is the $n\times n$ *two-way punctured* kernel matrix where:
- $S$ is the Bernoulli iid $(p \times n)$ random matrix to select the **data** entries with rate `eS`
- $B$ is the Bernoulli iid $(n \times n)$ random matrix to select the **kernel** entries with rate `eB`
-matrix $S$ is the Bernoulli iid $(p \times n)$ random matrix to select the **data** entries with rate `eS`
-matrix $B$ is the Bernoulli iid $(n \times n)$ random matrix to select the **kernel** entries with rate `eB`
%% Cell type:markdown id: tags:
## Simulations
#### Figure 1.
Eigenvalue distribution $\nu_n$ of $K$ versus limit measure $\nu$, for $p=200$, $n=4\,000$, $x_i\sim .4 \mathcal N(\mu_1,I_p)+.6\mathcal N(\mu_2,I_p)$ for $[\mu_1^T,\mu_2^T]^T \sim\mathcal{N}(0, \frac1p \left[\begin{smallmatrix} 10 & 5.5 \\ 5.5 & 15\end{smallmatrix}\right]\otimes I_p)$; $\varepsilon_S=.2$, $\varepsilon_B=.4$. Sample vs theoretical spikes in blue vs red circles. <b>The two ``humps'' remind the semi-circular and Marcenko-Pastur laws.</b>
Eigenvalue distribution $\nu_n$ of $K$ versus limit measure $\nu$, for $p=200$, $n=4\,000$, $x_i\sim .4 \mathcal N(\mu_1,I_p)+.6\mathcal N(\mu_2,I_p)$ for
$\varepsilon_S=.2$, $\varepsilon_B=.4$. Sample vs theoretical spikes in blue vs red circles. <b>The two "humps" remind the semi-circular and Marcenko-Pastur laws.</b>