{ "cells": [ { "cell_type": "code", "execution_count": 24, "id": "ec6da321", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy.signal import convolve2d\n", "from src.forward_model import CFA\n", "\n", "def bilinear_demosaicing(op: CFA, y: np.ndarray) -> np.ndarray:\n", " \"\"\"\n", " Bilinear demosaicing method.\n", "\n", " Args:\n", " op (CFA): CFA operator.\n", " y (np.ndarray): Mosaicked image.\n", "\n", " Returns:\n", " np.ndarray: Demosaicked image.\n", " \"\"\"\n", " # Copie des valeurs directement connues pour chaque canal\n", " red = y[:, :, 0]\n", " green = y[:, :, 1]\n", " blue = y[:, :, 2]\n", "\n", " # Création des masques pour chaque couleur selon le motif CFA\n", " mask_red = (op.mask == 0) # Supposons que 0 correspond au rouge dans le masque\n", " mask_green = (op.mask == 1) # Supposons que 1 correspond au vert\n", " mask_blue = (op.mask == 2) # Supposons que 2 correspond au bleu\n", "\n", " # Interpolation bilinéaire pour le rouge et le bleu\n", " # Note: np.multiply multiplie les éléments correspondants des tableaux, c'est pourquoi nous utilisons np.multiply au lieu de *\n", " red_interp = convolve2d(np.multiply(red, mask_red), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')\n", " blue_interp = convolve2d(np.multiply(blue, mask_blue), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')\n", "\n", " # Interpolation bilinéaire pour le vert\n", " # Pour le vert, nous utilisons un autre noyau car il y a plus de pixels verts\n", " green_interp = convolve2d(np.multiply(green, mask_green), [[0, 1/4, 0], [1/4, 1, 1/4], [0, 1/4, 0]], mode='same')\n", "\n", " # Création de l'image interpolée\n", " demosaicked_image = np.stack((red_interp, green_interp, blue_interp), axis=-1)\n", "\n", " # Correction des valeurs interpolées: on réapplique les valeurs connues pour éviter le flou\n", " demosaicked_image[:, :, 0][mask_red] = red[mask_red]\n", " demosaicked_image[:, :, 1][mask_green] = green[mask_green]\n", " demosaicked_image[:, :, 2][mask_blue] = blue[mask_blue]\n", "\n", " # Clip pour s'assurer que toutes les valeurs sont dans la plage [0, 1]\n", " demosaicked_image = np.clip(demosaicked_image, 0, 1)\n", "\n", " return demosaicked_image\n" ] }, { "cell_type": "code", "execution_count": 25, "id": "cf379598", "metadata": {}, "outputs": [], "source": [ "def quad_bayer_demosaicing(op: CFA, y: np.ndarray) -> np.ndarray:\n", " \"\"\"\n", " Demosaicing method for Quad Bayer CFA pattern.\n", "\n", " Args:\n", " op (CFA): CFA operator.\n", " y (np.ndarray): Mosaicked image.\n", "\n", " Returns:\n", " np.ndarray: Demosaicked image.\n", " \"\"\"\n", " \n", " # Interpolation bilinéaire pour chaque canal\n", " red_interp = convolve2d(np.multiply(y[:, :, 0], op.mask == 0), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')\n", " green_interp = convolve2d(np.multiply(y[:, :, 1], op.mask == 1), [[0, 1/4, 0], [1/4, 1, 1/4], [0, 1/4, 0]], mode='same')\n", " blue_interp = convolve2d(np.multiply(y[:, :, 2], op.mask == 2), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')\n", "\n", " # Assemblage de l'image interpolée\n", " demosaicked_image = np.stack((red_interp, green_interp, blue_interp), axis=-1)\n", "\n", " # Réapplication des valeurs connues\n", " demosaicked_image[:, :, 0][op.mask == 0] = y[:, :, 0][op.mask == 0]\n", " demosaicked_image[:, :, 1][op.mask == 1] = y[:, :, 1][op.mask == 1]\n", " demosaicked_image[:, :, 2][op.mask == 2] = y[:, :, 2][op.mask == 2]\n", "\n", " # Clip des valeurs pour les maintenir dans la plage appropriée\n", " demosaicked_image = np.clip(demosaicked_image, 0, 1)\n", "\n", " return demosaicked_image\n" ] }, { "cell_type": "code", "execution_count": 26, "id": "3eec062c", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "a6630396", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "ef4e59c8", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 5 }