diff --git a/VAE/08.1-VAE-with-CelebA.ipynb b/VAE/08.1-VAE-with-CelebA.ipynb index ca1ca0a6c004b6bf1c574eefd8f9e53db9332de4..dbf0aa00ad34465cc4106dce67a5678c3ee1de26 100644 --- a/VAE/08.1-VAE-with-CelebA.ipynb +++ b/VAE/08.1-VAE-with-CelebA.ipynb @@ -37,98 +37,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<style>\n", - "\n", - "div.warn { \n", - " background-color: #fcf2f2;\n", - " border-color: #dFb5b4;\n", - " border-left: 5px solid #dfb5b4;\n", - " padding: 0.5em;\n", - " font-weight: bold;\n", - " font-size: 1.1em;;\n", - " }\n", - "\n", - "\n", - "\n", - "div.nota { \n", - " background-color: #DAFFDE;\n", - " border-left: 5px solid #92CC99;\n", - " padding: 0.5em;\n", - " }\n", - "\n", - "div.todo:before { content:url();\n", - " float:left;\n", - " margin-right:20px;\n", - " margin-top:-20px;\n", - " margin-bottom:20px;\n", - "}\n", - "div.todo{\n", - " font-weight: bold;\n", - " font-size: 1.1em;\n", - " margin-top:40px;\n", - "}\n", - "div.todo ul{\n", - " margin: 0.2em;\n", - "}\n", - "div.todo li{\n", - " margin-left:60px;\n", - " margin-top:0;\n", - " margin-bottom:0;\n", - "}\n", - "\n", - "div .comment{\n", - " font-size:0.8em;\n", - " color:#696969;\n", - "}\n", - "\n", - "\n", - "\n", - "</style>\n", - "\n" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/markdown": [ - "**FIDLE 2020 - Practical Work Module**" - ], - "text/plain": [ - "<IPython.core.display.Markdown object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version : 0.6.1 DEV\n", - "Notebook id : VAE8\n", - "Run time : Monday 4 January 2021, 22:27:20\n", - "TensorFlow version : 2.4.0\n", - "Keras version : 2.4.0\n", - "Datasets dir : /gpfswork/rech/mlh/uja62cb/datasets\n", - "Run dir : ./run/CelebA-s.001\n", - "CI running mode : none\n", - "Update keras cache : False\n", - "Save figs : True\n", - "Path figs : ./run/CelebA-s.001/figs\n" - ] - } - ], + "outputs": [], "source": [ "import numpy as np\n", "\n", @@ -174,7 +85,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -198,17 +109,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train directory is : /gpfswork/rech/mlh/uja62cb/datasets/celeba/enhanced/clusters-128x128\n" - ] - } - ], + "outputs": [], "source": [ "# ---- Used for continous integration - Just forget this 2 lines\n", "#\n", @@ -224,17 +127,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Data generator : 6331 batchs of 32 images, or 202599 images\n" - ] - } - ], + "outputs": [], "source": [ "data_gen = DataGenerator(train_dir, 32, k_size=scale)\n", "\n", @@ -250,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -273,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -306,7 +201,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -345,17 +240,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Init VAE, with r_loss_factor=0.3 and image_size=(128, 128)\n" - ] - } - ], + "outputs": [], "source": [ "vae = VAE(encoder, decoder, image_size=(128,128), r_loss_factor=0.3)\n", "\n", @@ -373,7 +260,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -404,74 +291,24 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/10\n", - " 5/6331 [..............................] - ETA: 6:03 - loss: 3393.9379 - reconstruction_loss: 11310.1393 - kl_loss: 1.2800 WARNING:tensorflow:Callback method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0183s vs `on_train_batch_end` time: 0.0263s). Check your callbacks.\n", - "6331/6331 [==============================] - 132s 20ms/step - loss: 2482.7580 - reconstruction_loss: 8267.9253 - kl_loss: 3.4004\n", - " (saved) Epoch 2/10\n", - "6331/6331 [==============================] - 126s 20ms/step - loss: 2418.4020 - reconstruction_loss: 8053.0484 - kl_loss: 3.5534\n", - "Epoch 3/10\n", - "6331/6331 [==============================] - 126s 20ms/step - loss: 2407.6979 - reconstruction_loss: 8017.4571 - kl_loss: 3.5152\n", - " (saved) Epoch 4/10\n", - "6331/6331 [==============================] - 133s 21ms/step - loss: 2402.6755 - reconstruction_loss: 8000.7420 - kl_loss: 3.5040\n", - " (saved) Epoch 5/10\n", - "6331/6331 [==============================] - 125s 20ms/step - loss: 2399.7602 - reconstruction_loss: 7991.0481 - kl_loss: 3.4939\n", - "Epoch 6/10\n", - "2677/6331 [===========>..................] - ETA: 1:11 - loss: 2397.4920 - reconstruction_loss: 7983.4897 - kl_loss: 3.4928" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m<timed exec>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n", - "\u001b[0;32m/gpfslocalsup/pub/anaconda-py3/2020.02/envs/tensorflow-gpu-2.4.0/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[1;32m 1098\u001b[0m _r=1):\n\u001b[1;32m 1099\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_train_batch_begin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1100\u001b[0;31m \u001b[0mtmp_logs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1101\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshould_sync\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1102\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masync_wait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/gpfslocalsup/pub/anaconda-py3/2020.02/envs/tensorflow-gpu-2.4.0/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 826\u001b[0m \u001b[0mtracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 827\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTrace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_name\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mtm\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 828\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 829\u001b[0m \u001b[0mcompiler\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"xla\"\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_experimental_compile\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m\"nonXla\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 830\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/gpfslocalsup/pub/anaconda-py3/2020.02/envs/tensorflow-gpu-2.4.0/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 853\u001b[0m \u001b[0;31m# In this case we have created variables on the first call, so we run the\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 854\u001b[0m \u001b[0;31m# defunned version which is guaranteed to never create variables.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 855\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stateless_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# pylint: disable=not-callable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 856\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stateful_fn\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 857\u001b[0m \u001b[0;31m# Release the lock early so that multiple threads can perform the call\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/gpfslocalsup/pub/anaconda-py3/2020.02/envs/tensorflow-gpu-2.4.0/lib/python3.7/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2941\u001b[0m filtered_flat_args) = self._maybe_define_function(args, kwargs)\n\u001b[1;32m 2942\u001b[0m return graph_function._call_flat(\n\u001b[0;32m-> 2943\u001b[0;31m filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access\n\u001b[0m\u001b[1;32m 2944\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2945\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/gpfslocalsup/pub/anaconda-py3/2020.02/envs/tensorflow-gpu-2.4.0/lib/python3.7/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_call_flat\u001b[0;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[1;32m 1917\u001b[0m \u001b[0;31m# No tape is watching; skip to running the function.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1918\u001b[0m return self._build_call_outputs(self._inference_function.call(\n\u001b[0;32m-> 1919\u001b[0;31m ctx, args, cancellation_manager=cancellation_manager))\n\u001b[0m\u001b[1;32m 1920\u001b[0m forward_backward = self._select_forward_and_backward_functions(\n\u001b[1;32m 1921\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/gpfslocalsup/pub/anaconda-py3/2020.02/envs/tensorflow-gpu-2.4.0/lib/python3.7/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36mcall\u001b[0;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[1;32m 558\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 559\u001b[0m \u001b[0mattrs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mattrs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 560\u001b[0;31m ctx=ctx)\n\u001b[0m\u001b[1;32m 561\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 562\u001b[0m outputs = execute.execute_with_cancellation(\n", - "\u001b[0;32m/gpfslocalsup/pub/anaconda-py3/2020.02/envs/tensorflow-gpu-2.4.0/lib/python3.7/site-packages/tensorflow/python/eager/execute.py\u001b[0m in \u001b[0;36mquick_execute\u001b[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 59\u001b[0m tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,\n\u001b[0;32m---> 60\u001b[0;31m inputs, attrs, num_outputs)\n\u001b[0m\u001b[1;32m 61\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], + "outputs": [], "source": [ "%%time\n", "\n", - "batch_size = 128\n", + "batch_size = 64\n", "epochs = 10\n", "\n", - "history = vae.fit(data_gen, epochs=epochs, batch_size=batch_size, callbacks=callbacks_list,\n", - " initial_epoch = 0)\n" + "history = vae.fit(data_gen, epochs=epochs, batch_size=batch_size, callbacks=callbacks_list)\n", + "# initial_epoch = 0)\n" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'history' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m<ipython-input-13-ecf7f511b1ed>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mpwk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_history\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mplot\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m\"Loss\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'loss'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'reconstruction_loss'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'kl_loss'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msave_as\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'history'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mNameError\u001b[0m: name 'history' is not defined" - ] - } - ], + "outputs": [], "source": [ "pwk.plot_history(history, plot={\"Loss\":['loss','reconstruction_loss', 'kl_loss']}, save_as='history')" ] diff --git a/VAE/modules/VAE.py b/VAE/modules/VAE.py index 8d7b96c09098ecda3ec1998b2674cc564c130035..325903666f5941a1dc377ffd8cb5d8f45fcf39fd 100644 --- a/VAE/modules/VAE.py +++ b/VAE/modules/VAE.py @@ -43,7 +43,7 @@ class VAE(keras.Model): def call(self, inputs): - z = self.encoder(inputs) + z_mean, z_log_var, z = self.encoder(inputs) y_pred = self.decoder(z) return y_pred diff --git a/VAE/modules/callbacks.py b/VAE/modules/callbacks.py index 4701da4514c3cec47c985dcf69c617b9e28b471a..73b9407163a8205b002a705c23c07d3e1ea0bca1 100644 --- a/VAE/modules/callbacks.py +++ b/VAE/modules/callbacks.py @@ -31,6 +31,8 @@ class ImagesCallback(Callback): def on_epoch_end(self, epoch, logs={}): + if epoch<1 : return + # ---- Get latent points # if self.x is None: @@ -72,6 +74,7 @@ class BestModelCallback(Callback): self.loss = np.Inf def on_epoch_end(self, epoch, logs=None): + if epoch<1 : return current = logs.get("loss") if current<self.loss: self.loss = current diff --git a/fidle/log/finished.json b/fidle/log/finished.json index 5270d12c169f48e7c8957cddf51d4def920f9427..00fc304077da664e3e0bf3e79fa44a909c2bd1cd 100644 --- a/fidle/log/finished.json +++ b/fidle/log/finished.json @@ -78,8 +78,8 @@ "duration": "00:00:03 329ms" }, "VAE1": { - "path": "/home/pjluc/dev/fidle/VAE", - "start": "Monday 4 January 2021, 17:59:08", + "path": "/gpfsdswork/projects/rech/mlh/uja62cb/fidle/VAE", + "start": "Tuesday 5 January 2021, 00:07:12", "end": "", "duration": "Unfinished..." }, @@ -150,8 +150,8 @@ "duration": "00:00:08 736ms" }, "VAE8": { - "path": "/home/pjluc/dev/fidle/VAE", - "start": "Monday 4 January 2021, 23:53:16", + "path": "/gpfsdswork/projects/rech/mlh/uja62cb/fidle/VAE", + "start": "Tuesday 5 January 2021, 00:23:42", "end": "", "duration": "Unfinished..." }