import numpy as np from scipy.signal import convolve2d from src.forward_model import CFA def bilinear_interpolation(op: CFA, z: np.ndarray) -> np.ndarray: """Perform bilinear interpolation for demosaicing Args: op (CFA): CFA operator. z (np.ndarray): Adjoint image. Returns: np.ndarray: Interpolated image. """ # Bi-linear interpolation ker_bayer_red_blue = np.array([[1, 2, 1], [2, 4, 2], [1, 2, 1]]) / 4 ker_bayer_green = np.array([[0, 1, 0], [1, 4, 1], [0, 1, 0]]) / 4 res = np.empty(op.input_shape) res[:, :, 0] = convolve2d(z[:, :, 0], ker_bayer_red_blue, mode='same') res[:, :, 1] = convolve2d(z[:, :, 1], ker_bayer_green, mode='same') res[:, :, 2] = convolve2d(z[:, :, 2], ker_bayer_red_blue, mode='same') return res def spectral_difference(op: CFA, z: np.ndarray, res: np.ndarray) -> np.ndarray: """Perform spectral difference method for demosaicing Args: op (CFA): CFA operator. z (np.ndarray): Adjoint image. res (np.ndarray): Interpolated image. Returns: np.ndarray: Demosaicked image. """ ker_bayer_red_blue = np.array([[1, 2, 1], [2, 4, 2], [1, 2, 1]]) / 4 ker_bayer_green = np.array([[0, 1, 0], [1, 4, 1], [0, 1, 0]]) / 4 # Computation of spectral differences delta_red_green_quad = z[:, :, 0] - np.multiply(res[:, :, 1],op.mask[:,:,0]) delta_red_blue_quad = z[:, :, 0] - np.multiply(res[:, :, 2],op.mask[:,:,0]) delta_blue_green_quad = z[:, :, 2] - np.multiply(res[:, :, 1],op.mask[:,:,2]) delta_blue_red_quad = z[:, :, 2] - np.multiply(res[:, :, 0],op.mask[:,:,2]) delta_green_red_quad = z[:, :, 1] - np.multiply(res[:, :, 0],op.mask[:,:,1]) delta_green_blue_quad = z[:, :, 1] - np.multiply(res[:, :, 2],op.mask[:,:,1]) # Estimation res_sd = np.empty(op.input_shape) res_sd[:,:,0] = res[:, :, 1] + convolve2d(delta_red_green_quad,ker_bayer_red_blue,mode='same') + res[:, :, 2] + convolve2d(delta_red_blue_quad,ker_bayer_red_blue,mode='same') res_sd[:,:,2] = res[:, :, 1] + convolve2d(delta_blue_green_quad,ker_bayer_red_blue,mode='same') + res[:, :, 0] + convolve2d(delta_blue_red_quad,ker_bayer_red_blue,mode='same') res_sd[:,:,1] = res[:, :, 0] + convolve2d(delta_green_red_quad,ker_bayer_green,mode='same') + res[:, :, 2] + convolve2d(delta_green_blue_quad,ker_bayer_green,mode='same') return res_sd def normalization(res_sd:np.ndarray)-> np.ndarray: """Perform a min-max normalization Args: res_sd (np.ndarray): Demosaicked image. Returns: np.ndarray: Normalized image. """ res = (res_sd - np.min(res_sd)) / (np.max(res_sd) - np.min(res_sd)) return res def quad_bayer_to_bayer_pattern(op: CFA): """Quad to Bayer pattern conversion by swapping method Args: op (CFA): CFA operator. Returns: CFA: Bayer pettern. """ if op.cfa == 'quad_bayer': for j in range(1, op.mask.shape[1], 4): op.mask[:,j], op.mask[:,j+1] = op.mask[:,j+1].copy(), op.mask[:,j].copy() for i in range(1, op.mask.shape[0], 4): op.mask[i, :], op.mask[i+1,:] = op.mask[i+1,:].copy(), op.mask[i,:].copy() for i in range(1, op.mask.shape[0], 4): for j in range(1, op.mask.shape[1], 4): op.mask[i,j], op.mask[i+1,j+1] = op.mask[i+1,j+1].copy(), op.mask[i,j].copy() return 0 def quad_bayer_to_bayer_image(y:np.array): """Quad to Bayer conversion of a mosaicked image by swapping method Args: y (np.array): Mosaicked image. """ for j in range(1, y.shape[1], 4): y[:,j], y[:,j+1] = y[:,j+1].copy(), y[:,j].copy() for i in range(1, y.shape[0], 4): y[i, :], y[i+1,:] = y[i+1,:].copy(), y[i,:].copy() for i in range(1, y.shape[0], 4): for j in range(1, y.shape[1], 4): y[i,j], y[i+1,j+1] = y[i+1,j+1].copy(), y[i,j].copy() return 0