEymWYP+lK6Z3gEEdAAAAAAAAAAAlWeaBfQnQogXFUgHAAAAAAAAAACQSe2dxB22ZueEENeFEFfo70zv4GkFkgUAAAAAAAAAAAQxDXvQaa/5H4QQ59lr+zEOW7MPDluzyWFr9slha/b6ZJMKAAAAAAAAAADYmQYB/Yn2+RIfrzaEP/+B/70shPgwfvIAAAAAAAAAAIBsar8HfaZ38OKwNfuFJnxfZwdx6rMOzN8BAAAAAAAAAFSSqXASN9M7eKA+H7ZmdS250qa/EULcnOkdPIufOgAAAAAAAAAAIJvaO4lLg/aeCyEes3D+uropBQAAAAAAAABw0pnmY9aIxzO9AziGAwAAAAAAAABQeaZagw4AAADERkppvlh3kyRZQkUAAAAAIIvaa9A1r+1zhpd22m9OZu0vyJHchJKXyae//+zDP//pjzC/BwAAAAAAAIATTu0E9MPW7Bx7ZyfB/KLnM2/YgzsdyfakYvvR52J4l7dodPKykiTJetnpBeCkAG0rAAAUg5RyUQjR5sAW+W9D+06nb1w09u6jKuoD3p9gWqmNgH7YmiWh/KavUG5wjs9Bp+vhYWuWHMc9mukd4Ng1AApASrkshFjmidAmL+QMULYAgDxgTAE52Ql4rMnXEVJKamPbQoj1JEn6qAQA4oPxX4hTFUhDKoet2SuHrVkyUX+YUzi3cU0I8f1ha/aRcSwbACAQKWVXCLHGAymh/gcAAIwpoE40uL31pJQbUsoGag+AeGD8f4eXgH7Ymr0QW5DlOEnD/a0Q4nxJ0ZCg/ozN5gEA7wbHtpSyE1AWtnu7KMvpJEf7AGgzGFPApBmasBtXlkZOCeqLk08+ACeGEz/+E6cOW7NP0m5gwZwE5QexEnXYml0VQvxFCHEpQnQk/D89gUI67dOROS7sP59CaMWStQU9IcRe4GBom+TAFHWKGLN9ALQZjClgUqi5Tov2JhvXr4UQdC2xGa2tjZEWb4e1egCA8jnx479gDfrlw9bszZR7HrAQe63sxLDWnLyv3yk7LoNzJ1RIB0CxwRPoZo4S2bR8h4Wc6WKc9gHQZkLBmAKiQPtakyQhIf6GEKJFe10d8dJik83RHACgWE78+C80E/dVEo7NH1lwv6b9v2DeUxQc9rMC95mHAiEdgBzQ5IY1ENtsPngDlhYAgLxgTAGTgIV1amfzDo3dFvakA1AuGP/fQV7cX7KG/AkJyeoIMhbOv46RCPbQ/jBGXBmQkP6Ijz4DAHjCA+ouygsAUAQYU8CkoKPWpJRL7BFeF8ib7FnapWUHABQAxv93GvQX/Jk01y/Ys/mziML5akWEc8VFThMAAAAAADhh8HnoVy25XpZSYqsPAKBUTrEDOMU5NmmPYmZOiwET2G/uw00cvwYAAAAAcDJhLZ5tPyxOsQAAlMop3vftS8i9Tkj45SPUSnc8lxNaqEhznAcAAAAAAKYb295XeHQHAJSKqUFP46Xanz4O7ITtaaQj1MYBAvoYkAmYlJJMwcipCp0jmvBFn3f4t2AzMTqPVAtreFnu6XK8r/ie5RxhdPiIoB0t3Vs+R61oxwupZ/f42eW8DmboOQ53jcN9paVfhd/1DV9LmzX/QoiRMtKukTNhLffs5Mhj4W3Gs67bHPYOx/WKP69V7fzbWPkpoX2M3W8d6SxlnLHE09DSp8ezx319rHZilrejzEt73kiL2X6O9WvO78hYc1LGFFGjcaXo94aoWFuNQZIkfcte2GYej+7cbtYsZVDIOFJGHJ5tvam1ddXGXhU5BleFMuuwpP4aa85c6HgXOv5XZUzWZIc9431D5dsx7k1Pc5Ik4mXz4ycvmx8nGdcjunec62Xz4ysvmx+/9oirKteVcfOcdf3jp/+0UHYcdFFVG9dOSfE0+XgdMz7XRZ2uGRB+wwzH+G3HEs9yQBhtRxj6Ref6ti1pa/N5v2nPviLzuID8tgPL0yt8jzymXYtFtq8y2wyXX1p78Yk3qI2W2Tdj5aeE9jF2v405zhhxdbhf+cTRyNMfbPkPTONYz2v5zBq/nHGclDGlDuNKWe+NqrTVjPBzt5uUMJdDxidHffj2j1ztoqw4bGO3Ns7Rb2uecXqX16TrO3Ydltxfi5gzRx/vQut10mMyvcNYNsiKY0/JD/yMM4/qmLUnHgsDPvc4Ycdr37L5+CR4I4T4gf/6cmVCaa0lrF3eCzT/oga656OZFu96nO3oE8ErijscXnAYvLLW9gyDJn87+gq6lvesVfUGH9XiW0Y7geUZGv5EKbvNsKOfEbjuep7xqvgmfgZuXfNTRL/Vnil9nNHiopf6luHJOS2Onbodw8Ramy3OZ0ib2C4xWbmJ9B6qej+c6vfGBLB5k/bSCmvt0XeMC24XZcbhGLvb2tidaenEKK1w7Y6pi1CHpfXXgubMlZ93TDKNbHGw4zkmtE35wQUdsyZmegfkuf1BivD8ZqZ3kEtA5/PVH03YpP0xmayTiT47f3vguf+9tHPfpw0eKDYs2Rrwy011nkXLgDBc3ZJSUiezOWTxYSNwcmnS5JVg/eXR58s2gKkBcl5b/dRR+XWlifK77xpUNLaNgWWfy1MNuk3WfJkvPQq/z05uXOHqv60Zv/cdznHUb2MzqTajLcToZTbg+BqOOlMrsPNF5L1ISspPrPYR1G9jthkWzl0v9b6WTz2eNgu6tUCbpLnqYKCVqZlXc+w6sWOKqN64UtZ740TCx66ZWc+cjDva44DrR7X5BteFHt7R/MIlYMWMw4Ft3NjnuNuORc1FTqvNO34liVS+k+ivY82Z6zCPipFGFs7Nd53CNU9Q7930s92VKv1l8+PVFLPyXObtFTFpf6Gl5wLnk/6+8Hm+DFMZ/ZoGE3eLmcaRmYwyhTLub/Ak1vbMiOm4R166lu+2OP5lT/PJnvFs00ivzcQt4Y75yvVs8t48zmYim1kHmnmttSyTdPOdXqz2kcMcKVqbyajrPdNULMM8tnAzvRxlFz0/RYwf4/bbyG3GljZX/26k9HHfOo1uNszpdpm0r7lM/bQFyaxtElM7pkyqHwaUXWnvjZNo4s7hmuarWeVka487KfVhMxXfmHQcrjLVPlvbmbIoKru9l1XfseowiTDPszxT9Jy58PEuT71OII0dx7Nbjm2w3ZB5guSHBGuWXzi06L8L0aBzWKQ1v+z7TIncnekdrLIm/5mWv+eex8l9MtM78HWkF8ynv/9s4c9/+mNp4SssDhN2kyRZKiBcNckzV5NvZGkhHBoq0iqnrlxZ8jLQVsh2Oe5UjUyKY5rNJEluOJ5xaWcUK0mSWFfE2AGFzclFyyOtDZ8VbjZTNY9/mffQ0o/dPkKej91mUuqaymUpxQTMtjJKq9WttDSGElr2k8hPEePHOP02ZpvhuHoWbUVqXI7VekVWnY6YGiZJMqKyK/J5coxjMU8dcBvKHDM80jS1Y4ojfUfPVmRcKeW9MYm2GkKJc52gdJNjKKM9bidJkqo5drRF5xwhRhwiva1njheO+AYcZx7NfVbaCqlvEbF8RcnzvJLnzKWMd3nqNWYaU945TjmAn2ummMMfy6Pagy7YQ/sDR5jex6sdtmZvsqBfBeFc57qx+BDlrPcK0+b9QCGXzdyza2lo6z4mgiwIm4NKO8c+ODXQ0OC5lDXQpEDPraSkd9OxF01wx3J2ynHOUw14idnSXikv5EwV2kw/bcDmuNYtpre5vPdGoI75Cem3MdtM1yJkb2bFxROkQiaGZcMLhqUJ5xOgCmOKqFI/nML3Rm3gtqO3R6oL68K/wYpm1qywtsMYcWTgNV44+lej6kfVxS7fyP21yDlz1ecdZaXR9s7ZTpMDOK6+7xaPU8b/DxxO1DKPVztszS4ctmZJMP96go7gbFzn715UKE1VoKHtw/O9bJoh28po+r6K49gGm0yh1YLv4JnGuudeIRs+ebY9W9ggxR3fHGSqKqDrTKLN+NS1cCyqVLFM65of334bs83Y4nIu3OnwZDWvH42Y2CaMN2oqnIsKvYdq1w9r9N6oE+bil1e74HvMtuFqhzHiSGM9YLyw9a+qOyScdPm6wi+qv8aaM4sJj3dlpbH0ecIxAZ216Nct91k162TKftiavc6C+fdCiPM+iYvM+cPW7CP2Qv9NBdNXW3h1yVxB2gwxW2LNsjnIL+bw9OnbCdPw8UpseyENfJx0OO4p2qPpyCpgweGPRYXajK8H6roILHXNT2a/jdlmWLNsWxUPGVsq7WCLTezMCSOZdFfSK3sWFXsP1bUfVvq9USdc7TEgC7Yz181xqvQ4PPAeLxz9q1nV89ErUr5pFNFfY82ZxYTHu8LT6Ggf24GWCJnpMjXogveaf2d8fe2wNfuMjkrTrie8YvCwooK5zjXWoMMre7HYVpfydERbQw1dXRt3crnvuTpqy19InkcmgQHP5qFqL8AqtBmvuhbuRZWqaZfqnB+ffhuzzdgsWoIE7hoIurbyrIPW30VV3kPTNK5AQM/GVddmPXq3C3W/5TtzXIoRRxr9HGbRpVoQFsykyzeUPP01ypxZTHa8KyuNtu9D5wmZ959xfH+d953rgvfFmu/bPpcz/dNqGl+EI42RRppzcmobzEIGnMEYe2iOwhjz+WjxaBqwpnHVgSq0mVh1HYu65se338ZsMyOTqLpqllMYexGiYlTmPVTVAhL1f29UgRGhzZEm29Fj3pBAYTnSrW300RhxpJFnvjVu/4rJpMu37P5apznzOJSVxijzBKuAzueFXxFC/Fh0hHVjpneAvetuTJOdvGYs4w7cdd03GQQ7LelWeNXZh6q0GTB5fOs+ZpspKq4qY+Y5jzasSmBMSWFK3ht1wmyP3ZwOB9OIEUfR1Kl/Tax8I/XXEzFnLpEo84QRE3fFTO+ANOifx8tvJfnhhOc/C3MAybVa5TBBgbDF0L5YPu5jYwomWWgzIJSYbcbUkk2btYWw5LHOwrnAmGJnyt4bE4V9U5i4tKExTHdr58SvZv0revmiv9aKQt45WbhM3IfM9A4eHbZm54QQf6hRyX3BJvrjmuM/Tzl2DoAoZJy9vsvXQJtkr2FwBwCAkwveG4VjK5u6L2yBioD+WjuKdu5sJVVAF++E9JvkrZ0drVWdH2Z6Bw/Ya7u5h94X0pqvzvQOntYgv2CKkVJ2LIO2Oj7I6qVYSjmNGj8AAAAe4L1RCuP4bdgtwMdDlgltjDhOMqWVL/orcJEpoIt3QjodpSZqIKRfYu/yq0KIOf7rq/0/Esz5TPebJOyXnN660zdMlHKtKjmO2sDL4t0qqQ4Nyks1PqtYoM2AHMRsMwMj/Cgr5ZEppDynLT9TNKZM43tjYqQcS+grJJFD3pAz+fMQI46xcBwzVpc2WWb5or/WD3OeUArOPegmJKQLIR7XoBgvs3M7ErBvCiE+4vPPX1rufc6//XamdzA8gu2wNfuUz3SHBj0b08Qrr8mN7bkTvULIJk/mhHFlCgZttBkQSsw2Y/avaTQjHCnPgs/ojQ3GFGaK3xuTxBTORcYRVaamtYwxJEYcRVOn/hWlfNFfa0uU45K9BXTxXkj/poyElMCdw9bs8OxzEtRnegcXWFj/hAVyOdM7mGMhfk4TzC8JIe6ykzyQzsggwuY6odgGv5M+QI04q0qSpM5nFSvQZkAoMdvMyL5SKWXQ5CynsGszYyzLgZKtn9TO6ZQGxpT3xHhvxGyrE4XztWxJQ1qZmuVThnAXI46iqVP/ilW+0zrPm3aizBOCBHTBe9JL9O5ODt6+KzA82oP+8LA1+5r3pV/n78mEfZWE8sPWbEL3sGAueB/7aoFpmGaKmuiZk6mBzyH+U85Y53BWGLQZEErMNmOLK1TYyyMcjnsEUUh52OKq+hFNaWBMeU+M90bMtjpp1iymrCsZ5u1m+TRLWMCIEUcaeeqwTgJ6rPKd1nnetGNzEBnaJzIF+mABXbB3d9JCCyHe5HnewhsO71FB4Zmc4/3zd1hL/jV/vmTcRybvV0pKw9TBB/ObL6pOyEDmMPEp/MD/GpL3ZVBpTQbaDAglcpuxCWTdQK14HgHdhtcLP4e2eNdSnouOo6QqD8aUY0zqvVFWW50YUsoN26JNhvZcONqNTQs/DjHiSCXkXHDHPv7dgH38sYlVvlM5zzsB2NpH6CJ35liYS0AX789Jv1CAxvs5hyN43/flMcMbJx1kDv96QvHXFbOhNixOL6zwpNc26EHYGiVzQOYJdt6BO+beW7SZ+jHpvdlR2kySJH1HXF4vXxZA8gi6toWBzBc4582rHBQ8KbYJGRsF70XHmDJ5ynhvRGurk4KFc1ufv5ElVPIYYpZRN9QEdtJxeBAisNrqvbL9a4LlW/Y8DxSAo32QlYVXn+AFq8w5RW4BXbwT0l/P9A6usGl6Hm36GzY7v8DC+bhnl+cFwnl+VhzaC5+GumXTWsBUeYit8zsn/jz5cZ2j6YNZh40SNWpoM/UjZvuwEbPN2ITXtSyNEU/ecvVBdgpkms1Rn88SaNZyTtbWLeVJ4ewUOAnFmBKf0t8bE2ir0aCyklLuOSbP62yt4YPN43eRfUtEiiONJi9kpMLjprmA06/BXusY5Rt7ngeKw9Y+lrPaB9fhlk8qxhLQFXwc2YUcXt4fsSaehPPXfNTZN7zH/SNeBS/KjN7FN+wsDsJ5Dng1ecXyJE1o12waGVo9klLu2Bxk0Ap1VfI2YWyTwy1b5+cBfWfMyY8tvrUyXvZoM7UkWvuwEbPNsGBmm4iThnnDNJ2muFkQ3NP2q+YR7mwT1mXOnxlnxxAkgkxFuTxtZdDmSehInFrci/x7Vt1jTIlPrPdGtLZaNlQ21H85jTsOSw86j9rWvqzwGGJO4Bvct5azLFW4bXbTtgTEiMMDen7LNlZo46JNoKx8/4pUvrHneaAgHPME1T6si/lcr64xZvT+JEkKrS86Q5zPHzf3d9v4jjXwtjDmeD+4Tzh5oGPXrtO55yWF78Wnv/9s4c9/+mPpaZBSmhVN+3+WCgzfZRI24EFImTsuOkxAvc9+LCIv44Qx5rMjE8IkSaTlPuroPcdZi9tcng0Oq238duyFYAvfEl+T47Oxz/XTZM3SyEQlT5nEajPjtpcIfSco/EnkZ9z2UUS6Rdw208h4kfb5alju2eTfdI2iTxk3WMh3TcBUOdsEyhVzIuzZ75czzI4HWpmaeV1JOxt4mseUvOkr8nlHmFHeG5Noq75YylVo/VXH1ndNBqw5z3UGdkp7FFp71BcslPmyKldaGEgVZiPFYZapGvv0drarCZxtjsfWDlPHjVAc9Z0Lx1ystPKN2F8nOmfO83zO8T92GtPGQWUGr8adTlYdmvGd8U24LyzwLngK6pcPW7PPWHtOfBjBzJ008qTxfwCteXHQACSlNCelggeXTsYetX3e2wUPlgxphKSUSywkmIO3qzw3ecU3eEWc9tRIKdcd+8rajs9jgTZTHybRPmzEajNG/7Plqel4KW9yGoNNuTnOq44+L1LOER4KlD7mppY416WUgxSzyUbKnvpFh5mfChtjSmRivTcm0VbHxNVf09hk4dzmsdkLbo/CIeC5FonMe1KJEYcF5atDr0efuHIvdkyKMss39jwPFIs2Dtq2SaXtM99nK5LUOizExN0GCeozvYMF9s7+OMVU/SIL8ZdKFs4p/rtkik/HqEE4Lx4eeJcCzDvVarqXxuKkwWWy5DjSwSxHmljesE0mfIUF1mJF3ReGNlMfJtE+bMRqM2w2vZQmhJpxZGmiPOL07fOCJ8gtV558Hb7xXtBWDqdNmeFjTIlPrPfGJNpqBPrc31uucgmFx4SlnEdo9X3KJkYcljipX8971n+f+5f3NoEqUWb5xp7ngWLh+psPeM+tc1/I3OpTuAbdhPeYXz9szX7IJutXIntqf84a8ycQysuH92Xs8l4LZdLRNvZm9nmg267wMRuVgDt/i/e0LGpmY8r0dJe1doWUI68Wb2smVaru9jWTnUJBm6kPk2gfNmK1GbW3WUq5yfEsavH0tTxn9UHvyZOlzytT3IEW37aH8ND2rQ8O66p2HFKbNQBKE6ryejTu+AqzGFPiE+u9MYm26sG2Vs/tlIUkFd9ROyxCILfB7XGe2+OixQxaaKbSudITIw5LnGb9t7X49rWxovYnIpRZvrHneaBYlE8Xthjrals8FLueY+GxMbDwPeg+aML6Al/nC46CnM09YaH8RTm5KIZYe9ABAAAAAAAIoWw/LACcRCz96ph/htI16DZYk/2ILxLYL7BTOHVdCDB3J2H8BV9PJ+30DQAAAAAAAAAAMHGcknJMuz4RAd2EtdwvWOt9BGva5yyPvGbTeQAAAAAAAAAAoA7Ytr1VT0B3wZp2aMQBAAAAAAAAANQd04P7wPTrUpoXdwAAAAAAAAAAABx53Dc16COOFCGgAwAAAAAAAAAAnoQeUcinAGxZfho5zhUCOgAAAAAAAAAA4M8rKeWGlNI0WT8GCfJSymUhxI7l6Md12/Frld6DDgAAAAAAAAAAVAVNKKezz7tSSsFnmfcNh282k3bFvk17LiCgAwAAAAAAAAAA3tiEbpcgbmOTzz4f2H6EiTsAAAAAAAAAAODHLmvAQ6HnriZJcsMlnAto0AEAAAAAAAAAAD+SJCHP69tSyiYfm9Y0LgUJ5AMW5rdt+81tQEAHAAAAAAAAjJAkiUSpAGCHBW7rPvJxOCag3713fyfAfr515/ato1UA9eyd27dGOvLde/c3tFWFhuHBrq+tLOzeuX1r5Cw4G3fv3U/4/qWQ/PNzPvTv3L7VCgkbAAAAAAAAAADIi0uDvuIRntNu3kKX71dqfl29T0J7W3nBu3vvPv2+cuf2rc0Sa7XPm/PTCMkfAAAAAAAAAAAwFlYB/c7tW4Wr6klDfuf2rauuH+/eu99gG346J27j7r379Pnqndu3yhCU+yXlEQAAAAAAAAAAyEVl9qCzIE5a7U02iSeN+pYQIsiEHQAAAAAAAAAAqCOVPGbtzu1bN1hYX7x77/5yBZIEACgAKWUipfTycxFy76SoQxoBAAAAACaBlHJBSvlISvmC50zJqVOn3kgpn0opb0opPwxJlpTyupTyiR6elPI1f3c9NIsqvNOnT/+khfeCw7sSGNaHnKenWljJ2bNn/xeXwYJvWJU9B52FdNorvsbm76AApJRtKeWe1nB6UsruNJYtHX3AeQzOH5fRVjkps8a3qHdm48pMR1Hp5XjXPNOael8KzZLunRSlprHqiwCTTh+PYXqfeUV9gY8+Ae5y6xrvAvU+WBTH+7m1btXvHnWxQ+8dy/OdkHeRlLKhj+c8vm8Z8e3Z4tLym7jaBb8bzfTv2dKU1eb1tDrCVeVizW/Ku+CV9nuq8sIoK68+SmFa6mSN8pOR1zVLHqd2bgEAyIaF1adCiO+FENeEEOcvXbok6JqZmflACHFJCPG1lPKljyAspZyTUj4TQjwUQlzWw/vVr371K/7uIQvXcz7hnT59+lCF95vf/ObvVHjnzp07z+F9S3F6hnfl1KlTFN7XlLfz588LFd7f/va3v+cy+J4F/8xFicoK6IzaJ96ZeEqmAH5B77Czvnm+NqfYIV7H+Ftl1KRx3nLdiJFubWKbNalCf4xP1YXNSaavyY5NVd9Z4e96LmFt0rAQNJFFDRao9mjxm85k5W1k8/xXfx+oOnUtxNnq3KwLNXYdyy8Llxscn++7iMadQZIkm1yvPb5fT/9+xvMiZfxqc/rntfDoXbnhEIbT2vxRWrVwl7Swr3Ja17gt2ATgdcf7QHC9OcdhWvzQ7vNJLz2zw2O/Xifr/J01jRzPKz79Z90ou03DITAA4ITAAuhTJag+fPiQjiMTT58+HV4vXrwQf/nLX8S1a9fo+w9YEHZqv1lApvAuksD77bffHgvvr3/96+nvv/9+KAyT4C6E+DEjPPrtx7dv3/7m8uXL4scffxymSYX3+vVroYV3UUr5Q5qQzuF9+/bt27+jPFHe9PAorVQGVBYk+J85c+a/ZgnpVT8HfZf/Lnp4XQfZ0ERrM0kS3Ut/2oSm7nQ4f6TpaSRJ4r0QkSTJvMdthZMkSa76KDC9VEY0gV9MkmTXcU+H74OGElSFgdZ36O+mJoRW0Y9Je4L9Z4f7b8syJpp9ftjPSRPKwqYPZl1ss3UP1cU8C3ok8N5IkkQXILPGvq4mcG7wu8xcvLSOWRznIsfRSTuz1hiDd6WUfRbSNwPeIV1DOBaW8ZTCXuf62NGEb0U/5X1AYW+lvNcoj7u+6eX6GS5OGM/sSykprj3TJxAvuGxxPdrahuv9AQCYfobCNAmrDx48EB9+OCqLXrhwQTx69EhcuXJF/O53vxOs/X6dJMkTY3y6wOGdo/DoGcX16+9kcPpuYWFhKAxTfF988QU99w1pv5MkeWaEN8da86HQrMIgSKima25u7ig8+v3x48e0iEBm6xeSJHlthHdFhUcLB5QfGxQO/Xbz5k0K7x9ISBdC/FtXS6i0Bp3PWR/wZAaMT/ukrGizGWNbOzIQWt9sVD/bdZUXT8oa5uQTgAqyyUIZeN9/uyyIXfUU3hoszObdzqLY1sYX+tswhPNUtPF8XQsjZDFTjWf0PmgHbn9Q6fSah1jS6oTr4CqnKcQcXAm/rvfaoq+AzGN6hwXtkTbB393ghe6OeL/gQcL5SsDCDQDgBCClXCXhnLTFLuFch4TWO3fuDL85derUP1tuWbUJ5yRIP3nyZHjRZwUJwBQea+YfmIGdPXv2X+gvhR+G5EIAABNVSURBVKeE82fPng0F8o8++kh88sknotFoDIV0wcI/3UtpsIWn0kzCvks4V1BZUHhs9v4PXFZWqm7iLlighKauGAY84cqE96Lpe8q2TBM33kP4ivcC7qn9iLznbkd7dkd/lp+xTvi0fXukxd3ge51pSEGZGO66BE5tn2Bb28u4qKVDN8k082TNA6dZv6ewPXgh6dWeMetxL2VyqiZnaeaTHS7PEQ16Vr1n5GvLSKNrH6m573Rkf6vRLvX0bFjC80pz0WkcF0velo002PrPmnGPdzmNg22vskj/3rY3eawFNp/+6xrPhP94mJlP1S74JzVWqH3FmePiOGXAdFnzHLKtaVO8N0svgoE4vqXGB4p7P0kStcDs/S5jlEY5S7AtAjOtqfB9qSbrJlx/u7YFqByLqB1Or1Og59/2tTR2+XscVwsAMLlJ/5PgrIRzZe6tQ0IxXcTq6qq4ePGiIJNz3TSdtefXPvjgg4SEfQWZoFOY9Bxd9Jm+U9B3bE5+STdNJydtP//887+jz48fPx4K5Ur7/sMPPwzvoefoUgI6QXFTGigtnCYV3nVlJq9r4rNQCw1nzpz5z65brSbud+/dH5lkGND55LE0aGXsj16sWB5jQRMtmmhup00e2NxNaQD2+WW/zPvQdBO4Bl9qX7vSVje1/xusfdHN4zb5Rb9ixKvvm1OTr6vaZMwMJ42ONkHZ5snwMXNA+iylFBxmX9sXqGgan/e5TJRVB+0fHKhJimYmuKTdU1j7DUyv2lOo9oT2uQwXU+q+yelV5dWxaLm6rE2xTY6z6n0EFnL2OH2q3Drcpo7B9+5wnlWYlJ4dbpcqX6pd7nF9qT3JVF8bhllsZppLSmNutDiUL4kmm7v2tfoy+0+T63SgTapDymkcXAtCI9+zELjM6VHxL+bcitMw9lOn9l/XeBYwHvrk8waHo8p8W0ujz7iYG243bTP8LHjcWefyChXuFV2l0SWzbSnlPrfHJc/wzHJR77J+liZeM29X7Wk7y8zdkvZBmgCbkVYf9rlNhbDNpv62+L0XCLhsfNqWvtDt+wwA4ATBXsrPkYaYBFwSnEmr/Pz582EhkBBOwikJs/p3JKiT5vvzzz+nrygMpSofqqQ///xzqWvi6X7SdOuQ1pwEcwWFR6buHIYycx96USeBmhYMSChXgrmwmLwrKG5KwzfffGNNn/6MyosNtUhB5v2Uhu++++7vaQHBNMMXKXvQs14udTeT7nvsaZ86U3Dae85aC5pYUv7XzckRTwY7vD9RLwPaL9fjCcFVI+h9fTJvTpiklDc4zqamLaDJVdvYYzcUqjlNA9M5miUcK5aJqJrIOCcVSZKkCv2cp2P7JTmeruHM8Ko2kQsWKmxaJds+xKz0sibOtqcwa5I54An5vrHIYQoKXVMg8ah3G2scp56ffV6IMCesG3yv3v52ea/xhmUhYFMTvlR9kVCwosrEM81lpjEPa7w/VfUPSsuK5vRLaeX0/rPPlhNdi2CSWU4xYM0fleeS0ebz9KOG5vDKt/8e/abKNud46ITLU7Udc4+xz7g4DmpsCS5Pah+swV8LcVrJddrVFi4VS7wQ0mPh3yn4cx0c0wjzu6zBC1O7/C5zjW1Ky6wv2Kbt31bxqvax7JtnW1o9sVkENC3vg76W5l2O0/QXErL4ILTFqyz0RYQ2BHQAgIWh2llpn0mLToL4119/PfyfhFfSRtN3tF9bab7p0jTWRxpqko0Fm8GHooWnO3cbCugkQFPa6B61UCDeLQSoRYKhkzjSrB89uLAgWEBPTR/lRRf6XVDc3333nQrPT0C/c/tWlcyWmiUIy/2K5TEaJGTwJIImWmRKbjrqWebJoK3M122a6KzFDtaYCOXsj//va9pYNRnqpE12zXBSouwIzSkPC5y7psDpm/4UTDPvQQETlz3zC9Yy6RMwn/R2eX9gyKS+YWjzTO3MkeMhrr9UPOur65j8rluE347j3k3PdqkWatquhQpHmstMYx5sGrpd1nCmhe9y7BdcTiWxzO0rl7ZcE2aUUDjIEFR8yiPPeJiLvONiAMO8jpHWFRZsNzPqaMPYJtE3Fwr587xmMbFseRcprGb5tIjCDsyW2UJlnxdIzbo65jCN4uA+3rGNS5ZtCub4m0aeLQQuli3ji7J0GS7CaQupR8J6zgUCn+0CDcfnI7i9HnsnFmE1BACoDUOBVWm7SQgWrGFW3ymh1xS6dZPyItCE65FN8CouTWs/Amnj6XeVTsde+pFEU7zktT0ACuOJeXul96Dz+ee+q7vAE5qgJEnS4pf9lrG3MW1Svqvdc4Rt8qLtk35l25epmXMq1J5xXWPb0M5ldYVjo8Marra6eJLo2uPn6+m2yft6e5wWU4C9wRPN3HuOkySRlsvmWTktnW2eTIUKV7qAvi00rbkmKGxq99r2amfVu5lOYZtMWiw7lBbMlierEydzYugyRU5Lc9lpDIW14MN6Mtq3MMPXzifec7RXr3LicNrGVYZfEG/HVhbWeHFrT7VTOtlAryOP/jvE6G/B4+GYZI6LOoF10xfv+3IwnIZ9D4dx68aRdw2X+TZp5pMk+bX2Ljo2RnNenAt8VFds2TLPY5fNN0SHrRb0/rKf8j6YN45t83KQl5XWHNywvAtsC3P6PvRQ83aFzzvQ555lrR/u8VF4AICTw3AjuNoProRbJeyS8KoEXSX80ne6k7ei0Pa8vzaDVPHpTudMSAtO3uXJHJ20/mq/vMHIlxQvLQLbLgfWgKvuJE69eCCglwCbta4oLVBWDNpLP+s81Q6/nJWHWtsRYNvqOC/+3zSnbuqT7ZRwzLjVfsNFY6LQ1dIWDKezZ5zze0w7xxPYq2pfL+9dnQRtYRG8PGhoeRkYew47Wh6FzarFs951VDp9Jn5K+zcSr8ceYCceaZ54Gm1x8D75PeM6Qus/be1c47xWQx1LXFWbeOvCzLzpvMqn/4biOx4GkjouWgipG5XecRYUVtibd5p3/KHpPl/qHbOctqij3Wc63+uywJk6B+C4ljiPRwK1Nt6bgmNbHb/pCEs5TVtSx8xllIt3Wh3kVURsc/pU2Wa1Fxt9zzahnwJjddJHCwiqH4ZshQAATA1DqVgJs6Q5p73WZBpOF2muSdhV35GJN31HQrDStpP8rBXG8LP22xAS6pXnd2HZf66nwRCAj6WPhGn20C7OnTs3PL+ctN+DweDo3PKXL18O97LzfnYzfa/N9NECBO3Bt12O9FlXJ6ouoBfiHAekolb7M1/Q2iQgS/Db4AnzDdZw2PZQ93lC0tWE6k0jjD5Ptjdd4VhQguSIJjpDa5KFOlJmiS0Q9m3lwL/Ns7C3OCEhPa+mrGHkadsQ0PX6sXlizqz3MdLpvDegXdrISnMV0jiCw9JCt7bYYGFhifuPtb16xrXp6E91wqv/hlB0nQq/cTF33XDYYx1byu1rO+TYNT6Ga+Ax9treRd1AjfS6RaO8aymfX2u/p6XdXKhMIzStOp2cvgH2VdlqllOh86V9z+MIdQsX32cAACcIdnb2krTPyos7/SWBly4SzpUwroRh5Z1d89KuS+NDgfrhw4eJ7qXdB0d4w8+6MK8+v3nzZnjMGi0YkGaftOukaae96IZwPRKe7mGenifB33YpSDinxYlTp079T5uDOFFlAf3uvftttRrM56GDOKS9eI/t7bah9sB5no2qzDkXLQ6T8poKpmkQtvNMKrR9fWZ6nFpV1jSvTOj8dVWOoXGbguU2m1J3LQ72bObdvvVuptN2VJCpbUvL0/D5gH2iKg6fNE86japO+vrfDA2mcDhEjObwzUCl2SwvMz37BZuLC5Gz/xpp8h0PffOZRdq4OC6bObyFm6yos8wDngmuWx538gicOlbHoIGC966H1VjutLKWvzmGRYd6r+U1b9/mc9idYwr/pvtX2eYF6ML7KwCg9gxdmpP2XAnVJKibe7hJUFeQMExC/dmzZ/97kiRHAnCSJKRdfvzTTz/JkGPM6F7SfJOlui4A02eKg35T4VE6yGEdadAJchpHaVEabt1RHKUlSZLXWniPSMim+9PM5XWoTFTcb9++/S+u+yopoPPe8y2e2IQeVwLC0M8LF2pyaDlbWu0j9BLAjHPPXZMgdcTQhmNiY54znGpmqGmc0gT0hodw48KckAYL33n3f4bAk8/tHBPxpi5MKI/TmhfzXe03q7msZ73r4e+q7QcG3cB7c0/i09JcZho924Lp8PBIw+rx7NjttSBcixxmHtTYU8b+dpGzPELGQ998KlyCe9a4OA76kZC54DYYKujvegjo5nFmebzXdwMcpm27zNwN+mxGnnZfLk/73K422At9XkXErratK7i98GLyrmurmzrVgfOnxqFNbu9bJfZXAEANSZKEVMXfkEaahFvH3u0hJKySBpsctZ0+ffr//fzzz//BchudWfaSNM660O+C7qEzzqWUP6nFAp2ff/75M4qL7lGCMmnMKVzSltP1448/HnmXp3vYK/tLdca7ztu3b/+jYA/wWUI6hUdlwp7jnydJsuq6t3ICOmvO99ReQWjPi4Gd49C+6K7mLGdZmfiqSPjFu8tecdW9Xe0c6NQFE36BD/hl32aBx+WMSQmANu2WOnJoUUtrllmlmnC7PHT385i5c576Wp4W2UvxUTjsrGlDS29HO89Z3fPKVRbaPabDp7wOuZQXaKrzjpZub9NUZttHMxRS75Z0KidtquzWHHV0gyfKO3zvIp/13siz3zEgzYWnMa0tpLUhLY6O0d66xuKC2X82ShbQm7a2K973801LekynfmrSv8fOIY/GqXE0dT79N+VZ7/HQN5+MMmMf6d8Z4+JYcNhLLJj2jHJe5P99FjBXcmjQmzxOdrkvmePSmjZuKYdrI1plx7usw/2srfUzpVFOWwgRWe1AWzCwlktaWi3p1tOr/EhsWpy/ibQ+ZaRPd0CZNk6nhXeVx0KzTSyzT4ORY0+5HfX5mQ2tPpU2HoI7ACeX1XfK6Ofit7/97VAIN028SZglc/C7d+8Ov/vll1/+k66dVvB35G3uJQnV9Aw9S07myESeLvpM35E2XAnnSZJcYg28Gd6LX3755d8rIZ3CU3vISXimi8JR6aN7yAKe0uBIH61ADF3Bk5BOz5t75slUnsqAwlXCuTryzYnKHF2rX361s/rlV4n+ne+V9ix9T7+nhbX65Vft1S+/WuN7X61++VUn4/7MMIt8rqzrHz/9p4UY8fBkaoNftglfNDlYdNxPk6VXfJ8SJhrGPYvvmtDIs20tnh7fR3+7jnhG6oPTu2Wkte0Kh5/ZsYVl3LOsp5nDHikD83uOe09LzxZPQBL+a6aXymxNe17d60r7ovaseb0KTa+jDBMuo6YjDa4w6EPbcv8rPT8+9e6IwyzbHS4vCr9j3Nvk34/Vg0+7TKnXzLZaZBrT2gKX9ytbG8pIj1nOZt1v8TOJSktIOWX0KVe7TYx8u9Jjjiv62JM6TvmmNav/epRH5ngYkk/+ToVnG/+s42JRF7ePNeN9cKys08ojsYylWXWh2jyX+5ZRxzt6P+Kwe45wbGkfqRP+fjmjXRy9MzLqn+7bsuUzLa16uMalztAfGVdD+pSRvr0C+uiyZY6QVYYdjv+VpS2lPosLF67pvfh4swcZ409y5syZ/0Fbt7PKgsN7oj97/vz54WWESSsBFzzCu3D27Nn/ZoZ37tw5MzyK80OP8ObY4dvRsxcvXrSF98AnPJloZ7XdvXefBtnFO7dvBTsASnv27r37Ca/AbhpmfeoYtba22rrtoznnMPueGobdO7dv7Y/zXFl8+vvPFv78pz8+LTOOqsKmcz0+uzbmecvRYa0bTch+XdAZuaCmoC2ANE7SuOiCtPusWR7L034M6pRWAACIjZTyApuaL7AQS5u9f2Bh9om+59wHKeUchzdnCe8Rm9iHhLfA4VE6L7G2/Blfj1xO3FLC0/N60QjvgU2rb+NMpHpSwra5Z23Av+2zeRg5hAuZsDY9vcleNTyk5n2uDIo//K8+rLETpJMwCW3n2aMIphK0BZDGSRoXXSyNsSc7NnVKKwAARIUFUude61BYYB7ZCz5GeE+Vt/iCwqON6H4e41I4pkEHIBaaFnG+YC/FlYS1LDdO+KQboC2AFE7auAgAAACAUSCgg+iwc5zFk2zCCQAAOhgXAQAAACAgoINJwB5e+zALBACAd2BcBAAAAICAgA4AAAAAAAAAAFSDyp2DDgAAAAAAAAAAnEQgoAMAAAAAAAAAABUAAjoAAAAAAAAAAFABIKADAAAAAAAAAAAVAAI6AAAAAAAAAABQASCgAwAAAAAAAAAAFQACOgAAAAAAAAAAUAEgoAMAAAAAAAAAABUAAjoAAAAAAAAAAFABIKADAAAAAAAAAAAVAAI6AAAAAAAAAABQASCgAwAAAAAAAAAAFQACOgAAAAAAAAAAUAEgoAMAAAAAAAAAABUAAjoAAAAAAAAAAFABIKADAAAAAAAAAAAVAAI6AAAAAAAAAABQASCgAwAAAAAAAAAAFQACOgAAAAAAAAAAUAEgoAMAAAAAAAAAABUAAjoAAAAAAAAAAFABIKADAAAAAAAAAAAV4IxKwv/+P/93TgjxAJUCAAAAAAAAAACUxs1/86//1bOR0IUQ/x86yvFAAcv5HwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "<IPython.core.display.Image object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, diff --git a/fidle/header.py b/fidle/header.py deleted file mode 100644 index 70acf00071914dfd587f8ec000e713e0fe0444f8..0000000000000000000000000000000000000000 --- a/fidle/header.py +++ /dev/null @@ -1,2 +0,0 @@ -from IPython.display import Image, SVG -display(Image(filename='../fidle/img/00-Fidle-header-01.png')) \ No newline at end of file