Commit a918b4e3 authored by Sylvain Boulmé's avatar Sylvain Boulmé
Browse files

refactorize inst_checker for checking pre_output_regs

parent c98683ff
......@@ -152,7 +152,7 @@ Qed.
Local Hint Resolve exit_list_checker_correct: core.
Definition inst_checker (pm: path_map) (alive: Regset.t) (i: instruction): option unit :=
Definition final_inst_checker (pm: path_map) (alive: Regset.t) (i: instruction): option unit :=
match i with
| Icall sig ros args res pc' =>
ASSERT list_mem args alive IN
......@@ -172,21 +172,41 @@ Definition inst_checker (pm: path_map) (alive: Regset.t) (i: instruction): optio
| Ireturn optarg =>
ASSERT (reg_option_mem optarg) alive IN
Some tt
| _ =>
SOME res <- iinst_checker pm alive i IN
exit_checker pm (fst res) (snd res) tt
| _ => None
end.
Lemma inst_checker_wellformed (c:code) pc (pm: path_map) (alive: Regset.t) (i: instruction):
inst_checker pm alive i = Some tt ->
Lemma final_inst_checker_wellformed (c:code) pc (pm: path_map) (alive: Regset.t) (i: instruction):
final_inst_checker pm alive i = Some tt ->
c!pc = Some i -> wellformed_path c pm 0 pc.
Proof.
intros CHECK PC. eapply wf_last_node; eauto.
clear c pc PC. intros pc PC.
destruct i; simpl in * |- *; intuition (subst; eauto);
try (generalize CHECK; clear CHECK; try (inversion_SOME path); repeat inversion_ASSERT; try_simplify_someHyps).
intros X; exploit exit_checker_res; eauto.
clear X. intros; subst; eauto.
Qed.
Definition inst_checker (pm: path_map) (alive: Regset.t) (i: instruction): option unit :=
match iinst_checker pm alive i with
| Some res =>
exit_checker pm (fst res) (snd res) tt
| _ =>
final_inst_checker pm alive i
end.
Lemma inst_checker_wellformed (c:code) pc (pm: path_map) (alive: Regset.t) (i: instruction):
inst_checker pm alive i = Some tt ->
c!pc = Some i -> wellformed_path c pm 0 pc.
Proof.
unfold inst_checker.
destruct (iinst_checker pm alive i) as [[alive0 pc0]|] eqn: CHECK1; simpl.
- simpl; intros CHECK2 PC. eapply wf_last_node; eauto.
destruct i; simpl in * |- *; intuition (subst; eauto);
try (generalize CHECK2 CHECK1; clear CHECK1 CHECK2; try (inversion_SOME path); repeat inversion_ASSERT; try_simplify_someHyps).
intros PC CHECK1 CHECK2.
intros; exploit exit_checker_res; eauto.
intros X; inversion X. intros; subst; eauto.
- eapply final_inst_checker_wellformed.
Qed.
Definition path_checker (f: RTL.function) pm (pc: node) (path:path_info): option unit :=
......@@ -194,6 +214,24 @@ Definition path_checker (f: RTL.function) pm (pc: node) (path:path_info): option
SOME i <- f.(fn_code)!(snd res) IN
inst_checker pm (fst res) i.
(* TODO: replace the implementation of [path_checker] above by this one in order to check [path.(pre_output_regs)]
Definition inst_checker (pm: path_map) (alive por: Regset.t) (i: instruction): option unit :=
match iinst_checker pm alive i with
| Some res =>
ASSERT Regset.subset por (fst res) IN
exit_checker pm por (snd res) tt
| _ =>
ASSERT Regset.subset por alive IN
final_inst_checker pm por i
end.
Definition path_checker (f: RTL.function) pm (pc: node) (path:path_info): option unit :=
SOME res <- ipath_checker (path.(psize)) f pm (path.(input_regs)) pc IN
SOME i <- f.(fn_code)!(snd res) IN
inst_checker pm (fst res) (path.(pre_output_regs)) i.
*)
Lemma path_checker_wellformed f pm pc path:
path_checker f pm pc path = Some tt -> wellformed_path (f.(fn_code)) pm (path.(psize)) pc.
Proof.
......
......@@ -501,12 +501,23 @@ Proof.
intros H; erewrite (EQLIVE r); eauto.
Qed.
Lemma final_inst_checker_from_iinst_checker i sp rs m st pm alive:
istep ge i sp rs m = Some st ->
final_inst_checker pm alive i = None.
Proof.
destruct i; simpl; try congruence.
Qed.
(* is it useful ?
Lemma inst_checker_from_iinst_checker i sp rs m st pm alive:
istep ge i sp rs m = Some st ->
inst_checker pm alive i = (SOME res <- iinst_checker pm alive i IN exit_checker pm (fst res) (snd res) tt).
Proof.
unfold inst_checker.
destruct (iinst_checker pm alive i); simpl; auto.
destruct i; simpl; try congruence.
Qed.
*)
Lemma exit_checker_eqlive_ext1 (pm: path_map) (alive: Regset.t) (pc: node) r rs1 rs2:
exit_checker pm (Regset.add r alive) pc tt = Some tt ->
......@@ -586,13 +597,13 @@ Proof.
* intuition. eapply IHtbl; eauto.
Qed.
Lemma inst_checker_eqlive (f: function) sp alive pc i rs1 rs2 m stk1 stk2 t s1:
Lemma final_inst_checker_eqlive (f: function) sp alive pc i rs1 rs2 m stk1 stk2 t s1:
list_forall2 eqlive_stackframes stk1 stk2 ->
eqlive_reg (ext alive) rs1 rs2 ->
liveness_ok_function f ->
(fn_code f) ! pc = Some i ->
path_last_step ge pge stk1 f sp pc rs1 m t s1 ->
inst_checker (fn_path f) alive i = Some tt ->
final_inst_checker (fn_path f) alive i = Some tt ->
exists s2, path_last_step ge pge stk2 f sp pc rs2 m t s2 /\ eqlive_states s1 s2.
Proof.
intros STACKS EQLIVE LIVENESS PC;
......@@ -604,25 +615,8 @@ Proof.
st1 pc rs1 m optr m'];
try_simplify_someHyps.
+ (* istate *)
intros PC ISTEP. erewrite inst_checker_from_iinst_checker; eauto.
inversion_SOME res.
intros.
destruct (icontinue st1) eqn: CONT.
- (* CONT => true *)
exploit iinst_checker_eqlive; eauto.
destruct 1 as (st2 & ISTEP2 & [CONT' PC2 RS MEM]).
repeat (econstructor; simpl; eauto).
rewrite <- MEM, <- PC2.
exploit exit_checker_eqlive; eauto.
intros (path & PATH & EQLIVE2).
eapply eqlive_states_intro; eauto.
erewrite <- iinst_checker_istep_continue; eauto.
- (* CONT => false *)
intros; exploit iinst_checker_eqlive_stopped; eauto.
destruct 1 as (path & st2 & PATH & ISTEP2 & [CONT2 PC2 RS MEM]).
repeat (econstructor; simpl; eauto).
rewrite <- MEM, <- PC2.
eapply eqlive_states_intro; eauto.
intros PC ISTEP. erewrite final_inst_checker_from_iinst_checker; eauto.
congruence.
+ (* Icall *)
repeat inversion_ASSERT. intros.
exploit exit_checker_eqlive_ext1; eauto.
......@@ -669,6 +663,41 @@ Proof.
* eapply eqlive_states_return; eauto.
Qed.
Lemma inst_checker_eqlive (f: function) sp alive pc i rs1 rs2 m stk1 stk2 t s1:
list_forall2 eqlive_stackframes stk1 stk2 ->
eqlive_reg (ext alive) rs1 rs2 ->
liveness_ok_function f ->
(fn_code f) ! pc = Some i ->
path_last_step ge pge stk1 f sp pc rs1 m t s1 ->
inst_checker (fn_path f) alive i = Some tt ->
exists s2, path_last_step ge pge stk2 f sp pc rs2 m t s2 /\ eqlive_states s1 s2.
Proof.
unfold inst_checker;
intros STACKS EQLIVE LIVENESS PC.
destruct (iinst_checker (fn_path f) alive i) as [res|] eqn: IICHECKER.
+ destruct 1 as [i' sp pc rs1 m st1| | | | | ];
try_simplify_someHyps.
intros PC ISTEP.
intros.
destruct (icontinue st1) eqn: CONT.
- (* CONT => true *)
exploit iinst_checker_eqlive; eauto.
destruct 1 as (st2 & ISTEP2 & [CONT' PC2 RS MEM]).
repeat (econstructor; simpl; eauto).
rewrite <- MEM, <- PC2.
exploit exit_checker_eqlive; eauto.
intros (path & PATH & EQLIVE2).
eapply eqlive_states_intro; eauto.
erewrite <- iinst_checker_istep_continue; eauto.
- (* CONT => false *)
intros; exploit iinst_checker_eqlive_stopped; eauto.
destruct 1 as (path & st2 & PATH & ISTEP2 & [CONT2 PC2 RS MEM]).
repeat (econstructor; simpl; eauto).
rewrite <- MEM, <- PC2.
eapply eqlive_states_intro; eauto.
+ intros; exploit final_inst_checker_eqlive; eauto.
Qed.
Lemma path_step_eqlive path stk1 f sp rs1 m pc t s1 stk2 rs2:
path_step ge pge (psize path) stk1 f sp rs1 m pc t s1 ->
list_forall2 eqlive_stackframes stk1 stk2 ->
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment