diff --git a/GTSRB/01-Preparation-of-data.ipynb b/GTSRB/01-Preparation-of-data.ipynb index b2ce2a710e32185767151dbfd0e92fd01ab0c046..ddad62e1c7b0b61f745e40c3635409e16822bf0c 100644 --- a/GTSRB/01-Preparation-of-data.ipynb +++ b/GTSRB/01-Preparation-of-data.ipynb @@ -6,8 +6,8 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> [GTSRB1] - CNN with GTSRB dataset - Data analysis and preparation\n", - "<!-- DESC --> Episode 1 : Data analysis and creation of a usable dataset\n", + "# <!-- TITLE --> [GTSRB1] - Dataset analysis and preparation\n", + "<!-- DESC --> Episode 1 : Analysis of the GTSRB dataset and creation of an enhanced dataset\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", "## Objectives :\n", diff --git a/GTSRB/02-First-convolutions.ipynb b/GTSRB/02-First-convolutions.ipynb index 4d478af0e1e57781ab19ba4786dba0720e9da108..37e259b016f0809ab8d657c86930c790bc1b7261 100644 --- a/GTSRB/02-First-convolutions.ipynb +++ b/GTSRB/02-First-convolutions.ipynb @@ -6,8 +6,8 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> [GTSRB2] - CNN with GTSRB dataset - First convolutions\n", - "<!-- DESC --> Episode 2 : First convolutions and first results\n", + "# <!-- TITLE --> [GTSRB2] - First convolutions\n", + "<!-- DESC --> Episode 2 : First convolutions and first classification of our traffic signs\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", "## Objectives :\n", diff --git a/GTSRB/03-Tracking-and-visualizing.ipynb b/GTSRB/03-Tracking-and-visualizing.ipynb index 1ada67a096827b3a1372531402cc493dc6557049..8d8f089113829c1fb03a6636a45417fc4f0f641d 100644 --- a/GTSRB/03-Tracking-and-visualizing.ipynb +++ b/GTSRB/03-Tracking-and-visualizing.ipynb @@ -6,8 +6,8 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> [GTSRB3] - CNN with GTSRB dataset - Monitoring \n", - "<!-- DESC --> Episode 3 : Monitoring and analysing training, managing checkpoints\n", + "# <!-- TITLE --> [GTSRB3] - Training monitoring\n", + "<!-- DESC --> Episode 3 : Monitoring, analysis and check points during a training session\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", "## Objectives :\n", diff --git a/GTSRB/04-Data-augmentation.ipynb b/GTSRB/04-Data-augmentation.ipynb index 5fea43a9d56f55a711e7f859ce30c8e5e86d2baf..fd336e5d0ce0d656ec42245ee1eaeeebbd401c85 100644 --- a/GTSRB/04-Data-augmentation.ipynb +++ b/GTSRB/04-Data-augmentation.ipynb @@ -6,8 +6,8 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> [GTSRB4] - CNN with GTSRB dataset - Data augmentation \n", - "<!-- DESC --> Episode 4 : Improving the results with data augmentation\n", + "# <!-- TITLE --> [GTSRB4] - Data augmentation \n", + "<!-- DESC --> Episode 4 : Adding data by data augmentation when we lack it, to improve our results\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", "## Objectives :\n", diff --git a/GTSRB/05-Full-convolutions.ipynb b/GTSRB/05-Full-convolutions.ipynb index 2b7274f8d2725cd2a12b7136e0808d8f275f4c92..1c169c9e27e95b351b6a81edbc0b361b971b8bea 100644 --- a/GTSRB/05-Full-convolutions.ipynb +++ b/GTSRB/05-Full-convolutions.ipynb @@ -6,7 +6,7 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> [GTSRB5] - CNN with GTSRB dataset - Full convolutions \n", + "# <!-- TITLE --> [GTSRB5] - Full convolutions\n", "<!-- DESC --> Episode 5 : A lot of models, a lot of datasets and a lot of results.\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", diff --git a/GTSRB/06-Notebook-as-a-batch.ipynb b/GTSRB/06-Notebook-as-a-batch.ipynb index 9ef2ef37126a5963d57fcbfd4e30d0bca7946719..8902e0ed24ba52bd29ea61831e7618d9f609fc86 100644 --- a/GTSRB/06-Notebook-as-a-batch.ipynb +++ b/GTSRB/06-Notebook-as-a-batch.ipynb @@ -7,7 +7,7 @@ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", "# <!-- TITLE --> [GTSRB6] - Full convolutions as a batch\n", - "<!-- DESC --> Episode 6 : Run Full convolution notebook as a batch\n", + "<!-- DESC --> Episode 6 : To compute bigger, use your notebook in batch mode\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", "## Objectives :\n", diff --git a/GTSRB/07-Show-report.ipynb b/GTSRB/07-Show-report.ipynb index 0b1b34764cfd18e844dcbbbe165dc881bd741f2d..09999292c70b73dc81223e57b44478e4d2d241e3 100644 --- a/GTSRB/07-Show-report.ipynb +++ b/GTSRB/07-Show-report.ipynb @@ -6,8 +6,8 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> [GTSRB7] - CNN with GTSRB dataset - Show reports\n", - "<!-- DESC --> Episode 7 : Displaying a jobs report\n", + "# <!-- TITLE --> [GTSRB7] - Batch reportss\n", + "<!-- DESC --> Episode 7 : Displaying our jobs report, and the winner is...\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", "## Objectives :\n", diff --git a/GTSRB/batch_oar.sh b/GTSRB/batch_oar.sh index 272acfe4f38e8a2ad871804e76a8934162041c33..08197413936e41b23250333f340e1283a7948cde 100755 --- a/GTSRB/batch_oar.sh +++ b/GTSRB/batch_oar.sh @@ -19,8 +19,8 @@ # Fidle at GRICAD # ----------------------------------------------- # -# <!-- TITLE --> [GTSRB10] - OAR batch submission -# <!-- DESC --> Bash script for OAR batch submission of GTSRB notebook +# <!-- TITLE --> [GTSRB10] - OAR batch script submission +# <!-- DESC --> Bash script for an OAR batch submission of an ipython code # <!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) --> # ==== Notebook parameters ========================================= diff --git a/GTSRB/batch_slurm.sh b/GTSRB/batch_slurm.sh index 708fd53ee1c54b037fa38a622228e0777636eada..b81c7a52a83e29cd72c78afaed14acb75c981233 100755 --- a/GTSRB/batch_slurm.sh +++ b/GTSRB/batch_slurm.sh @@ -9,7 +9,7 @@ # ----------------------------------------------- # # <!-- TITLE --> [GTSRB11] - SLURM batch script -# <!-- DESC --> Bash script for SLURM batch submission of GTSRB notebooks +# <!-- DESC --> Bash script for a Slurm batch submission of an ipython code # <!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) --> # # Soumission : sbatch /(...)/fidle/GTSRB/batch_slurm.sh diff --git a/IMDB/01-Embedding-Keras.ipynb b/IMDB/01-Embedding-Keras.ipynb index 275fb98aa0ce66ae0a3c940fc6d817942c9967e0..93627a972c9ad463fef5ddf112eed360e0e3412d 100644 --- a/IMDB/01-Embedding-Keras.ipynb +++ b/IMDB/01-Embedding-Keras.ipynb @@ -6,8 +6,8 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> [IMDB1] - Text embedding with IMDB\n", - "<!-- DESC --> A very classical example of word embedding for text classification (sentiment analysis)\n", + "# <!-- TITLE --> [IMDB1] - Sentiment alalysis with text embedding\n", + "<!-- DESC --> A very classical example of word embedding with a dataset from Internet Movie Database (IMDB)\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", "## Objectives :\n", @@ -1021,7 +1021,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.7" + "version": "3.7.9" } }, "nbformat": 4, diff --git a/IMDB/02-Prediction.ipynb b/IMDB/02-Prediction.ipynb index c8033a810ae8c28d076bd7bd214df86d54c90f38..353619724b9ce879b872838cc9d71442b95b865e 100644 --- a/IMDB/02-Prediction.ipynb +++ b/IMDB/02-Prediction.ipynb @@ -6,8 +6,8 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> [IMDB2] - Text embedding with IMDB - Reloaded\n", - "<!-- DESC --> Example of reusing a previously saved model\n", + "# <!-- TITLE --> [IMDB2] - Reload and reuse a saved model\n", + "<!-- DESC --> Retrieving a saved model to perform a sentiment analysis (movie review)\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", "## Objectives :\n", diff --git a/IMDB/03-LSTM-Keras.ipynb b/IMDB/03-LSTM-Keras.ipynb index 9f902e052d9dcc45ce645e2efda256bc06e433b8..430dfd68424882cea24f61dbbc1e620c0abb75b3 100644 --- a/IMDB/03-LSTM-Keras.ipynb +++ b/IMDB/03-LSTM-Keras.ipynb @@ -6,7 +6,7 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> [IMDB3] - Text embedding/LSTM model with IMDB\n", + "# <!-- TITLE --> [IMDB3] - Sentiment analysis with a LSTM network\n", "<!-- DESC --> Still the same problem, but with a network combining embedding and LSTM\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -980,7 +980,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.7" + "version": "3.7.9" } }, "nbformat": 4, diff --git a/README.ipynb b/README.ipynb index b7d638024f03481fe65f8e5f7f9d2e36713c092f..2adbfbf320ec5aca0066e6d6a808d9299271f028 100644 --- a/README.ipynb +++ b/README.ipynb @@ -5,10 +5,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2021-01-08T10:27:08.480920Z", - "iopub.status.busy": "2021-01-08T10:27:08.480319Z", - "iopub.status.idle": "2021-01-08T10:27:08.483733Z", - "shell.execute_reply": "2021-01-08T10:27:08.483336Z" + "iopub.execute_input": "2021-01-08T21:53:24.359601Z", + "iopub.status.busy": "2021-01-08T21:53:24.359126Z", + "iopub.status.idle": "2021-01-08T21:53:24.367752Z", + "shell.execute_reply": "2021-01-08T21:53:24.368077Z" }, "jupyter": { "source_hidden": true @@ -85,31 +85,31 @@ "An example of classification using a dense neural network for the famous MNIST dataset\n", "\n", "### Images classification with Convolutional Neural Networks (CNN)\n", - "- **[GTSRB1](GTSRB/01-Preparation-of-data.ipynb)** - [CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb) \n", - "Episode 1 : Data analysis and creation of a usable dataset\n", - "- **[GTSRB2](GTSRB/02-First-convolutions.ipynb)** - [CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb) \n", - "Episode 2 : First convolutions and first results\n", - "- **[GTSRB3](GTSRB/03-Tracking-and-visualizing.ipynb)** - [CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb) \n", - "Episode 3 : Monitoring and analysing training, managing checkpoints\n", - "- **[GTSRB4](GTSRB/04-Data-augmentation.ipynb)** - [CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb) \n", - "Episode 4 : Improving the results with data augmentation\n", - "- **[GTSRB5](GTSRB/05-Full-convolutions.ipynb)** - [CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb) \n", + "- **[GTSRB1](GTSRB/01-Preparation-of-data.ipynb)** - [Dataset analysis and preparation](GTSRB/01-Preparation-of-data.ipynb) \n", + "Episode 1 : Analysis of the GTSRB dataset and creation of an enhanced dataset\n", + "- **[GTSRB2](GTSRB/02-First-convolutions.ipynb)** - [First convolutions](GTSRB/02-First-convolutions.ipynb) \n", + "Episode 2 : First convolutions and first classification of our traffic signs\n", + "- **[GTSRB3](GTSRB/03-Tracking-and-visualizing.ipynb)** - [Training monitoring](GTSRB/03-Tracking-and-visualizing.ipynb) \n", + "Episode 3 : Monitoring, analysis and check points during a training session\n", + "- **[GTSRB4](GTSRB/04-Data-augmentation.ipynb)** - [Data augmentation ](GTSRB/04-Data-augmentation.ipynb) \n", + "Episode 4 : Adding data by data augmentation when we lack it, to improve our results\n", + "- **[GTSRB5](GTSRB/05-Full-convolutions.ipynb)** - [Full convolutions](GTSRB/05-Full-convolutions.ipynb) \n", "Episode 5 : A lot of models, a lot of datasets and a lot of results.\n", "- **[GTSRB6](GTSRB/06-Notebook-as-a-batch.ipynb)** - [Full convolutions as a batch](GTSRB/06-Notebook-as-a-batch.ipynb) \n", - "Episode 6 : Run Full convolution notebook as a batch\n", - "- **[GTSRB7](GTSRB/07-Show-report.ipynb)** - [CNN with GTSRB dataset - Show reports](GTSRB/07-Show-report.ipynb) \n", - "Episode 7 : Displaying a jobs report\n", - "- **[GTSRB10](GTSRB/batch_oar.sh)** - [OAR batch submission](GTSRB/batch_oar.sh) \n", - "Bash script for OAR batch submission of GTSRB notebook \n", + "Episode 6 : To compute bigger, use your notebook in batch mode\n", + "- **[GTSRB7](GTSRB/07-Show-report.ipynb)** - [Batch reportss](GTSRB/07-Show-report.ipynb) \n", + "Episode 7 : Displaying our jobs report, and the winner is...\n", + "- **[GTSRB10](GTSRB/batch_oar.sh)** - [OAR batch script submission](GTSRB/batch_oar.sh) \n", + "Bash script for an OAR batch submission of an ipython code\n", "- **[GTSRB11](GTSRB/batch_slurm.sh)** - [SLURM batch script](GTSRB/batch_slurm.sh) \n", - "Bash script for SLURM batch submission of GTSRB notebooks \n", + "Bash script for a Slurm batch submission of an ipython code\n", "\n", "### Sentiment analysis with word embedding\n", - "- **[IMDB1](IMDB/01-Embedding-Keras.ipynb)** - [Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb) \n", - "A very classical example of word embedding for text classification (sentiment analysis)\n", - "- **[IMDB2](IMDB/02-Prediction.ipynb)** - [Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb) \n", - "Example of reusing a previously saved model\n", - "- **[IMDB3](IMDB/03-LSTM-Keras.ipynb)** - [Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb) \n", + "- **[IMDB1](IMDB/01-Embedding-Keras.ipynb)** - [Sentiment alalysis with text embedding](IMDB/01-Embedding-Keras.ipynb) \n", + "A very classical example of word embedding with a dataset from Internet Movie Database (IMDB)\n", + "- **[IMDB2](IMDB/02-Prediction.ipynb)** - [Reload and reuse a saved model](IMDB/02-Prediction.ipynb) \n", + "Retrieving a saved model to perform a sentiment analysis (movie review)\n", + "- **[IMDB3](IMDB/03-LSTM-Keras.ipynb)** - [Sentiment analysis with a LSTM network](IMDB/03-LSTM-Keras.ipynb) \n", "Still the same problem, but with a network combining embedding and LSTM\n", "\n", "### Time series with Recurrent Neural Network (RNN)\n", @@ -187,6 +187,11 @@ } ], "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, "language_info": { "codemirror_mode": { "name": "ipython", diff --git a/README.md b/README.md index 57c65ab316b627d6391d6499c7434abb936d7a93..457cc4e345126d4d41f8cdc0fffc1ee8c8ea43ea 100644 --- a/README.md +++ b/README.md @@ -65,31 +65,31 @@ A more advanced implementation of the precedent example An example of classification using a dense neural network for the famous MNIST dataset ### Images classification with Convolutional Neural Networks (CNN) -- **[GTSRB1](GTSRB/01-Preparation-of-data.ipynb)** - [CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb) -Episode 1 : Data analysis and creation of a usable dataset -- **[GTSRB2](GTSRB/02-First-convolutions.ipynb)** - [CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb) -Episode 2 : First convolutions and first results -- **[GTSRB3](GTSRB/03-Tracking-and-visualizing.ipynb)** - [CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb) -Episode 3 : Monitoring and analysing training, managing checkpoints -- **[GTSRB4](GTSRB/04-Data-augmentation.ipynb)** - [CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb) -Episode 4 : Improving the results with data augmentation -- **[GTSRB5](GTSRB/05-Full-convolutions.ipynb)** - [CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb) +- **[GTSRB1](GTSRB/01-Preparation-of-data.ipynb)** - [Dataset analysis and preparation](GTSRB/01-Preparation-of-data.ipynb) +Episode 1 : Analysis of the GTSRB dataset and creation of an enhanced dataset +- **[GTSRB2](GTSRB/02-First-convolutions.ipynb)** - [First convolutions](GTSRB/02-First-convolutions.ipynb) +Episode 2 : First convolutions and first classification of our traffic signs +- **[GTSRB3](GTSRB/03-Tracking-and-visualizing.ipynb)** - [Training monitoring](GTSRB/03-Tracking-and-visualizing.ipynb) +Episode 3 : Monitoring, analysis and check points during a training session +- **[GTSRB4](GTSRB/04-Data-augmentation.ipynb)** - [Data augmentation ](GTSRB/04-Data-augmentation.ipynb) +Episode 4 : Adding data by data augmentation when we lack it, to improve our results +- **[GTSRB5](GTSRB/05-Full-convolutions.ipynb)** - [Full convolutions](GTSRB/05-Full-convolutions.ipynb) Episode 5 : A lot of models, a lot of datasets and a lot of results. - **[GTSRB6](GTSRB/06-Notebook-as-a-batch.ipynb)** - [Full convolutions as a batch](GTSRB/06-Notebook-as-a-batch.ipynb) -Episode 6 : Run Full convolution notebook as a batch -- **[GTSRB7](GTSRB/07-Show-report.ipynb)** - [CNN with GTSRB dataset - Show reports](GTSRB/07-Show-report.ipynb) -Episode 7 : Displaying a jobs report -- **[GTSRB10](GTSRB/batch_oar.sh)** - [OAR batch submission](GTSRB/batch_oar.sh) -Bash script for OAR batch submission of GTSRB notebook +Episode 6 : To compute bigger, use your notebook in batch mode +- **[GTSRB7](GTSRB/07-Show-report.ipynb)** - [Batch reportss](GTSRB/07-Show-report.ipynb) +Episode 7 : Displaying our jobs report, and the winner is... +- **[GTSRB10](GTSRB/batch_oar.sh)** - [OAR batch script submission](GTSRB/batch_oar.sh) +Bash script for an OAR batch submission of an ipython code - **[GTSRB11](GTSRB/batch_slurm.sh)** - [SLURM batch script](GTSRB/batch_slurm.sh) -Bash script for SLURM batch submission of GTSRB notebooks +Bash script for a Slurm batch submission of an ipython code ### Sentiment analysis with word embedding -- **[IMDB1](IMDB/01-Embedding-Keras.ipynb)** - [Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb) -A very classical example of word embedding for text classification (sentiment analysis) -- **[IMDB2](IMDB/02-Prediction.ipynb)** - [Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb) -Example of reusing a previously saved model -- **[IMDB3](IMDB/03-LSTM-Keras.ipynb)** - [Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb) +- **[IMDB1](IMDB/01-Embedding-Keras.ipynb)** - [Sentiment alalysis with text embedding](IMDB/01-Embedding-Keras.ipynb) +A very classical example of word embedding with a dataset from Internet Movie Database (IMDB) +- **[IMDB2](IMDB/02-Prediction.ipynb)** - [Reload and reuse a saved model](IMDB/02-Prediction.ipynb) +Retrieving a saved model to perform a sentiment analysis (movie review) +- **[IMDB3](IMDB/03-LSTM-Keras.ipynb)** - [Sentiment analysis with a LSTM network](IMDB/03-LSTM-Keras.ipynb) Still the same problem, but with a network combining embedding and LSTM ### Time series with Recurrent Neural Network (RNN) diff --git a/fidle/01 - Set and reset.ipynb b/fidle/01 - Set and reset.ipynb index 53a5a2fc8e027b25e836aa4585ff8a9f11121b1a..7fbc4dfcd52f7edf8f4289e65afc357d29958a48 100644 --- a/fidle/01 - Set and reset.ipynb +++ b/fidle/01 - Set and reset.ipynb @@ -159,31 +159,31 @@ "An example of classification using a dense neural network for the famous MNIST dataset\n", "\n", "### Images classification with Convolutional Neural Networks (CNN)\n", - "- **[GTSRB1](GTSRB/01-Preparation-of-data.ipynb)** - [CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb) \n", - "Episode 1 : Data analysis and creation of a usable dataset\n", - "- **[GTSRB2](GTSRB/02-First-convolutions.ipynb)** - [CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb) \n", - "Episode 2 : First convolutions and first results\n", - "- **[GTSRB3](GTSRB/03-Tracking-and-visualizing.ipynb)** - [CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb) \n", - "Episode 3 : Monitoring and analysing training, managing checkpoints\n", - "- **[GTSRB4](GTSRB/04-Data-augmentation.ipynb)** - [CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb) \n", - "Episode 4 : Improving the results with data augmentation\n", - "- **[GTSRB5](GTSRB/05-Full-convolutions.ipynb)** - [CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb) \n", + "- **[GTSRB1](GTSRB/01-Preparation-of-data.ipynb)** - [Dataset analysis and preparation](GTSRB/01-Preparation-of-data.ipynb) \n", + "Episode 1 : Analysis of the GTSRB dataset and creation of an enhanced dataset\n", + "- **[GTSRB2](GTSRB/02-First-convolutions.ipynb)** - [First convolutions](GTSRB/02-First-convolutions.ipynb) \n", + "Episode 2 : First convolutions and first classification of our traffic signs\n", + "- **[GTSRB3](GTSRB/03-Tracking-and-visualizing.ipynb)** - [Training monitoring](GTSRB/03-Tracking-and-visualizing.ipynb) \n", + "Episode 3 : Monitoring, analysis and check points during a training session\n", + "- **[GTSRB4](GTSRB/04-Data-augmentation.ipynb)** - [Data augmentation ](GTSRB/04-Data-augmentation.ipynb) \n", + "Episode 4 : Adding data by data augmentation when we lack it, to improve our results\n", + "- **[GTSRB5](GTSRB/05-Full-convolutions.ipynb)** - [Full convolutions](GTSRB/05-Full-convolutions.ipynb) \n", "Episode 5 : A lot of models, a lot of datasets and a lot of results.\n", "- **[GTSRB6](GTSRB/06-Notebook-as-a-batch.ipynb)** - [Full convolutions as a batch](GTSRB/06-Notebook-as-a-batch.ipynb) \n", - "Episode 6 : Run Full convolution notebook as a batch\n", - "- **[GTSRB7](GTSRB/07-Show-report.ipynb)** - [CNN with GTSRB dataset - Show reports](GTSRB/07-Show-report.ipynb) \n", - "Episode 7 : Displaying a jobs report\n", - "- **[GTSRB10](GTSRB/batch_oar.sh)** - [OAR batch submission](GTSRB/batch_oar.sh) \n", - "Bash script for OAR batch submission of GTSRB notebook \n", + "Episode 6 : To compute bigger, use your notebook in batch mode\n", + "- **[GTSRB7](GTSRB/07-Show-report.ipynb)** - [Batch reportss](GTSRB/07-Show-report.ipynb) \n", + "Episode 7 : Displaying our jobs report, and the winner is...\n", + "- **[GTSRB10](GTSRB/batch_oar.sh)** - [OAR batch script submission](GTSRB/batch_oar.sh) \n", + "Bash script for an OAR batch submission of an ipython code\n", "- **[GTSRB11](GTSRB/batch_slurm.sh)** - [SLURM batch script](GTSRB/batch_slurm.sh) \n", - "Bash script for SLURM batch submission of GTSRB notebooks \n", + "Bash script for a Slurm batch submission of an ipython code\n", "\n", "### Sentiment analysis with word embedding\n", - "- **[IMDB1](IMDB/01-Embedding-Keras.ipynb)** - [Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb) \n", - "A very classical example of word embedding for text classification (sentiment analysis)\n", - "- **[IMDB2](IMDB/02-Prediction.ipynb)** - [Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb) \n", - "Example of reusing a previously saved model\n", - "- **[IMDB3](IMDB/03-LSTM-Keras.ipynb)** - [Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb) \n", + "- **[IMDB1](IMDB/01-Embedding-Keras.ipynb)** - [Sentiment alalysis with text embedding](IMDB/01-Embedding-Keras.ipynb) \n", + "A very classical example of word embedding with a dataset from Internet Movie Database (IMDB)\n", + "- **[IMDB2](IMDB/02-Prediction.ipynb)** - [Reload and reuse a saved model](IMDB/02-Prediction.ipynb) \n", + "Retrieving a saved model to perform a sentiment analysis (movie review)\n", + "- **[IMDB3](IMDB/03-LSTM-Keras.ipynb)** - [Sentiment analysis with a LSTM network](IMDB/03-LSTM-Keras.ipynb) \n", "Still the same problem, but with a network combining embedding and LSTM\n", "\n", "### Time series with Recurrent Neural Network (RNN)\n", @@ -388,6 +388,10 @@ "new_cell['metadata']= { \"jupyter\": { \"source_hidden\": True} }\n", "notebook.cells.append(new_cell)\n", "\n", + "# --- Pour éviter une modification lors de l'ouverture du notebook\n", + "# pas génante, mais nécessite de resauvegarder le document à la fermeture...\n", + "notebook['metadata'][\"kernelspec\"] = {\"display_name\": \"Python 3\", \"language\": \"python\", \"name\": \"python3\" }\n", + "\n", "# ---- Run it\n", "#\n", "ep = ExecutePreprocessor(timeout=600, kernel_name=\"python3\")\n", diff --git a/fidle/log/catalog.json b/fidle/log/catalog.json index fbb2733b7e1b5c8ea06af896a816a46d7a5de6d3..7d6b0abbf3a4cad142f855bc9a16c5b7d20b0063 100644 --- a/fidle/log/catalog.json +++ b/fidle/log/catalog.json @@ -59,35 +59,35 @@ "id": "GTSRB1", "dirname": "GTSRB", "basename": "01-Preparation-of-data.ipynb", - "title": "CNN with GTSRB dataset - Data analysis and preparation", - "description": "Episode 1 : Data analysis and creation of a usable dataset" + "title": "Dataset analysis and preparation", + "description": "Episode 1 : Analysis of the GTSRB dataset and creation of an enhanced dataset" }, "GTSRB2": { "id": "GTSRB2", "dirname": "GTSRB", "basename": "02-First-convolutions.ipynb", - "title": "CNN with GTSRB dataset - First convolutions", - "description": "Episode 2 : First convolutions and first results" + "title": "First convolutions", + "description": "Episode 2 : First convolutions and first classification of our traffic signs" }, "GTSRB3": { "id": "GTSRB3", "dirname": "GTSRB", "basename": "03-Tracking-and-visualizing.ipynb", - "title": "CNN with GTSRB dataset - Monitoring ", - "description": "Episode 3 : Monitoring and analysing training, managing checkpoints" + "title": "Training monitoring", + "description": "Episode 3 : Monitoring, analysis and check points during a training session" }, "GTSRB4": { "id": "GTSRB4", "dirname": "GTSRB", "basename": "04-Data-augmentation.ipynb", - "title": "CNN with GTSRB dataset - Data augmentation ", - "description": "Episode 4 : Improving the results with data augmentation" + "title": "Data augmentation ", + "description": "Episode 4 : Adding data by data augmentation when we lack it, to improve our results" }, "GTSRB5": { "id": "GTSRB5", "dirname": "GTSRB", "basename": "05-Full-convolutions.ipynb", - "title": "CNN with GTSRB dataset - Full convolutions ", + "title": "Full convolutions", "description": "Episode 5 : A lot of models, a lot of datasets and a lot of results." }, "GTSRB6": { @@ -95,48 +95,48 @@ "dirname": "GTSRB", "basename": "06-Notebook-as-a-batch.ipynb", "title": "Full convolutions as a batch", - "description": "Episode 6 : Run Full convolution notebook as a batch" + "description": "Episode 6 : To compute bigger, use your notebook in batch mode" }, "GTSRB7": { "id": "GTSRB7", "dirname": "GTSRB", "basename": "07-Show-report.ipynb", - "title": "CNN with GTSRB dataset - Show reports", - "description": "Episode 7 : Displaying a jobs report" + "title": "Batch reportss", + "description": "Episode 7 : Displaying our jobs report, and the winner is..." }, "GTSRB10": { "id": "GTSRB10", "dirname": "GTSRB", "basename": "batch_oar.sh", - "title": "OAR batch submission", - "description": "Bash script for OAR batch submission of GTSRB notebook " + "title": "OAR batch script submission", + "description": "Bash script for an OAR batch submission of an ipython code" }, "GTSRB11": { "id": "GTSRB11", "dirname": "GTSRB", "basename": "batch_slurm.sh", "title": "SLURM batch script", - "description": "Bash script for SLURM batch submission of GTSRB notebooks " + "description": "Bash script for a Slurm batch submission of an ipython code" }, "IMDB1": { "id": "IMDB1", "dirname": "IMDB", "basename": "01-Embedding-Keras.ipynb", - "title": "Text embedding with IMDB", - "description": "A very classical example of word embedding for text classification (sentiment analysis)" + "title": "Sentiment alalysis with text embedding", + "description": "A very classical example of word embedding with a dataset from Internet Movie Database (IMDB)" }, "IMDB2": { "id": "IMDB2", "dirname": "IMDB", "basename": "02-Prediction.ipynb", - "title": "Text embedding with IMDB - Reloaded", - "description": "Example of reusing a previously saved model" + "title": "Reload and reuse a saved model", + "description": "Retrieving a saved model to perform a sentiment analysis (movie review)" }, "IMDB3": { "id": "IMDB3", "dirname": "IMDB", "basename": "03-LSTM-Keras.ipynb", - "title": "Text embedding/LSTM model with IMDB", + "title": "Sentiment analysis with a LSTM network", "description": "Still the same problem, but with a network combining embedding and LSTM" }, "SYNOP1": {