From 615fb53c13f2407a0b6b470bbdf8e468fc4a1d78 Mon Sep 17 00:00:00 2001
From: xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>
Date: Fri, 5 Jun 2009 13:39:59 +0000
Subject: [PATCH] Adapted to work with Coq 8.2-1

git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@1076 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
---
 Changelog                    |   5 +
 arm/Asm.v                    |  18 +--
 arm/Constprop.v              |  12 +-
 arm/Machregs.v               |   2 +-
 arm/Op.v                     |  28 ++--
 arm/Selection.v              |  42 +++---
 arm/Selectionproof.v         |   4 -
 arm/linux/Stacklayout.v      |   2 +-
 backend/Allocproof.v         |   4 +-
 backend/Bounds.v             |   8 +-
 backend/CSE.v                |   4 +-
 backend/Cminor.v             |  18 +--
 backend/CminorSel.v          |  14 +-
 backend/Coloring.v           |   4 +-
 backend/Coloringproof.v      |  20 +--
 backend/InterfGraph.v        |  22 +--
 backend/Kildall.v            |  10 +-
 backend/LTL.v                |  10 +-
 backend/LTLin.v              |  10 +-
 backend/Linear.v             |  10 +-
 backend/Linearizeproof.v     |   2 +-
 backend/Locations.v          |   4 +-
 backend/Mach.v               |   4 +-
 backend/Machabstr.v          |   6 +-
 backend/Machconcr.v          |   4 +-
 backend/RTL.v                |  10 +-
 backend/RTLgen.v             |  20 +--
 backend/RTLgenspec.v         | 185 ++++++++-----------------
 backend/Registers.v          |   6 +-
 backend/Stacking.v           |   2 +-
 backend/Stackingproof.v      |   4 +-
 backend/Stackingtyping.v     |   2 +-
 backend/Tailcallproof.v      |   8 +-
 backend/Tunnelingproof.v     |   6 +-
 cfrontend/Cminorgen.v        |   2 +-
 cfrontend/Cminorgenproof.v   |   4 +-
 cfrontend/Csem.v             |   2 +-
 cfrontend/Csharpminor.v      |  18 +--
 cfrontend/Cshmgenproof1.v    |   4 +-
 cfrontend/Cshmgenproof3.v    | 215 +++++++++++++++--------------
 cfrontend/Csyntax.v          |  52 +++----
 common/AST.v                 |  38 ++---
 common/Errors.v              |  18 +--
 common/Events.v              |   6 +-
 common/Globalenvs.v          | 106 +++++++-------
 common/Mem.v                 |  22 +--
 common/Smallstep.v           |  16 +--
 common/Switch.v              |   4 +-
 common/Values.v              |   4 +-
 driver/Compiler.v            |  14 +-
 driver/Complements.v         |   2 +-
 extraction/Kildall.ml.patch  |  31 ++---
 extraction/convert           |   5 +-
 lib/Coqlib.v                 | 120 ++++++++--------
 lib/Floats.v                 |   2 +-
 lib/Inclusion.v              |  24 ++--
 lib/Integers.v               |   6 +-
 lib/Iteration.v              |   8 +-
 lib/Lattice.v                |  27 +---
 lib/Maps.v                   | 260 +++++++++++++++++------------------
 lib/Ordered.v                |  19 +++
 lib/Parmov.v                 |   8 +-
 powerpc/Asm.v                |  16 +--
 powerpc/Asmgen.v             |   2 +-
 powerpc/Constprop.v          |  12 +-
 powerpc/Machregs.v           |   2 +-
 powerpc/Op.v                 |  24 ++--
 powerpc/Selection.v          |  38 ++---
 powerpc/Selectionproof.v     |   2 +
 powerpc/eabi/Stacklayout.v   |   2 +-
 powerpc/macosx/Stacklayout.v |   2 +-
 71 files changed, 795 insertions(+), 852 deletions(-)

diff --git a/Changelog b/Changelog
index 3be2d3613..004d5cbec 100644
--- a/Changelog
+++ b/Changelog
@@ -1,3 +1,8 @@
+Release 1.4.1, 2009-06-05
+=========================
+
+- Adapted to Coq 8.2-1.  No changes in functionality.
+
 Release 1.4, 2009-04-20
 =======================
 
diff --git a/arm/Asm.v b/arm/Asm.v
index 3bb2cca24..79feee72b 100644
--- a/arm/Asm.v
+++ b/arm/Asm.v
@@ -30,13 +30,13 @@ Require Conventions.
 
 (** Integer registers, floating-point registers. *)
 
-Inductive ireg: Set :=
+Inductive ireg: Type :=
   | IR0: ireg  | IR1: ireg  | IR2: ireg  | IR3: ireg
   | IR4: ireg  | IR5: ireg  | IR6: ireg  | IR7: ireg
   | IR8: ireg  | IR9: ireg  | IR10: ireg | IR11: ireg
   | IR12: ireg | IR13: ireg | IR14: ireg.
 
-Inductive freg: Set :=
+Inductive freg: Type :=
   | FR0: freg  | FR1: freg  | FR2: freg  | FR3: freg
   | FR4: freg  | FR5: freg  | FR6: freg  | FR7: freg.
 
@@ -48,7 +48,7 @@ Proof. decide equality. Defined.
 
 (** Bits in the condition register. *)
 
-Inductive crbit: Set :=
+Inductive crbit: Type :=
   | CReq: crbit    (**r equal *)
   | CRne: crbit    (**r not equal *)
   | CRhs: crbit    (**r unsigned higher or same *)
@@ -74,7 +74,7 @@ Proof. decide equality. Defined.
 
 Definition label := positive.
 
-Inductive shift_op : Set :=
+Inductive shift_op : Type :=
   | SOimm: int -> shift_op
   | SOreg: ireg -> shift_op
   | SOlslimm: ireg -> int -> shift_op
@@ -86,7 +86,7 @@ Inductive shift_op : Set :=
   | SOrorimm: ireg -> int -> shift_op
   | SOrorreg: ireg -> ireg -> shift_op.
 
-Inductive shift_addr : Set :=
+Inductive shift_addr : Type :=
   | SAimm: int -> shift_addr
   | SAreg: ireg -> shift_addr
   | SAlsl: ireg -> int -> shift_addr
@@ -94,7 +94,7 @@ Inductive shift_addr : Set :=
   | SAasr: ireg -> int -> shift_addr
   | SAror: ireg -> int -> shift_addr.
 
-Inductive instruction : Set :=
+Inductive instruction : Type :=
   (* Core instructions *)
   | Padd: ireg -> ireg -> shift_op -> instruction (**r integer addition *)
   | Pand: ireg -> ireg -> shift_op -> instruction (**r bitwise and *)
@@ -242,7 +242,7 @@ Definition program := AST.program fundef unit.
 (** The PowerPC has a great many registers, some general-purpose, some very
   specific.  We model only the following registers: *)
 
-Inductive preg: Set :=
+Inductive preg: Type :=
   | IR: ireg -> preg                    (**r integer registers *)
   | FR: freg -> preg                    (**r float registers *)
   | CR: crbit -> preg                   (**r bits in the condition register *)
@@ -315,7 +315,7 @@ Variable ge: genv.
   set and memory state after execution of the instruction at [rs#PC],
   or [Error] if the processor is stuck. *)
 
-Inductive outcome: Set :=
+Inductive outcome: Type :=
   | OK: regset -> mem -> outcome
   | Error: outcome.
 
@@ -621,7 +621,7 @@ Definition loc_external_result (sg: signature) : preg :=
 
 (** Execution of the instruction at [rs#PC]. *)
 
-Inductive state: Set :=
+Inductive state: Type :=
   | State: regset -> mem -> state.
 
 Inductive step: state -> trace -> state -> Prop :=
diff --git a/arm/Constprop.v b/arm/Constprop.v
index b51d974e6..5bd84b6d6 100644
--- a/arm/Constprop.v
+++ b/arm/Constprop.v
@@ -32,7 +32,7 @@ Require Import Kildall.
 (** To each pseudo-register at each program point, the static analysis 
   associates a compile-time approximation taken from the following set. *)
 
-Inductive approx : Set :=
+Inductive approx : Type :=
   | Novalue: approx      (** No value possible, code is unreachable. *)
   | Unknown: approx      (** All values are possible,
                              no compile-time information is available. *)
@@ -139,7 +139,7 @@ Definition eval_static_condition (cond: condition) (vl: list approx) :=
   end.
 *)
 
-Inductive eval_static_condition_cases: forall (cond: condition) (vl: list approx), Set :=
+Inductive eval_static_condition_cases: forall (cond: condition) (vl: list approx), Type :=
   | eval_static_condition_case1:
       forall c n1 n2,
       eval_static_condition_cases (Ccomp c) (I n1 :: I n2 :: nil)
@@ -274,7 +274,7 @@ Definition eval_static_operation (op: operation) (vl: list approx) :=
   end.
 *)
 
-Inductive eval_static_operation_cases: forall (op: operation) (vl: list approx), Set :=
+Inductive eval_static_operation_cases: forall (op: operation) (vl: list approx), Type :=
   | eval_static_operation_case1:
       forall v1,
       eval_static_operation_cases (Omove) (v1::nil)
@@ -735,7 +735,7 @@ Definition cond_strength_reduction (cond: condition) (args: list reg) :=
   end.
 *)
 
-Inductive cond_strength_reduction_cases: forall (cond: condition) (args: list reg), Set :=
+Inductive cond_strength_reduction_cases: forall (cond: condition) (args: list reg), Type :=
   | cond_strength_reduction_case1:
       forall c r1 r2,
       cond_strength_reduction_cases (Ccomp c) (r1 :: r2 :: nil)
@@ -886,7 +886,7 @@ Definition op_strength_reduction (op: operation) (args: list reg) :=
   end.
 *)
 
-Inductive op_strength_reduction_cases: forall (op: operation) (args: list reg), Set :=
+Inductive op_strength_reduction_cases: forall (op: operation) (args: list reg), Type :=
   | op_strength_reduction_case1:
       forall r1 r2,
       op_strength_reduction_cases (Oadd) (r1 :: r2 :: nil)
@@ -1120,7 +1120,7 @@ Definition addr_strength_reduction (addr: addressing) (args: list reg) :=
   end.
 *)
 
-Inductive addr_strength_reduction_cases: forall (addr: addressing) (args: list reg), Set :=
+Inductive addr_strength_reduction_cases: forall (addr: addressing) (args: list reg), Type :=
   | addr_strength_reduction_case1:
       forall r1 r2,
       addr_strength_reduction_cases (Aindexed2) (r1 :: r2 :: nil)
diff --git a/arm/Machregs.v b/arm/Machregs.v
index 3466c0b08..2e422d272 100644
--- a/arm/Machregs.v
+++ b/arm/Machregs.v
@@ -29,7 +29,7 @@ Require Import AST.
   The type [mreg] does not include special-purpose machine registers
   such as the stack pointer and the condition codes. *)
 
-Inductive mreg: Set :=
+Inductive mreg: Type :=
   (** Allocatable integer regs *)
   | R0: mreg  | R1: mreg  | R2: mreg  | R3: mreg
   | R4: mreg  | R5: mreg  | R6: mreg  | R7: mreg
diff --git a/arm/Op.v b/arm/Op.v
index bde725206..47cbc0cea 100644
--- a/arm/Op.v
+++ b/arm/Op.v
@@ -34,13 +34,13 @@ Require Import Globalenvs.
 
 Set Implicit Arguments.
 
-Record shift_amount : Set :=
+Record shift_amount : Type :=
   mk_shift_amount { 
     s_amount: int;
     s_amount_ltu: Int.ltu s_amount (Int.repr 32) = true 
   }.
 
-Inductive shift : Set :=
+Inductive shift : Type :=
   | Slsl: shift_amount -> shift
   | Slsr: shift_amount -> shift
   | Sasr: shift_amount -> shift
@@ -48,7 +48,7 @@ Inductive shift : Set :=
 
 (** Conditions (boolean-valued operators). *)
 
-Inductive condition : Set :=
+Inductive condition : Type :=
   | Ccomp: comparison -> condition  (**r signed integer comparison *)
   | Ccompu: comparison -> condition (**r unsigned integer comparison *)
   | Ccompshift: comparison -> shift -> condition  (**r signed integer comparison *)
@@ -61,7 +61,7 @@ Inductive condition : Set :=
 (** Arithmetic and logical operations.  In the descriptions, [rd] is the
   result of the operation and [r1], [r2], etc, are the arguments. *)
 
-Inductive operation : Set :=
+Inductive operation : Type :=
   | Omove: operation                    (**r [rd = r1] *)
   | Ointconst: int -> operation         (**r [rd] is set to the given integer constant *)
   | Ofloatconst: float -> operation     (**r [rd] is set to the given float constant *)
@@ -119,7 +119,7 @@ Inductive operation : Set :=
 (** Addressing modes.  [r1], [r2], etc, are the arguments to the 
   addressing. *)
 
-Inductive addressing: Set :=
+Inductive addressing: Type :=
   | Aindexed: int -> addressing         (**r Address is [r1 + offset] *)
   | Aindexed2: addressing               (**r Address is [r1 + r2] *)
   | Aindexed2shift: shift -> addressing (**r Address is [r1 + shifted r2] *)
@@ -217,7 +217,7 @@ Definition offset_sp (sp: val) (delta: int) : option val :=
   end.
 
 Definition eval_operation
-    (F: Set) (genv: Genv.t F) (sp: val)
+    (F: Type) (genv: Genv.t F) (sp: val)
     (op: operation) (vl: list val): option val :=
   match op, vl with
   | Omove, v1::nil => Some v1
@@ -301,7 +301,7 @@ Definition eval_operation
   end.
 
 Definition eval_addressing
-    (F: Set) (genv: Genv.t F) (sp: val)
+    (F: Type) (genv: Genv.t F) (sp: val)
     (addr: addressing) (vl: list val) : option val :=
   match addr, vl with
   | Aindexed n, Vptr b1 n1 :: nil =>
@@ -382,7 +382,7 @@ Qed.
 
 Section GENV_TRANSF.
 
-Variable F1 F2: Set.
+Variable F1 F2: Type.
 Variable ge1: Genv.t F1.
 Variable ge2: Genv.t F2.
 Hypothesis agree_on_symbols:
@@ -413,14 +413,14 @@ End GENV_TRANSF.
 (** Recognition of move operations. *)
 
 Definition is_move_operation
-    (A: Set) (op: operation) (args: list A) : option A :=
+    (A: Type) (op: operation) (args: list A) : option A :=
   match op, args with
   | Omove, arg :: nil => Some arg
   | _, _ => None
   end.
 
 Lemma is_move_operation_correct:
-  forall (A: Set) (op: operation) (args: list A) (a: A),
+  forall (A: Type) (op: operation) (args: list A) (a: A),
   is_move_operation op args = Some a ->
   op = Omove /\ args = a :: nil.
 Proof.
@@ -523,7 +523,7 @@ Definition type_of_chunk (c: memory_chunk) : typ :=
 
 Section SOUNDNESS.
 
-Variable A: Set.
+Variable A: Type.
 Variable genv: Genv.t A.
 
 Lemma type_of_operation_sound:
@@ -584,7 +584,7 @@ End SOUNDNESS.
 
 Section EVAL_OP_TOTAL.
 
-Variable F: Set.
+Variable F: Type.
 Variable genv: Genv.t F.
 
 Definition find_symbol_offset (id: ident) (ofs: int) : val :=
@@ -774,7 +774,7 @@ End EVAL_OP_TOTAL.
 
 Section EVAL_LESSDEF.
 
-Variable F: Set.
+Variable F: Type.
 Variable genv: Genv.t F.
 
 Ltac InvLessdef :=
@@ -900,7 +900,7 @@ Definition op_for_binary_addressing (addr: addressing) : operation :=
   end.
 
 Lemma eval_op_for_binary_addressing:
-  forall (F: Set) (ge: Genv.t F) sp addr args v,
+  forall (F: Type) (ge: Genv.t F) sp addr args v,
   (length args >= 2)%nat ->
   eval_addressing ge sp addr args = Some v ->
   eval_operation ge sp (op_for_binary_addressing addr) args = Some v.
diff --git a/arm/Selection.v b/arm/Selection.v
index d04a4ca35..12cc1b27a 100644
--- a/arm/Selection.v
+++ b/arm/Selection.v
@@ -118,7 +118,7 @@ Definition notint (e: expr) :=
   characterizes the expressions that match each of the 4 cases of interest.
 *)
 
-Inductive notint_cases: forall (e: expr), Set :=
+Inductive notint_cases: forall (e: expr), Type :=
   | notint_case1:
       forall s t1,
       notint_cases (Eop (Oshift s) (t1:::Enil))
@@ -208,7 +208,7 @@ Definition addimm (n: int) (e: expr) :=
   end.
 *)
 
-Inductive addimm_cases: forall (e: expr), Set :=
+Inductive addimm_cases: forall (e: expr), Type :=
   | addimm_case1:
       forall m,
       addimm_cases (Eop (Ointconst m) Enil)
@@ -270,7 +270,7 @@ Definition add (e1: expr) (e2: expr) :=
   end.
 *)
 
-Inductive add_cases: forall (e1: expr) (e2: expr), Set :=
+Inductive add_cases: forall (e1: expr) (e2: expr), Type :=
   | add_case1:
       forall n1 t2,
       add_cases (Eop (Ointconst n1) Enil) (t2)
@@ -352,7 +352,7 @@ Definition sub (e1: expr) (e2: expr) :=
   end.
 *)
 
-Inductive sub_cases: forall (e1: expr) (e2: expr), Set :=
+Inductive sub_cases: forall (e1: expr) (e2: expr), Type :=
   | sub_case1:
       forall t1 n2,
       sub_cases (t1) (Eop (Ointconst n2) Enil)
@@ -430,7 +430,7 @@ Definition shlimm (e1: expr) :=
   end.
 *)
 
-Inductive shlimm_cases: forall (e1: expr), Set :=
+Inductive shlimm_cases: forall (e1: expr), Type :=
   | shlimm_case1:
       forall n1,
       shlimm_cases (Eop (Ointconst n1) Enil)
@@ -481,7 +481,7 @@ Definition shruimm (e1: expr) :=
   end.
 *)
 
-Inductive shruimm_cases: forall (e1: expr), Set :=
+Inductive shruimm_cases: forall (e1: expr), Type :=
   | shruimm_case1:
       forall n1,
       shruimm_cases (Eop (Ointconst n1) Enil)
@@ -531,7 +531,7 @@ Definition shrimm (e1: expr) :=
   end.
 *)
 
-Inductive shrimm_cases: forall (e1: expr), Set :=
+Inductive shrimm_cases: forall (e1: expr), Type :=
   | shrimm_case1:
       forall n1,
       shrimm_cases (Eop (Ointconst n1) Enil)
@@ -598,7 +598,7 @@ Definition mulimm (n1: int) (e2: expr) :=
   end.
 *)
 
-Inductive mulimm_cases: forall (e2: expr), Set :=
+Inductive mulimm_cases: forall (e2: expr), Type :=
   | mulimm_case1:
       forall (n2: int),
       mulimm_cases (Eop (Ointconst n2) Enil)
@@ -642,7 +642,7 @@ Definition mul (e1: expr) (e2: expr) :=
   end.
 *)
 
-Inductive mul_cases: forall (e1: expr) (e2: expr), Set :=
+Inductive mul_cases: forall (e1: expr) (e2: expr), Type :=
   | mul_case1:
       forall (n1: int) (t2: expr),
       mul_cases (Eop (Ointconst n1) Enil) (t2)
@@ -690,7 +690,7 @@ Definition mod_aux (divop: operation) (e1 e2: expr) :=
                            Enil) :::
                  Enil))).
 
-Inductive divu_cases: forall (e2: expr), Set :=
+Inductive divu_cases: forall (e2: expr), Type :=
   | divu_case1:
       forall (n2: int),
       divu_cases (Eop (Ointconst n2) Enil)
@@ -759,7 +759,7 @@ Definition and (e1: expr) (e2: expr) :=
   end.
 *)
 
-Inductive and_cases: forall (e1: expr) (e2: expr), Set :=
+Inductive and_cases: forall (e1: expr) (e2: expr), Type :=
   | and_case1:
       forall s t1 t2,
       and_cases (Eop (Oshift s) (t1:::Enil)) (t2)
@@ -836,7 +836,7 @@ Definition or (e1: expr) (e2: expr) :=
 
 (* TODO: symmetric of first case *)
 
-Inductive or_cases: forall (e1: expr) (e2: expr), Set :=
+Inductive or_cases: forall (e1: expr) (e2: expr), Type :=
   | or_case1:
       forall n1 t1 n2 t2,
       or_cases (Eop (Oshift (Slsl n1)) (t1:::Enil)) (Eop (Oshift (Slsr n2)) (t2:::Enil))
@@ -886,7 +886,7 @@ Definition xor (e1: expr) (e2: expr) :=
   end.
 *)
 
-Inductive xor_cases: forall (e1: expr) (e2: expr), Set :=
+Inductive xor_cases: forall (e1: expr) (e2: expr), Type :=
   | xor_case1:
       forall s t1 t2,
       xor_cases (Eop (Oshift s) (t1:::Enil)) (t2)
@@ -919,7 +919,7 @@ Definition xor (e1: expr) (e2: expr) :=
 
 (** ** General shifts *)
 
-Inductive shift_cases: forall (e1: expr), Set :=
+Inductive shift_cases: forall (e1: expr), Type :=
   | shift_case1:
       forall (n2: int),
       shift_cases (Eop (Ointconst n2) Enil)
@@ -961,7 +961,7 @@ Definition shr (e1: expr) (e2: expr) :=
 
 (** ** Truncations and sign extensions *)
 
-Inductive cast8signed_cases: forall (e1: expr), Set :=
+Inductive cast8signed_cases: forall (e1: expr), Type :=
   | cast8signed_case1:
       forall (e2: expr),
       cast8signed_cases (Eop Ocast8signed (e2 ::: Enil))
@@ -983,7 +983,7 @@ Definition cast8signed (e: expr) :=
   | cast8signed_default e1 => Eop Ocast8signed (e1 ::: Enil)
   end.
 
-Inductive cast8unsigned_cases: forall (e1: expr), Set :=
+Inductive cast8unsigned_cases: forall (e1: expr), Type :=
   | cast8unsigned_case1:
       forall (e2: expr),
       cast8unsigned_cases (Eop Ocast8unsigned (e2 ::: Enil))
@@ -1005,7 +1005,7 @@ Definition cast8unsigned (e: expr) :=
   | cast8unsigned_default e1 => Eop Ocast8unsigned (e1 ::: Enil)
   end.
 
-Inductive cast16signed_cases: forall (e1: expr), Set :=
+Inductive cast16signed_cases: forall (e1: expr), Type :=
   | cast16signed_case1:
       forall (e2: expr),
       cast16signed_cases (Eop Ocast16signed (e2 ::: Enil))
@@ -1027,7 +1027,7 @@ Definition cast16signed (e: expr) :=
   | cast16signed_default e1 => Eop Ocast16signed (e1 ::: Enil)
   end.
 
-Inductive cast16unsigned_cases: forall (e1: expr), Set :=
+Inductive cast16unsigned_cases: forall (e1: expr), Type :=
   | cast16unsigned_case1:
       forall (e2: expr),
       cast16unsigned_cases (Eop Ocast16unsigned (e2 ::: Enil))
@@ -1049,7 +1049,7 @@ Definition cast16unsigned (e: expr) :=
   | cast16unsigned_default e1 => Eop Ocast16unsigned (e1 ::: Enil)
   end.
 
-Inductive singleoffloat_cases: forall (e1: expr), Set :=
+Inductive singleoffloat_cases: forall (e1: expr), Type :=
   | singleoffloat_case1:
       forall (e2: expr),
       singleoffloat_cases (Eop Osingleoffloat (e2 ::: Enil))
@@ -1084,7 +1084,7 @@ Definition comp (e1: expr) (e2: expr) :=
   end.
 *)
   
-Inductive comp_cases: forall (e1: expr) (e2: expr), Set :=
+Inductive comp_cases: forall (e1: expr) (e2: expr), Type :=
   | comp_case1:
       forall n1 t2,
       comp_cases (Eop (Ointconst n1) Enil) (t2)
@@ -1204,7 +1204,7 @@ Definition addressing (e: expr) :=
   end.
 *)
 
-Inductive addressing_cases: forall (e: expr), Set :=
+Inductive addressing_cases: forall (e: expr), Type :=
   | addressing_case2:
       forall n,
       addressing_cases (Eop (Oaddrstack n) Enil)
diff --git a/arm/Selectionproof.v b/arm/Selectionproof.v
index 10f93f3a4..967e2292c 100644
--- a/arm/Selectionproof.v
+++ b/arm/Selectionproof.v
@@ -1389,10 +1389,6 @@ Proof.
   econstructor. destruct k; simpl in H; simpl; auto. 
   rewrite <- H0; reflexivity.
   constructor; auto.
-  (* assign *)
-  exists (State (sel_function f) Sskip (sel_cont k) sp (PTree.set id v e) m); split.
-  constructor. auto with evalexpr.
-  constructor; auto.
   (* store *)
   econstructor; split.
   eapply eval_store; eauto with evalexpr.
diff --git a/arm/linux/Stacklayout.v b/arm/linux/Stacklayout.v
index dd3c6a1da..b374bfd9d 100644
--- a/arm/linux/Stacklayout.v
+++ b/arm/linux/Stacklayout.v
@@ -40,7 +40,7 @@ the boundaries between areas in the frame part.
 
 Definition fe_ofs_arg := 0.
 
-Record frame_env : Set := mk_frame_env {
+Record frame_env : Type := mk_frame_env {
   fe_size: Z;
   fe_ofs_link: Z;
   fe_ofs_retaddr: Z;
diff --git a/backend/Allocproof.v b/backend/Allocproof.v
index 3971fb6d7..e2387b5d0 100644
--- a/backend/Allocproof.v
+++ b/backend/Allocproof.v
@@ -167,7 +167,7 @@ Proof.
   eapply DS.fixpoint_solution. unfold analyze in H; eauto.
   auto. auto. auto. auto.
   unfold transfer. rewrite H3.
-  red; intros. elim (Regset.empty_1 _ H4).
+  red; intros. elim (Regset.empty_1 H4).
   unfold RTL.successors in H0; rewrite H2 in H0; elim H0.
 Qed.
 
@@ -581,7 +581,7 @@ Proof.
   rewrite H. simpl. 
   caseEq (Regset.mem res live!!pc); intro LV;
   rewrite LV in AG.
-  generalize (Regset.mem_2 _ _ LV). intro LV'.
+  generalize (Regset.mem_2 LV). intro LV'.
   generalize (regalloc_correct_1 f env live _ _ _ _ ASG H).
   unfold correct_alloc_instr, is_redundant_move.
   caseEq (is_move_operation op args).
diff --git a/backend/Bounds.v b/backend/Bounds.v
index d1ed28d57..8c5f536da 100644
--- a/backend/Bounds.v
+++ b/backend/Bounds.v
@@ -30,7 +30,7 @@ Require Import Conventions.
   These properties are used later to reason about the layout of
   the activation record. *)
 
-Record bounds : Set := mkbounds {
+Record bounds : Type := mkbounds {
   bound_int_local: Z;
   bound_float_local: Z;
   bound_int_callee_save: Z;
@@ -116,7 +116,7 @@ Definition slots_of_instr (i: instruction) : list slot :=
   | _ => nil
   end.
 
-Definition max_over_list (A: Set) (valu: A -> Z) (l: list A) : Z :=
+Definition max_over_list (A: Type) (valu: A -> Z) (l: list A) : Z :=
   List.fold_left (fun m l => Zmax m (valu l)) l 0.
 
 Definition max_over_instrs (valu: instruction -> Z) : Z :=
@@ -151,7 +151,7 @@ Definition outgoing_space (i: instruction) :=
   match i with Lcall sig _ => size_arguments sig | _ => 0 end.
 
 Lemma max_over_list_pos:
-  forall (A: Set) (valu: A -> Z) (l: list A),
+  forall (A: Type) (valu: A -> Z) (l: list A),
   max_over_list A valu l >= 0.
 Proof.
   intros until valu. unfold max_over_list.
@@ -196,7 +196,7 @@ Qed.
 (** We now show the correctness of the inferred bounds. *)
 
 Lemma max_over_list_bound:
-  forall (A: Set) (valu: A -> Z) (l: list A) (x: A),
+  forall (A: Type) (valu: A -> Z) (l: list A) (x: A),
   In x l -> valu x <= max_over_list A valu l.
 Proof.
   intros until x. unfold max_over_list.
diff --git a/backend/CSE.v b/backend/CSE.v
index 13e9be8e0..cad350349 100644
--- a/backend/CSE.v
+++ b/backend/CSE.v
@@ -49,7 +49,7 @@ Require Import Kildall.
 
 Definition valnum := positive.
 
-Inductive rhs : Set :=
+Inductive rhs : Type :=
   | Op: operation -> list valnum -> rhs
   | Load: memory_chunk -> addressing -> list valnum -> rhs.
 
@@ -85,7 +85,7 @@ Qed.
   we maintain the next unused value number, so as to easily generate
   fresh value numbers. *)
 
-Record numbering : Set := mknumbering {
+Record numbering : Type := mknumbering {
   num_next: valnum;
   num_eqs: list (valnum * rhs);
   num_reg: PTree.t valnum
diff --git a/backend/Cminor.v b/backend/Cminor.v
index 35bf39160..b48db2d6e 100644
--- a/backend/Cminor.v
+++ b/backend/Cminor.v
@@ -33,13 +33,13 @@ Require Import Switch.
   statements, functions and programs.  We first define the constants
   and operators that occur within expressions. *)
 
-Inductive constant : Set :=
+Inductive constant : Type :=
   | Ointconst: int -> constant     (**r integer constant *)
   | Ofloatconst: float -> constant (**r floating-point constant *)
   | Oaddrsymbol: ident -> int -> constant (**r address of the symbol plus the offset *)
   | Oaddrstack: int -> constant.   (**r stack pointer plus the given offset *)
 
-Inductive unary_operation : Set :=
+Inductive unary_operation : Type :=
   | Ocast8unsigned: unary_operation        (**r 8-bit zero extension  *)
   | Ocast8signed: unary_operation          (**r 8-bit sign extension  *)
   | Ocast16unsigned: unary_operation       (**r 16-bit zero extension  *)
@@ -55,7 +55,7 @@ Inductive unary_operation : Set :=
   | Ofloatofint: unary_operation           (**r float to signed integer *)
   | Ofloatofintu: unary_operation.         (**r float to unsigned integer *)
 
-Inductive binary_operation : Set :=
+Inductive binary_operation : Type :=
   | Oadd: binary_operation                 (**r integer addition *)
   | Osub: binary_operation                 (**r integer subtraction *)
   | Omul: binary_operation                 (**r integer multiplication *)
@@ -81,7 +81,7 @@ Inductive binary_operation : Set :=
   arithmetic operations, reading store locations, and conditional
   expressions (similar to [e1 ? e2 : e3] in C). *)
 
-Inductive expr : Set :=
+Inductive expr : Type :=
   | Evar : ident -> expr
   | Econst : constant -> expr
   | Eunop : unary_operation -> expr -> expr
@@ -97,7 +97,7 @@ Inductive expr : Set :=
 
 Definition label := ident.
 
-Inductive stmt : Set :=
+Inductive stmt : Type :=
   | Sskip: stmt
   | Sassign : ident -> expr -> stmt
   | Sstore : memory_chunk -> expr -> expr -> stmt
@@ -120,7 +120,7 @@ Inductive stmt : Set :=
   automatically before the function returns.  Pointers into this block
   can be taken with the [Oaddrstack] operator. *)
 
-Record function : Set := mkfunction {
+Record function : Type := mkfunction {
   fn_sig: signature;
   fn_params: list ident;
   fn_vars: list ident;
@@ -172,7 +172,7 @@ Definition set_optvar (optid: option ident) (v: val) (e: env) : env :=
 
 (** Continuations *)
 
-Inductive cont: Set :=
+Inductive cont: Type :=
   | Kstop: cont                         (**r stop program execution *)
   | Kseq: stmt -> cont -> cont          (**r execute stmt, then cont *)
   | Kblock: cont -> cont                (**r exit a block, then do cont *)
@@ -181,7 +181,7 @@ Inductive cont: Set :=
 
 (** States *)
 
-Inductive state: Set :=
+Inductive state: Type :=
   | State:                      (**r Execution within a function *)
       forall (f: function)              (**r currently executing function  *)
              (s: stmt)                  (**r statement under consideration *)
@@ -536,7 +536,7 @@ Definition exec_program (p: program) (beh: program_behavior) : Prop :=
     statements evaluate to``outcomes'' indicating how execution should
     proceed afterwards. *)
 
-Inductive outcome: Set :=
+Inductive outcome: Type :=
   | Out_normal: outcome                (**r continue in sequence *)
   | Out_exit: nat -> outcome           (**r terminate [n+1] enclosing blocks *)
   | Out_return: option val -> outcome  (**r return immediately to caller *)
diff --git a/backend/CminorSel.v b/backend/CminorSel.v
index bfe92a40a..1e798b5f6 100644
--- a/backend/CminorSel.v
+++ b/backend/CminorSel.v
@@ -40,7 +40,7 @@ Require Import Smallstep.
   boolean value only and not their exact value.
 *)
 
-Inductive expr : Set :=
+Inductive expr : Type :=
   | Evar : ident -> expr
   | Eop : operation -> exprlist -> expr
   | Eload : memory_chunk -> addressing -> exprlist -> expr
@@ -48,13 +48,13 @@ Inductive expr : Set :=
   | Elet : expr -> expr -> expr
   | Eletvar : nat -> expr
 
-with condexpr : Set :=
+with condexpr : Type :=
   | CEtrue: condexpr
   | CEfalse: condexpr
   | CEcond: condition -> exprlist -> condexpr
   | CEcondition : condexpr -> condexpr -> condexpr -> condexpr
 
-with exprlist : Set :=
+with exprlist : Type :=
   | Enil: exprlist
   | Econs: expr -> exprlist -> exprlist.
 
@@ -62,7 +62,7 @@ with exprlist : Set :=
   if/then/else conditional is a [condexpr], and the [Sstore] construct
   uses a machine-dependent addressing mode. *)
 
-Inductive stmt : Set :=
+Inductive stmt : Type :=
   | Sskip: stmt
   | Sassign : ident -> expr -> stmt
   | Sstore : memory_chunk -> addressing -> exprlist -> expr -> stmt
@@ -78,7 +78,7 @@ Inductive stmt : Set :=
   | Slabel: label -> stmt -> stmt
   | Sgoto: label -> stmt.
 
-Record function : Set := mkfunction {
+Record function : Type := mkfunction {
   fn_sig: signature;
   fn_params: list ident;
   fn_vars: list ident;
@@ -108,7 +108,7 @@ Definition letenv := list val.
 
 (** Continuations *)
 
-Inductive cont: Set :=
+Inductive cont: Type :=
   | Kstop: cont                         (**r stop program execution *)
   | Kseq: stmt -> cont -> cont          (**r execute stmt, then cont *)
   | Kblock: cont -> cont                (**r exit a block, then do cont *)
@@ -117,7 +117,7 @@ Inductive cont: Set :=
 
 (** States *)
 
-Inductive state: Set :=
+Inductive state: Type :=
   | State:                              (**r execution within a function *)
       forall (f: function)              (**r currently executing function  *)
              (s: stmt)                  (**r statement under consideration *)
diff --git a/backend/Coloring.v b/backend/Coloring.v
index 7204bc797..67824ae3d 100644
--- a/backend/Coloring.v
+++ b/backend/Coloring.v
@@ -93,7 +93,7 @@ Require Import InterfGraph.
 
 Definition add_interf_live
     (filter: reg -> bool) (res: reg) (live: Regset.t) (g: graph): graph :=
-  Regset.fold graph
+  Regset.fold 
     (fun r g => if filter r then add_interf r res g else g) live g.
 
 Definition add_interf_op
@@ -113,7 +113,7 @@ Definition add_interf_move
 Definition add_interf_destroyed
     (live: Regset.t) (destroyed: list mreg) (g: graph): graph :=
   List.fold_left
-    (fun g mr => Regset.fold graph (fun r g => add_interf_mreg r mr g) live g)
+    (fun g mr => Regset.fold (fun r g => add_interf_mreg r mr g) live g)
     destroyed g.
 
 Definition add_interfs_indirect_call
diff --git a/backend/Coloringproof.v b/backend/Coloringproof.v
index c86652a36..92ac0676d 100644
--- a/backend/Coloringproof.v
+++ b/backend/Coloringproof.v
@@ -148,7 +148,7 @@ Qed.
 Lemma add_interf_destroyed_incl_aux_2:
   forall mr live g,
   graph_incl g
-    (Regset.fold graph (fun r g => add_interf_mreg r mr g) live g).
+    (Regset.fold (fun r g => add_interf_mreg r mr g) live g).
 Proof.
   intros. rewrite Regset.fold_1. apply add_interf_destroyed_incl_aux_1.
 Qed.
@@ -219,7 +219,7 @@ Lemma add_interf_destroyed_correct_aux_2:
   forall mr live g r,
   Regset.In r live ->
   interfere_mreg r mr
-    (Regset.fold graph (fun r g => add_interf_mreg r mr g) live g).
+    (Regset.fold (fun r g => add_interf_mreg r mr g) live g).
 Proof.
   intros. rewrite Regset.fold_1. apply add_interf_destroyed_correct_aux_1.
   apply Regset.elements_1. auto.
@@ -619,12 +619,12 @@ Lemma check_coloring_1_correct:
   coloring r1 <> coloring r2.
 Proof.
   unfold check_coloring_1. intros. 
-  assert (FSetInterface.compat_bool OrderedRegReg.eq
+  assert (compat_bool OrderedRegReg.eq
      (fun r1r2 => if Loc.eq (coloring (fst r1r2)) (coloring (snd r1r2))
                   then false else true)).
   red. unfold OrderedRegReg.eq. unfold OrderedReg.eq.
   intros x y [EQ1 EQ2]. rewrite EQ1; rewrite EQ2; auto.
-  generalize (SetRegReg.for_all_2 _ _ H1 H _ H0). 
+  generalize (SetRegReg.for_all_2 H1 H H0). 
   simpl. case (Loc.eq (coloring r1) (coloring r2)); intro.
   intro; discriminate. auto.
 Qed.
@@ -636,12 +636,12 @@ Lemma check_coloring_2_correct:
   coloring r1 <> R mr2.
 Proof.
   unfold check_coloring_2. intros. 
-  assert (FSetInterface.compat_bool OrderedRegMreg.eq
+  assert (compat_bool OrderedRegMreg.eq
      (fun r1r2 => if Loc.eq (coloring (fst r1r2)) (R (snd r1r2))
                   then false else true)).
   red. unfold OrderedRegMreg.eq. unfold OrderedReg.eq.
   intros x y [EQ1 EQ2]. rewrite EQ1; rewrite EQ2; auto.
-  generalize (SetRegMreg.for_all_2 _ _ H1 H _ H0). 
+  generalize (SetRegMreg.for_all_2 H1 H H0). 
   simpl. case (Loc.eq (coloring r1) (R mr2)); intro.
   intro; discriminate. auto.
 Qed.
@@ -920,12 +920,12 @@ Proof.
   intros. rewrite H2. unfold allregs. 
   elim (ordered_pair_charact x y); intro.
   apply alloc_of_coloring_correct_1. auto. 
-  change OrderedReg.t with reg. rewrite <- H6.
+  change positive with reg. rewrite <- H6.
   change (interfere x y g). unfold g. 
   apply interf_graph_correct_2; auto.
   apply sym_not_equal.
   apply alloc_of_coloring_correct_1. auto. 
-  change OrderedReg.t with reg. rewrite <- H6.
+  change positive with reg. rewrite <- H6.
   change (interfere x y g). unfold g. 
   apply interf_graph_correct_2; auto.
 Qed.
@@ -942,12 +942,12 @@ Proof.
   rewrite H4; unfold allregs.
   elim (ordered_pair_charact r1 r2); intro.
   apply alloc_of_coloring_correct_1. auto. 
-  change OrderedReg.t with reg. rewrite <- H5.
+  change positive with reg. rewrite <- H5.
   change (interfere r1 r2 g). unfold g.
   apply interf_graph_correct_3; auto.
   apply sym_not_equal.
   apply alloc_of_coloring_correct_1. auto. 
-  change OrderedReg.t with reg. rewrite <- H5.
+  change positive with reg. rewrite <- H5.
   change (interfere r1 r2 g). unfold g.
   apply interf_graph_correct_3; auto.
 Qed.
diff --git a/backend/InterfGraph.v b/backend/InterfGraph.v
index 433c074d1..8a9dda67a 100644
--- a/backend/InterfGraph.v
+++ b/backend/InterfGraph.v
@@ -55,7 +55,7 @@ Module OrderedRegMreg := OrderedPair(OrderedReg)(OrderedMreg).
 Module SetRegReg := FSetAVL.Make(OrderedRegReg).
 Module SetRegMreg := FSetAVL.Make(OrderedRegMreg).
 
-Record graph: Set := mkgraph {
+Record graph: Type := mkgraph {
   interf_reg_reg: SetRegReg.t;
   interf_reg_mreg: SetRegMreg.t;
   pref_reg_reg: SetRegReg.t;
@@ -160,7 +160,7 @@ Lemma add_interf_correct:
   interfere x y (add_interf x y g).
 Proof.
   intros. unfold interfere, add_interf; simpl.
-  apply SetRegReg.add_1. red. apply OrderedRegReg.eq_refl.
+  apply SetRegReg.add_1. auto. 
 Qed.
 
 Lemma add_interf_incl:
@@ -177,7 +177,7 @@ Lemma add_interf_mreg_correct:
   interfere_mreg x y (add_interf_mreg x y g).
 Proof.
   intros. unfold interfere_mreg, add_interf_mreg; simpl.
-  apply SetRegMreg.add_1. red. apply OrderedRegMreg.eq_refl.
+  apply SetRegMreg.add_1. auto. 
 Qed.
 
 Lemma add_interf_mreg_incl:
@@ -214,17 +214,17 @@ Definition add_intf1 (r1m2: reg * mreg) (u: Regset.t) : Regset.t :=
   Regset.add (fst r1m2) u.
 
 Definition all_interf_regs (g: graph) : Regset.t :=
-  SetRegReg.fold _ add_intf2
+  SetRegReg.fold add_intf2
     g.(interf_reg_reg)
-    (SetRegMreg.fold _ add_intf1
+    (SetRegMreg.fold add_intf1
       g.(interf_reg_mreg)
       Regset.empty).
 
 Lemma in_setregreg_fold:
   forall g r1 r2 u,
   SetRegReg.In (r1, r2) g \/ Regset.In r1 u /\ Regset.In r2 u ->
-  Regset.In r1 (SetRegReg.fold _ add_intf2 g u) /\
-  Regset.In r2 (SetRegReg.fold _ add_intf2 g u).
+  Regset.In r1 (SetRegReg.fold add_intf2 g u) /\
+  Regset.In r2 (SetRegReg.fold add_intf2 g u).
 Proof.
   set (add_intf2' := fun u r1r2 => add_intf2 r1r2 u).
   assert (forall l r1 r2 u,
@@ -235,7 +235,7 @@ Proof.
   elim H; intro. inversion H0. auto.
   apply IHl. destruct a as [a1 a2].
   elim H; intro. inversion H0; subst. 
-  red in H2. simpl in H2. destruct H2. red in H1. red in H2. subst r1 r2.
+  red in H2. simpl in H2. destruct H2. subst r1 r2.
   right; unfold add_intf2', add_intf2; simpl; split.
   apply Regset.add_1. auto. 
   apply Regset.add_2. apply Regset.add_1. auto. 
@@ -250,7 +250,7 @@ Qed.
 Lemma in_setregreg_fold':
   forall g r u,
   Regset.In r u ->
-  Regset.In r (SetRegReg.fold _ add_intf2 g u).
+  Regset.In r (SetRegReg.fold add_intf2 g u).
 Proof.
   intros. exploit in_setregreg_fold. eauto. 
   intros [A B]. eauto.
@@ -259,7 +259,7 @@ Qed.
 Lemma in_setregmreg_fold:
   forall g r1 mr2 u,
   SetRegMreg.In (r1, mr2) g \/ Regset.In r1 u ->
-  Regset.In r1 (SetRegMreg.fold _ add_intf1 g u).
+  Regset.In r1 (SetRegMreg.fold add_intf1 g u).
 Proof.
   set (add_intf1' := fun u r1mr2 => add_intf1 r1mr2 u).
   assert (forall l r1 mr2 u,
@@ -269,7 +269,7 @@ Proof.
   elim H; intro. inversion H0. auto.
   apply IHl with mr2. destruct a as [a1 a2].
   elim H; intro. inversion H0; subst. 
-  red in H2. simpl in H2. destruct H2. red in H1. red in H2. subst r1 mr2.
+  red in H2. simpl in H2. destruct H2. subst r1 mr2.
   right; unfold add_intf1', add_intf1; simpl.
   apply Regset.add_1; auto.
   tauto.
diff --git a/backend/Kildall.v b/backend/Kildall.v
index b4445aebd..188a23fdc 100644
--- a/backend/Kildall.v
+++ b/backend/Kildall.v
@@ -108,7 +108,7 @@ End DATAFLOW_SOLVER.
 
 Module Type NODE_SET.
 
-  Variable t: Set.
+  Variable t: Type.
   Variable add: positive -> t -> t.
   Variable pick: t -> option (positive * t).
   Variable initial: positive -> t.
@@ -147,7 +147,7 @@ Variable entrypoints: list (positive * L.t).
 - A worklist of program points that remain to be considered.
 *)
 
-Record state : Set :=
+Record state : Type :=
   mkstate { st_in: PMap.t L.t; st_wrk: NS.t }.
 
 (** Kildall's algorithm, in pseudo-code, is as follows:
@@ -663,7 +663,7 @@ End Backward_Dataflow_Solver.
 
 Module Type ORDERED_TYPE_WITH_TOP.
 
-  Variable t: Set.
+  Variable t: Type.
   Variable ge: t -> t -> Prop.
   Variable top: t.
   Hypothesis top_ge: forall x, ge top x.
@@ -736,7 +736,7 @@ Definition result := PMap.t L.t.
 - A worklist of program points that remain to be considered.
 *)
 
-Record state : Set := mkstate
+Record state : Type := mkstate
   { st_in: result; st_wrk: list positive }.
 
 (** The ``extended basic block'' algorithm, in pseudo-code, is as follows:
@@ -1167,7 +1167,7 @@ Module NodeSetForward <: NODE_SET.
     rewrite positive_rec_succ. rewrite PositiveSetFacts.add_iff. 
     elim (Plt_succ_inv _ _ H0); intro.
     right. apply H. auto.
-    left. red. red. auto.
+    left. auto.
   Qed.
 End NodeSetForward.
 
diff --git a/backend/LTL.v b/backend/LTL.v
index 0db5495e4..3a61e6d0f 100644
--- a/backend/LTL.v
+++ b/backend/LTL.v
@@ -34,7 +34,7 @@ Require Import Conventions.
 
 Definition node := positive.
 
-Inductive instruction: Set :=
+Inductive instruction: Type :=
   | Lnop: node -> instruction
   | Lop: operation -> list loc -> loc -> node -> instruction
   | Lload: memory_chunk -> addressing -> list loc -> loc -> node -> instruction
@@ -44,9 +44,9 @@ Inductive instruction: Set :=
   | Lcond: condition -> list loc -> node -> node -> instruction
   | Lreturn: option loc -> instruction.
 
-Definition code: Set := PTree.t instruction.
+Definition code: Type := PTree.t instruction.
 
-Record function: Set := mkfunction {
+Record function: Type := mkfunction {
   fn_sig: signature;
   fn_params: list loc;
   fn_stacksize: Z;
@@ -103,7 +103,7 @@ Definition postcall_locs (ls: locset) : locset :=
 
 (** LTL execution states. *)
 
-Inductive stackframe : Set :=
+Inductive stackframe : Type :=
   | Stackframe:
       forall (res: loc)         (**r where to store the result *)
              (f: function)      (**r calling function *)
@@ -112,7 +112,7 @@ Inductive stackframe : Set :=
              (pc: node),        (**r program point in calling function *)
       stackframe.
 
-Inductive state : Set :=
+Inductive state : Type :=
   | State:
       forall (stack: list stackframe) (**r call stack *)
              (f: function)            (**r function currently executing *)
diff --git a/backend/LTLin.v b/backend/LTLin.v
index 4c87c0d68..10b7d8323 100644
--- a/backend/LTLin.v
+++ b/backend/LTLin.v
@@ -41,7 +41,7 @@ Definition label := positive.
   transfer control to the given code label.  Labels are explicitly
   inserted in the instruction list as pseudo-instructions [Llabel]. *)
 
-Inductive instruction: Set :=
+Inductive instruction: Type :=
   | Lop: operation -> list loc -> loc -> instruction
   | Lload: memory_chunk -> addressing -> list loc -> loc -> instruction
   | Lstore: memory_chunk -> addressing -> list loc -> loc -> instruction
@@ -52,9 +52,9 @@ Inductive instruction: Set :=
   | Lcond: condition -> list loc -> label -> instruction
   | Lreturn: option loc -> instruction.
 
-Definition code: Set := list instruction.
+Definition code: Type := list instruction.
 
-Record function: Set := mkfunction {
+Record function: Type := mkfunction {
   fn_sig: signature;
   fn_params: list loc;
   fn_stacksize: Z;
@@ -109,7 +109,7 @@ Fixpoint find_label (lbl: label) (c: code) {struct c} : option code :=
   code sequences [c] (suffixes of the code of the current function).
 *)
 
-Inductive stackframe : Set :=
+Inductive stackframe : Type :=
   | Stackframe:
       forall (res: loc)       (**r where to store the result *)
              (f: function)    (**r calling function *)
@@ -118,7 +118,7 @@ Inductive stackframe : Set :=
              (c: code),       (**r program point in calling function *)
       stackframe.
 
-Inductive state : Set :=
+Inductive state : Type :=
   | State:
       forall (stack: list stackframe) (**r call stack *)
              (f: function)            (**r function currently executing *)
diff --git a/backend/Linear.v b/backend/Linear.v
index 34d6e5ce8..e025407a8 100644
--- a/backend/Linear.v
+++ b/backend/Linear.v
@@ -35,7 +35,7 @@ Require Import Conventions.
 
 Definition label := positive.
 
-Inductive instruction: Set :=
+Inductive instruction: Type :=
   | Lgetstack: slot -> mreg -> instruction
   | Lsetstack: mreg -> slot -> instruction
   | Lop: operation -> list mreg -> mreg -> instruction
@@ -48,9 +48,9 @@ Inductive instruction: Set :=
   | Lcond: condition -> list mreg -> label -> instruction
   | Lreturn: instruction.
 
-Definition code: Set := list instruction.
+Definition code: Type := list instruction.
 
-Record function: Set := mkfunction {
+Record function: Type := mkfunction {
   fn_sig: signature;
   fn_stacksize: Z;
   fn_code: code
@@ -163,7 +163,7 @@ Definition return_regs (caller callee: locset) : locset :=
 
 (** Linear execution states. *)
 
-Inductive stackframe: Set :=
+Inductive stackframe: Type :=
   | Stackframe:
       forall (f: function)         (**r calling function *)
              (sp: val)             (**r stack pointer in calling function *)
@@ -171,7 +171,7 @@ Inductive stackframe: Set :=
              (c: code),            (**r program point in calling function *)
       stackframe.
 
-Inductive state: Set :=
+Inductive state: Type :=
   | State:
       forall (stack: list stackframe) (**r call stack *)
              (f: function)            (**r function currently executing *)
diff --git a/backend/Linearizeproof.v b/backend/Linearizeproof.v
index b38542917..c24d37042 100644
--- a/backend/Linearizeproof.v
+++ b/backend/Linearizeproof.v
@@ -193,7 +193,7 @@ Proof.
   generalize EQ0; clear EQ0. caseEq (check_reachable f reach x); intros; inv EQ0.
   exploit check_reachable_correct; eauto. intro.
   exploit nodeset_of_list_correct; eauto. intros [A [B C]].
-  rewrite B in H2. destruct H2. elim (Nodeset.empty_1 pc H2). auto.
+  rewrite B in H2. destruct H2. elim (Nodeset.empty_1 H2). auto.
 Qed.
 
 Lemma enumerate_norepet:
diff --git a/backend/Locations.v b/backend/Locations.v
index ca2f52725..295df281d 100644
--- a/backend/Locations.v
+++ b/backend/Locations.v
@@ -42,7 +42,7 @@ Require Export Machregs.
   cannot reside in hardware registers, as determined by the 
   calling conventions. *)
 
-Inductive slot: Set :=
+Inductive slot: Type :=
   | Local: Z -> typ -> slot
   | Incoming: Z -> typ -> slot
   | Outgoing: Z -> typ -> slot.
@@ -108,7 +108,7 @@ Qed.
 (** Locations are just the disjoint union of machine registers and
   activation record slots. *)
 
-Inductive loc : Set :=
+Inductive loc : Type :=
   | R: mreg -> loc
   | S: slot -> loc.
 
diff --git a/backend/Mach.v b/backend/Mach.v
index 3f251373d..0bb24428c 100644
--- a/backend/Mach.v
+++ b/backend/Mach.v
@@ -49,7 +49,7 @@ Require Import Locations.
 
 Definition label := positive.
 
-Inductive instruction: Set :=
+Inductive instruction: Type :=
   | Mgetstack: int -> typ -> mreg -> instruction
   | Msetstack: mreg -> int -> typ -> instruction
   | Mgetparam: int -> typ -> mreg -> instruction
@@ -65,7 +65,7 @@ Inductive instruction: Set :=
 
 Definition code := list instruction.
 
-Record function: Set := mkfunction
+Record function: Type := mkfunction
   { fn_sig: signature;
     fn_code: code;
     fn_stacksize: Z;
diff --git a/backend/Machabstr.v b/backend/Machabstr.v
index 25819f720..aa17cd44b 100644
--- a/backend/Machabstr.v
+++ b/backend/Machabstr.v
@@ -51,7 +51,7 @@ Require Stacklayout.
     values.  Like location sets (see module [Locations]), overlap
     can occur. *)
 
-Definition frame : Set := typ -> Z -> val.
+Definition frame : Type := typ -> Z -> val.
 
 Definition typ_eq: forall (ty1 ty2: typ), {ty1=ty2} + {ty1<>ty2}.
 Proof. decide equality. Defined.
@@ -154,7 +154,7 @@ End FRAME_ACCESSES.
 
 (** Mach execution states. *)
 
-Inductive stackframe: Set :=
+Inductive stackframe: Type :=
   | Stackframe:
       forall (f: function)      (**r calling function *)
              (sp: val)          (**r stack pointer in calling function *)
@@ -162,7 +162,7 @@ Inductive stackframe: Set :=
              (fr: frame),       (**r frame state in calling function *)
       stackframe.
 
-Inductive state: Set :=
+Inductive state: Type :=
   | State:
       forall (stack: list stackframe) (**r call stack *)
              (f: function)            (**r function currently executing *)
diff --git a/backend/Machconcr.v b/backend/Machconcr.v
index 4417cc6fc..876f558c8 100644
--- a/backend/Machconcr.v
+++ b/backend/Machconcr.v
@@ -86,7 +86,7 @@ Definition extcall_arguments
 
 (** Mach execution states. *)
 
-Inductive stackframe: Set :=
+Inductive stackframe: Type :=
   | Stackframe:
       forall (f: block)       (**r pointer to calling function *)
              (sp: val)        (**r stack pointer in calling function *)
@@ -94,7 +94,7 @@ Inductive stackframe: Set :=
              (c: code),       (**r program point in calling function *)
       stackframe.
 
-Inductive state: Set :=
+Inductive state: Type :=
   | State:
       forall (stack: list stackframe)  (**r call stack *)
              (f: block)                (**r pointer to current function *)
diff --git a/backend/RTL.v b/backend/RTL.v
index 5fad2f270..344d271f1 100644
--- a/backend/RTL.v
+++ b/backend/RTL.v
@@ -44,7 +44,7 @@ Require Import Registers.
 
 Definition node := positive.
 
-Inductive instruction: Set :=
+Inductive instruction: Type :=
   | Inop: node -> instruction
       (** No operation -- just branch to the successor. *)
   | Iop: operation -> list reg -> reg -> node -> instruction
@@ -80,9 +80,9 @@ Inductive instruction: Set :=
           (it has no successor).  It returns the value of the given
           register, or [Vundef] if none is given. *)
 
-Definition code: Set := PTree.t instruction.
+Definition code: Type := PTree.t instruction.
 
-Record function: Set := mkfunction {
+Record function: Type := mkfunction {
   fn_sig: signature;
   fn_params: list reg;
   fn_stacksize: Z;
@@ -152,7 +152,7 @@ a function call in progress.
 [rs] is the state of registers in the calling function.
 *)
 
-Inductive stackframe : Set :=
+Inductive stackframe : Type :=
   | Stackframe:
       forall (res: reg)            (**r where to store the result *)
              (c: code)             (**r code of calling function *)
@@ -161,7 +161,7 @@ Inductive stackframe : Set :=
              (rs: regset),         (**r register state in calling function *)
       stackframe.
 
-Inductive state : Set :=
+Inductive state : Type :=
   | State:
       forall (stack: list stackframe) (**r call stack *)
              (c: code)                (**r current code *)
diff --git a/backend/RTLgen.v b/backend/RTLgen.v
index 709dc78c7..65e873e84 100644
--- a/backend/RTLgen.v
+++ b/backend/RTLgen.v
@@ -36,7 +36,7 @@ Open Local Scope string_scope.
   The mapping for let-bound variables is initially empty and updated
   during translation of expressions, when crossing a [Elet] binding. *)
 
-Record mapping: Set := mkmapping {
+Record mapping: Type := mkmapping {
   map_vars: PTree.t reg;
   map_letvars: list reg
 }.
@@ -45,7 +45,7 @@ Record mapping: Set := mkmapping {
   current state of the control-flow graph for the function being translated,
   as well as sources of fresh RTL registers and fresh CFG nodes. *)
 
-Record state: Set := mkstate {
+Record state: Type := mkstate {
   st_nextreg: positive;
   st_nextnode: positive;
   st_code: code;
@@ -104,25 +104,25 @@ Qed.
   We now define this monadic encoding -- the ``state and error'' monad --
   as well as convenient syntax to express monadic computations. *)
 
-Inductive res (A: Set) (s: state): Set :=
+Inductive res (A: Type) (s: state): Type :=
   | Error: Errors.errmsg -> res A s
   | OK: A -> forall (s': state), state_incr s s' -> res A s.
 
 Implicit Arguments OK [A s].
 Implicit Arguments Error [A s].
 
-Definition mon (A: Set) : Set := forall (s: state), res A s.
+Definition mon (A: Type) : Type := forall (s: state), res A s.
 
-Definition ret (A: Set) (x: A) : mon A :=
+Definition ret (A: Type) (x: A) : mon A :=
   fun (s: state) => OK x s (state_incr_refl s).
 
 Implicit Arguments ret [A].
 
-Definition error (A: Set) (msg: Errors.errmsg) : mon A := fun (s: state) => Error msg.
+Definition error (A: Type) (msg: Errors.errmsg) : mon A := fun (s: state) => Error msg.
 
 Implicit Arguments error [A].
 
-Definition bind (A B: Set) (f: mon A) (g: A -> mon B) : mon B :=
+Definition bind (A B: Type) (f: mon A) (g: A -> mon B) : mon B :=
   fun (s: state) =>
     match f s with
     | Error msg => Error msg
@@ -135,7 +135,7 @@ Definition bind (A B: Set) (f: mon A) (g: A -> mon B) : mon B :=
 
 Implicit Arguments bind [A B].
 
-Definition bind2 (A B C: Set) (f: mon (A * B)) (g: A -> B -> mon C) : mon C :=
+Definition bind2 (A B C: Type) (f: mon (A * B)) (g: A -> B -> mon C) : mon C :=
   bind f (fun xy => g (fst xy) (snd xy)).
 
 Implicit Arguments bind2 [A B C].
@@ -145,7 +145,7 @@ Notation "'do' X <- A ; B" := (bind A (fun X => B))
 Notation "'do' ( X , Y ) <- A ; B" := (bind2 A (fun X Y => B))
    (at level 200, X ident, Y ident, A at level 100, B at level 200).
 
-Definition handle_error (A: Set) (f g: mon A) : mon A :=
+Definition handle_error (A: Type) (f g: mon A) : mon A :=
   fun (s: state) =>
     match f s with
     | OK a s' i => OK a s' i
@@ -498,7 +498,7 @@ Fixpoint transl_switch (r: reg) (nexits: list node) (t: comptree)
   [nlist] if it terminates by an [exit n] construct.  [rret] is the
   register where the return value of the function must be stored, if any. *)
 
-Definition labelmap : Set := PTree.t node.
+Definition labelmap : Type := PTree.t node.
 
 Fixpoint transl_stmt (map: mapping) (s: stmt) (nd: node)
                      (nexits: list node) (ngoto: labelmap) (nret: node) (rret: option reg)
diff --git a/backend/RTLgenspec.v b/backend/RTLgenspec.v
index e6adeb05f..8e6127171 100644
--- a/backend/RTLgenspec.v
+++ b/backend/RTLgenspec.v
@@ -47,7 +47,7 @@ Require Import RTLgen.
 *)
 
 Remark bind_inversion:
-  forall (A B: Set) (f: mon A) (g: A -> mon B) 
+  forall (A B: Type) (f: mon A) (g: A -> mon B) 
          (y: B) (s1 s3: state) (i: state_incr s1 s3),
   bind f g s1 = OK y s3 i ->
   exists x, exists s2, exists i1, exists i2,
@@ -61,7 +61,7 @@ Proof.
 Qed.
 
 Remark bind2_inversion:
-  forall (A B C: Set) (f: mon (A*B)) (g: A -> B -> mon C)
+  forall (A B C: Type) (f: mon (A*B)) (g: A -> B -> mon C)
          (z: C) (s1 s3: state) (i: state_incr s1 s3),
   bind2 f g s1 = OK z s3 i ->
   exists x, exists y, exists s2, exists i1, exists i2,
@@ -827,20 +827,6 @@ Inductive tr_function: CminorSel.function -> RTL.function -> Prop :=
 (** We now show that the translation functions in module [RTLgen]
   satisfy the specifications given above as inductive predicates. *)
 
-Scheme tr_expr_ind3 := Minimality for tr_expr Sort Prop
-  with tr_condition_ind3 := Minimality for tr_condition Sort Prop
-  with tr_exprlist_ind3 := Minimality for tr_exprlist Sort Prop.
-
-Definition tr_expr_condition_exprlist_ind3
-  (c: code)
-  (P : mapping -> list reg -> expr -> node -> node -> reg -> Prop)
-  (P0 : mapping -> list reg -> condexpr -> node -> node -> node -> Prop)
-  (P1 : mapping -> list reg -> exprlist -> node -> node -> list reg -> Prop) :=
-  fun a b c' d e f g h i j k l =>
-  conj (tr_expr_ind3 c P P0 P1 a b c' d e f g h i j k l)
-       (conj (tr_condition_ind3 c P P0 P1 a b c' d e f g h i j k l)
-             (tr_exprlist_ind3 c P P0 P1 a b c' d e f g h i j k l)).
-
 Lemma tr_move_incr:
   forall s1 s2, state_incr s1 s2 ->
   forall ns rs nd rd,
@@ -850,69 +836,35 @@ Proof.
   induction 2; econstructor; eauto with rtlg.
 Qed.
 
-Lemma tr_expr_condition_exprlist_incr:
-  forall s1 s2, state_incr s1 s2 ->
-  (forall map pr a ns nd rd,
-   tr_expr s1.(st_code) map pr a ns nd rd ->
-   tr_expr s2.(st_code) map pr a ns nd rd)
-/\(forall map pr a ns ntrue nfalse,
-   tr_condition s1.(st_code) map pr a ns ntrue nfalse ->
-   tr_condition s2.(st_code) map pr a ns ntrue nfalse)
-/\(forall map pr al ns nd rl,
-   tr_exprlist s1.(st_code) map pr al ns nd rl ->
-   tr_exprlist s2.(st_code) map pr al ns nd rl).
-Proof.
-  intros s1 s2 EXT. 
-  pose (AT := fun pc i => instr_at_incr s1 s2 pc i EXT).
-  apply tr_expr_condition_exprlist_ind3; intros; econstructor; eauto.
-  eapply tr_move_incr; eauto.
-  eapply tr_move_incr; eauto.
-Qed.
-
 Lemma tr_expr_incr:
   forall s1 s2, state_incr s1 s2 ->
   forall map pr a ns nd rd,
   tr_expr s1.(st_code) map pr a ns nd rd ->
-  tr_expr s2.(st_code) map pr a ns nd rd.
-Proof.
-  intros.
-  exploit tr_expr_condition_exprlist_incr; eauto.
-  intros [A [B C]]. eauto.
-Qed.
-
-Lemma tr_condition_incr:
+  tr_expr s2.(st_code) map pr a ns nd rd
+with tr_condition_incr:
   forall s1 s2, state_incr s1 s2 ->
   forall map pr a ns ntrue nfalse,
   tr_condition s1.(st_code) map pr a ns ntrue nfalse ->
-  tr_condition s2.(st_code) map pr a ns ntrue nfalse.
-Proof.
-  intros.
-  exploit tr_expr_condition_exprlist_incr; eauto. 
-  intros [A [B C]]. eauto.
-Qed.
-
-Lemma tr_exprlist_incr:
+  tr_condition s2.(st_code) map pr a ns ntrue nfalse
+with tr_exprlist_incr:
   forall s1 s2, state_incr s1 s2 ->
   forall map pr al ns nd rl,
   tr_exprlist s1.(st_code) map pr al ns nd rl ->
   tr_exprlist s2.(st_code) map pr al ns nd rl.
 Proof.
-  intros.
-  exploit tr_expr_condition_exprlist_incr; eauto.
-  intros [A [B C]]. eauto.
+  intros s1 s2 EXT. 
+  pose (AT := fun pc i => instr_at_incr s1 s2 pc i EXT).
+  induction 1; econstructor; eauto.
+  eapply tr_move_incr; eauto.
+  eapply tr_move_incr; eauto.
+  intros s1 s2 EXT. 
+  pose (AT := fun pc i => instr_at_incr s1 s2 pc i EXT).
+  induction 1; econstructor; eauto.
+  intros s1 s2 EXT. 
+  pose (AT := fun pc i => instr_at_incr s1 s2 pc i EXT).
+  induction 1; econstructor; eauto.
 Qed.
 
-Scheme expr_ind3 := Induction for expr Sort Prop
-  with condexpr_ind3 := Induction for condexpr Sort Prop
-  with exprlist_ind3 := Induction for exprlist Sort Prop.
-
-Definition expr_condexpr_exprlist_ind 
-    (P1: expr -> Prop) (P2: condexpr -> Prop) (P3: exprlist -> Prop) :=
-  fun a b c d e f g h i j k l =>
-  conj (expr_ind3 P1 P2 P3 a b c d e f g h i j k l)
-    (conj (condexpr_ind3 P1 P2 P3 a b c d e f g h i j k l)
-          (exprlist_ind3 P1 P2 P3 a b c d e f g h i j k l)).
-
 Lemma add_move_charact:
   forall s ns rs nd rd s' i,
   add_move rs rd nd s = OK ns s' i -> 
@@ -923,30 +875,33 @@ Proof.
   constructor. eauto with rtlg.
 Qed.
 
-Lemma transl_expr_condexpr_list_charact:
-  (forall a map rd nd s ns s' pr INCR
+Lemma transl_expr_charact:
+  forall a map rd nd s ns s' pr INCR
      (TR: transl_expr map a rd nd s = OK ns s' INCR)
      (WF: map_valid map s)
      (OK: target_reg_ok map pr a rd)
      (VALID: regs_valid pr s)
      (VALID2: reg_valid rd s),
-   tr_expr s'.(st_code) map pr a ns nd rd)
-/\
-  (forall a map ntrue nfalse s ns s' pr INCR
+   tr_expr s'.(st_code) map pr a ns nd rd
+
+with transl_condexpr_charact:
+  forall a map ntrue nfalse s ns s' pr INCR
      (TR: transl_condition map a ntrue nfalse s = OK ns s' INCR)
-     (WF: map_valid map s)
-     (VALID: regs_valid pr s),
-   tr_condition s'.(st_code) map pr a ns ntrue nfalse)
-/\
-  (forall al map rl nd s ns s' pr INCR
+     (VALID: regs_valid pr s)
+     (WF: map_valid map s),
+   tr_condition s'.(st_code) map pr a ns ntrue nfalse
+
+with transl_exprlist_charact:
+  forall al map rl nd s ns s' pr INCR
      (TR: transl_exprlist map al rl nd s = OK ns s' INCR)
      (WF: map_valid map s)
      (OK: target_regs_ok map pr al rl)
      (VALID1: regs_valid pr s)
      (VALID2: regs_valid rl s),
-   tr_exprlist s'.(st_code) map pr al ns nd rl).
+   tr_exprlist s'.(st_code) map pr al ns nd rl.
+
 Proof.
-  apply expr_condexpr_exprlist_ind; intros; try (monadInv TR).
+  induction a; intros; try (monadInv TR).
   (* Evar *)
   generalize EQ; unfold find_var. caseEq (map_vars map)!i; intros; inv EQ1.
   econstructor; eauto.
@@ -955,31 +910,31 @@ Proof.
   (* Eop *)
   inv OK.
   econstructor; eauto with rtlg.
-  eapply H; eauto with rtlg.
+  eapply transl_exprlist_charact; eauto with rtlg.
   (* Eload *)
   inv OK.
   econstructor; eauto with rtlg.
-  eapply H; eauto with rtlg. 
+  eapply transl_exprlist_charact; eauto with rtlg. 
   (* Econdition *)
   inv OK.
   econstructor; eauto with rtlg.
-  eapply H; eauto with rtlg.
+  eapply transl_condexpr_charact; eauto with rtlg.
   apply tr_expr_incr with s1; auto. 
-  eapply H0; eauto with rtlg. constructor; auto. 
+  eapply transl_expr_charact; eauto with rtlg. constructor; auto.
   apply tr_expr_incr with s0; auto. 
-  eapply H1; eauto with rtlg. constructor; auto.
+  eapply transl_expr_charact; eauto with rtlg. constructor; auto.
   (* Elet *)
   inv OK.
   econstructor. eapply new_reg_not_in_map; eauto with rtlg.  
-  eapply H; eauto with rtlg.
+  eapply transl_expr_charact; eauto with rtlg.
   apply tr_expr_incr with s1; auto.
-  eapply H0. eauto. 
+  eapply transl_expr_charact. eauto. 
   apply add_letvar_valid; eauto with rtlg. 
   constructor; auto. 
   red; unfold reg_in_map. simpl. intros [[id A] | [B | C]].
-  elim H1. left; exists id; auto.
+  elim H. left; exists id; auto.
   subst x. apply valid_fresh_absurd with rd s. auto. eauto with rtlg.
-  elim H1. right; auto.
+  elim H. right; auto.
   eauto with rtlg. eauto with rtlg.
   (* Eletvar *)
   generalize EQ; unfold find_letvar. caseEq (nth_error (map_letvars map) n); intros; inv EQ0.
@@ -989,56 +944,41 @@ Proof.
   eapply add_move_charact; eauto.
   monadInv EQ1.
 
+(* Conditions *)
+  induction a; intros; try (monadInv TR).
+
   (* CEtrue *)
   constructor.
   (* CEfalse *)
   constructor.
   (* CEcond *)
   econstructor; eauto with rtlg.
-  eapply H; eauto with rtlg.
+  eapply transl_exprlist_charact; eauto with rtlg.
   (* CEcondition *)
   econstructor.
-  eapply H; eauto with rtlg.
+  eapply transl_condexpr_charact; eauto with rtlg.
   apply tr_condition_incr with s1; auto.
-  eapply H0; eauto with rtlg.
+  eapply transl_condexpr_charact; eauto with rtlg.
   apply tr_condition_incr with s0; auto.
-  eapply H1; eauto with rtlg.
+  eapply transl_condexpr_charact; eauto with rtlg.
+
+(* Lists *)
+
+  induction al; intros; try (monadInv TR).
 
   (* Enil *)
   destruct rl; inv TR. constructor.
   (* Econs *)
   destruct rl; simpl in TR; monadInv TR. inv OK.
   econstructor.
-  eapply H; eauto with rtlg.
+  eapply transl_expr_charact; eauto with rtlg.
   generalize (VALID2 r (in_eq _ _)). eauto with rtlg.
   apply tr_exprlist_incr with s0; auto.
-  eapply H0; eauto with rtlg.
+  eapply transl_exprlist_charact; eauto with rtlg.
   apply regs_valid_cons. apply VALID2. auto with coqlib. auto. 
   red; intros; apply VALID2; auto with coqlib.
 Qed.
 
-Lemma transl_expr_charact:
-  forall a map rd nd s ns s' INCR
-     (TR: transl_expr map a rd nd s = OK ns s' INCR)
-     (WF: map_valid map s)
-     (OK: target_reg_ok map nil a rd)
-     (VALID2: reg_valid rd s),
-   tr_expr s'.(st_code) map nil a ns nd rd.
-Proof.
-  destruct transl_expr_condexpr_list_charact as [A [B C]].
-  intros. eapply A; eauto with rtlg.
-Qed.
-
-Lemma transl_condexpr_charact:
-  forall a map ntrue nfalse s ns s' INCR
-     (TR: transl_condition map a ntrue nfalse s = OK ns s' INCR)
-     (WF: map_valid map s),
-   tr_condition s'.(st_code) map nil a ns ntrue nfalse.
-Proof.
-  destruct transl_expr_condexpr_list_charact as [A [B C]].
-  intros. eapply B; eauto with rtlg.
-Qed.
-
 Lemma tr_store_var_incr:
   forall s1 s2, state_incr s1 s2 ->
   forall map rs id ns nd,
@@ -1076,7 +1016,7 @@ Lemma tr_stmt_incr:
   tr_stmt s2.(st_code) map s ns nd nexits ngoto nret rret.
 Proof.
   intros s1 s2 EXT.
-  destruct (tr_expr_condition_exprlist_incr s1 s2 EXT) as [A [B C]].
+  generalize tr_expr_incr tr_condition_incr tr_exprlist_incr; intros I1 I2 I3.
   pose (AT := fun pc i => instr_at_incr s1 s2 pc i EXT).
   pose (STV := tr_store_var_incr s1 s2 EXT).
   pose (STOV := tr_store_optvar_incr s1 s2 EXT).
@@ -1148,19 +1088,17 @@ Proof.
   apply tr_store_var_incr with s1; auto with rtlg.
   eapply store_var_charact; eauto.
   (* Sstore *)
-  destruct transl_expr_condexpr_list_charact as [P1 [P2 P3]].
   econstructor; eauto with rtlg.
-  eapply P3; eauto with rtlg. 
+  eapply transl_exprlist_charact; eauto with rtlg.
   apply tr_expr_incr with s3; eauto with rtlg.
-  eapply P1; eauto with rtlg. 
+  eapply transl_expr_charact; eauto with rtlg. 
   (* Scall *)
-  destruct transl_expr_condexpr_list_charact as [P1 [P2 P3]].
   assert (state_incr s0 s3) by eauto with rtlg.
   assert (state_incr s3 s6) by eauto with rtlg.
   econstructor; eauto with rtlg.
-  eapply P1; eauto with rtlg.
+  eapply transl_expr_charact; eauto with rtlg.
   apply tr_exprlist_incr with s6. auto. 
-  eapply P3; eauto with rtlg.
+  eapply transl_exprlist_charact; eauto with rtlg.
   eapply alloc_regs_target_ok with (s1 := s1); eauto with rtlg.
   apply regs_valid_cons; eauto with rtlg.
   apply regs_valid_incr with s1; eauto with rtlg.
@@ -1169,13 +1107,12 @@ Proof.
   apply tr_store_optvar_incr with s4; eauto with rtlg.
   eapply store_optvar_charact; eauto with rtlg.
   (* Stailcall *)
-  destruct transl_expr_condexpr_list_charact as [A [B C]].
   assert (RV: regs_valid (x :: nil) s1).
     apply regs_valid_cons; eauto with rtlg. 
   econstructor; eauto with rtlg.
-  eapply A; eauto with rtlg.
+  eapply transl_expr_charact; eauto with rtlg.
   apply tr_exprlist_incr with s4; auto.
-  eapply C; eauto with rtlg.
+  eapply transl_exprlist_charact; eauto with rtlg.
   (* Sseq *)
   econstructor. 
   apply tr_stmt_incr with s0; auto. 
diff --git a/backend/Registers.v b/backend/Registers.v
index c3d04d602..fceb7c240 100644
--- a/backend/Registers.v
+++ b/backend/Registers.v
@@ -24,7 +24,7 @@ Require Import Ordered.
 Require Import FSets.
 Require FSetAVL.
 
-Definition reg: Set := positive.
+Definition reg: Type := positive.
 
 Module Reg.
 
@@ -41,14 +41,14 @@ Module Regmap := PMap.
 Set Implicit Arguments.
 
 Definition regmap_optget
-    (A: Set) (or: option reg) (dfl: A) (rs: Regmap.t A) : A :=
+    (A: Type) (or: option reg) (dfl: A) (rs: Regmap.t A) : A :=
   match or with
   | None => dfl
   | Some r => Regmap.get r rs
   end.
 
 Definition regmap_optset
-    (A: Set) (or: option reg) (v: A) (rs: Regmap.t A) : Regmap.t A :=
+    (A: Type) (or: option reg) (v: A) (rs: Regmap.t A) : Regmap.t A :=
   match or with
   | None => rs
   | Some r => Regmap.set r v rs
diff --git a/backend/Stacking.v b/backend/Stacking.v
index 158af8f6e..182c32269 100644
--- a/backend/Stacking.v
+++ b/backend/Stacking.v
@@ -34,7 +34,7 @@ Require Import Stacklayout.
 (** Computation the frame offset for the given component of the frame.
   The component is expressed by the following [frame_index] sum type. *)
 
-Inductive frame_index: Set :=
+Inductive frame_index: Type :=
   | FI_link: frame_index
   | FI_retaddr: frame_index
   | FI_local: Z -> typ -> frame_index
diff --git a/backend/Stackingproof.v b/backend/Stackingproof.v
index a7560d039..d5819f7ef 100644
--- a/backend/Stackingproof.v
+++ b/backend/Stackingproof.v
@@ -955,7 +955,7 @@ Proof.
   exists ls'; exists rs'. split. assumption.
   split. intros. elim H2; intros. 
   subst r. apply (agree_unused_reg _ _ _ _ _ D).
-  rewrite <- number_within_bounds. auto. omega. auto.
+  rewrite <- number_within_bounds. auto. auto. auto.
   split. intros. simpl in H2. apply C. tauto.
   assumption.
 Qed.
@@ -1051,7 +1051,7 @@ End FRAME_PROPERTIES.
 Section LABELS.
 
 Remark find_label_fold_right:
-  forall (A: Set) (fn: A -> Mach.code -> Mach.code) lbl,
+  forall (A: Type) (fn: A -> Mach.code -> Mach.code) lbl,
   (forall x k, Mach.find_label lbl (fn x k) = Mach.find_label lbl k) ->  forall (args: list A) k,
   Mach.find_label lbl (List.fold_right fn k args) = Mach.find_label lbl k.
 Proof.
diff --git a/backend/Stackingtyping.v b/backend/Stackingtyping.v
index b88dd50c7..1bafc35b1 100644
--- a/backend/Stackingtyping.v
+++ b/backend/Stackingtyping.v
@@ -51,7 +51,7 @@ Variable tf: Mach.function.
 Hypothesis TRANSF_F: transf_function f = OK tf.
 
 Lemma wt_fold_right:
-  forall (A: Set) (f: A -> code -> code) (k: code) (l: list A),
+  forall (A: Type) (f: A -> code -> code) (k: code) (l: list A),
   (forall x k', In x l -> wt_instrs k' -> wt_instrs (f x k')) ->
   wt_instrs k ->
   wt_instrs (List.fold_right f k l).
diff --git a/backend/Tailcallproof.v b/backend/Tailcallproof.v
index 8e97e1a47..791db3742 100644
--- a/backend/Tailcallproof.v
+++ b/backend/Tailcallproof.v
@@ -574,8 +574,8 @@ Proof.
   exploit loadv_lessdef; eauto. 
   intros [v' [LOAD' VLD]].
   left. exists (State s' (fn_code (transf_function f)) (Vptr sp0 Int.zero) pc' (rs'#dst <- v') m'); split.
-  eapply exec_Iload; eauto.  rewrite <- ADDR'.
-  apply eval_addressing_preserved. exact symbols_preserved.
+  eapply exec_Iload with (a := a'). eauto.  rewrite <- ADDR'.
+  apply eval_addressing_preserved. exact symbols_preserved. eauto.
   econstructor; eauto. apply regset_set; auto.
 
 (* store *)
@@ -586,8 +586,8 @@ Proof.
   exploit storev_lessdef. 4: eexact H1. eauto. eauto. apply RLD.  
   intros [m'1 [STORE' MLD']].
   left. exists (State s' (fn_code (transf_function f)) (Vptr sp0 Int.zero) pc' rs' m'1); split.
-  eapply exec_Istore; eauto.  rewrite <- ADDR'.
-  apply eval_addressing_preserved. exact symbols_preserved.
+  eapply exec_Istore with (a := a'). eauto.  rewrite <- ADDR'.
+  apply eval_addressing_preserved. exact symbols_preserved. eauto.
   destruct a; simpl in H1; try discriminate.
   econstructor; eauto.
   eapply match_stacksize_store; eauto. 
diff --git a/backend/Tunnelingproof.v b/backend/Tunnelingproof.v
index 49bf89429..08f5f6ccb 100644
--- a/backend/Tunnelingproof.v
+++ b/backend/Tunnelingproof.v
@@ -268,16 +268,18 @@ Proof.
   (* Lload *)
   rewrite (branch_target_identity f pc); [idtac | rewrite H; auto].
   left; econstructor; split.
-  eapply exec_Lload; eauto.
+  eapply exec_Lload with (a := a). 
   rewrite (tunnel_function_lookup _ _ _ H); simpl; auto.  
   rewrite <- H0. apply eval_addressing_preserved. exact symbols_preserved.
+  eauto.
   econstructor; eauto.
   (* Lstore *)
   rewrite (branch_target_identity f pc); [idtac | rewrite H; auto].
   left; econstructor; split.
-  eapply exec_Lstore; eauto.
+  eapply exec_Lstore with (a := a).
   rewrite (tunnel_function_lookup _ _ _ H); simpl; auto.  
   rewrite <- H0. apply eval_addressing_preserved. exact symbols_preserved.
+  eauto.
   econstructor; eauto.
   (* Lcall *)
   left; econstructor; split. 
diff --git a/cfrontend/Cminorgen.v b/cfrontend/Cminorgen.v
index cc5e5ab34..1045d1a0d 100644
--- a/cfrontend/Cminorgen.v
+++ b/cfrontend/Cminorgen.v
@@ -108,7 +108,7 @@ Definition make_globaladdr (id: ident): expr :=
   data block.  [Var_global_scalar] and [Var_global_array] denote
   global variables, stored in the global symbols with the same names. *)
 
-Inductive var_info: Set :=
+Inductive var_info: Type :=
   | Var_local: memory_chunk -> var_info
   | Var_stack_scalar: memory_chunk -> Z -> var_info
   | Var_stack_array: Z -> var_info
diff --git a/cfrontend/Cminorgenproof.v b/cfrontend/Cminorgenproof.v
index 5615eabe4..f256bb26c 100644
--- a/cfrontend/Cminorgenproof.v
+++ b/cfrontend/Cminorgenproof.v
@@ -225,7 +225,7 @@ Record match_globalenvs (f: meminj) : Prop :=
   collecting information on the current execution state of a Csharpminor
   function and its Cminor translation. *)
 
-Record frame : Set :=
+Record frame : Type :=
   mkframe {
     fr_cenv: compilenv;
     fr_e: Csharpminor.env;
@@ -235,7 +235,7 @@ Record frame : Set :=
     fr_high: Z
   }.
 
-Definition callstack : Set := list frame.
+Definition callstack : Type := list frame.
 
 (** Matching of call stacks imply matching of environments for each of
   the frames, plus matching of the global environments, plus disjointness
diff --git a/cfrontend/Csem.v b/cfrontend/Csem.v
index 14b8053d8..248192cc7 100644
--- a/cfrontend/Csem.v
+++ b/cfrontend/Csem.v
@@ -426,7 +426,7 @@ Definition empty_env: env := (PTree.empty block).
   how the execution terminated: either normally or prematurely
   through the execution of a [break], [continue] or [return] statement. *)
 
-Inductive outcome: Set :=
+Inductive outcome: Type :=
    | Out_break: outcome                 (**r terminated by [break] *)
    | Out_continue: outcome              (**r terminated by [continue] *)
    | Out_normal: outcome                (**r terminated normally *)
diff --git a/cfrontend/Csharpminor.v b/cfrontend/Csharpminor.v
index 1aa536a14..942cfd75e 100644
--- a/cfrontend/Csharpminor.v
+++ b/cfrontend/Csharpminor.v
@@ -37,14 +37,14 @@ Require Import Smallstep.
   be taken using [Eaddrof] expressions.
 *)
 
-Inductive constant : Set :=
+Inductive constant : Type :=
   | Ointconst: int -> constant          (**r integer constant *)
   | Ofloatconst: float -> constant.     (**r floating-point constant *)
 
-Definition unary_operation : Set := Cminor.unary_operation.
-Definition binary_operation : Set := Cminor.binary_operation.
+Definition unary_operation : Type := Cminor.unary_operation.
+Definition binary_operation : Type := Cminor.binary_operation.
 
-Inductive expr : Set :=
+Inductive expr : Type :=
   | Evar : ident -> expr                (**r reading a scalar variable  *)
   | Eaddrof : ident -> expr             (**r taking the address of a variable *)
   | Econst : constant -> expr           (**r constants *)
@@ -59,7 +59,7 @@ Inductive expr : Set :=
   [Sexit n] terminates prematurely the execution of the [n+1] enclosing
   [Sblock] statements. *)
 
-Inductive stmt : Set :=
+Inductive stmt : Type :=
   | Sskip: stmt
   | Sassign : ident -> expr -> stmt
   | Sstore : memory_chunk -> expr -> expr -> stmt
@@ -77,7 +77,7 @@ Inductive stmt : Set :=
   or array variables (of the indicated sizes).  The only operation
   permitted on an array variable is taking its address. *)
 
-Inductive var_kind : Set :=
+Inductive var_kind : Type :=
   | Vscalar: memory_chunk -> var_kind
   | Varray: Z -> var_kind.
 
@@ -86,7 +86,7 @@ Inductive var_kind : Set :=
   local variables with associated [var_kind] description, and a
   statement representing the function body.  *)
 
-Record function : Set := mkfunction {
+Record function : Type := mkfunction {
   fn_sig: signature;
   fn_params: list (ident * memory_chunk);
   fn_vars: list (ident * var_kind);
@@ -95,7 +95,7 @@ Record function : Set := mkfunction {
 
 Definition fundef := AST.fundef function.
 
-Definition program : Set := AST.program fundef var_kind.
+Definition program : Type := AST.program fundef var_kind.
 
 Definition funsig (fd: fundef) :=
   match fd with
@@ -109,7 +109,7 @@ Definition funsig (fd: fundef) :=
   style.  Expressions evaluate to values, and statements evaluate to
   ``outcomes'' indicating how execution should proceed afterwards. *)
 
-Inductive outcome: Set :=
+Inductive outcome: Type :=
   | Out_normal: outcome                (**r continue in sequence *)
   | Out_exit: nat -> outcome           (**r terminate [n+1] enclosing blocks *)
   | Out_return: option val -> outcome. (**r return immediately to caller *)
diff --git a/cfrontend/Cshmgenproof1.v b/cfrontend/Cshmgenproof1.v
index 2c010cb49..bd9cf2297 100644
--- a/cfrontend/Cshmgenproof1.v
+++ b/cfrontend/Cshmgenproof1.v
@@ -80,7 +80,7 @@ Qed.
 (** * Properties of the translation functions *)
 
 Lemma map_partial_names:
-  forall (A B: Set) (f: A -> res B)
+  forall (A B: Type) (f: A -> res B)
          (l: list (ident * A)) (tl: list (ident * B)),
   map_partial prefix_var_name f l = OK tl ->
   List.map (@fst ident B) tl = List.map (@fst ident A) l.
@@ -93,7 +93,7 @@ Proof.
 Qed.
    
 Lemma map_partial_append:
-  forall (A B: Set) (f: A -> res B)
+  forall (A B: Type) (f: A -> res B)
          (l1 l2: list (ident * A)) (tl1 tl2: list (ident * B)),
   map_partial prefix_var_name f l1 = OK tl1 ->
   map_partial prefix_var_name f l2 = OK tl2 ->
diff --git a/cfrontend/Cshmgenproof3.v b/cfrontend/Cshmgenproof3.v
index 75dbc145c..af6dc90af 100644
--- a/cfrontend/Cshmgenproof3.v
+++ b/cfrontend/Cshmgenproof3.v
@@ -865,7 +865,7 @@ Definition eval_funcall_prop
    Csharpminor.eval_funcall tprog m1 tf params t m2 res.
 
 (*
-Set Printing Depth 100.
+Type Printing Depth 100.
 Check (Csem.eval_funcall_ind3 ge exec_stmt_prop exec_lblstmts_prop eval_funcall_prop).
 *)
 
@@ -1592,19 +1592,18 @@ Lemma transl_funcall_divergence_correct:
   Csem.evalinf_funcall ge m1 f params t ->
   wt_fundef (global_typenv prog) f ->
   transl_fundef f = OK tf ->
-  Csharpminor.evalinf_funcall tprog m1 tf params t.
-Proof.
-  cofix FUNCALL.
-  assert (STMT: 
-    forall e m1 s t,
-    Csem.execinf_stmt ge e m1 s t ->
-    forall tyenv nbrk ncnt ts te
-      (WT: wt_stmt tyenv s)
-      (TR: transl_statement nbrk ncnt s = OK ts)   
-      (MENV: match_env tyenv e te),
-    Csharpminor.execinf_stmt tprog te m1 ts t).
-  cofix STMT.
-  assert(LBLSTMT:
+  Csharpminor.evalinf_funcall tprog m1 tf params t
+
+with transl_stmt_divergence_correct:
+  forall e m1 s t,
+  Csem.execinf_stmt ge e m1 s t ->
+  forall tyenv nbrk ncnt ts te
+    (WT: wt_stmt tyenv s)
+    (TR: transl_statement nbrk ncnt s = OK ts)   
+    (MENV: match_env tyenv e te),
+  Csharpminor.execinf_stmt tprog te m1 ts t
+
+with transl_lblstmt_divergence_correct:
   forall s ncnt body ts tyenv e te m0 t0 m1 t1 n,
   transl_lblstmts (lblstmts_length s)
                   (S (lblstmts_length s + ncnt))
@@ -1617,66 +1616,30 @@ Proof.
        /\ execinf_lblstmts ge e m1 (select_switch n s) t1)
    \/ (exec_stmt tprog te m0 body t0 m1 Out_normal
        /\ execinf_lblstmts ge e m1 s t1) ->
-  execinf_stmt_N tprog (lblstmts_length s) te m0 ts (t0 *** t1)).
+  execinf_stmt_N tprog (lblstmts_length s) te m0 ts (t0 *** t1).
 
-  cofix LBLSTMT; intros.
-  destruct s; simpl in *; monadInv H; inv H0.
-  (* 1. LSdefault *)
-  assert (exec_stmt tprog te m0 body t0 m1 Out_normal) by tauto.
-  assert (execinf_lblstmts ge e m1 (LSdefault s) t1) by tauto.
-  clear H2. inv H0.  
-  change (Sblock (Sseq body x))
-    with ((fun z => Sblock z) (Sseq body x)).
-  apply execinf_context. 
-  eapply execinf_Sseq_2. eauto. eapply STMT; eauto. auto.
-  constructor.
-  (* 2. LScase *)
-  elim H2; clear H2.
-  (* 2.1 searching for the case *)
-  rewrite (Int.eq_sym i n). 
-  destruct (Int.eq n i).
-  (* 2.1.1 found it! *)
-  intros [A B]. inv B.
-  (* 2.1.1.1 we diverge because of this case *)
-  destruct (transl_lblstmts_context _ _ _ _ _ EQ0) as [ctx [CTX EQ1]].
-  rewrite EQ1. apply execinf_context; auto. 
-  apply execinf_Sblock. eapply execinf_Sseq_2. eauto. 
-  eapply STMT; eauto. auto.
-  (* 2.1.1.2 we diverge later, after falling through *)
-  simpl. apply execinf_sleep.
-  replace (t0 *** t2 *** t3) with ((t0 ** t2) *** t3). 
-  eapply LBLSTMT with (n := n); eauto. right. split.
-  change Out_normal with (outcome_block Out_normal). 
-  apply exec_Sblock.
-  eapply exec_Sseq_continue. eauto. 
-  change Out_normal with (transl_outcome (S (lblstmts_length s0)) (S (S (lblstmts_length s0 + ncnt))) Csem.Out_normal).
-  eapply (transl_stmt_correct _ _ _ _ _ _ H8); eauto.
-  auto. auto. traceEq.
-  (* 2.1.2 still searching *)
-  rewrite switch_target_table_shift. intros [A B].
-  apply execinf_sleep.
-  eapply LBLSTMT with (n := n); eauto. left. split.
-  fold (outcome_block (Out_exit (switch_target n (lblstmts_length s0) (switch_table s0 0)))).
-  apply exec_Sblock. apply exec_Sseq_stop. eauto. congruence.
-  auto.
-  (* 2.2 found the case already, falling through next cases *)
-  intros [A B]. inv B.
-  (* 2.2.1 we diverge because of this case *)
-  destruct (transl_lblstmts_context _ _ _ _ _ EQ0) as [ctx [CTX EQ1]].
-  rewrite EQ1. apply execinf_context; auto. 
-  apply execinf_Sblock. eapply execinf_Sseq_2. eauto. 
-  eapply STMT; eauto. auto.
-  (* 2.2.2 we diverge later *)
-  simpl. apply execinf_sleep.
-  replace (t0 *** t2 *** t3) with ((t0 ** t2) *** t3). 
-  eapply LBLSTMT with (n := n); eauto. right. split.
-  change Out_normal with (outcome_block Out_normal). 
-  apply exec_Sblock.
-  eapply exec_Sseq_continue. eauto. 
-  change Out_normal with (transl_outcome (S (lblstmts_length s0)) (S (S (lblstmts_length s0 + ncnt))) Csem.Out_normal).
-  eapply (transl_stmt_correct _ _ _ _ _ _ H8); eauto.
-  auto. auto. traceEq.
+Proof.
+  (* Functions *)
+  intros. inv H. 
+  (* Exploitation of typing hypothesis *)
+  inv H0. inv H6. 
+  (* Exploitation of translation hypothesis *)
+  monadInv H1. monadInv EQ.
+  (* Allocation of variables *)
+  assert (match_env (global_typenv prog) Csem.empty_env Csharpminor.empty_env).
+    apply match_globalenv_match_env_empty. apply match_global_typenv. 
+  generalize (transl_fn_variables _ _ (signature_of_function f0) _ _ x2 EQ0 EQ).
+  intro. 
+  destruct (match_env_alloc_variables _ _ _ _ _ _ H2 _ _ _ H1 H5)
+  as [te [ALLOCVARS MATCHENV]].
+  (* Execution *)
+  econstructor; simpl.
+  eapply transl_names_norepet; eauto. 
+  eexact ALLOCVARS.
+  eapply bind_parameters_match; eauto.
+  eapply transl_stmt_divergence_correct; eauto.
 
+(* Statements *)
 
   intros. inv H; inv WT; try (generalize TR; intro TR'; monadInv TR').
   (* Scall *)
@@ -1688,44 +1651,44 @@ Proof.
   eapply (transl_exprlist_correct _ _ _ _ MENV _ _ H1); eauto.
   eauto. 
   eapply transl_fundef_sig1; eauto. rewrite H3; auto. 
-  eapply FUNCALL; eauto.
+  eapply transl_funcall_divergence_correct; eauto.
   eapply functions_well_typed; eauto.
   (* Sseq 1 *)
-  apply execinf_Sseq_1. eapply STMT; eauto. 
+  apply execinf_Sseq_1. eapply transl_stmt_divergence_correct; eauto. 
   (* Sseq 2 *)
   eapply execinf_Sseq_2. 
   change Out_normal with (transl_outcome nbrk ncnt Csem.Out_normal).
   eapply (transl_stmt_correct _ _ _ _ _ _ H0); eauto.
-  eapply STMT; eauto. auto.
+  eapply transl_stmt_divergence_correct; eauto. auto.
   (* Sifthenelse, true *)
   assert (eval_expr tprog te m1 x v1).
     eapply (transl_expr_correct _ _ _ _ MENV _ _ H0); eauto.
   destruct (make_boolean_correct_true _ _ _ _ _ _ H H1) as [vb [A B]].
   eapply execinf_Sifthenelse. eauto. apply Val.bool_of_true_val; eauto.
-  auto. eapply STMT; eauto.
+  auto. eapply transl_stmt_divergence_correct; eauto.
   (* Sifthenelse, false *)
   assert (eval_expr tprog te m1 x v1).
     eapply (transl_expr_correct _ _ _ _ MENV _ _ H0); eauto.
   destruct (make_boolean_correct_false _ _ _ _ _ _ H H1) as [vb [A B]].
   eapply execinf_Sifthenelse. eauto. apply Val.bool_of_false_val; eauto.
-  auto. eapply STMT; eauto.
+  auto. eapply transl_stmt_divergence_correct; eauto.
   (* Swhile, body *)
   apply execinf_Sblock. apply execinf_Sloop_body.  
   eapply execinf_Sseq_2. eapply exit_if_false_true; eauto. 
-  apply execinf_Sblock. eapply STMT; eauto. traceEq.
+  apply execinf_Sblock. eapply transl_stmt_divergence_correct; eauto. traceEq.
   (* Swhile, loop *)
   apply execinf_Sblock. eapply execinf_Sloop_block.
   eapply exec_Sseq_continue. eapply exit_if_false_true; eauto.
   rewrite (transl_out_normal_or_continue out1 H3). 
   apply exec_Sblock. 
   eapply (transl_stmt_correct _ _ _ _ _ _ H2); eauto. reflexivity.
-  eapply STMT with (nbrk := 1%nat) (ncnt := 0%nat); eauto.
+  eapply transl_stmt_divergence_correct with (nbrk := 1%nat) (ncnt := 0%nat); eauto.
   constructor; eauto.
   traceEq.
   (* Sdowhile, body *)
   apply execinf_Sblock. apply execinf_Sloop_body.  
   apply execinf_Sseq_1. apply execinf_Sblock.
-  eapply STMT; eauto.
+  eapply transl_stmt_divergence_correct; eauto.
   (* Sdowhile, loop *)
   apply execinf_Sblock. eapply execinf_Sloop_block.
   eapply exec_Sseq_continue.
@@ -1733,21 +1696,21 @@ Proof.
   apply exec_Sblock. 
   eapply (transl_stmt_correct _ _ _ _ _ _ H0); eauto. 
   eapply exit_if_false_true; eauto. reflexivity.
-  eapply STMT with (nbrk := 1%nat) (ncnt := 0%nat); eauto.
+  eapply transl_stmt_divergence_correct with (nbrk := 1%nat) (ncnt := 0%nat); eauto.
   constructor; auto.
   traceEq.
   (* Sfor start 1 *)
   simpl in TR. destruct (is_Sskip a1). 
   subst a1. inv H0.
   monadInv TR. 
-  apply execinf_Sseq_1. eapply STMT; eauto.
+  apply execinf_Sseq_1. eapply transl_stmt_divergence_correct; eauto.
   (* Sfor start 2 *)
   destruct (transl_stmt_Sfor_start _ _ _ _ _ _ _ TR H0) as [ts1 [ts2 [EQ [TR1 TR2]]]].
   subst ts. 
   eapply execinf_Sseq_2. 
   change Out_normal with (transl_outcome nbrk ncnt Csem.Out_normal).
   eapply (transl_stmt_correct _ _ _ _ _ _ H1); eauto.
-  eapply STMT; eauto. 
+  eapply transl_stmt_divergence_correct; eauto. 
     constructor; auto. constructor.
   auto.
   (* Sfor_body *)
@@ -1756,7 +1719,7 @@ Proof.
   eapply execinf_Sseq_2. 
   eapply exit_if_false_true; eauto.
   apply execinf_Sseq_1. apply execinf_Sblock. 
-  eapply STMT; eauto.
+  eapply transl_stmt_divergence_correct; eauto.
   traceEq.
   (* Sfor next *)
   rewrite transl_stmt_Sfor_not_start in TR; monadInv TR.
@@ -1767,7 +1730,7 @@ Proof.
   rewrite (transl_out_normal_or_continue out1 H3). 
   apply exec_Sblock. 
   eapply (transl_stmt_correct _ _ _ _ _ _ H2); eauto.
-  eapply STMT; eauto.
+  eapply transl_stmt_divergence_correct; eauto.
   reflexivity. traceEq. 
   (* Sfor loop *)
   generalize TR. rewrite transl_stmt_Sfor_not_start; intro TR'; monadInv TR'.
@@ -1781,7 +1744,7 @@ Proof.
   change Out_normal with (transl_outcome nbrk ncnt Csem.Out_normal).
   eapply (transl_stmt_correct _ _ _ _ _ _ H4); eauto.
   reflexivity. reflexivity. 
-  eapply STMT; eauto. 
+  eapply transl_stmt_divergence_correct; eauto. 
     constructor; auto.
   traceEq.
   (* Sswitch *)
@@ -1790,30 +1753,68 @@ Proof.
   replace (ncnt + lblstmts_length sl + 1)%nat
      with (S (lblstmts_length sl + ncnt))%nat in EQ0 by omega.
   change t with (E0 *** t).
-  eapply LBLSTMT; eauto.
+  eapply transl_lblstmt_divergence_correct; eauto.
   left. split. apply exec_Sblock. constructor. 
   eapply (transl_expr_correct _ _ _ _ MENV _ _ H0); eauto.
-  auto. 
+  auto.
 
-  (* Functions *)
-  intros. inv H. 
-  (* Exploitation of typing hypothesis *)
-  inv H0. inv H6. 
-  (* Exploitation of translation hypothesis *)
-  monadInv H1. monadInv EQ.
-  (* Allocation of variables *)
-  assert (match_env (global_typenv prog) Csem.empty_env Csharpminor.empty_env).
-    apply match_globalenv_match_env_empty. apply match_global_typenv. 
-  generalize (transl_fn_variables _ _ (signature_of_function f0) _ _ x2 EQ0 EQ).
-  intro. 
-  destruct (match_env_alloc_variables _ _ _ _ _ _ H2 _ _ _ H1 H5)
-  as [te [ALLOCVARS MATCHENV]].
-  (* Execution *)
-  econstructor; simpl.
-  eapply transl_names_norepet; eauto. 
-  eexact ALLOCVARS.
-  eapply bind_parameters_match; eauto.
-  eapply STMT; eauto. 
+(* Labeled statements *)
+  intros. destruct s; simpl in *; monadInv H; inv H0.
+  (* 1. LSdefault *)
+  assert (exec_stmt tprog te m0 body t0 m1 Out_normal) by tauto.
+  assert (execinf_lblstmts ge e m1 (LSdefault s) t1) by tauto.
+  clear H2. inv H0.  
+  change (Sblock (Sseq body x))
+    with ((fun z => Sblock z) (Sseq body x)).
+  apply execinf_context. 
+  eapply execinf_Sseq_2. eauto. eapply transl_stmt_divergence_correct; eauto. auto.
+  constructor.
+  (* 2. LScase *)
+  elim H2; clear H2.
+  (* 2.1 searching for the case *)
+  rewrite (Int.eq_sym i n). 
+  destruct (Int.eq n i).
+  (* 2.1.1 found it! *)
+  intros [A B]. inv B.
+  (* 2.1.1.1 we diverge because of this case *)
+  destruct (transl_lblstmts_context _ _ _ _ _ EQ0) as [ctx [CTX EQ1]].
+  rewrite EQ1. apply execinf_context; auto. 
+  apply execinf_Sblock. eapply execinf_Sseq_2. eauto. 
+  eapply transl_stmt_divergence_correct; eauto. auto.
+  (* 2.1.1.2 we diverge later, after falling through *)
+  simpl. apply execinf_sleep.
+  replace (t0 *** t2 *** t3) with ((t0 ** t2) *** t3). 
+  eapply transl_lblstmt_divergence_correct with (n := n); eauto. right. split.
+  change Out_normal with (outcome_block Out_normal). 
+  apply exec_Sblock.
+  eapply exec_Sseq_continue. eauto. 
+  change Out_normal with (transl_outcome (S (lblstmts_length s0)) (S (S (lblstmts_length s0 + ncnt))) Csem.Out_normal).
+  eapply (transl_stmt_correct _ _ _ _ _ _ H8); eauto.
+  auto. auto. traceEq.
+  (* 2.1.2 still searching *)
+  rewrite switch_target_table_shift. intros [A B].
+  apply execinf_sleep.
+  eapply transl_lblstmt_divergence_correct with (n := n); eauto. left. split.
+  fold (outcome_block (Out_exit (switch_target n (lblstmts_length s0) (switch_table s0 0)))).
+  apply exec_Sblock. apply exec_Sseq_stop. eauto. congruence.
+  auto.
+  (* 2.2 found the case already, falling through next cases *)
+  intros [A B]. inv B.
+  (* 2.2.1 we diverge because of this case *)
+  destruct (transl_lblstmts_context _ _ _ _ _ EQ0) as [ctx [CTX EQ1]].
+  rewrite EQ1. apply execinf_context; auto. 
+  apply execinf_Sblock. eapply execinf_Sseq_2. eauto. 
+  eapply transl_stmt_divergence_correct; eauto. auto.
+  (* 2.2.2 we diverge later *)
+  simpl. apply execinf_sleep.
+  replace (t0 *** t2 *** t3) with ((t0 ** t2) *** t3). 
+  eapply transl_lblstmt_divergence_correct with (n := n); eauto. right. split.
+  change Out_normal with (outcome_block Out_normal). 
+  apply exec_Sblock.
+  eapply exec_Sseq_continue. eauto. 
+  change Out_normal with (transl_outcome (S (lblstmts_length s0)) (S (S (lblstmts_length s0 + ncnt))) Csem.Out_normal).
+  eapply (transl_stmt_correct _ _ _ _ _ _ H8); eauto.
+  auto. auto. traceEq.
 Qed.
 
 End CORRECTNESS.
diff --git a/cfrontend/Csyntax.v b/cfrontend/Csyntax.v
index ac7904700..b332e2160 100644
--- a/cfrontend/Csyntax.v
+++ b/cfrontend/Csyntax.v
@@ -31,11 +31,11 @@ Require Import AST.
   bit size of the type.  An integer type is a pair of a signed/unsigned
   flag and a bit size: 8, 16 or 32 bits. *)
 
-Inductive signedness : Set :=
+Inductive signedness : Type :=
   | Signed: signedness
   | Unsigned: signedness.
 
-Inductive intsize : Set :=
+Inductive intsize : Type :=
   | I8: intsize
   | I16: intsize
   | I32: intsize.
@@ -43,7 +43,7 @@ Inductive intsize : Set :=
 (** Float types come in two sizes: 32 bits (single precision)
   and 64-bit (double precision). *)
 
-Inductive floatsize : Set :=
+Inductive floatsize : Type :=
   | F32: floatsize
   | F64: floatsize.
 
@@ -82,7 +82,7 @@ Inductive floatsize : Set :=
   structure or union, but not to the structure or union directly.
 *)
 
-Inductive type : Set :=
+Inductive type : Type :=
   | Tvoid: type                            (**r the [void] type *)
   | Tint: intsize -> signedness -> type    (**r integer types *)
   | Tfloat: floatsize -> type              (**r floating-point types *)
@@ -93,11 +93,11 @@ Inductive type : Set :=
   | Tunion: ident -> fieldlist -> type     (**r union types *)
   | Tcomp_ptr: ident -> type               (**r pointer to named struct or union *)
 
-with typelist : Set :=
+with typelist : Type :=
   | Tnil: typelist
   | Tcons: type -> typelist -> typelist
 
-with fieldlist : Set :=
+with fieldlist : Type :=
   | Fnil: fieldlist
   | Fcons: ident -> type -> fieldlist -> fieldlist.
 
@@ -105,12 +105,12 @@ with fieldlist : Set :=
 
 (** Arithmetic and logical operators. *)
 
-Inductive unary_operation : Set :=
+Inductive unary_operation : Type :=
   | Onotbool : unary_operation          (**r boolean negation ([!] in C) *)
   | Onotint : unary_operation           (**r integer complement ([~] in C) *)
   | Oneg : unary_operation.             (**r opposite (unary [-]) *)
 
-Inductive binary_operation : Set :=
+Inductive binary_operation : Type :=
   | Oadd : binary_operation             (**r addition (binary [+]) *)
   | Osub : binary_operation             (**r subtraction (binary [-]) *)
   | Omul : binary_operation             (**r multiplication (binary [*]) *)
@@ -138,10 +138,10 @@ Inductive binary_operation : Set :=
   description (type [expr_descr]).
 *)
 
-Inductive expr : Set :=
+Inductive expr : Type :=
   | Expr: expr_descr -> type -> expr
 
-with expr_descr : Set :=
+with expr_descr : Type :=
   | Econst_int: int -> expr_descr       (**r integer literal *)
   | Econst_float: float -> expr_descr   (**r float literal *)
   | Evar: ident -> expr_descr           (**r variable *)
@@ -168,7 +168,7 @@ Definition typeof (e: expr) : type :=
   the [default] case must occur last.  Blocks and block-scoped declarations
   are not supported. *)
 
-Inductive statement : Set :=
+Inductive statement : Type :=
   | Sskip : statement                   (**r do nothing *)
   | Sassign : expr -> expr -> statement (**r assignment [lvalue = rvalue] *)
   | Scall: option expr -> expr -> list expr -> statement (**r function call *)
@@ -182,7 +182,7 @@ Inductive statement : Set :=
   | Sreturn : option expr -> statement      (**r [return] statement *)
   | Sswitch : expr -> labeled_statements -> statement  (**r [switch] statement *)
 
-with labeled_statements : Set :=            (**r cases of a [switch] *)
+with labeled_statements : Type :=            (**r cases of a [switch] *)
   | LSdefault: statement -> labeled_statements
   | LScase: int -> statement -> labeled_statements -> labeled_statements.
 
@@ -193,7 +193,7 @@ with labeled_statements : Set :=            (**r cases of a [switch] *)
   and types of its local variables ([fn_vars]), and the body of the
   function (a statement, [fn_body]). *)
 
-Record function : Set := mkfunction {
+Record function : Type := mkfunction {
   fn_return: type;
   fn_params: list (ident * type);
   fn_vars: list (ident * type);
@@ -203,7 +203,7 @@ Record function : Set := mkfunction {
 (** Functions can either be defined ([Internal]) or declared as
   external functions ([External]). *)
 
-Inductive fundef : Set :=
+Inductive fundef : Type :=
   | Internal: function -> fundef
   | External: ident -> typelist -> type -> fundef.
 
@@ -213,7 +213,7 @@ Inductive fundef : Set :=
   of named global variables, carrying their types and optional initialization 
   data.  See module [AST] for more details. *)
 
-Definition program : Set := AST.program fundef type.
+Definition program : Type := AST.program fundef type.
 
 (** * Operations over types *)
 
@@ -409,9 +409,9 @@ Proof.
   destruct (ident_eq id1 i); destruct (ident_eq id2 i).
   congruence. 
   subst i. intros. inv H; inv H0.
-  exploit field_offset_rec_in_range; eauto. tauto. 
+  exploit field_offset_rec_in_range. eexact H1. eauto. tauto.  
   subst i. intros. inv H1; inv H2.
-  exploit field_offset_rec_in_range; eauto. tauto. 
+  exploit field_offset_rec_in_range. eexact H. eauto. tauto. 
   intros. eapply IHfld; eauto.
 
   apply H with fld0 0; auto.
@@ -449,7 +449,7 @@ type must be accessed:
 - [By_nothing]: no access is possible, e.g. for the [void] type.
 *)
 
-Inductive mode: Set :=
+Inductive mode: Type :=
   | By_value: memory_chunk -> mode
   | By_reference: mode
   | By_nothing: mode.
@@ -482,7 +482,7 @@ end.
   compiler (module [Cshmgen]).
 *)
 
-Inductive classify_add_cases : Set :=
+Inductive classify_add_cases : Type :=
   | add_case_ii: classify_add_cases         (**r int , int *)
   | add_case_ff: classify_add_cases         (**r float , float *)
   | add_case_pi: type -> classify_add_cases (**r ptr or array, int *)
@@ -500,7 +500,7 @@ Definition classify_add (ty1: type) (ty2: type) :=
   | _, _ => add_default
   end.
 
-Inductive classify_sub_cases : Set :=
+Inductive classify_sub_cases : Type :=
   | sub_case_ii: classify_sub_cases          (**r int , int *)
   | sub_case_ff: classify_sub_cases          (**r float , float *)
   | sub_case_pi: type -> classify_sub_cases  (**r ptr or array , int *)
@@ -520,7 +520,7 @@ Definition classify_sub (ty1: type) (ty2: type) :=
   | _ ,_ => sub_default
   end.
 
-Inductive classify_mul_cases : Set:=
+Inductive classify_mul_cases : Type:=
   | mul_case_ii: classify_mul_cases (**r int , int *)
   | mul_case_ff: classify_mul_cases (**r float , float *)
   | mul_default: classify_mul_cases . (**r other *)
@@ -532,7 +532,7 @@ Definition classify_mul (ty1: type) (ty2: type) :=
   | _,_  => mul_default
 end.
 
-Inductive classify_div_cases : Set:=
+Inductive classify_div_cases : Type:=
   | div_case_I32unsi: classify_div_cases (**r unsigned int32 , int *)
   | div_case_ii: classify_div_cases    (**r int , int *) 
   | div_case_ff: classify_div_cases    (**r float , float *)
@@ -547,7 +547,7 @@ Definition classify_div (ty1: type) (ty2: type) :=
   | _ ,_ => div_default 
 end.
 
-Inductive classify_mod_cases : Set:=
+Inductive classify_mod_cases : Type:=
   | mod_case_I32unsi: classify_mod_cases  (**r unsigned I32 , int *)
   | mod_case_ii: classify_mod_cases  (**r int , int *)
   | mod_default: classify_mod_cases . (**r other *)
@@ -560,7 +560,7 @@ Definition classify_mod (ty1: type) (ty2: type) :=
   | _ , _ => mod_default 
 end .
 
-Inductive classify_shr_cases :Set:=
+Inductive classify_shr_cases :Type:=
   | shr_case_I32unsi:  classify_shr_cases (**r unsigned I32 , int *)
   | shr_case_ii :classify_shr_cases (**r int , int *)
   | shr_default : classify_shr_cases . (**r other *)
@@ -572,7 +572,7 @@ Definition classify_shr (ty1: type) (ty2: type) :=
   | _ , _ => shr_default 
   end.
 
-Inductive classify_cmp_cases : Set:=
+Inductive classify_cmp_cases : Type:=
   | cmp_case_I32unsi: classify_cmp_cases (**r unsigned I32 , int *)
   | cmp_case_ipip: classify_cmp_cases  (**r int|ptr|array , int|ptr|array*)
   | cmp_case_ff: classify_cmp_cases  (**r float , float *)
@@ -593,7 +593,7 @@ Definition classify_cmp (ty1: type) (ty2: type) :=
   | _ , _ => cmp_default
   end.
 
-Inductive classify_fun_cases : Set:=
+Inductive classify_fun_cases : Type:=
   | fun_case_f: typelist -> type -> classify_fun_cases   (**r (pointer to) function *)
   | fun_default: classify_fun_cases . (**r other *)
 
diff --git a/common/AST.v b/common/AST.v
index ec8053d4e..a8655c254 100644
--- a/common/AST.v
+++ b/common/AST.v
@@ -36,7 +36,7 @@ Definition ident_eq := peq.
   [Tint] for integers and pointers, and [Tfloat] for floating-point
   numbers. *)
 
-Inductive typ : Set :=
+Inductive typ : Type :=
   | Tint : typ
   | Tfloat : typ.
 
@@ -58,7 +58,7 @@ Proof. decide equality. apply typ_eq. Qed.
   are used in particular to determine appropriate calling conventions
   for the function. *)
 
-Record signature : Set := mksignature {
+Record signature : Type := mksignature {
   sig_args: list typ;
   sig_res: option typ
 }.
@@ -73,7 +73,7 @@ Definition proj_sig_res (s: signature) : typ :=
   a ``memory chunk'' indicating the type, size and signedness of the
   chunk of memory being accessed. *)
 
-Inductive memory_chunk : Set :=
+Inductive memory_chunk : Type :=
   | Mint8signed : memory_chunk     (**r 8-bit signed integer *)
   | Mint8unsigned : memory_chunk   (**r 8-bit unsigned integer *)
   | Mint16signed : memory_chunk    (**r 16-bit signed integer *)
@@ -84,7 +84,7 @@ Inductive memory_chunk : Set :=
 
 (** Initialization data for global variables. *)
 
-Inductive init_data: Set :=
+Inductive init_data: Type :=
   | Init_int8: int -> init_data
   | Init_int16: int -> init_data
   | Init_int32: int -> init_data
@@ -104,16 +104,16 @@ for variables vary among the various intermediate languages and are
 taken as parameters to the [program] type.  The other parts of whole
 programs are common to all languages. *)
 
-Record program (F V: Set) : Set := mkprogram {
+Record program (F V: Type) : Type := mkprogram {
   prog_funct: list (ident * F);
   prog_main: ident;
   prog_vars: list (ident * list init_data * V)
 }.
 
-Definition prog_funct_names (F V: Set) (p: program F V) : list ident :=
+Definition prog_funct_names (F V: Type) (p: program F V) : list ident :=
   map (@fst ident F) p.(prog_funct).
 
-Definition prog_var_names (F V: Set) (p: program F V) : list ident :=
+Definition prog_var_names (F V: Type) (p: program F V) : list ident :=
   map (fun x: ident * list init_data * V => fst(fst x)) p.(prog_vars).
 
 (** * Generic transformations over programs *)
@@ -124,7 +124,7 @@ Definition prog_var_names (F V: Set) (p: program F V) : list ident :=
 
 Section TRANSF_PROGRAM.
 
-Variable A B V: Set.
+Variable A B V: Type.
 Variable transf: A -> B.
 
 Definition transf_program (l: list (ident * A)) : list (ident * B) :=
@@ -158,7 +158,7 @@ Open Local Scope string_scope.
 
 Section MAP_PARTIAL.
 
-Variable A B C: Set.
+Variable A B C: Type.
 Variable prefix_errmsg: A -> errmsg.
 Variable f: B -> res C.
 
@@ -207,7 +207,7 @@ Qed.
 End MAP_PARTIAL.
 
 Remark map_partial_total:
-  forall (A B C: Set) (prefix: A -> errmsg) (f: B -> C) (l: list (A * B)),
+  forall (A B C: Type) (prefix: A -> errmsg) (f: B -> C) (l: list (A * B)),
   map_partial prefix (fun b => OK (f b)) l =
   OK (List.map (fun a_b => (fst a_b, f (snd a_b))) l).
 Proof.
@@ -217,7 +217,7 @@ Proof.
 Qed.
 
 Remark map_partial_identity:
-  forall (A B: Set) (prefix: A -> errmsg) (l: list (A * B)),
+  forall (A B: Type) (prefix: A -> errmsg) (l: list (A * B)),
   map_partial prefix (fun b => OK b) l = OK l.
 Proof.
   induction l; simpl.
@@ -227,7 +227,7 @@ Qed.
 
 Section TRANSF_PARTIAL_PROGRAM.
 
-Variable A B V: Set.
+Variable A B V: Type.
 Variable transf_partial: A -> res B.
 
 Definition prefix_funct_name (id: ident) : errmsg :=
@@ -271,7 +271,7 @@ End TRANSF_PARTIAL_PROGRAM.
 
 Section TRANSF_PARTIAL_PROGRAM2.
 
-Variable A B V W: Set.
+Variable A B V W: Type.
 Variable transf_partial_function: A -> res B.
 Variable transf_partial_variable: V -> res W.
 
@@ -322,7 +322,7 @@ End TRANSF_PARTIAL_PROGRAM2.
 
 Section MATCH_PROGRAM.
 
-Variable A B V W: Set.
+Variable A B V W: Type.
 Variable match_fundef: A -> B -> Prop.
 Variable match_varinfo: V -> W -> Prop.
 
@@ -344,7 +344,7 @@ Definition match_program (p1: program A V) (p2: program B W) : Prop :=
 End MATCH_PROGRAM.
 
 Remark transform_partial_program2_match:
-  forall (A B V W: Set)
+  forall (A B V W: Type)
          (transf_partial_function: A -> res B)
          (transf_partial_variable: V -> res W)
          (p: program A V) (tp: program B W),
@@ -375,12 +375,12 @@ Qed.
   (a.k.a. system calls) that emit an event when applied.  We define
   a type for such functions and some generic transformation functions. *)
 
-Record external_function : Set := mkextfun {
+Record external_function : Type := mkextfun {
   ef_id: ident;
   ef_sig: signature
 }.
 
-Inductive fundef (F: Set): Set :=
+Inductive fundef (F: Type): Type :=
   | Internal: F -> fundef F
   | External: external_function -> fundef F.
 
@@ -388,7 +388,7 @@ Implicit Arguments External [F].
 
 Section TRANSF_FUNDEF.
 
-Variable A B: Set.
+Variable A B: Type.
 Variable transf: A -> B.
 
 Definition transf_fundef (fd: fundef A): fundef B :=
@@ -401,7 +401,7 @@ End TRANSF_FUNDEF.
 
 Section TRANSF_PARTIAL_FUNDEF.
 
-Variable A B: Set.
+Variable A B: Type.
 Variable transf_partial: A -> res B.
 
 Definition transf_partial_fundef (fd: fundef A): res (fundef B) :=
diff --git a/common/Errors.v b/common/Errors.v
index 2c9bbc3fb..2165db367 100644
--- a/common/Errors.v
+++ b/common/Errors.v
@@ -28,11 +28,11 @@ Set Implicit Arguments.
   as a list of either substrings or positive numbers encoding
   a source-level identifier (see module AST). *)
 
-Inductive errcode: Set :=
+Inductive errcode: Type :=
   | MSG: string -> errcode
   | CTX: positive -> errcode.
 
-Definition errmsg: Set := list errcode.
+Definition errmsg: Type := list errcode.
 
 Definition msg (s: string) : errmsg := MSG s :: nil.
 
@@ -42,7 +42,7 @@ Definition msg (s: string) : errmsg := MSG s :: nil.
   The return value is either [OK res] to indicate success,
   or [Error msg] to indicate failure. *)
 
-Inductive res (A: Set) : Set :=
+Inductive res (A: Type) : Type :=
 | OK: A -> res A
 | Error: errmsg -> res A.
 
@@ -51,13 +51,13 @@ Implicit Arguments Error [A].
 (** To automate the propagation of errors, we use a monadic style
   with the following [bind] operation. *)
 
-Definition bind (A B: Set) (f: res A) (g: A -> res B) : res B :=
+Definition bind (A B: Type) (f: res A) (g: A -> res B) : res B :=
   match f with
   | OK x => g x
   | Error msg => Error msg
   end.
 
-Definition bind2 (A B C: Set) (f: res (A * B)) (g: A -> B -> res C) : res C :=
+Definition bind2 (A B C: Type) (f: res (A * B)) (g: A -> B -> res C) : res C :=
   match f with
   | OK (x, y) => g x y
   | Error msg => Error msg
@@ -74,7 +74,7 @@ Notation "'do' ( X , Y ) <- A ; B" := (bind2 A (fun X Y => B))
  : error_monad_scope.
 
 Remark bind_inversion:
-  forall (A B: Set) (f: res A) (g: A -> res B) (y: B),
+  forall (A B: Type) (f: res A) (g: A -> res B) (y: B),
   bind f g = OK y ->
   exists x, f = OK x /\ g x = OK y.
 Proof.
@@ -84,7 +84,7 @@ Proof.
 Qed.
 
 Remark bind2_inversion:
-  forall (A B C: Set) (f: res (A*B)) (g: A -> B -> res C) (z: C),
+  forall (A B C: Type) (f: res (A*B)) (g: A -> B -> res C) (z: C),
   bind2 f g = OK z ->
   exists x, exists y, f = OK (x, y) /\ g x y = OK z.
 Proof.
@@ -97,14 +97,14 @@ Open Local Scope error_monad_scope.
 
 (** This is the familiar monadic map iterator. *)
 
-Fixpoint mmap (A B: Set) (f: A -> res B) (l: list A) {struct l} : res (list B) :=
+Fixpoint mmap (A B: Type) (f: A -> res B) (l: list A) {struct l} : res (list B) :=
   match l with
   | nil => OK nil
   | hd :: tl => do hd' <- f hd; do tl' <- mmap f tl; OK (hd' :: tl')
   end.
 
 Remark mmap_inversion:
-  forall (A B: Set) (f: A -> res B) (l: list A) (l': list B),
+  forall (A B: Type) (f: A -> res B) (l: list A) (l': list B),
   mmap f l = OK l' ->
   list_forall2 (fun x y => f x = OK y) l l'.
 Proof.
diff --git a/common/Events.v b/common/Events.v
index c44da0138..011c454b2 100644
--- a/common/Events.v
+++ b/common/Events.v
@@ -32,11 +32,11 @@ Require Import Values.
   allow pointers to be exchanged between the program and the outside
   world. *)
 
-Inductive eventval: Set :=
+Inductive eventval: Type :=
   | EVint: int -> eventval
   | EVfloat: float -> eventval.
 
-Record event : Set := mkevent {
+Record event : Type := mkevent {
   ev_name: ident;
   ev_args: list eventval;
   ev_res: eventval
@@ -56,7 +56,7 @@ Definition Eextcall
 
 Definition Eapp (t1 t2: trace) : trace := t1 ++ t2.
 
-CoInductive traceinf : Set :=
+CoInductive traceinf : Type :=
   | Enilinf: traceinf
   | Econsinf: event -> traceinf -> traceinf.
 
diff --git a/common/Globalenvs.v b/common/Globalenvs.v
index f7209141d..1ce7bf5ee 100644
--- a/common/Globalenvs.v
+++ b/common/Globalenvs.v
@@ -47,43 +47,43 @@ Module Type GENV.
 
 (** ** Types and operations *)
 
-  Variable t: Set -> Set.
+  Variable t: Type -> Type.
    (** The type of global environments.  The parameter [F] is the type
        of function descriptions. *)
 
-  Variable globalenv: forall (F V: Set), program F V -> t F.
+  Variable globalenv: forall (F V: Type), program F V -> t F.
    (** Return the global environment for the given program. *)
 
-  Variable init_mem: forall (F V: Set), program F V -> mem.
+  Variable init_mem: forall (F V: Type), program F V -> mem.
    (** Return the initial memory state for the given program. *)
 
-  Variable find_funct_ptr: forall (F: Set), t F -> block -> option F.
+  Variable find_funct_ptr: forall (F: Type), t F -> block -> option F.
    (** Return the function description associated with the given address,
        if any. *)
 
-  Variable find_funct: forall (F: Set), t F -> val -> option F.
+  Variable find_funct: forall (F: Type), t F -> val -> option F.
    (** Same as [find_funct_ptr] but the function address is given as
        a value, which must be a pointer with offset 0. *)
 
-  Variable find_symbol: forall (F: Set), t F -> ident -> option block.
+  Variable find_symbol: forall (F: Type), t F -> ident -> option block.
    (** Return the address of the given global symbol, if any. *)
 
 (** ** Properties of the operations. *)
 
   Hypothesis find_funct_inv:
-    forall (F: Set) (ge: t F) (v: val) (f: F),
+    forall (F: Type) (ge: t F) (v: val) (f: F),
     find_funct ge v = Some f -> exists b, v = Vptr b Int.zero.
   Hypothesis find_funct_find_funct_ptr:
-    forall (F: Set) (ge: t F) (b: block),
+    forall (F: Type) (ge: t F) (b: block),
     find_funct ge (Vptr b Int.zero) = find_funct_ptr ge b.    
 
   Hypothesis find_symbol_exists:
-    forall (F V: Set) (p: program F V)
+    forall (F V: Type) (p: program F V)
            (id: ident) (init: list init_data) (v: V),
     In (id, init, v) (prog_vars p) ->
     exists b, find_symbol (globalenv p) id = Some b.
   Hypothesis find_funct_ptr_exists:
-    forall (F V: Set) (p: program F V) (id: ident) (f: F),
+    forall (F V: Type) (p: program F V) (id: ident) (f: F),
     list_norepet (prog_funct_names p) ->
     list_disjoint (prog_funct_names p) (prog_var_names p) ->
     In (id, f) (prog_funct p) ->
@@ -91,49 +91,49 @@ Module Type GENV.
            /\ find_funct_ptr (globalenv p) b = Some f.
 
   Hypothesis find_funct_ptr_inversion:
-    forall (F V: Set) (P: F -> Prop) (p: program F V) (b: block) (f: F),
+    forall (F V: Type) (P: F -> Prop) (p: program F V) (b: block) (f: F),
     find_funct_ptr (globalenv p) b = Some f ->
     exists id, In (id, f) (prog_funct p).
   Hypothesis find_funct_inversion:
-    forall (F V: Set) (P: F -> Prop) (p: program F V) (v: val) (f: F),
+    forall (F V: Type) (P: F -> Prop) (p: program F V) (v: val) (f: F),
     find_funct (globalenv p) v = Some f ->
     exists id, In (id, f) (prog_funct p).
   Hypothesis find_funct_ptr_symbol_inversion:
-    forall (F V: Set) (p: program F V) (id: ident) (b: block) (f: F),
+    forall (F V: Type) (p: program F V) (id: ident) (b: block) (f: F),
     find_symbol (globalenv p) id = Some b ->
     find_funct_ptr (globalenv p) b = Some f ->
     In (id, f) p.(prog_funct).
 
   Hypothesis find_funct_ptr_prop:
-    forall (F V: Set) (P: F -> Prop) (p: program F V) (b: block) (f: F),
+    forall (F V: Type) (P: F -> Prop) (p: program F V) (b: block) (f: F),
     (forall id f, In (id, f) (prog_funct p) -> P f) ->
     find_funct_ptr (globalenv p) b = Some f ->
     P f.
   Hypothesis find_funct_prop:
-    forall (F V: Set) (P: F -> Prop) (p: program F V) (v: val) (f: F),
+    forall (F V: Type) (P: F -> Prop) (p: program F V) (v: val) (f: F),
     (forall id f, In (id, f) (prog_funct p) -> P f) ->
     find_funct (globalenv p) v = Some f ->
     P f.
 
   Hypothesis initmem_nullptr:
-    forall (F V: Set) (p: program F V),
+    forall (F V: Type) (p: program F V),
     let m := init_mem p in
     valid_block m nullptr /\
     m.(blocks) nullptr = empty_block 0 0.
   Hypothesis initmem_inject_neutral:
-    forall (F V: Set) (p: program F V),
+    forall (F V: Type) (p: program F V),
     mem_inject_neutral (init_mem p).
   Hypothesis find_funct_ptr_negative:
-    forall (F V: Set) (p: program F V) (b: block) (f: F),
+    forall (F V: Type) (p: program F V) (b: block) (f: F),
     find_funct_ptr (globalenv p) b = Some f -> b < 0.
   Hypothesis find_symbol_not_fresh:
-    forall (F V: Set) (p: program F V) (id: ident) (b: block),
+    forall (F V: Type) (p: program F V) (id: ident) (b: block),
     find_symbol (globalenv p) id = Some b -> b < nextblock (init_mem p).
   Hypothesis find_symbol_not_nullptr:
-    forall (F V: Set) (p: program F V) (id: ident) (b: block),
+    forall (F V: Type) (p: program F V) (id: ident) (b: block),
     find_symbol (globalenv p) id = Some b -> b <> nullptr.
   Hypothesis global_addresses_distinct:
-    forall (F V: Set) (p: program F V) id1 id2 b1 b2,
+    forall (F V: Type) (p: program F V) id1 id2 b1 b2,
     id1<>id2 ->
     find_symbol (globalenv p) id1 = Some b1 ->
     find_symbol (globalenv p) id2 = Some b2 ->
@@ -143,30 +143,30 @@ Module Type GENV.
   and operations over global environments. *)
 
   Hypothesis find_funct_ptr_transf:
-    forall (A B V: Set) (transf: A -> B) (p: program A V),
+    forall (A B V: Type) (transf: A -> B) (p: program A V),
     forall (b: block) (f: A),
     find_funct_ptr (globalenv p) b = Some f ->
     find_funct_ptr (globalenv (transform_program transf p)) b = Some (transf f).
   Hypothesis find_funct_transf:
-    forall (A B V: Set) (transf: A -> B) (p: program A V),
+    forall (A B V: Type) (transf: A -> B) (p: program A V),
     forall (v: val) (f: A),
     find_funct (globalenv p) v = Some f ->
     find_funct (globalenv (transform_program transf p)) v = Some (transf f).
   Hypothesis find_symbol_transf:
-    forall (A B V: Set) (transf: A -> B) (p: program A V),
+    forall (A B V: Type) (transf: A -> B) (p: program A V),
     forall (s: ident),
     find_symbol (globalenv (transform_program transf p)) s =
     find_symbol (globalenv p) s.
   Hypothesis init_mem_transf:
-    forall (A B V: Set) (transf: A -> B) (p: program A V),
+    forall (A B V: Type) (transf: A -> B) (p: program A V),
     init_mem (transform_program transf p) = init_mem p.
   Hypothesis find_funct_ptr_rev_transf:
-    forall (A B V: Set) (transf: A -> B) (p: program A V),
+    forall (A B V: Type) (transf: A -> B) (p: program A V),
     forall (b : block) (tf : B),
     find_funct_ptr (globalenv (transform_program transf p)) b = Some tf ->
     exists f : A, find_funct_ptr (globalenv p) b = Some f /\ transf f = tf.
   Hypothesis find_funct_rev_transf:
-    forall (A B V: Set) (transf: A -> B) (p: program A V),
+    forall (A B V: Type) (transf: A -> B) (p: program A V),
     forall (v : val) (tf : B),
     find_funct (globalenv (transform_program transf p)) v = Some tf ->
     exists f : A, find_funct (globalenv p) v = Some f /\ transf f = tf.
@@ -175,37 +175,37 @@ Module Type GENV.
   and operations over global environments. *)
 
   Hypothesis find_funct_ptr_transf_partial:
-    forall (A B V: Set) (transf: A -> res B) (p: program A V) (p': program B V),
+    forall (A B V: Type) (transf: A -> res B) (p: program A V) (p': program B V),
     transform_partial_program transf p = OK p' ->
     forall (b: block) (f: A),
     find_funct_ptr (globalenv p) b = Some f ->
     exists f',
     find_funct_ptr (globalenv p') b = Some f' /\ transf f = OK f'.
   Hypothesis find_funct_transf_partial:
-    forall (A B V: Set) (transf: A -> res B) (p: program A V) (p': program B V),
+    forall (A B V: Type) (transf: A -> res B) (p: program A V) (p': program B V),
     transform_partial_program transf p = OK p' ->
     forall (v: val) (f: A),
     find_funct (globalenv p) v = Some f ->
     exists f',
     find_funct (globalenv p') v = Some f' /\ transf f = OK f'.
   Hypothesis find_symbol_transf_partial:
-    forall (A B V: Set) (transf: A -> res B) (p: program A V) (p': program B V),
+    forall (A B V: Type) (transf: A -> res B) (p: program A V) (p': program B V),
     transform_partial_program transf p = OK p' ->
     forall (s: ident),
     find_symbol (globalenv p') s = find_symbol (globalenv p) s.
   Hypothesis init_mem_transf_partial:
-    forall (A B V: Set) (transf: A -> res B) (p: program A V) (p': program B V),
+    forall (A B V: Type) (transf: A -> res B) (p: program A V) (p': program B V),
     transform_partial_program transf p = OK p' ->
     init_mem p' = init_mem p.
   Hypothesis find_funct_ptr_rev_transf_partial:
-    forall (A B V: Set) (transf: A -> res B) (p: program A V) (p': program B V),
+    forall (A B V: Type) (transf: A -> res B) (p: program A V) (p': program B V),
     transform_partial_program transf p = OK p' ->
     forall (b : block) (tf : B),
     find_funct_ptr (globalenv p') b = Some tf ->
     exists f : A,
       find_funct_ptr (globalenv p) b = Some f /\ transf f = OK tf.
   Hypothesis find_funct_rev_transf_partial:
-    forall (A B V: Set) (transf: A -> res B) (p: program A V) (p': program B V),
+    forall (A B V: Type) (transf: A -> res B) (p: program A V) (p': program B V),
     transform_partial_program transf p = OK p' ->
     forall (v : val) (tf : B),
     find_funct (globalenv p') v = Some tf ->
@@ -213,7 +213,7 @@ Module Type GENV.
       find_funct (globalenv p) v = Some f /\ transf f = OK tf.
 
   Hypothesis find_funct_ptr_transf_partial2:
-    forall (A B V W: Set) (transf_fun: A -> res B) (transf_var: V -> res W)
+    forall (A B V W: Type) (transf_fun: A -> res B) (transf_var: V -> res W)
            (p: program A V) (p': program B W),
     transform_partial_program2 transf_fun transf_var p = OK p' ->
     forall (b: block) (f: A),
@@ -221,7 +221,7 @@ Module Type GENV.
     exists f',
     find_funct_ptr (globalenv p') b = Some f' /\ transf_fun f = OK f'.
   Hypothesis find_funct_transf_partial2:
-    forall (A B V W: Set) (transf_fun: A -> res B) (transf_var: V -> res W)
+    forall (A B V W: Type) (transf_fun: A -> res B) (transf_var: V -> res W)
            (p: program A V) (p': program B W),
     transform_partial_program2 transf_fun transf_var p = OK p' ->
     forall (v: val) (f: A),
@@ -229,18 +229,18 @@ Module Type GENV.
     exists f',
     find_funct (globalenv p') v = Some f' /\ transf_fun f = OK f'.
   Hypothesis find_symbol_transf_partial2:
-    forall (A B V W: Set) (transf_fun: A -> res B) (transf_var: V -> res W)
+    forall (A B V W: Type) (transf_fun: A -> res B) (transf_var: V -> res W)
            (p: program A V) (p': program B W),
     transform_partial_program2 transf_fun transf_var p = OK p' ->
     forall (s: ident),
     find_symbol (globalenv p') s = find_symbol (globalenv p) s.
   Hypothesis init_mem_transf_partial2:
-    forall (A B V W: Set) (transf_fun: A -> res B) (transf_var: V -> res W)
+    forall (A B V W: Type) (transf_fun: A -> res B) (transf_var: V -> res W)
            (p: program A V) (p': program B W),
     transform_partial_program2 transf_fun transf_var p = OK p' ->
     init_mem p' = init_mem p.
   Hypothesis find_funct_ptr_rev_transf_partial2:
-    forall (A B V W: Set) (transf_fun: A -> res B) (transf_var: V -> res W)
+    forall (A B V W: Type) (transf_fun: A -> res B) (transf_var: V -> res W)
            (p: program A V) (p': program B W),
     transform_partial_program2 transf_fun transf_var p = OK p' ->
     forall (b : block) (tf : B),
@@ -248,7 +248,7 @@ Module Type GENV.
     exists f : A,
       find_funct_ptr (globalenv p) b = Some f /\ transf_fun f = OK tf.
   Hypothesis find_funct_rev_transf_partial2:
-    forall (A B V W: Set) (transf_fun: A -> res B) (transf_var: V -> res W)
+    forall (A B V W: Type) (transf_fun: A -> res B) (transf_var: V -> res W)
            (p: program A V) (p': program B W),
     transform_partial_program2 transf_fun transf_var p = OK p' ->
     forall (v : val) (tf : B),
@@ -260,7 +260,7 @@ Module Type GENV.
   and operations over global environments. *)
 
   Hypothesis find_funct_ptr_match:
-    forall (A B V W: Set) (match_fun: A -> B -> Prop)
+    forall (A B V W: Type) (match_fun: A -> B -> Prop)
            (match_var: V -> W -> Prop) (p: program A V) (p': program B W),
     match_program match_fun match_var p p' ->
     forall (b : block) (f : A),
@@ -268,7 +268,7 @@ Module Type GENV.
     exists tf : B,
     find_funct_ptr (globalenv p') b = Some tf /\ match_fun f tf.
   Hypothesis find_funct_ptr_rev_match:
-    forall (A B V W: Set) (match_fun: A -> B -> Prop)
+    forall (A B V W: Type) (match_fun: A -> B -> Prop)
            (match_var: V -> W -> Prop) (p: program A V) (p': program B W),
     match_program match_fun match_var p p' ->
     forall (b : block) (tf : B),
@@ -276,27 +276,27 @@ Module Type GENV.
     exists f : A,
     find_funct_ptr (globalenv p) b = Some f /\ match_fun f tf.
   Hypothesis find_funct_match:
-    forall (A B V W: Set) (match_fun: A -> B -> Prop)
+    forall (A B V W: Type) (match_fun: A -> B -> Prop)
            (match_var: V -> W -> Prop) (p: program A V) (p': program B W),
     match_program match_fun match_var p p' ->
     forall (v : val) (f : A),
     find_funct (globalenv p) v = Some f ->
     exists tf : B, find_funct (globalenv p') v = Some tf /\ match_fun f tf.
   Hypothesis find_funct_rev_match:
-    forall (A B V W: Set) (match_fun: A -> B -> Prop)
+    forall (A B V W: Type) (match_fun: A -> B -> Prop)
            (match_var: V -> W -> Prop) (p: program A V) (p': program B W),
     match_program match_fun match_var p p' ->
     forall (v : val) (tf : B),
     find_funct (globalenv p') v = Some tf ->
     exists f : A, find_funct (globalenv p) v = Some f /\ match_fun f tf.
   Hypothesis find_symbol_match:
-    forall (A B V W: Set) (match_fun: A -> B -> Prop)
+    forall (A B V W: Type) (match_fun: A -> B -> Prop)
            (match_var: V -> W -> Prop) (p: program A V) (p': program B W),
     match_program match_fun match_var p p' ->
     forall (s : ident),
     find_symbol (globalenv p') s = find_symbol (globalenv p) s.
   Hypothesis init_mem_match:
-    forall (A B V W: Set) (match_fun: A -> B -> Prop)
+    forall (A B V W: Type) (match_fun: A -> B -> Prop)
            (match_var: V -> W -> Prop) (p: program A V) (p': program B W),
     match_program match_fun match_var p p' ->
     init_mem p' = init_mem p.
@@ -310,10 +310,10 @@ Module Genv: GENV.
 
 Section GENV.
 
-Variable F: Set.                    (* The type of functions *)
-Variable V: Set.                    (* The type of information over variables *)
+Variable F: Type.                    (* The type of functions *)
+Variable V: Type.                    (* The type of information over variables *)
 
-Record genv : Set := mkgenv {
+Record genv : Type := mkgenv {
   functions: ZMap.t (option F);     (* mapping function ptr -> function *)
   nextfunction: Z;
   symbols: PTree.t block                (* mapping symbol -> block *)
@@ -588,7 +588,7 @@ Proof.
   generalize (find_symbol_above_nextfunction _ _ X).
   unfold block; unfold ZIndexed.t; intro; omega.
 
-  intros. exploit H; eauto. assumption. intros [b [X Y]].
+  intros. exploit H; eauto. intros [b [X Y]].
   exists b; split.
   unfold globalenv, globalenv_initmem. rewrite find_symbol_add_globals. 
   assumption. apply list_disjoint_notin with (prog_funct_names p). assumption. 
@@ -770,7 +770,7 @@ End GENV.
 
 Section MATCH_PROGRAM.
 
-Variable A B V W: Set.
+Variable A B V W: Type.
 Variable match_fun: A -> B -> Prop.
 Variable match_var: V -> W -> Prop.
 Variable p: program A V.
@@ -950,7 +950,7 @@ End MATCH_PROGRAM.
 
 Section TRANSF_PROGRAM_PARTIAL2.
 
-Variable A B V W: Set.
+Variable A B V W: Type.
 Variable transf_fun: A -> res B.
 Variable transf_var: V -> res W.
 Variable p: program A V.
@@ -1024,7 +1024,7 @@ End TRANSF_PROGRAM_PARTIAL2.
 
 Section TRANSF_PROGRAM_PARTIAL.
 
-Variable A B V: Set.
+Variable A B V: Type.
 Variable transf: A -> res B.
 Variable p: program A V.
 Variable p': program B V.
@@ -1089,7 +1089,7 @@ End TRANSF_PROGRAM_PARTIAL.
 
 Section TRANSF_PROGRAM.
 
-Variable A B V: Set.
+Variable A B V: Type.
 Variable transf: A -> B.
 Variable p: program A V.
 Let tp := transform_program transf p.
diff --git a/common/Mem.v b/common/Mem.v
index e169dfc76..01c1975bf 100644
--- a/common/Mem.v
+++ b/common/Mem.v
@@ -31,20 +31,20 @@ Require Import Integers.
 Require Import Floats.
 Require Import Values.
 
-Definition update (A: Set) (x: Z) (v: A) (f: Z -> A) : Z -> A :=
+Definition update (A: Type) (x: Z) (v: A) (f: Z -> A) : Z -> A :=
   fun y => if zeq y x then v else f y.
 
 Implicit Arguments update [A].
 
 Lemma update_s:
-  forall (A: Set) (x: Z) (v: A) (f: Z -> A),
+  forall (A: Type) (x: Z) (v: A) (f: Z -> A),
   update x v f x = v.
 Proof.
   intros; unfold update. apply zeq_true.
 Qed.
 
 Lemma update_o:
-  forall (A: Set) (x: Z) (v: A) (f: Z -> A) (y: Z),
+  forall (A: Type) (x: Z) (v: A) (f: Z -> A) (y: Z),
   x <> y -> update x v f y = f y.
 Proof.
   intros; unfold update. apply zeq_false; auto.
@@ -62,17 +62,17 @@ Qed.
   [d+2] and [d+3].  The [Cont] contents enable detecting future writes
   that would partially overlap the 4-byte value. *)
 
-Inductive content : Set :=
+Inductive content : Type :=
   | Undef: content                 (**r undefined contents *)
   | Datum: nat -> val -> content   (**r first byte of a value *)
   | Cont: content.          (**r continuation bytes for a multi-byte value *)
 
-Definition contentmap : Set := Z -> content.
+Definition contentmap : Type := Z -> content.
 
 (** A memory block comprises the dimensions of the block (low and high bounds)
   plus a mapping from byte offsets to contents.  *)
 
-Record block_contents : Set := mkblock {
+Record block_contents : Type := mkblock {
   low: Z;
   high: Z;
   contents: contentmap
@@ -82,7 +82,7 @@ Record block_contents : Set := mkblock {
   integers) to blocks.  We also maintain the address of the next 
   unallocated block, and a proof that this address is positive. *)
 
-Record mem : Set := mkmem {
+Record mem : Type := mkmem {
   blocks: Z -> block_contents;
   nextblock: block;
   nextblock_pos: nextblock > 0
@@ -455,7 +455,7 @@ Proof.
 Defined.
 
 Lemma in_bounds_true:
-  forall m chunk b ofs (A: Set) (a1 a2: A),
+  forall m chunk b ofs (A: Type) (a1 a2: A),
   valid_access m chunk b ofs ->
   (if in_bounds m chunk b ofs then a1 else a2) = a1.
 Proof.
@@ -858,7 +858,7 @@ Qed.
 
 Inductive load_store_cases 
       (chunk1: memory_chunk) (b1: block) (ofs1: Z)
-      (chunk2: memory_chunk) (b2: block) (ofs2: Z) : Set :=
+      (chunk2: memory_chunk) (b2: block) (ofs2: Z) : Type :=
   | lsc_similar:
       b1 = b2 -> ofs1 = ofs2 -> size_chunk chunk1 = size_chunk chunk2 ->
       load_store_cases chunk1 b1 ofs1 chunk2 b2 ofs2
@@ -1277,7 +1277,7 @@ Qed.
 
 Section GENERIC_INJECT.
 
-Definition meminj : Set := block -> option (block * Z).
+Definition meminj : Type := block -> option (block * Z).
 
 Variable val_inj: meminj -> val -> val -> Prop.
 
@@ -2838,7 +2838,7 @@ Qed.
 (** Signed 8- and 16-bit stores can be performed like unsigned stores. *)
 
 Remark in_bounds_equiv:
-  forall chunk1 chunk2 m b ofs (A: Set) (a1 a2: A),
+  forall chunk1 chunk2 m b ofs (A: Type) (a1 a2: A),
   size_chunk chunk1 = size_chunk chunk2 ->
   (if in_bounds m chunk1 b ofs then a1 else a2) =
   (if in_bounds m chunk2 b ofs then a1 else a2).
diff --git a/common/Smallstep.v b/common/Smallstep.v
index a2634be13..f41fe4ed1 100644
--- a/common/Smallstep.v
+++ b/common/Smallstep.v
@@ -33,8 +33,8 @@ Set Implicit Arguments.
 
 Section CLOSURES.
 
-Variable genv: Set.
-Variable state: Set.
+Variable genv: Type.
+Variable state: Type.
 
 (** A one-step transition relation has the following signature.
   It is parameterized by a global environment, which does not
@@ -197,7 +197,7 @@ Qed.
 (** An alternate, equivalent definition of [forever] that is useful
     for coinductive reasoning. *)
 
-Variable A: Set.
+Variable A: Type.
 Variable order: A -> A -> Prop.
 
 CoInductive forever_N (ge: genv) : A -> state -> traceinf -> Prop :=
@@ -290,7 +290,7 @@ Qed.
    finite prefix of this trace, or the whole trace.)
 *)
 
-Inductive program_behavior: Set :=
+Inductive program_behavior: Type :=
   | Terminates: trace -> int -> program_behavior
   | Diverges: traceinf -> program_behavior.
 
@@ -326,8 +326,8 @@ Section SIMULATION.
 
 (** The first small-step semantics is axiomatized as follows. *)
 
-Variable genv1: Set.
-Variable state1: Set.
+Variable genv1: Type.
+Variable state1: Type.
 Variable step1: genv1 -> state1 -> trace -> state1 -> Prop.
 Variable initial_state1: state1 -> Prop.
 Variable final_state1: state1 -> int -> Prop.
@@ -335,8 +335,8 @@ Variable ge1: genv1.
 
 (** The second small-step semantics is also axiomatized. *)
 
-Variable genv2: Set.
-Variable state2: Set.
+Variable genv2: Type.
+Variable state2: Type.
 Variable step2: genv2 -> state2 -> trace -> state2 -> Prop.
 Variable initial_state2: state2 -> Prop.
 Variable final_state2: state2 -> int -> Prop.
diff --git a/common/Switch.v b/common/Switch.v
index 8124aea17..179d4d2ee 100644
--- a/common/Switch.v
+++ b/common/Switch.v
@@ -23,7 +23,7 @@ Require Import Integers.
 (** A multi-way branch is composed of a list of (key, action) pairs,
   plus a default action.  *)
 
-Definition table : Set := list (int * nat).
+Definition table : Type := list (int * nat).
 
 Fixpoint switch_target (n: int) (dfl: nat) (cases: table)
                        {struct cases} : nat :=
@@ -37,7 +37,7 @@ Fixpoint switch_target (n: int) (dfl: nat) (cases: table)
     Each node of the tree performs an equality test or a less-than
     test against one of the keys. *)
 
-Inductive comptree : Set :=
+Inductive comptree : Type :=
   | CTaction: nat -> comptree
   | CTifeq: int -> nat -> comptree -> comptree
   | CTiflt: int -> comptree -> comptree -> comptree.
diff --git a/common/Values.v b/common/Values.v
index 8182d7a5c..9645e8ac6 100644
--- a/common/Values.v
+++ b/common/Values.v
@@ -21,7 +21,7 @@ Require Import AST.
 Require Import Integers.
 Require Import Floats.
 
-Definition block : Set := Z.
+Definition block : Type := Z.
 Definition eq_block := zeq.
 
 (** A value is either:
@@ -33,7 +33,7 @@ Definition eq_block := zeq.
   value of an uninitialized variable.
 *)
 
-Inductive val: Set :=
+Inductive val: Type :=
   | Vundef: val
   | Vint: int -> val
   | Vfloat: float -> val
diff --git a/driver/Compiler.v b/driver/Compiler.v
index bce0dab03..97bc19b1e 100644
--- a/driver/Compiler.v
+++ b/driver/Compiler.v
@@ -80,10 +80,10 @@ Open Local Scope string_scope.
 (** We first define useful monadic composition operators,
     along with funny (but convenient) notations. *)
 
-Definition apply_total (A B: Set) (x: res A) (f: A -> B) : res B :=
+Definition apply_total (A B: Type) (x: res A) (f: A -> B) : res B :=
   match x with Error msg => Error msg | OK x1 => OK (f x1) end.
 
-Definition apply_partial (A B: Set)
+Definition apply_partial (A B: Type)
                          (x: res A) (f: A -> res B) : res B :=
   match x with Error msg => Error msg | OK x1 => f x1 end.
 
@@ -150,7 +150,7 @@ Definition transf_c_program (p: Csyntax.program) : res Asm.program :=
 (** The following lemmas help reason over compositions of passes. *)
 
 Lemma map_partial_compose:
-  forall (X A B C: Set)
+  forall (X A B C: Type)
          (ctx: X -> errmsg)
          (f1: A -> res B) (f2: B -> res C)
          (pa: list (X * A)) (pc: list (X * C)),
@@ -168,7 +168,7 @@ Proof.
 Qed.
 
 Lemma transform_partial_program_compose:
-  forall (A B C V: Set)
+  forall (A B C V: Type)
          (f1: A -> res B) (f2: B -> res C)
          (pa: program A V) (pc: program C V),
   transform_partial_program (fun f => f1 f @@@ f2) pa = OK pc ->
@@ -183,7 +183,7 @@ Proof.
 Qed.
 
 Lemma transform_program_partial_program:
-  forall (A B V: Set) (f: A -> B) (p: program A V) (tp: program B V),
+  forall (A B V: Type) (f: A -> B) (p: program A V) (tp: program B V),
   transform_partial_program (fun x => OK (f x)) p = OK tp ->
   transform_program f p = tp.
 Proof.
@@ -192,7 +192,7 @@ Proof.
 Qed.
 
 Lemma transform_program_compose:
-  forall (A B C V: Set)
+  forall (A B C V: Type)
          (f1: A -> res B) (f2: B -> C)
          (pa: program A V) (pc: program C V),
   transform_partial_program (fun f => f1 f @@ f2) pa = OK pc ->
@@ -209,7 +209,7 @@ Proof.
 Qed.
 
 Lemma transform_partial_program_identity:
-  forall (A V: Set) (pa pb: program A V),
+  forall (A V: Type) (pa pb: program A V),
   transform_partial_program (@OK A) pa = OK pb ->
   pa = pb.
 Proof.
diff --git a/driver/Complements.v b/driver/Complements.v
index 938c4888b..8ee70bdde 100644
--- a/driver/Complements.v
+++ b/driver/Complements.v
@@ -51,7 +51,7 @@ Require Import Errors.
   that this external call succeeds, has result [r], and changes
   the world to [w]. *)
 
-Inductive world: Set :=
+Inductive world: Type :=
   World: (ident -> list eventval -> option (eventval * world)) -> world.
 
 Definition nextworld (w: world) (evname: ident) (evargs: list eventval) :
diff --git a/extraction/Kildall.ml.patch b/extraction/Kildall.ml.patch
index 453d40ce8..b7e5b0bf1 100644
--- a/extraction/Kildall.ml.patch
+++ b/extraction/Kildall.ml.patch
@@ -1,38 +1,37 @@
-*** kildall.ml.orig	2006-09-11 13:50:56.266682206 +0200
---- kildall.ml	2006-09-11 14:29:50.392200227 +0200
+*** kildall.ml.orig	2009-06-03 11:32:52.297641897 +0200
+--- kildall.ml	2009-06-03 11:34:48.481516509 +0200
 ***************
-*** 163,171 ****
-                       Maps.PMap.t option **)
+*** 151,158 ****
+        -> (positive, LAT.t) prod list -> LAT.t PMap.t option **)
     
     let fixpoint successors topnode transf entrypoints =
-!     DS.fixpoint (fun s ->
-!       Maps.PMap.get s (make_predecessors successors topnode)) topnode transf
-!       entrypoints
+!     DS.fixpoint (fun s -> PMap.get s (make_predecessors successors topnode))
+!       topnode transf entrypoints
    end
   
   module type ORDERED_TYPE_WITH_TOP = 
---- 163,170 ----
-                       Maps.PMap.t option **)
+--- 151,158 ----
+        -> (positive, LAT.t) prod list -> LAT.t PMap.t option **)
     
     let fixpoint successors topnode transf entrypoints =
 !     let pred = make_predecessors successors topnode in
-!     DS.fixpoint (fun s -> Maps.PMap.get s pred) topnode transf entrypoints
+!     DS.fixpoint (fun s -> PMap.get s pred) topnode transf entrypoints
    end
   
   module type ORDERED_TYPE_WITH_TOP = 
 ***************
-*** 264,271 ****
-    (** val basic_block_map : (positive -> positive list) -> positive ->
-                              positive -> bbmap **)
+*** 248,255 ****
+    (** val basic_block_map :
+        (positive -> positive list) -> positive -> positive -> bbmap **)
     
 !   let basic_block_map successors topnode entrypoint x =
 !     is_basic_block_head entrypoint (make_predecessors successors topnode) x
     
     (** val basic_block_list : positive -> bbmap -> positive list **)
     
---- 263,270 ----
-    (** val basic_block_map : (positive -> positive list) -> positive ->
-                              positive -> bbmap **)
+--- 248,255 ----
+    (** val basic_block_map :
+        (positive -> positive list) -> positive -> positive -> bbmap **)
     
 !   let basic_block_map successors topnode entrypoint =
 !     is_basic_block_head entrypoint (make_predecessors successors topnode)
diff --git a/extraction/convert b/extraction/convert
index 879cfe50d..94ec38e85 100755
--- a/extraction/convert
+++ b/extraction/convert
@@ -2,8 +2,5 @@
 
 s/\bList\b/CoqList/g;
 s/\bString\b/CoqString/g;
-s/\bInt\.Z_as_Int\b/CoqInt.Z_as_Int/g;
-s/\bInt\.Int\b/CoqInt.Int/g;
-s/\bInt\.MoreInt\b/CoqInt.MoreInt/g;
-s/^open Int$//;
+s/^open Int$/open CoqInt/;
 
diff --git a/lib/Coqlib.v b/lib/Coqlib.v
index a79ea29cb..9e2199c12 100644
--- a/lib/Coqlib.v
+++ b/lib/Coqlib.v
@@ -31,7 +31,7 @@ Require Import Wf_nat.
   that have identical contents are equal. *)
 
 Axiom extensionality:
-  forall (A B: Set) (f g : A -> B),
+  forall (A B: Type) (f g : A -> B),
   (forall x, f x = g x) -> f = g.
 
 Axiom proof_irrelevance:
@@ -114,7 +114,7 @@ Proof.
 Qed.
 
 Lemma peq_true:
-  forall (A: Set) (x: positive) (a b: A), (if peq x x then a else b) = a.
+  forall (A: Type) (x: positive) (a b: A), (if peq x x then a else b) = a.
 Proof.
   intros. case (peq x x); intros.
   auto.
@@ -122,7 +122,7 @@ Proof.
 Qed.
 
 Lemma peq_false:
-  forall (A: Set) (x y: positive) (a b: A), x <> y -> (if peq x y then a else b) = b.
+  forall (A: Type) (x y: positive) (a b: A), x <> y -> (if peq x y then a else b) = b.
 Proof.
   intros. case (peq x y); intros.
   elim H; auto.
@@ -223,7 +223,7 @@ Proof.
   intros. apply nat_of_P_lt_Lt_compare_morphism. exact H.
 Qed.
 
-Variable A: Set.
+Variable A: Type.
 Variable v1: A.
 Variable f: positive -> A -> A.
 
@@ -289,7 +289,7 @@ End POSITIVE_ITERATION.
 Definition zeq: forall (x y: Z), {x = y} + {x <> y} := Z_eq_dec.
 
 Lemma zeq_true:
-  forall (A: Set) (x: Z) (a b: A), (if zeq x x then a else b) = a.
+  forall (A: Type) (x: Z) (a b: A), (if zeq x x then a else b) = a.
 Proof.
   intros. case (zeq x x); intros.
   auto.
@@ -297,7 +297,7 @@ Proof.
 Qed.
 
 Lemma zeq_false:
-  forall (A: Set) (x y: Z) (a b: A), x <> y -> (if zeq x y then a else b) = b.
+  forall (A: Type) (x y: Z) (a b: A), x <> y -> (if zeq x y then a else b) = b.
 Proof.
   intros. case (zeq x y); intros.
   elim H; auto.
@@ -309,7 +309,7 @@ Open Scope Z_scope.
 Definition zlt: forall (x y: Z), {x < y} + {x >= y} := Z_lt_ge_dec.
 
 Lemma zlt_true:
-  forall (A: Set) (x y: Z) (a b: A), 
+  forall (A: Type) (x y: Z) (a b: A), 
   x < y -> (if zlt x y then a else b) = a.
 Proof.
   intros. case (zlt x y); intros.
@@ -318,7 +318,7 @@ Proof.
 Qed.
 
 Lemma zlt_false:
-  forall (A: Set) (x y: Z) (a b: A), 
+  forall (A: Type) (x y: Z) (a b: A), 
   x >= y -> (if zlt x y then a else b) = b.
 Proof.
   intros. case (zlt x y); intros.
@@ -329,7 +329,7 @@ Qed.
 Definition zle: forall (x y: Z), {x <= y} + {x > y} := Z_le_gt_dec.
 
 Lemma zle_true:
-  forall (A: Set) (x y: Z) (a b: A), 
+  forall (A: Type) (x y: Z) (a b: A), 
   x <= y -> (if zle x y then a else b) = a.
 Proof.
   intros. case (zle x y); intros.
@@ -338,7 +338,7 @@ Proof.
 Qed.
 
 Lemma zle_false:
-  forall (A: Set) (x y: Z) (a b: A), 
+  forall (A: Type) (x y: Z) (a b: A), 
   x > y -> (if zle x y then a else b) = b.
 Proof.
   intros. case (zle x y); intros.
@@ -573,7 +573,7 @@ Set Implicit Arguments.
 
 (** Mapping a function over an option type. *)
 
-Definition option_map (A B: Set) (f: A -> B) (x: option A) : option B :=
+Definition option_map (A B: Type) (f: A -> B) (x: option A) : option B :=
   match x with
   | None => None
   | Some y => Some (f y)
@@ -581,7 +581,7 @@ Definition option_map (A B: Set) (f: A -> B) (x: option A) : option B :=
 
 (** Mapping a function over a sum type. *)
 
-Definition sum_left_map (A B C: Set) (f: A -> B) (x: A + C) : B + C :=
+Definition sum_left_map (A B C: Type) (f: A -> B) (x: A + C) : B + C :=
   match x with
   | inl y => inl C (f y)
   | inr z => inr B z
@@ -592,7 +592,7 @@ Definition sum_left_map (A B C: Set) (f: A -> B) (x: A + C) : B + C :=
 Hint Resolve in_eq in_cons: coqlib.
 
 Lemma nth_error_in:
-  forall (A: Set) (n: nat) (l: list A) (x: A),
+  forall (A: Type) (n: nat) (l: list A) (x: A),
   List.nth_error l n = Some x -> In x l.
 Proof.
   induction n; simpl.
@@ -606,7 +606,7 @@ Qed.
 Hint Resolve nth_error_in: coqlib.
 
 Lemma nth_error_nil:
-  forall (A: Set) (idx: nat), nth_error (@nil A) idx = None.
+  forall (A: Type) (idx: nat), nth_error (@nil A) idx = None.
 Proof.
   induction idx; simpl; intros; reflexivity.
 Qed.
@@ -615,7 +615,7 @@ Hint Resolve nth_error_nil: coqlib.
 (** Properties of [List.incl] (list inclusion). *)
 
 Lemma incl_cons_inv:
-  forall (A: Set) (a: A) (b c: list A),
+  forall (A: Type) (a: A) (b c: list A),
   incl (a :: b) c -> incl b c.
 Proof.
   unfold incl; intros. apply H. apply in_cons. auto.
@@ -623,14 +623,14 @@ Qed.
 Hint Resolve incl_cons_inv: coqlib.
 
 Lemma incl_app_inv_l:
-  forall (A: Set) (l1 l2 m: list A),
+  forall (A: Type) (l1 l2 m: list A),
   incl (l1 ++ l2) m -> incl l1 m.
 Proof.
   unfold incl; intros. apply H. apply in_or_app. left; assumption.
 Qed.
 
 Lemma incl_app_inv_r:
-  forall (A: Set) (l1 l2 m: list A),
+  forall (A: Type) (l1 l2 m: list A),
   incl (l1 ++ l2) m -> incl l2 m.
 Proof.
   unfold incl; intros. apply H. apply in_or_app. right; assumption.
@@ -639,7 +639,7 @@ Qed.
 Hint Resolve  incl_tl incl_refl incl_app_inv_l incl_app_inv_r: coqlib.
 
 Lemma incl_same_head:
-  forall (A: Set) (x: A) (l1 l2: list A),
+  forall (A: Type) (x: A) (l1 l2: list A),
   incl l1 l2 -> incl (x::l1) (x::l2).
 Proof.
   intros; red; simpl; intros. intuition. 
@@ -648,7 +648,7 @@ Qed.
 (** Properties of [List.map] (mapping a function over a list). *)
 
 Lemma list_map_exten:
-  forall (A B: Set) (f f': A -> B) (l: list A),
+  forall (A B: Type) (f f': A -> B) (l: list A),
   (forall x, In x l -> f x = f' x) ->
   List.map f' l = List.map f l.
 Proof.
@@ -660,21 +660,21 @@ Proof.
 Qed.
 
 Lemma list_map_compose:
-  forall (A B C: Set) (f: A -> B) (g: B -> C) (l: list A),
+  forall (A B C: Type) (f: A -> B) (g: B -> C) (l: list A),
   List.map g (List.map f l) = List.map (fun x => g(f x)) l.
 Proof.
   induction l; simpl. reflexivity. rewrite IHl; reflexivity.
 Qed.
 
 Lemma list_map_identity:
-  forall (A: Set) (l: list A),
+  forall (A: Type) (l: list A),
   List.map (fun (x:A) => x) l = l.
 Proof.
   induction l; simpl; congruence.
 Qed.
 
 Lemma list_map_nth:
-  forall (A B: Set) (f: A -> B) (l: list A) (n: nat),
+  forall (A B: Type) (f: A -> B) (l: list A) (n: nat),
   nth_error (List.map f l) n = option_map f (nth_error l n).
 Proof.
   induction l; simpl; intros.
@@ -683,14 +683,14 @@ Proof.
 Qed.
 
 Lemma list_length_map:
-  forall (A B: Set) (f: A -> B) (l: list A),
+  forall (A B: Type) (f: A -> B) (l: list A),
   List.length (List.map f l) = List.length l.
 Proof.
   induction l; simpl; congruence.
 Qed.
 
 Lemma list_in_map_inv:
-  forall (A B: Set) (f: A -> B) (l: list A) (y: B),
+  forall (A B: Type) (f: A -> B) (l: list A) (y: B),
   In y (List.map f l) -> exists x:A, y = f x /\ In x l.
 Proof.
   induction l; simpl; intros.
@@ -702,7 +702,7 @@ Proof.
 Qed.
 
 Lemma list_append_map:
-  forall (A B: Set) (f: A -> B) (l1 l2: list A),
+  forall (A B: Type) (f: A -> B) (l1 l2: list A),
   List.map f (l1 ++ l2) = List.map f l1 ++ List.map f l2.
 Proof.
   induction l1; simpl; intros.
@@ -712,19 +712,19 @@ Qed.
 (** Properties of list membership. *)
 
 Lemma in_cns:
-  forall (A: Set) (x y: A) (l: list A), In x (y :: l) <-> y = x \/ In x l.
+  forall (A: Type) (x y: A) (l: list A), In x (y :: l) <-> y = x \/ In x l.
 Proof.
   intros. simpl. tauto.
 Qed.
 
 Lemma in_app:
-  forall (A: Set) (x: A) (l1 l2: list A), In x (l1 ++ l2) <-> In x l1 \/ In x l2.
+  forall (A: Type) (x: A) (l1 l2: list A), In x (l1 ++ l2) <-> In x l1 \/ In x l2.
 Proof.
   intros. split; intro. apply in_app_or. auto. apply in_or_app. auto.
 Qed.
 
 Lemma list_in_insert:
-  forall (A: Set) (x: A) (l1 l2: list A) (y: A),
+  forall (A: Type) (x: A) (l1 l2: list A) (y: A),
   In x (l1 ++ l2) -> In x (l1 ++ y :: l2).
 Proof.
   intros. apply in_or_app; simpl. elim (in_app_or _ _ _ H); intro; auto.
@@ -733,25 +733,25 @@ Qed.
 (** [list_disjoint l1 l2] holds iff [l1] and [l2] have no elements 
   in common. *)
 
-Definition list_disjoint (A: Set) (l1 l2: list A) : Prop :=
+Definition list_disjoint (A: Type) (l1 l2: list A) : Prop :=
   forall (x y: A), In x l1 -> In y l2 -> x <> y.
 
 Lemma list_disjoint_cons_left:
-  forall (A: Set) (a: A) (l1 l2: list A),
+  forall (A: Type) (a: A) (l1 l2: list A),
   list_disjoint (a :: l1) l2 -> list_disjoint l1 l2.
 Proof.
   unfold list_disjoint; simpl; intros. apply H; tauto. 
 Qed.
 
 Lemma list_disjoint_cons_right:
-  forall (A: Set) (a: A) (l1 l2: list A),
+  forall (A: Type) (a: A) (l1 l2: list A),
   list_disjoint l1 (a :: l2) -> list_disjoint l1 l2.
 Proof.
   unfold list_disjoint; simpl; intros. apply H; tauto. 
 Qed.
 
 Lemma list_disjoint_notin:
-  forall (A: Set) (l1 l2: list A) (a: A),
+  forall (A: Type) (l1 l2: list A) (a: A),
   list_disjoint l1 l2 -> In a l1 -> ~(In a l2).
 Proof.
   unfold list_disjoint; intros; red; intros. 
@@ -759,7 +759,7 @@ Proof.
 Qed.
 
 Lemma list_disjoint_sym:
-  forall (A: Set) (l1 l2: list A),
+  forall (A: Type) (l1 l2: list A),
   list_disjoint l1 l2 -> list_disjoint l2 l1.
 Proof.
   unfold list_disjoint; intros. 
@@ -767,7 +767,7 @@ Proof.
 Qed.
 
 Lemma list_disjoint_dec:
-  forall (A: Set) (eqA_dec: forall (x y: A), {x=y} + {x<>y}) (l1 l2: list A),
+  forall (A: Type) (eqA_dec: forall (x y: A), {x=y} + {x<>y}) (l1 l2: list A),
   {list_disjoint l1 l2} + {~list_disjoint l1 l2}.
 Proof.
   induction l1; intros.
@@ -784,7 +784,7 @@ Defined.
 (** [list_norepet l] holds iff the list [l] contains no repetitions,
   i.e. no element occurs twice. *)
 
-Inductive list_norepet (A: Set) : list A -> Prop :=
+Inductive list_norepet (A: Type) : list A -> Prop :=
   | list_norepet_nil:
       list_norepet nil
   | list_norepet_cons:
@@ -792,7 +792,7 @@ Inductive list_norepet (A: Set) : list A -> Prop :=
       ~(In hd tl) -> list_norepet tl -> list_norepet (hd :: tl).
 
 Lemma list_norepet_dec:
-  forall (A: Set) (eqA_dec: forall (x y: A), {x=y} + {x<>y}) (l: list A),
+  forall (A: Type) (eqA_dec: forall (x y: A), {x=y} + {x<>y}) (l: list A),
   {list_norepet l} + {~list_norepet l}.
 Proof.
   induction l.
@@ -805,7 +805,7 @@ Proof.
 Defined.
 
 Lemma list_map_norepet:
-  forall (A B: Set) (f: A -> B) (l: list A),
+  forall (A B: Type) (f: A -> B) (l: list A),
   list_norepet l ->
   (forall x y, In x l -> In y l -> x <> y -> f x <> f y) ->
   list_norepet (List.map f l).
@@ -821,7 +821,7 @@ Proof.
 Qed.
 
 Remark list_norepet_append_commut:
-  forall (A: Set) (a b: list A),
+  forall (A: Type) (a b: list A),
   list_norepet (a ++ b) -> list_norepet (b ++ a).
 Proof.
   intro A.
@@ -844,7 +844,7 @@ Proof.
 Qed.
 
 Lemma list_norepet_app:
-  forall (A: Set) (l1 l2: list A),
+  forall (A: Type) (l1 l2: list A),
   list_norepet (l1 ++ l2) <->
   list_norepet l1 /\ list_norepet l2 /\ list_disjoint l1 l2.
 Proof.
@@ -860,7 +860,7 @@ Proof.
 Qed.
 
 Lemma list_norepet_append:
-  forall (A: Set) (l1 l2: list A),
+  forall (A: Type) (l1 l2: list A),
   list_norepet l1 -> list_norepet l2 -> list_disjoint l1 l2 ->
   list_norepet (l1 ++ l2).
 Proof.
@@ -868,14 +868,14 @@ Proof.
 Qed.
 
 Lemma list_norepet_append_right:
-  forall (A: Set) (l1 l2: list A),
+  forall (A: Type) (l1 l2: list A),
   list_norepet (l1 ++ l2) -> list_norepet l2.
 Proof.
   generalize list_norepet_app; firstorder.
 Qed.
 
 Lemma list_norepet_append_left:
-  forall (A: Set) (l1 l2: list A),
+  forall (A: Type) (l1 l2: list A),
   list_norepet (l1 ++ l2) -> list_norepet l1.
 Proof.
   generalize list_norepet_app; firstorder.
@@ -883,14 +883,14 @@ Qed.
 
 (** [is_tail l1 l2] holds iff [l2] is of the form [l ++ l1] for some [l]. *)
 
-Inductive is_tail (A: Set): list A -> list A -> Prop :=
+Inductive is_tail (A: Type): list A -> list A -> Prop :=
   | is_tail_refl:
       forall c, is_tail c c
   | is_tail_cons:
       forall i c1 c2, is_tail c1 c2 -> is_tail c1 (i :: c2).
 
 Lemma is_tail_in:
-  forall (A: Set) (i: A) c1 c2, is_tail (i :: c1) c2 -> In i c2.
+  forall (A: Type) (i: A) c1 c2, is_tail (i :: c1) c2 -> In i c2.
 Proof.
   induction c2; simpl; intros.
   inversion H.
@@ -898,7 +898,7 @@ Proof.
 Qed.
 
 Lemma is_tail_cons_left:
-  forall (A: Set) (i: A) c1 c2, is_tail (i :: c1) c2 -> is_tail c1 c2.
+  forall (A: Type) (i: A) c1 c2, is_tail (i :: c1) c2 -> is_tail c1 c2.
 Proof.
   induction c2; intros; inversion H.
   constructor. constructor. constructor. auto. 
@@ -907,13 +907,13 @@ Qed.
 Hint Resolve is_tail_refl is_tail_cons is_tail_in is_tail_cons_left: coqlib.
 
 Lemma is_tail_incl:
-  forall (A: Set) (l1 l2: list A), is_tail l1 l2 -> incl l1 l2.
+  forall (A: Type) (l1 l2: list A), is_tail l1 l2 -> incl l1 l2.
 Proof.
   induction 1; eauto with coqlib.
 Qed.
 
 Lemma is_tail_trans:
-  forall (A: Set) (l1 l2: list A),
+  forall (A: Type) (l1 l2: list A),
   is_tail l1 l2 -> forall (l3: list A), is_tail l2 l3 -> is_tail l1 l3.
 Proof.
   induction 1; intros. auto. apply IHis_tail. eapply is_tail_cons_left; eauto.
@@ -924,8 +924,8 @@ Qed.
 
 Section FORALL2.
 
-Variable A: Set.
-Variable B: Set.
+Variable A: Type.
+Variable B: Type.
 Variable P: A -> B -> Prop.
 
 Inductive list_forall2: list A -> list B -> Prop :=
@@ -940,7 +940,7 @@ Inductive list_forall2: list A -> list B -> Prop :=
 End FORALL2.
 
 Lemma list_forall2_imply:
-  forall (A B: Set) (P1: A -> B -> Prop) (l1: list A) (l2: list B),
+  forall (A B: Type) (P1: A -> B -> Prop) (l1: list A) (l2: list B),
   list_forall2 P1 l1 l2 ->
   forall (P2: A -> B -> Prop),
   (forall v1 v2, In v1 l1 -> In v2 l2 -> P1 v1 v2 -> P2 v1 v2) ->
@@ -954,45 +954,45 @@ Qed.
 
 (** Dropping the first or first two elements of a list. *)
 
-Definition list_drop1 (A: Set) (x: list A) :=
+Definition list_drop1 (A: Type) (x: list A) :=
   match x with nil => nil | hd :: tl => tl end.
-Definition list_drop2 (A: Set) (x: list A) :=
+Definition list_drop2 (A: Type) (x: list A) :=
   match x with nil => nil | hd :: nil => nil | hd1 :: hd2 :: tl => tl end.
 
 Lemma list_drop1_incl:
-  forall (A: Set) (x: A) (l: list A), In x (list_drop1 l) -> In x l.
+  forall (A: Type) (x: A) (l: list A), In x (list_drop1 l) -> In x l.
 Proof.
   intros. destruct l. elim H. simpl in H. auto with coqlib.
 Qed.
 
 Lemma list_drop2_incl:
-  forall (A: Set) (x: A) (l: list A), In x (list_drop2 l) -> In x l.
+  forall (A: Type) (x: A) (l: list A), In x (list_drop2 l) -> In x l.
 Proof.
   intros. destruct l. elim H. destruct l. elim H.
   simpl in H. auto with coqlib.
 Qed.
 
 Lemma list_drop1_norepet:
-  forall (A: Set) (l: list A), list_norepet l -> list_norepet (list_drop1 l).
+  forall (A: Type) (l: list A), list_norepet l -> list_norepet (list_drop1 l).
 Proof.
   intros. destruct l; simpl. constructor. inversion H. auto.
 Qed.
 
 Lemma list_drop2_norepet:
-  forall (A: Set) (l: list A), list_norepet l -> list_norepet (list_drop2 l).
+  forall (A: Type) (l: list A), list_norepet l -> list_norepet (list_drop2 l).
 Proof.
   intros. destruct l; simpl. constructor.
   destruct l; simpl. constructor. inversion H. inversion H3. auto.
 Qed.
 
 Lemma list_map_drop1:
-  forall (A B: Set) (f: A -> B) (l: list A), list_drop1 (map f l) = map f (list_drop1 l).
+  forall (A B: Type) (f: A -> B) (l: list A), list_drop1 (map f l) = map f (list_drop1 l).
 Proof.
   intros; destruct l; reflexivity.
 Qed.
 
 Lemma list_map_drop2:
-  forall (A B: Set) (f: A -> B) (l: list A), list_drop2 (map f l) = map f (list_drop2 l).
+  forall (A B: Type) (f: A -> B) (l: list A), list_drop2 (map f l) = map f (list_drop2 l).
 Proof.
   intros; destruct l. reflexivity. destruct l; reflexivity.
 Qed.
@@ -1014,9 +1014,9 @@ Qed.
 
 Section DECIDABLE_EQUALITY.
 
-Variable A: Set.
+Variable A: Type.
 Variable dec_eq: forall (x y: A), {x=y} + {x<>y}.
-Variable B: Set.
+Variable B: Type.
 
 Lemma dec_eq_true:
   forall (x: A) (ifso ifnot: B),
diff --git a/lib/Floats.v b/lib/Floats.v
index 6857236d3..2e60d73e0 100644
--- a/lib/Floats.v
+++ b/lib/Floats.v
@@ -23,7 +23,7 @@
 Require Import Coqlib.
 Require Import Integers.
 
-Parameter float: Set.
+Parameter float: Type.
 
 Module Float.
 
diff --git a/lib/Inclusion.v b/lib/Inclusion.v
index 728a7252b..77f5d8496 100644
--- a/lib/Inclusion.v
+++ b/lib/Inclusion.v
@@ -51,7 +51,7 @@ Ltac all_app e :=
 (** This data type, [flatten], [insert_bin], [sort_bin] and a few theorem
   are taken from the CoqArt book, chapt. 16. *)
 
-Inductive bin : Set := node : bin->bin->bin | leaf : nat->bin.
+Inductive bin : Type := node : bin->bin->bin | leaf : nat->bin.
 
 Fixpoint flatten_aux (t fin:bin){struct t} : bin :=
   match t with
@@ -91,7 +91,7 @@ Fixpoint sort_bin (t:bin) : bin :=
   end.
 
 Section assoc_eq.
- Variables (A : Set)(f : A->A->A).
+ Variables (A : Type)(f : A->A->A).
  Hypothesis assoc : forall x y z:A, f x (f y z) = f (f x y) z.
 
  Fixpoint bin_A (l:list A)(def:A)(t:bin){struct t} : A :=
@@ -147,7 +147,7 @@ Ltac model_aux_app l v :=
   end.
 
 Theorem In_permute_app_head :
-  forall A:Set, forall r:A, forall x y l:list A,
+  forall A:Type, forall r:A, forall x y l:list A,
    In r (x++y++l) -> In r (y++x++l).
 intros A r x y l; generalize r; change (incl (x++y++l)(y++x++l)).
 repeat rewrite ass_app; auto with datatypes.
@@ -155,7 +155,7 @@ Qed.
 
 Theorem insert_bin_included : 
   forall x:nat, forall t2:bin,
-  forall (A:Set) (r:A) (l:list (list A))(def:list A), 
+  forall (A:Type) (r:A) (l:list (list A))(def:list A), 
      In r (bin_A (list A) (app (A:=A)) l def (insert_bin x t2)) ->
      In r (bin_A (list A) (app (A:=A)) l def (node (leaf x) t2)).
 intros x t2; induction t2.
@@ -181,7 +181,7 @@ apply In_permute_app_head; assumption.
 Qed.
 
 Theorem in_or_insert_bin :
-  forall (n:nat) (t2:bin) (A:Set)(r:A)(l:list (list A)) (def:list A),
+  forall (n:nat) (t2:bin) (A:Type)(r:A)(l:list (list A)) (def:list A),
   In r (nth n l def) \/ In r (bin_A (list A)(app (A:=A)) l def t2) ->
   In r (bin_A (list A)(app (A:=A)) l def (insert_bin n t2)).
 intros n t2 A r l def; induction t2.
@@ -198,7 +198,7 @@ simpl; intros [H|H]; case (nat_le_bool n n0); simpl; apply in_or_app; auto.
 Qed.
 
 Theorem sort_included :
-  forall t:bin, forall (A:Set)(r:A)(l:list(list A))(def:list A),
+  forall t:bin, forall (A:Type)(r:A)(l:list(list A))(def:list A),
     In r (bin_A (list A) (app (A:=A)) l def (sort_bin t)) ->
     In r (bin_A (list A) (app (A:=A)) l def t).
 induction t.
@@ -213,7 +213,7 @@ simpl;intros;assumption.
 Qed.
 
 Theorem sort_included2 :
-  forall t:bin, forall (A:Set)(r:A)(l:list(list A))(def:list A),
+  forall t:bin, forall (A:Type)(r:A)(l:list(list A))(def:list A),
     In r (bin_A (list A) (app (A:=A)) l def t) ->
     In r (bin_A (list A) (app (A:=A)) l def (sort_bin t)).
 induction t.
@@ -226,7 +226,7 @@ simpl; auto.
 Qed.
 
 Theorem in_remove_head :
-  forall (A:Set)(x:A)(l1 l2 l3:list A),
+  forall (A:Type)(x:A)(l1 l2 l3:list A),
   In x (l1++l2) -> (In x l2 -> In x l3) -> In x (l1++l3).
 intros A x l1 l2 l3 H H1.
 elim in_app_or with (1:= H);clear H; intros H; apply in_or_app; auto.
@@ -257,7 +257,7 @@ Fixpoint test_inclusion (t1 t2:bin) {struct t1} : bool :=
 Theorem check_all_leaves_sound :
   forall x t2,
     check_all_leaves x t2 = true ->
-    forall (A:Set)(r:A)(l:list(list A))(def:list A),
+    forall (A:Type)(r:A)(l:list(list A))(def:list A),
     In r (bin_A (list A) (app (A:=A)) l def t2) ->
     In r (nth x l def).
 intros x t2; induction t2; simpl.
@@ -270,7 +270,7 @@ Qed.
 
 Theorem remove_all_leaves_sound :
   forall x t2,
-  forall (A:Set)(r:A)(l:list(list A))(def:list A),
+  forall (A:Type)(r:A)(l:list(list A))(def:list A),
   In r (bin_A (list A) (app(A:=A)) l def t2) ->
   In r (bin_A (list A) (app(A:=A)) l def (remove_all_leaves x t2)) \/
   In r (nth x l def).
@@ -293,7 +293,7 @@ Qed.
 Theorem test_inclusion_sound :
   forall t1 t2:bin,
   test_inclusion t1 t2 = true ->
-  forall (A:Set)(r:A)(l:list(list A))(def:list A),
+  forall (A:Type)(r:A)(l:list(list A))(def:list A),
   In r (bin_A (list A)(app(A:=A)) l def t2) ->
   In r (bin_A (list A)(app(A:=A)) l def t1).
 intros t1; induction t1.
@@ -317,7 +317,7 @@ Qed.
 Theorem inclusion_theorem :
   forall t1 t2 : bin,
     test_inclusion (sort_bin (flatten t1)) (sort_bin (flatten t2)) = true ->
-    forall (A:Set)(r:A)(l:list(list A))(def:list A),
+    forall (A:Type)(r:A)(l:list(list A))(def:list A),
     In r (bin_A (list A) (app(A:=A)) l def t2) ->
     In r (bin_A (list A) (app(A:=A)) l def t1).
 intros t1 t2 Heq A r l def H.
diff --git a/lib/Integers.v b/lib/Integers.v
index ceda85121..1eb59c5c5 100644
--- a/lib/Integers.v
+++ b/lib/Integers.v
@@ -23,7 +23,7 @@ Definition half_modulus : Z := modulus / 2.
 
 (** * Comparisons *)
 
-Inductive comparison : Set :=
+Inductive comparison : Type :=
   | Ceq : comparison               (**r same *)
   | Cne : comparison               (**r different *)
   | Clt : comparison               (**r less than *)
@@ -57,7 +57,7 @@ Definition swap_comparison (c: comparison): comparison :=
   integer (type [Z]) plus a proof that it is in the range 0 (included) to
   [modulus] (excluded. *)
 
-Record int: Set := mkint { intval: Z; intrange: 0 <= intval < modulus }.
+Record int: Type := mkint { intval: Z; intrange: 0 <= intval < modulus }.
 
 Module Int.
 
@@ -289,7 +289,7 @@ Definition is_power2 (x: int) : option int :=
 >>
 *)
 
-Inductive rlw_state: Set :=
+Inductive rlw_state: Type :=
   | RLW_S0 : rlw_state
   | RLW_S1 : rlw_state
   | RLW_S2 : rlw_state
diff --git a/lib/Iteration.v b/lib/Iteration.v
index cabe5b825..24835da2b 100644
--- a/lib/Iteration.v
+++ b/lib/Iteration.v
@@ -18,9 +18,9 @@ Require Import Max.
 
 Module Type ITER.
 Variable iterate
-     : forall A B : Set, (A -> B + A) -> A -> option B.
+     : forall A B : Type, (A -> B + A) -> A -> option B.
 Hypothesis iterate_prop
-     : forall (A B : Set) (step : A -> B + A) (P : A -> Prop) (Q : B -> Prop),
+     : forall (A B : Type) (step : A -> B + A) (P : A -> Prop) (Q : B -> Prop),
        (forall a : A, P a ->
            match step a with inl b => Q b | inr a' => P a' end) ->
        forall (a : A) (b : B), iterate A B step a = Some b -> P a -> Q b.
@@ -39,7 +39,7 @@ Module PrimIter: ITER.
 
 Section ITERATION.
 
-Variables A B: Set.
+Variables A B: Type.
 Variable step: A -> B + A.
 
 (** The [step] parameter represents one step of the iteration.  From a 
@@ -174,7 +174,7 @@ Module GenIter: ITER.
 
 Section ITERATION.
 
-Variables A B: Set.
+Variables A B: Type.
 Variable step: A -> B + A.
 
 Definition B_le (x y: option B) : Prop := x = None \/ y = x.
diff --git a/lib/Lattice.v b/lib/Lattice.v
index 3c390069e..1d58ee5a9 100644
--- a/lib/Lattice.v
+++ b/lib/Lattice.v
@@ -25,7 +25,7 @@ Require Import FSets.
 
 Module Type SEMILATTICE.
 
-  Variable t: Set.
+  Variable t: Type.
   Variable eq: t -> t -> Prop.
   Hypothesis eq_refl: forall x, eq x x.
   Hypothesis eq_sym: forall x y, eq x y -> eq y x.
@@ -49,24 +49,9 @@ End SEMILATTICE.
 
 Module Type SEMILATTICE_WITH_TOP.
 
-  Variable t: Set.
-  Variable eq: t -> t -> Prop.
-  Hypothesis eq_refl: forall x, eq x x.
-  Hypothesis eq_sym: forall x y, eq x y -> eq y x.
-  Hypothesis eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
-  Variable beq: t -> t -> bool.
-  Hypothesis beq_correct: forall x y, beq x y = true -> eq x y.
-  Variable ge: t -> t -> Prop.
-  Hypothesis ge_refl: forall x y, eq x y -> ge x y.
-  Hypothesis ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
-  Hypothesis ge_compat: forall x x' y y', eq x x' -> eq y y' -> ge x y -> ge x' y'.
-  Variable bot: t.
-  Hypothesis ge_bot: forall x, ge x bot.
+  Include Type SEMILATTICE.
   Variable top: t.
   Hypothesis ge_top: forall x, ge top x.
-  Variable lub: t -> t -> t.
-  Hypothesis lub_commut: forall x y, eq (lub x y) (lub y x).
-  Hypothesis ge_lub_left: forall x y, ge (lub x y) x.
 
 End SEMILATTICE_WITH_TOP.
 
@@ -78,11 +63,11 @@ End SEMILATTICE_WITH_TOP.
 
 Module LPMap(L: SEMILATTICE_WITH_TOP) <: SEMILATTICE_WITH_TOP.
 
-Inductive t_ : Set :=
+Inductive t_ : Type :=
   | Bot_except: PTree.t L.t -> t_
   | Top_except: PTree.t L.t -> t_.
 
-Definition t: Set := t_.
+Definition t: Type := t_.
 
 Definition get (p: positive) (x: t) : L.t :=
   match x with
@@ -333,12 +318,12 @@ End LFSet.
 
 Module LFlat(X: EQUALITY_TYPE) <: SEMILATTICE_WITH_TOP.
 
-Inductive t_ : Set :=
+Inductive t_ : Type :=
   | Bot: t_
   | Inj: X.t -> t_
   | Top: t_.
 
-Definition t : Set := t_.
+Definition t : Type := t_.
 
 Definition eq (x y: t) := (x = y).
 Definition eq_refl: forall x, eq x x := (@refl_equal t).
diff --git a/lib/Maps.v b/lib/Maps.v
index 4209fe6ec..a277e6772 100644
--- a/lib/Maps.v
+++ b/lib/Maps.v
@@ -39,46 +39,46 @@ Set Implicit Arguments.
 (** * The abstract signatures of trees *)
 
 Module Type TREE.
-  Variable elt: Set.
+  Variable elt: Type.
   Variable elt_eq: forall (a b: elt), {a = b} + {a <> b}.
-  Variable t: Set -> Set.
-  Variable eq: forall (A: Set), (forall (x y: A), {x=y} + {x<>y}) ->
+  Variable t: Type -> Type.
+  Variable eq: forall (A: Type), (forall (x y: A), {x=y} + {x<>y}) ->
                 forall (a b: t A), {a = b} + {a <> b}.
-  Variable empty: forall (A: Set), t A.
-  Variable get: forall (A: Set), elt -> t A -> option A.
-  Variable set: forall (A: Set), elt -> A -> t A -> t A.
-  Variable remove: forall (A: Set), elt -> t A -> t A.
+  Variable empty: forall (A: Type), t A.
+  Variable get: forall (A: Type), elt -> t A -> option A.
+  Variable set: forall (A: Type), elt -> A -> t A -> t A.
+  Variable remove: forall (A: Type), elt -> t A -> t A.
 
   (** The ``good variables'' properties for trees, expressing
     commutations between [get], [set] and [remove]. *)
   Hypothesis gempty:
-    forall (A: Set) (i: elt), get i (empty A) = None.
+    forall (A: Type) (i: elt), get i (empty A) = None.
   Hypothesis gss:
-    forall (A: Set) (i: elt) (x: A) (m: t A), get i (set i x m) = Some x.
+    forall (A: Type) (i: elt) (x: A) (m: t A), get i (set i x m) = Some x.
   Hypothesis gso:
-    forall (A: Set) (i j: elt) (x: A) (m: t A),
+    forall (A: Type) (i j: elt) (x: A) (m: t A),
     i <> j -> get i (set j x m) = get i m.
   Hypothesis gsspec:
-    forall (A: Set) (i j: elt) (x: A) (m: t A),
+    forall (A: Type) (i j: elt) (x: A) (m: t A),
     get i (set j x m) = if elt_eq i j then Some x else get i m.
   Hypothesis gsident:
-    forall (A: Set) (i: elt) (m: t A) (v: A),
+    forall (A: Type) (i: elt) (m: t A) (v: A),
     get i m = Some v -> set i v m = m.
   (* We could implement the following, but it's not needed for the moment.
     Hypothesis grident:
-      forall (A: Set) (i: elt) (m: t A) (v: A),
+      forall (A: Type) (i: elt) (m: t A) (v: A),
       get i m = None -> remove i m = m.
   *)
   Hypothesis grs:
-    forall (A: Set) (i: elt) (m: t A), get i (remove i m) = None.
+    forall (A: Type) (i: elt) (m: t A), get i (remove i m) = None.
   Hypothesis gro:
-    forall (A: Set) (i j: elt) (m: t A),
+    forall (A: Type) (i j: elt) (m: t A),
     i <> j -> get i (remove j m) = get i m.
 
   (** Extensional equality between trees. *)
-  Variable beq: forall (A: Set), (A -> A -> bool) -> t A -> t A -> bool.
+  Variable beq: forall (A: Type), (A -> A -> bool) -> t A -> t A -> bool.
   Hypothesis beq_correct:
-    forall (A: Set) (P: A -> A -> Prop) (cmp: A -> A -> bool),
+    forall (A: Type) (P: A -> A -> Prop) (cmp: A -> A -> bool),
     (forall (x y: A), cmp x y = true -> P x y) ->
     forall (t1 t2: t A), beq cmp t1 t2 = true ->
     forall (x: elt),
@@ -90,43 +90,43 @@ Module Type TREE.
 
   (** Applying a function to all data of a tree. *)
   Variable map:
-    forall (A B: Set), (elt -> A -> B) -> t A -> t B.
+    forall (A B: Type), (elt -> A -> B) -> t A -> t B.
   Hypothesis gmap:
-    forall (A B: Set) (f: elt -> A -> B) (i: elt) (m: t A),
+    forall (A B: Type) (f: elt -> A -> B) (i: elt) (m: t A),
     get i (map f m) = option_map (f i) (get i m).
 
   (** Applying a function pairwise to all data of two trees. *)
   Variable combine:
-    forall (A: Set), (option A -> option A -> option A) -> t A -> t A -> t A.
+    forall (A: Type), (option A -> option A -> option A) -> t A -> t A -> t A.
   Hypothesis gcombine:
-    forall (A: Set) (f: option A -> option A -> option A)
+    forall (A: Type) (f: option A -> option A -> option A)
            (m1 m2: t A) (i: elt),
     f None None = None ->
     get i (combine f m1 m2) = f (get i m1) (get i m2).
   Hypothesis combine_commut:
-    forall (A: Set) (f g: option A -> option A -> option A),
+    forall (A: Type) (f g: option A -> option A -> option A),
     (forall (i j: option A), f i j = g j i) ->
     forall (m1 m2: t A),
     combine f m1 m2 = combine g m2 m1.
 
   (** Enumerating the bindings of a tree. *)
   Variable elements:
-    forall (A: Set), t A -> list (elt * A).
+    forall (A: Type), t A -> list (elt * A).
   Hypothesis elements_correct:
-    forall (A: Set) (m: t A) (i: elt) (v: A),
+    forall (A: Type) (m: t A) (i: elt) (v: A),
     get i m = Some v -> In (i, v) (elements m).
   Hypothesis elements_complete:
-    forall (A: Set) (m: t A) (i: elt) (v: A),
+    forall (A: Type) (m: t A) (i: elt) (v: A),
     In (i, v) (elements m) -> get i m = Some v.
   Hypothesis elements_keys_norepet:
-    forall (A: Set) (m: t A), 
+    forall (A: Type) (m: t A), 
     list_norepet (List.map (@fst elt A) (elements m)).
 
   (** Folding a function over all bindings of a tree. *)
   Variable fold:
-    forall (A B: Set), (B -> elt -> A -> B) -> t A -> B -> B.
+    forall (A B: Type), (B -> elt -> A -> B) -> t A -> B -> B.
   Hypothesis fold_spec:
-    forall (A B: Set) (f: B -> elt -> A -> B) (v: B) (m: t A),
+    forall (A B: Type) (f: B -> elt -> A -> B) (v: B) (m: t A),
     fold f m v =
     List.fold_left (fun a p => f a (fst p) (snd p)) (elements m) v.
 End TREE.
@@ -134,27 +134,27 @@ End TREE.
 (** * The abstract signatures of maps *)
 
 Module Type MAP.
-  Variable elt: Set.
+  Variable elt: Type.
   Variable elt_eq: forall (a b: elt), {a = b} + {a <> b}.
-  Variable t: Set -> Set.
-  Variable init: forall (A: Set), A -> t A.
-  Variable get: forall (A: Set), elt -> t A -> A.
-  Variable set: forall (A: Set), elt -> A -> t A -> t A.
+  Variable t: Type -> Type.
+  Variable init: forall (A: Type), A -> t A.
+  Variable get: forall (A: Type), elt -> t A -> A.
+  Variable set: forall (A: Type), elt -> A -> t A -> t A.
   Hypothesis gi:
-    forall (A: Set) (i: elt) (x: A), get i (init x) = x.
+    forall (A: Type) (i: elt) (x: A), get i (init x) = x.
   Hypothesis gss:
-    forall (A: Set) (i: elt) (x: A) (m: t A), get i (set i x m) = x.
+    forall (A: Type) (i: elt) (x: A) (m: t A), get i (set i x m) = x.
   Hypothesis gso:
-    forall (A: Set) (i j: elt) (x: A) (m: t A),
+    forall (A: Type) (i j: elt) (x: A) (m: t A),
     i <> j -> get i (set j x m) = get i m.
   Hypothesis gsspec:
-    forall (A: Set) (i j: elt) (x: A) (m: t A),
+    forall (A: Type) (i j: elt) (x: A) (m: t A),
     get i (set j x m) = if elt_eq i j then x else get i m.
   Hypothesis gsident:
-    forall (A: Set) (i j: elt) (m: t A), get j (set i (get i m) m) = get j m.
-  Variable map: forall (A B: Set), (A -> B) -> t A -> t B.
+    forall (A: Type) (i j: elt) (m: t A), get j (set i (get i m) m) = get j m.
+  Variable map: forall (A B: Type), (A -> B) -> t A -> t B.
   Hypothesis gmap:
-    forall (A B: Set) (f: A -> B) (i: elt) (m: t A),
+    forall (A B: Type) (f: A -> B) (i: elt) (m: t A),
     get i (map f m) = f(get i m).
 End MAP.
 
@@ -164,7 +164,7 @@ Module PTree <: TREE.
   Definition elt := positive.
   Definition elt_eq := peq.
 
-  Inductive tree (A : Set) : Set :=
+  Inductive tree (A : Type) : Type :=
     | Leaf : tree A
     | Node : tree A -> option A -> tree A -> tree A
   .
@@ -173,7 +173,7 @@ Module PTree <: TREE.
 
   Definition t := tree.
 
-  Theorem eq : forall (A : Set),
+  Theorem eq : forall (A : Type),
     (forall (x y: A), {x=y} + {x<>y}) ->
     forall (a b : t A), {a = b} + {a <> b}.
   Proof.
@@ -182,9 +182,9 @@ Module PTree <: TREE.
     generalize o o0; decide equality.
   Qed.
 
-  Definition empty (A : Set) := (Leaf : t A).
+  Definition empty (A : Type) := (Leaf : t A).
 
-  Fixpoint get (A : Set) (i : positive) (m : t A) {struct i} : option A :=
+  Fixpoint get (A : Type) (i : positive) (m : t A) {struct i} : option A :=
     match m with
     | Leaf => None
     | Node l o r =>
@@ -195,7 +195,7 @@ Module PTree <: TREE.
         end
     end.
 
-  Fixpoint set (A : Set) (i : positive) (v : A) (m : t A) {struct i} : t A :=
+  Fixpoint set (A : Type) (i : positive) (v : A) (m : t A) {struct i} : t A :=
     match m with
     | Leaf =>
         match i with
@@ -211,7 +211,7 @@ Module PTree <: TREE.
         end
     end.
 
-  Fixpoint remove (A : Set) (i : positive) (m : t A) {struct i} : t A :=
+  Fixpoint remove (A : Type) (i : positive) (m : t A) {struct i} : t A :=
     match i with
     | xH =>
         match m with
@@ -242,22 +242,22 @@ Module PTree <: TREE.
     end.
 
   Theorem gempty:
-    forall (A: Set) (i: positive), get i (empty A) = None.
+    forall (A: Type) (i: positive), get i (empty A) = None.
   Proof.
     induction i; simpl; auto.
   Qed.
 
   Theorem gss:
-    forall (A: Set) (i: positive) (x: A) (m: t A), get i (set i x m) = Some x.
+    forall (A: Type) (i: positive) (x: A) (m: t A), get i (set i x m) = Some x.
   Proof.
     induction i; destruct m; simpl; auto.
   Qed.
 
-    Lemma gleaf : forall (A : Set) (i : positive), get i (Leaf : t A) = None.
+    Lemma gleaf : forall (A : Type) (i : positive), get i (Leaf : t A) = None.
     Proof. exact gempty. Qed.
 
   Theorem gso:
-    forall (A: Set) (i j: positive) (x: A) (m: t A),
+    forall (A: Type) (i j: positive) (x: A) (m: t A),
     i <> j -> get i (set j x m) = get i m.
   Proof.
     induction i; intros; destruct j; destruct m; simpl;
@@ -265,7 +265,7 @@ Module PTree <: TREE.
   Qed.
 
   Theorem gsspec:
-    forall (A: Set) (i j: positive) (x: A) (m: t A),
+    forall (A: Type) (i j: positive) (x: A) (m: t A),
     get i (set j x m) = if peq i j then Some x else get i m.
   Proof.
     intros.
@@ -273,7 +273,7 @@ Module PTree <: TREE.
   Qed.
 
   Theorem gsident:
-    forall (A: Set) (i: positive) (m: t A) (v: A),
+    forall (A: Type) (i: positive) (m: t A) (v: A),
     get i m = Some v -> set i v m = m.
   Proof.
     induction i; intros; destruct m; simpl; simpl in H; try congruence.
@@ -281,11 +281,11 @@ Module PTree <: TREE.
      rewrite (IHi m1 v H); congruence.
   Qed.
 
-    Lemma rleaf : forall (A : Set) (i : positive), remove i (Leaf : t A) = Leaf.
+    Lemma rleaf : forall (A : Type) (i : positive), remove i (Leaf : t A) = Leaf.
     Proof. destruct i; simpl; auto. Qed.
 
   Theorem grs:
-    forall (A: Set) (i: positive) (m: t A), get i (remove i m) = None.
+    forall (A: Type) (i: positive) (m: t A), get i (remove i m) = None.
   Proof.
     induction i; destruct m.
      simpl; auto.
@@ -305,7 +305,7 @@ Module PTree <: TREE.
   Qed.
 
   Theorem gro:
-    forall (A: Set) (i j: positive) (m: t A),
+    forall (A: Type) (i j: positive) (m: t A),
     i <> j -> get i (remove j m) = get i m.
   Proof.
     induction i; intros; destruct j; destruct m;
@@ -335,7 +335,7 @@ Module PTree <: TREE.
 
   Section EXTENSIONAL_EQUALITY.
 
-    Variable A: Set.
+    Variable A: Type.
     Variable eqA: A -> A -> Prop.
     Variable beqA: A -> A -> bool.
     Hypothesis beqA_correct: forall x y, beqA x y = true -> eqA x y.
@@ -439,7 +439,7 @@ Module PTree <: TREE.
       simpl; auto.
     Qed.
 
-    Fixpoint xmap (A B : Set) (f : positive -> A -> B) (m : t A) (i : positive)
+    Fixpoint xmap (A B : Type) (f : positive -> A -> B) (m : t A) (i : positive)
              {struct m} : t B :=
       match m with
       | Leaf => Leaf
@@ -448,10 +448,10 @@ Module PTree <: TREE.
                            (xmap f r (append i (xI xH)))
       end.
 
-  Definition map (A B : Set) (f : positive -> A -> B) m := xmap f m xH.
+  Definition map (A B : Type) (f : positive -> A -> B) m := xmap f m xH.
 
     Lemma xgmap:
-      forall (A B: Set) (f: positive -> A -> B) (i j : positive) (m: t A),
+      forall (A B: Type) (f: positive -> A -> B) (i j : positive) (m: t A),
       get i (xmap f m j) = option_map (f (append j i)) (get i m).
     Proof.
       induction i; intros; destruct m; simpl; auto.
@@ -461,7 +461,7 @@ Module PTree <: TREE.
     Qed.
 
   Theorem gmap:
-    forall (A B: Set) (f: positive -> A -> B) (i: positive) (m: t A),
+    forall (A B: Type) (f: positive -> A -> B) (i: positive) (m: t A),
     get i (map f m) = option_map (f i) (get i m).
   Proof.
     intros.
@@ -471,7 +471,7 @@ Module PTree <: TREE.
     rewrite append_neutral_l; auto.
   Qed.
 
-    Fixpoint xcombine_l (A : Set) (f : option A -> option A -> option A)
+    Fixpoint xcombine_l (A : Type) (f : option A -> option A -> option A)
                        (m : t A) {struct m} : t A :=
       match m with
       | Leaf => Leaf
@@ -479,14 +479,14 @@ Module PTree <: TREE.
       end.
 
     Lemma xgcombine_l :
-          forall (A : Set) (f : option A -> option A -> option A)
+          forall (A : Type) (f : option A -> option A -> option A)
                  (i : positive) (m : t A),
           f None None = None -> get i (xcombine_l f m) = f (get i m) None.
     Proof.
       induction i; intros; destruct m; simpl; auto.
     Qed.
 
-    Fixpoint xcombine_r (A : Set) (f : option A -> option A -> option A)
+    Fixpoint xcombine_r (A : Type) (f : option A -> option A -> option A)
                        (m : t A) {struct m} : t A :=
       match m with
       | Leaf => Leaf
@@ -494,14 +494,14 @@ Module PTree <: TREE.
       end.
 
     Lemma xgcombine_r :
-          forall (A : Set) (f : option A -> option A -> option A)
+          forall (A : Type) (f : option A -> option A -> option A)
                  (i : positive) (m : t A),
           f None None = None -> get i (xcombine_r f m) = f None (get i m).
     Proof.
       induction i; intros; destruct m; simpl; auto.
     Qed.
 
-  Fixpoint combine (A : Set) (f : option A -> option A -> option A)
+  Fixpoint combine (A : Type) (f : option A -> option A -> option A)
                    (m1 m2 : t A) {struct m1} : t A :=
     match m1 with
     | Leaf => xcombine_r f m2
@@ -513,7 +513,7 @@ Module PTree <: TREE.
     end.
 
     Lemma xgcombine:
-      forall (A: Set) (f: option A -> option A -> option A) (i: positive)
+      forall (A: Type) (f: option A -> option A -> option A) (i: positive)
              (m1 m2: t A),
       f None None = None ->
       get i (combine f m1 m2) = f (get i m1) (get i m2).
@@ -523,7 +523,7 @@ Module PTree <: TREE.
     Qed.
 
   Theorem gcombine:
-    forall (A: Set) (f: option A -> option A -> option A)
+    forall (A: Type) (f: option A -> option A -> option A)
            (m1 m2: t A) (i: positive),
     f None None = None ->
     get i (combine f m1 m2) = f (get i m1) (get i m2).
@@ -532,7 +532,7 @@ Module PTree <: TREE.
   Qed.
 
     Lemma xcombine_lr :
-      forall (A : Set) (f g : option A -> option A -> option A) (m : t A),
+      forall (A : Type) (f g : option A -> option A -> option A) (m : t A),
       (forall (i j : option A), f i j = g j i) ->
       xcombine_l f m = xcombine_r g m.
     Proof.
@@ -543,7 +543,7 @@ Module PTree <: TREE.
     Qed.
 
   Theorem combine_commut:
-    forall (A: Set) (f g: option A -> option A -> option A),
+    forall (A: Type) (f g: option A -> option A -> option A),
     (forall (i j: option A), f i j = g j i) ->
     forall (m1 m2: t A),
     combine f m1 m2 = combine g m2 m1.
@@ -561,7 +561,7 @@ Module PTree <: TREE.
      auto. 
   Qed.
 
-    Fixpoint xelements (A : Set) (m : t A) (i : positive) {struct m}
+    Fixpoint xelements (A : Type) (m : t A) (i : positive) {struct m}
              : list (positive * A) :=
       match m with
       | Leaf => nil
@@ -578,7 +578,7 @@ Module PTree <: TREE.
   Definition elements A (m : t A) := xelements m xH.
 
     Lemma xelements_correct:
-      forall (A: Set) (m: t A) (i j : positive) (v: A),
+      forall (A: Type) (m: t A) (i j : positive) (v: A),
       get i m = Some v -> In (append j i, v) (xelements m j).
     Proof.
       induction m; intros.
@@ -595,14 +595,14 @@ Module PTree <: TREE.
     Qed.
 
   Theorem elements_correct:
-    forall (A: Set) (m: t A) (i: positive) (v: A),
+    forall (A: Type) (m: t A) (i: positive) (v: A),
     get i m = Some v -> In (i, v) (elements m).
   Proof.
     intros A m i v H.
     exact (xelements_correct m i xH H).
   Qed.
 
-    Fixpoint xget (A : Set) (i j : positive) (m : t A) {struct j} : option A :=
+    Fixpoint xget (A : Type) (i j : positive) (m : t A) {struct j} : option A :=
       match i, j with
       | _, xH => get i m
       | xO ii, xO jj => xget ii jj m
@@ -611,7 +611,7 @@ Module PTree <: TREE.
       end.
 
     Lemma xget_left :
-      forall (A : Set) (j i : positive) (m1 m2 : t A) (o : option A) (v : A),
+      forall (A : Type) (j i : positive) (m1 m2 : t A) (o : option A) (v : A),
       xget i (append j (xO xH)) m1 = Some v -> xget i j (Node m1 o m2) = Some v.
     Proof.
       induction j; intros; destruct i; simpl; simpl in H; auto; try congruence.
@@ -619,7 +619,7 @@ Module PTree <: TREE.
     Qed.
 
     Lemma xelements_ii :
-      forall (A: Set) (m: t A) (i j : positive) (v: A),
+      forall (A: Type) (m: t A) (i j : positive) (v: A),
       In (xI i, v) (xelements m (xI j)) -> In (i, v) (xelements m j).
     Proof.
       induction m.
@@ -635,7 +635,7 @@ Module PTree <: TREE.
     Qed.
 
     Lemma xelements_io :
-      forall (A: Set) (m: t A) (i j : positive) (v: A),
+      forall (A: Type) (m: t A) (i j : positive) (v: A),
       ~In (xI i, v) (xelements m (xO j)).
     Proof.
       induction m.
@@ -650,7 +650,7 @@ Module PTree <: TREE.
     Qed.
 
     Lemma xelements_oo :
-      forall (A: Set) (m: t A) (i j : positive) (v: A),
+      forall (A: Type) (m: t A) (i j : positive) (v: A),
       In (xO i, v) (xelements m (xO j)) -> In (i, v) (xelements m j).
     Proof.
       induction m.
@@ -666,7 +666,7 @@ Module PTree <: TREE.
     Qed.
 
     Lemma xelements_oi :
-      forall (A: Set) (m: t A) (i j : positive) (v: A),
+      forall (A: Type) (m: t A) (i j : positive) (v: A),
       ~In (xO i, v) (xelements m (xI j)).
     Proof.
       induction m.
@@ -681,7 +681,7 @@ Module PTree <: TREE.
     Qed.
 
     Lemma xelements_ih :
-      forall (A: Set) (m1 m2: t A) (o: option A) (i : positive) (v: A),
+      forall (A: Type) (m1 m2: t A) (o: option A) (i : positive) (v: A),
       In (xI i, v) (xelements (Node m1 o m2) xH) -> In (i, v) (xelements m2 xH).
     Proof.
       destruct o; simpl; intros; destruct (in_app_or _ _ _ H).
@@ -694,7 +694,7 @@ Module PTree <: TREE.
     Qed.
 
     Lemma xelements_oh :
-      forall (A: Set) (m1 m2: t A) (o: option A) (i : positive) (v: A),
+      forall (A: Type) (m1 m2: t A) (o: option A) (i : positive) (v: A),
       In (xO i, v) (xelements (Node m1 o m2) xH) -> In (i, v) (xelements m1 xH).
     Proof.
       destruct o; simpl; intros; destruct (in_app_or _ _ _ H).
@@ -707,7 +707,7 @@ Module PTree <: TREE.
     Qed.
 
     Lemma xelements_hi :
-      forall (A: Set) (m: t A) (i : positive) (v: A),
+      forall (A: Type) (m: t A) (i : positive) (v: A),
       ~In (xH, v) (xelements m (xI i)).
     Proof.
       induction m; intros.
@@ -722,7 +722,7 @@ Module PTree <: TREE.
     Qed.
 
     Lemma xelements_ho :
-      forall (A: Set) (m: t A) (i : positive) (v: A),
+      forall (A: Type) (m: t A) (i : positive) (v: A),
       ~In (xH, v) (xelements m (xO i)).
     Proof.
       induction m; intros.
@@ -737,13 +737,13 @@ Module PTree <: TREE.
     Qed.
 
     Lemma get_xget_h :
-      forall (A: Set) (m: t A) (i: positive), get i m = xget i xH m.
+      forall (A: Type) (m: t A) (i: positive), get i m = xget i xH m.
     Proof.
       destruct i; simpl; auto.
     Qed.
 
     Lemma xelements_complete:
-      forall (A: Set) (i j : positive) (m: t A) (v: A),
+      forall (A: Type) (i j : positive) (m: t A) (v: A),
       In (i, v) (xelements m j) -> xget i j m = Some v.
     Proof.
       induction i; simpl; intros; destruct j; simpl.
@@ -771,7 +771,7 @@ Module PTree <: TREE.
     Qed.
 
   Theorem elements_complete:
-    forall (A: Set) (m: t A) (i: positive) (v: A),
+    forall (A: Type) (m: t A) (i: positive) (v: A),
     In (i, v) (elements m) -> get i m = Some v.
   Proof.
     intros A m i v H.
@@ -781,7 +781,7 @@ Module PTree <: TREE.
   Qed.
 
   Lemma in_xelements:
-    forall (A: Set) (m: t A) (i k: positive) (v: A),
+    forall (A: Type) (m: t A) (i k: positive) (v: A),
     In (k, v) (xelements m i) ->
     exists j, k = append i j.
   Proof.
@@ -802,11 +802,11 @@ Module PTree <: TREE.
     rewrite <- append_assoc_1. exists (xI k1); auto.
   Qed.
 
-  Definition xkeys (A: Set) (m: t A) (i: positive) :=
+  Definition xkeys (A: Type) (m: t A) (i: positive) :=
     List.map (@fst positive A) (xelements m i).
 
   Lemma in_xkeys:
-    forall (A: Set) (m: t A) (i k: positive),
+    forall (A: Type) (m: t A) (i k: positive),
     In k (xkeys m i) ->
     exists j, k = append i j.
   Proof.
@@ -816,7 +816,7 @@ Module PTree <: TREE.
   Qed.
 
   Remark list_append_cons_norepet:
-    forall (A: Set) (l1 l2: list A) (x: A),
+    forall (A: Type) (l1 l2: list A) (x: A),
     list_norepet l1 -> list_norepet l2 -> list_disjoint l1 l2 ->
     ~In x l1 -> ~In x l2 ->
     list_norepet (l1 ++ x :: l2).
@@ -837,7 +837,7 @@ Module PTree <: TREE.
   Qed.
 
   Lemma xelements_keys_norepet:
-    forall (A: Set) (m: t A) (i: positive),
+    forall (A: Type) (m: t A) (i: positive),
     list_norepet (xkeys m i).
   Proof.
     induction m; unfold xkeys; simpl; fold xkeys; intros.
@@ -871,17 +871,17 @@ Module PTree <: TREE.
   Qed.
 
   Theorem elements_keys_norepet:
-    forall (A: Set) (m: t A), 
+    forall (A: Type) (m: t A), 
     list_norepet (List.map (@fst elt A) (elements m)).
   Proof.
     intros. change (list_norepet (xkeys m 1)). apply xelements_keys_norepet.
   Qed.
 
-  Definition fold (A B : Set) (f: B -> positive -> A -> B) (tr: t A) (v: B) :=
+  Definition fold (A B : Type) (f: B -> positive -> A -> B) (tr: t A) (v: B) :=
      List.fold_left (fun a p => f a (fst p) (snd p)) (elements tr) v.
 
   Theorem fold_spec:
-    forall (A B: Set) (f: B -> positive -> A -> B) (v: B) (m: t A),
+    forall (A B: Type) (f: B -> positive -> A -> B) (v: B) (m: t A),
     fold f m v =
     List.fold_left (fun a p => f a (fst p) (snd p)) (elements m) v.
   Proof.
@@ -896,49 +896,49 @@ Module PMap <: MAP.
   Definition elt := positive.
   Definition elt_eq := peq.
 
-  Definition t (A : Set) : Set := (A * PTree.t A)%type.
+  Definition t (A : Type) : Type := (A * PTree.t A)%type.
 
-  Definition eq: forall (A: Set), (forall (x y: A), {x=y} + {x<>y}) ->
+  Definition eq: forall (A: Type), (forall (x y: A), {x=y} + {x<>y}) ->
                  forall (a b: t A), {a = b} + {a <> b}.
   Proof.
     intros. 
-    generalize (PTree.eq H). intros. 
+    generalize (PTree.eq X). intros. 
     decide equality.
   Qed.
 
-  Definition init (A : Set) (x : A) :=
+  Definition init (A : Type) (x : A) :=
     (x, PTree.empty A).
 
-  Definition get (A : Set) (i : positive) (m : t A) :=
+  Definition get (A : Type) (i : positive) (m : t A) :=
     match PTree.get i (snd m) with
     | Some x => x
     | None => fst m
     end.
 
-  Definition set (A : Set) (i : positive) (x : A) (m : t A) :=
+  Definition set (A : Type) (i : positive) (x : A) (m : t A) :=
     (fst m, PTree.set i x (snd m)).
 
   Theorem gi:
-    forall (A: Set) (i: positive) (x: A), get i (init x) = x.
+    forall (A: Type) (i: positive) (x: A), get i (init x) = x.
   Proof.
     intros. unfold init. unfold get. simpl. rewrite PTree.gempty. auto.
   Qed.
 
   Theorem gss:
-    forall (A: Set) (i: positive) (x: A) (m: t A), get i (set i x m) = x.
+    forall (A: Type) (i: positive) (x: A) (m: t A), get i (set i x m) = x.
   Proof.
     intros. unfold get. unfold set. simpl. rewrite PTree.gss. auto.
   Qed.
 
   Theorem gso:
-    forall (A: Set) (i j: positive) (x: A) (m: t A),
+    forall (A: Type) (i j: positive) (x: A) (m: t A),
     i <> j -> get i (set j x m) = get i m.
   Proof.
     intros. unfold get. unfold set. simpl. rewrite PTree.gso; auto.
   Qed.
 
   Theorem gsspec:
-    forall (A: Set) (i j: positive) (x: A) (m: t A),
+    forall (A: Type) (i j: positive) (x: A) (m: t A),
     get i (set j x m) = if peq i j then x else get i m.
   Proof.
     intros. destruct (peq i j).
@@ -947,7 +947,7 @@ Module PMap <: MAP.
   Qed.
 
   Theorem gsident:
-    forall (A: Set) (i j: positive) (m: t A),
+    forall (A: Type) (i j: positive) (m: t A),
     get j (set i (get i m) m) = get j m.
   Proof.
     intros. destruct (peq i j).
@@ -955,11 +955,11 @@ Module PMap <: MAP.
      rewrite gso; auto.
   Qed.
 
-  Definition map (A B : Set) (f : A -> B) (m : t A) : t B :=
+  Definition map (A B : Type) (f : A -> B) (m : t A) : t B :=
     (f (fst m), PTree.map (fun _ => f) (snd m)).
 
   Theorem gmap:
-    forall (A B: Set) (f: A -> B) (i: positive) (m: t A),
+    forall (A B: Type) (f: A -> B) (i: positive) (m: t A),
     get i (map f m) = f(get i m).
   Proof.
     intros. unfold map. unfold get. simpl. rewrite PTree.gmap.
@@ -971,7 +971,7 @@ End PMap.
 (** * An implementation of maps over any type that injects into type [positive] *)
 
 Module Type INDEXED_TYPE.
-  Variable t: Set.
+  Variable t: Type.
   Variable index: t -> positive.
   Hypothesis index_inj: forall (x y: t), index x = index y -> x = y.
   Variable eq: forall (x y: t), {x = y} + {x <> y}.
@@ -981,28 +981,28 @@ Module IMap(X: INDEXED_TYPE).
 
   Definition elt := X.t.
   Definition elt_eq := X.eq.
-  Definition t : Set -> Set := PMap.t.
-  Definition eq: forall (A: Set), (forall (x y: A), {x=y} + {x<>y}) ->
+  Definition t : Type -> Type := PMap.t.
+  Definition eq: forall (A: Type), (forall (x y: A), {x=y} + {x<>y}) ->
                  forall (a b: t A), {a = b} + {a <> b} := PMap.eq.
-  Definition init (A: Set) (x: A) := PMap.init x.
-  Definition get (A: Set) (i: X.t) (m: t A) := PMap.get (X.index i) m.
-  Definition set (A: Set) (i: X.t) (v: A) (m: t A) := PMap.set (X.index i) v m.
-  Definition map (A B: Set) (f: A -> B) (m: t A) : t B := PMap.map f m.
+  Definition init (A: Type) (x: A) := PMap.init x.
+  Definition get (A: Type) (i: X.t) (m: t A) := PMap.get (X.index i) m.
+  Definition set (A: Type) (i: X.t) (v: A) (m: t A) := PMap.set (X.index i) v m.
+  Definition map (A B: Type) (f: A -> B) (m: t A) : t B := PMap.map f m.
 
   Lemma gi:
-    forall (A: Set) (x: A) (i: X.t), get i (init x) = x.
+    forall (A: Type) (x: A) (i: X.t), get i (init x) = x.
   Proof.
     intros. unfold get, init. apply PMap.gi. 
   Qed.
 
   Lemma gss:
-    forall (A: Set) (i: X.t) (x: A) (m: t A), get i (set i x m) = x.
+    forall (A: Type) (i: X.t) (x: A) (m: t A), get i (set i x m) = x.
   Proof.
     intros. unfold get, set. apply PMap.gss.
   Qed.
 
   Lemma gso:
-    forall (A: Set) (i j: X.t) (x: A) (m: t A),
+    forall (A: Type) (i j: X.t) (x: A) (m: t A),
     i <> j -> get i (set j x m) = get i m.
   Proof.
     intros. unfold get, set. apply PMap.gso. 
@@ -1010,7 +1010,7 @@ Module IMap(X: INDEXED_TYPE).
   Qed.
 
   Lemma gsspec:
-    forall (A: Set) (i j: X.t) (x: A) (m: t A),
+    forall (A: Type) (i j: X.t) (x: A) (m: t A),
     get i (set j x m) = if X.eq i j then x else get i m.
   Proof.
     intros. unfold get, set. 
@@ -1022,7 +1022,7 @@ Module IMap(X: INDEXED_TYPE).
   Qed.
 
   Lemma gmap:
-    forall (A B: Set) (f: A -> B) (i: X.t) (m: t A),
+    forall (A B: Type) (f: A -> B) (i: X.t) (m: t A),
     get i (map f m) = f(get i m).
   Proof.
     intros. unfold map, get. apply PMap.gmap. 
@@ -1074,7 +1074,7 @@ Module NMap := IMap(NIndexed).
 (** * An implementation of maps over any type with decidable equality *)
 
 Module Type EQUALITY_TYPE.
-  Variable t: Set.
+  Variable t: Type.
   Variable eq: forall (x y: t), {x = y} + {x <> y}.
 End EQUALITY_TYPE.
 
@@ -1082,45 +1082,45 @@ Module EMap(X: EQUALITY_TYPE) <: MAP.
 
   Definition elt := X.t.
   Definition elt_eq := X.eq.
-  Definition t (A: Set) := X.t -> A.
-  Definition init (A: Set) (v: A) := fun (_: X.t) => v.
-  Definition get (A: Set) (x: X.t) (m: t A) := m x.
-  Definition set (A: Set) (x: X.t) (v: A) (m: t A) :=
+  Definition t (A: Type) := X.t -> A.
+  Definition init (A: Type) (v: A) := fun (_: X.t) => v.
+  Definition get (A: Type) (x: X.t) (m: t A) := m x.
+  Definition set (A: Type) (x: X.t) (v: A) (m: t A) :=
     fun (y: X.t) => if X.eq y x then v else m y.
   Lemma gi:
-    forall (A: Set) (i: elt) (x: A), init x i = x.
+    forall (A: Type) (i: elt) (x: A), init x i = x.
   Proof.
     intros. reflexivity.
   Qed.
   Lemma gss:
-    forall (A: Set) (i: elt) (x: A) (m: t A), (set i x m) i = x.
+    forall (A: Type) (i: elt) (x: A) (m: t A), (set i x m) i = x.
   Proof.
     intros. unfold set. case (X.eq i i); intro.
     reflexivity. tauto.
   Qed.
   Lemma gso:
-    forall (A: Set) (i j: elt) (x: A) (m: t A),
+    forall (A: Type) (i j: elt) (x: A) (m: t A),
     i <> j -> (set j x m) i = m i.
   Proof.
     intros. unfold set. case (X.eq i j); intro.
     congruence. reflexivity.
   Qed.
   Lemma gsspec:
-    forall (A: Set) (i j: elt) (x: A) (m: t A),
+    forall (A: Type) (i j: elt) (x: A) (m: t A),
     get i (set j x m) = if elt_eq i j then x else get i m.
   Proof.
     intros. unfold get, set, elt_eq. reflexivity.
   Qed.
   Lemma gsident:
-    forall (A: Set) (i j: elt) (m: t A), get j (set i (get i m) m) = get j m.
+    forall (A: Type) (i j: elt) (m: t A), get j (set i (get i m) m) = get j m.
   Proof.
     intros. unfold get, set. case (X.eq j i); intro.
     congruence. reflexivity.
   Qed.
-  Definition map (A B: Set) (f: A -> B) (m: t A) :=
+  Definition map (A B: Type) (f: A -> B) (m: t A) :=
     fun (x: X.t) => f(m x).
   Lemma gmap:
-    forall (A B: Set) (f: A -> B) (i: elt) (m: t A),
+    forall (A B: Type) (f: A -> B) (i: elt) (m: t A),
     get i (map f m) = f(get i m).
   Proof.
     intros. unfold get, map. reflexivity.
diff --git a/lib/Ordered.v b/lib/Ordered.v
index 4b1f4e0fe..eddc37213 100644
--- a/lib/Ordered.v
+++ b/lib/Ordered.v
@@ -45,6 +45,8 @@ Proof.
   assert (Zpos x <> Zpos y). congruence. omega.
 Qed.
 
+Definition eq_dec : forall x y, { eq x y } + { ~ eq x y } := peq.
+
 End OrderedPositive.
 
 (** Indexed types (those that inject into [positive]) are ordered. *)
@@ -81,6 +83,13 @@ Proof.
   apply GT. exact l.
 Qed.
 
+Lemma eq_dec : forall x y, { eq x y } + { ~ eq x y }.
+Proof.
+  intros. case (peq (A.index x) (A.index y)); intros.
+  left. apply A.index_inj; auto.
+  right; red; unfold eq; intros; subst. congruence. 
+Qed.
+
 End OrderedIndexed.
 
 (** The product of two ordered types is ordered. *)
@@ -164,5 +173,15 @@ Proof.
   apply GT. red. left. auto.
 Qed.
 
+Lemma eq_dec : forall x y, { eq x y } + { ~ eq x y }.
+Proof.
+  unfold eq; intros.
+  case (A.eq_dec (fst x) (fst y)); intros.
+  case (B.eq_dec (snd x) (snd y)); intros.
+  left; auto.
+  right; intuition.
+  right; intuition.
+Qed.
+
 End OrderedPair.
 
diff --git a/lib/Parmov.v b/lib/Parmov.v
index 2c7b82a7b..edb267e46 100644
--- a/lib/Parmov.v
+++ b/lib/Parmov.v
@@ -63,7 +63,7 @@ Section PARMOV.
 (** The development is parameterized by the type of registers, 
     equipped with a decidable equality. *)
 
-Variable reg: Set.
+Variable reg: Type.
 Variable reg_eq : forall (r1 r2: reg), {r1=r2} + {r1<>r2}.
 
 (** The [temp] function maps every register [r] to the register that
@@ -93,7 +93,7 @@ Definition dests (m: moves) := List.map (@snd reg reg) m.
 (** The dynamic  semantics of moves is given in terms of environments.
     An environment is a mapping of registers to their current values. *)
 
-Variable val: Set.
+Variable val: Type.
 Definition env := reg -> val.
 
 Lemma env_ext:
@@ -186,7 +186,7 @@ Fixpoint exec_seq_rev (m: moves) (e: env) {struct m}: env :=
    as an inductive predicate [transition] relating triples of moves,
    and its reflexive transitive closure [transitions]. *)
 
-Inductive state: Set :=
+Inductive state: Type :=
   State (mu: moves) (sigma: moves) (tau: moves) : state.
 
 Definition no_read (mu: moves) (d: reg) : Prop :=
@@ -1331,7 +1331,7 @@ Qed.
 
 Section REGISTER_CLASSES.
 
-Variable class: Set.
+Variable class: Type.
 Variable regclass: reg -> class.
 Hypothesis temp_preserves_class: forall r, regclass (temp r) = regclass r.
 
diff --git a/powerpc/Asm.v b/powerpc/Asm.v
index 63f0232ae..91de0b1eb 100644
--- a/powerpc/Asm.v
+++ b/powerpc/Asm.v
@@ -30,7 +30,7 @@ Require Conventions.
 
 (** Integer registers, floating-point registers. *)
 
-Inductive ireg: Set :=
+Inductive ireg: Type :=
   | GPR0: ireg  | GPR1: ireg  | GPR2: ireg  | GPR3: ireg
   | GPR4: ireg  | GPR5: ireg  | GPR6: ireg  | GPR7: ireg
   | GPR8: ireg  | GPR9: ireg  | GPR10: ireg | GPR11: ireg
@@ -40,7 +40,7 @@ Inductive ireg: Set :=
   | GPR24: ireg | GPR25: ireg | GPR26: ireg | GPR27: ireg
   | GPR28: ireg | GPR29: ireg | GPR30: ireg | GPR31: ireg.
 
-Inductive freg: Set :=
+Inductive freg: Type :=
   | FPR0: freg  | FPR1: freg  | FPR2: freg  | FPR3: freg
   | FPR4: freg  | FPR5: freg  | FPR6: freg  | FPR7: freg
   | FPR8: freg  | FPR9: freg  | FPR10: freg | FPR11: freg
@@ -63,7 +63,7 @@ Proof. decide equality. Defined.
   resolved later by the linker.
 *)
 
-Inductive constant: Set :=
+Inductive constant: Type :=
   | Cint: int -> constant
   | Csymbol_low: ident -> int -> constant
   | Csymbol_high: ident -> int -> constant.
@@ -80,7 +80,7 @@ Inductive constant: Set :=
 (** Bits in the condition register.  We are only interested in the
   first 4 bits. *)
 
-Inductive crbit: Set :=
+Inductive crbit: Type :=
   | CRbit_0: crbit
   | CRbit_1: crbit
   | CRbit_2: crbit
@@ -95,7 +95,7 @@ Inductive crbit: Set :=
 
 Definition label := positive.
 
-Inductive instruction : Set :=
+Inductive instruction : Type :=
   | Padd: ireg -> ireg -> ireg -> instruction                 (**r integer addition *)
   | Paddi: ireg -> ireg -> constant -> instruction            (**r add immediate *)
   | Paddis: ireg -> ireg -> constant -> instruction           (**r add immediate high *)
@@ -303,7 +303,7 @@ Definition program := AST.program fundef unit.
 (** The PowerPC has a great many registers, some general-purpose, some very
   specific.  We model only the following registers: *)
 
-Inductive preg: Set :=
+Inductive preg: Type :=
   | IR: ireg -> preg                    (**r integer registers *)
   | FR: freg -> preg                    (**r float registers *)
   | PC: preg                            (**r program counter *)
@@ -441,7 +441,7 @@ Definition const_high (c: constant) :=
   set and memory state after execution of the instruction at [rs#PC],
   or [Error] if the processor is stuck. *)
 
-Inductive outcome: Set :=
+Inductive outcome: Type :=
   | OK: regset -> mem -> outcome
   | Error: outcome.
 
@@ -819,7 +819,7 @@ Definition loc_external_result (sg: signature) : preg :=
 
 (** Execution of the instruction at [rs#PC]. *)
 
-Inductive state: Set :=
+Inductive state: Type :=
   | State: regset -> mem -> state.
 
 Inductive step: state -> trace -> state -> Prop :=
diff --git a/powerpc/Asmgen.v b/powerpc/Asmgen.v
index 0c3ac75dc..5c37a570c 100644
--- a/powerpc/Asmgen.v
+++ b/powerpc/Asmgen.v
@@ -225,7 +225,7 @@ Definition crbit_for_cond (cond: condition) :=
 
 (** Recognition of comparisons [>= 0] and [< 0]. *)
 
-Inductive condition_class: condition -> list mreg -> Set :=
+Inductive condition_class: condition -> list mreg -> Type :=
   | condition_ge0:
       forall n r, n = Int.zero -> condition_class (Ccompimm Cge n) (r :: nil)
   | condition_lt0:
diff --git a/powerpc/Constprop.v b/powerpc/Constprop.v
index 6ec27a3f1..76ea153c3 100644
--- a/powerpc/Constprop.v
+++ b/powerpc/Constprop.v
@@ -32,7 +32,7 @@ Require Import Kildall.
 (** To each pseudo-register at each program point, the static analysis 
   associates a compile-time approximation taken from the following set. *)
 
-Inductive approx : Set :=
+Inductive approx : Type :=
   | Novalue: approx      (** No value possible, code is unreachable. *)
   | Unknown: approx      (** All values are possible,
                              no compile-time information is available. *)
@@ -139,7 +139,7 @@ Definition eval_static_condition (cond: condition) (vl: list approx) :=
   end.
 *)
 
-Inductive eval_static_condition_cases: forall (cond: condition) (vl: list approx), Set :=
+Inductive eval_static_condition_cases: forall (cond: condition) (vl: list approx), Type :=
   | eval_static_condition_case1:
       forall c n1 n2,
       eval_static_condition_cases (Ccomp c) (I n1 :: I n2 :: nil)
@@ -271,7 +271,7 @@ Definition eval_static_operation (op: operation) (vl: list approx) :=
   end.
 *)
 
-Inductive eval_static_operation_cases: forall (op: operation) (vl: list approx), Set :=
+Inductive eval_static_operation_cases: forall (op: operation) (vl: list approx), Type :=
   | eval_static_operation_case1:
       forall v1,
       eval_static_operation_cases (Omove) (v1::nil)
@@ -696,7 +696,7 @@ Variable approx: D.t.
 Definition intval (r: reg) : option int :=
   match D.get r approx with I n => Some n | _ => None end.
 
-Inductive cond_strength_reduction_cases: condition -> list reg -> Set :=
+Inductive cond_strength_reduction_cases: condition -> list reg -> Type :=
   | csr_case1:
       forall c r1 r2,
       cond_strength_reduction_cases (Ccomp c) (r1 :: r2 :: nil)
@@ -789,7 +789,7 @@ Definition make_xorimm (n: int) (r: reg) :=
   then (Omove, r :: nil)
   else (Oxorimm n, r :: nil).
 
-Inductive op_strength_reduction_cases: operation -> list reg -> Set :=
+Inductive op_strength_reduction_cases: operation -> list reg -> Type :=
   | op_strength_reduction_case1:
       forall (r1: reg) (r2: reg),
       op_strength_reduction_cases Oadd (r1 :: r2 :: nil)
@@ -949,7 +949,7 @@ Definition op_strength_reduction (op: operation) (args: list reg) :=
       (op, args)
   end.
 
-Inductive addr_strength_reduction_cases: forall (addr: addressing) (args: list reg), Set :=
+Inductive addr_strength_reduction_cases: forall (addr: addressing) (args: list reg), Type :=
   | addr_strength_reduction_case1:
       forall (r1: reg) (r2: reg),
       addr_strength_reduction_cases (Aindexed2) (r1 :: r2 :: nil)
diff --git a/powerpc/Machregs.v b/powerpc/Machregs.v
index d0f7cf464..88b70c1d6 100644
--- a/powerpc/Machregs.v
+++ b/powerpc/Machregs.v
@@ -29,7 +29,7 @@ Require Import AST.
   The type [mreg] does not include special-purpose or reserved
   machine registers such as the stack pointer and the condition codes. *)
 
-Inductive mreg: Set :=
+Inductive mreg: Type :=
   (** Allocatable integer regs *)
   | R3: mreg  | R4: mreg  | R5: mreg  | R6: mreg
   | R7: mreg  | R8: mreg  | R9: mreg  | R10: mreg
diff --git a/powerpc/Op.v b/powerpc/Op.v
index 300a80438..27e12c2c7 100644
--- a/powerpc/Op.v
+++ b/powerpc/Op.v
@@ -36,7 +36,7 @@ Set Implicit Arguments.
 
 (** Conditions (boolean-valued operators). *)
 
-Inductive condition : Set :=
+Inductive condition : Type :=
   | Ccomp: comparison -> condition      (**r signed integer comparison *)
   | Ccompu: comparison -> condition     (**r unsigned integer comparison *)
   | Ccompimm: comparison -> int -> condition (**r signed integer comparison with a constant *)
@@ -49,7 +49,7 @@ Inductive condition : Set :=
 (** Arithmetic and logical operations.  In the descriptions, [rd] is the
   result of the operation and [r1], [r2], etc, are the arguments. *)
 
-Inductive operation : Set :=
+Inductive operation : Type :=
   | Omove: operation                    (**r [rd = r1] *)
   | Ointconst: int -> operation         (**r [rd] is set to the given integer constant *)
   | Ofloatconst: float -> operation     (**r [rd] is set to the given float constant *)
@@ -104,7 +104,7 @@ Inductive operation : Set :=
 (** Addressing modes.  [r1], [r2], etc, are the arguments to the 
   addressing. *)
 
-Inductive addressing: Set :=
+Inductive addressing: Type :=
   | Aindexed: int -> addressing         (**r Address is [r1 + offset] *)
   | Aindexed2: addressing               (**r Address is [r1 + r2] *)
   | Aglobal: ident -> int -> addressing (**r Address is [symbol + offset] *)
@@ -182,7 +182,7 @@ Definition offset_sp (sp: val) (delta: int) : option val :=
   end.
 
 Definition eval_operation
-    (F: Set) (genv: Genv.t F) (sp: val)
+    (F: Type) (genv: Genv.t F) (sp: val)
     (op: operation) (vl: list val): option val :=
   match op, vl with
   | Omove, v1::nil => Some v1
@@ -265,7 +265,7 @@ Definition eval_operation
   end.
 
 Definition eval_addressing
-    (F: Set) (genv: Genv.t F) (sp: val)
+    (F: Type) (genv: Genv.t F) (sp: val)
     (addr: addressing) (vl: list val) : option val :=
   match addr, vl with
   | Aindexed n, Vptr b1 n1 :: nil =>
@@ -360,7 +360,7 @@ Qed.
 
 Section GENV_TRANSF.
 
-Variable F1 F2: Set.
+Variable F1 F2: Type.
 Variable ge1: Genv.t F1.
 Variable ge2: Genv.t F2.
 Hypothesis agree_on_symbols:
@@ -389,14 +389,14 @@ End GENV_TRANSF.
 (** Recognition of move operations. *)
 
 Definition is_move_operation
-    (A: Set) (op: operation) (args: list A) : option A :=
+    (A: Type) (op: operation) (args: list A) : option A :=
   match op, args with
   | Omove, arg :: nil => Some arg
   | _, _ => None
   end.
 
 Lemma is_move_operation_correct:
-  forall (A: Set) (op: operation) (args: list A) (a: A),
+  forall (A: Type) (op: operation) (args: list A) (a: A),
   is_move_operation op args = Some a ->
   op = Omove /\ args = a :: nil.
 Proof.
@@ -497,7 +497,7 @@ Definition type_of_chunk (c: memory_chunk) : typ :=
 
 Section SOUNDNESS.
 
-Variable A: Set.
+Variable A: Type.
 Variable genv: Genv.t A.
 
 Lemma type_of_operation_sound:
@@ -560,7 +560,7 @@ End SOUNDNESS.
 
 Section EVAL_OP_TOTAL.
 
-Variable F: Set.
+Variable F: Type.
 Variable genv: Genv.t F.
 
 Definition find_symbol_offset (id: ident) (ofs: int) : val :=
@@ -746,7 +746,7 @@ End EVAL_OP_TOTAL.
 
 Section EVAL_LESSDEF.
 
-Variable F: Set.
+Variable F: Type.
 Variable genv: Genv.t F.
 
 Ltac InvLessdef :=
@@ -834,7 +834,7 @@ End EVAL_LESSDEF.
 Definition op_for_binary_addressing (addr: addressing) : operation := Oadd.
 
 Lemma eval_op_for_binary_addressing:
-  forall (F: Set) (ge: Genv.t F) sp addr args v,
+  forall (F: Type) (ge: Genv.t F) sp addr args v,
   (length args >= 2)%nat ->
   eval_addressing ge sp addr args = Some v ->
   eval_operation ge sp (op_for_binary_addressing addr) args = Some v.
diff --git a/powerpc/Selection.v b/powerpc/Selection.v
index 46d803907..286517ef0 100644
--- a/powerpc/Selection.v
+++ b/powerpc/Selection.v
@@ -118,7 +118,7 @@ Definition notint (e: expr) :=
   characterizes the expressions that match each of the 4 cases of interest.
 *)
 
-Inductive notint_cases: forall (e: expr), Set :=
+Inductive notint_cases: forall (e: expr), Type :=
   | notint_case1:
       forall (t1: expr) (t2: expr),
       notint_cases (Eop Oand (t1:::t2:::Enil))
@@ -208,7 +208,7 @@ Definition addimm (n: int) (e: expr) :=
 
 (** Addition of an integer constant. *)
 
-Inductive addimm_cases: forall (e: expr), Set :=
+Inductive addimm_cases: forall (e: expr), Type :=
   | addimm_case1:
       forall (m: int),
       addimm_cases (Eop (Ointconst m) Enil)
@@ -268,7 +268,7 @@ Definition add (e1: expr) (e2: expr) :=
   end.
 *)
 
-Inductive add_cases: forall (e1: expr) (e2: expr), Set :=
+Inductive add_cases: forall (e1: expr) (e2: expr), Type :=
   | add_case1:
       forall (n1: int) (t2: expr),
       add_cases (Eop (Ointconst n1) Enil) (t2)
@@ -342,7 +342,7 @@ l))
   end.
 *)
 
-Inductive sub_cases: forall (e1: expr) (e2: expr), Set :=
+Inductive sub_cases: forall (e1: expr) (e2: expr), Type :=
   | sub_case1:
       forall (t1: expr) (n2: int),
       sub_cases (t1) (Eop (Ointconst n2) Enil)
@@ -410,7 +410,7 @@ Definition rolm (e1: expr) :=
   end
 *)
 
-Inductive rolm_cases: forall (e1: expr), Set :=
+Inductive rolm_cases: forall (e1: expr), Type :=
   | rolm_case1:
       forall (n1: int),
       rolm_cases (Eop (Ointconst n1) Enil)
@@ -488,7 +488,7 @@ Definition mulimm (n1: int) (e2: expr) :=
   end.
 *)
 
-Inductive mulimm_cases: forall (e2: expr), Set :=
+Inductive mulimm_cases: forall (e2: expr), Type :=
   | mulimm_case1:
       forall (n2: int),
       mulimm_cases (Eop (Ointconst n2) Enil)
@@ -532,7 +532,7 @@ Definition mul (e1: expr) (e2: expr) :=
   end.
 *)
 
-Inductive mul_cases: forall (e1: expr) (e2: expr), Set :=
+Inductive mul_cases: forall (e1: expr) (e2: expr), Type :=
   | mul_case1:
       forall (n1: int) (t2: expr),
       mul_cases (Eop (Ointconst n1) Enil) (t2)
@@ -584,7 +584,7 @@ Definition mod_aux (divop: operation) (e1 e2: expr) :=
 
 Definition mods := mod_aux Odiv.
 
-Inductive divu_cases: forall (e2: expr), Set :=
+Inductive divu_cases: forall (e2: expr), Type :=
   | divu_case1:
       forall (n2: int),
       divu_cases (Eop (Ointconst n2) Enil)
@@ -645,7 +645,7 @@ Definition same_expr_pure (e1 e2: expr) :=
   | _, _ => false
   end.
 
-Inductive or_cases: forall (e1: expr) (e2: expr), Set :=
+Inductive or_cases: forall (e1: expr) (e2: expr), Type :=
   | or_case1:
       forall (amount1: int) (mask1: int) (t1: expr)
              (amount2: int) (mask2: int) (t2: expr),
@@ -678,7 +678,7 @@ Definition or (e1: expr) (e2: expr) :=
 
 (** ** General shifts *)
 
-Inductive shift_cases: forall (e1: expr), Set :=
+Inductive shift_cases: forall (e1: expr), Type :=
   | shift_case1:
       forall (n2: int),
       shift_cases (Eop (Ointconst n2) Enil)
@@ -723,7 +723,7 @@ Definition addf (e1: expr) (e2: expr) :=
   end.
 *)
 
-Inductive addf_cases: forall (e1: expr) (e2: expr), Set :=
+Inductive addf_cases: forall (e1: expr) (e2: expr), Type :=
   | addf_case1:
       forall (t1: expr) (t2: expr) (t3: expr),
       addf_cases (Eop Omulf (t1:::t2:::Enil)) (t3)
@@ -770,7 +770,7 @@ Definition subf (e1: expr) (e2: expr) :=
   end.
 *)
 
-Inductive subf_cases: forall (e1: expr) (e2: expr), Set :=
+Inductive subf_cases: forall (e1: expr) (e2: expr), Type :=
   | subf_case1:
       forall (t1: expr) (t2: expr) (t3: expr),
       subf_cases (Eop Omulf (t1:::t2:::Enil)) (t3)
@@ -798,7 +798,7 @@ Definition subf (e1: expr) (e2: expr) :=
 
 (** ** Truncations and sign extensions *)
 
-Inductive cast8signed_cases: forall (e1: expr), Set :=
+Inductive cast8signed_cases: forall (e1: expr), Type :=
   | cast8signed_case1:
       forall (e2: expr),
       cast8signed_cases (Eop Ocast8signed (e2 ::: Enil))
@@ -826,7 +826,7 @@ Definition cast8signed (e: expr) :=
   | cast8signed_default e1 => Eop Ocast8signed (e1 ::: Enil)
   end.
 
-Inductive cast8unsigned_cases: forall (e1: expr), Set :=
+Inductive cast8unsigned_cases: forall (e1: expr), Type :=
   | cast8unsigned_case1:
       forall (e2: expr),
       cast8unsigned_cases (Eop Ocast8unsigned (e2 ::: Enil))
@@ -854,7 +854,7 @@ Definition cast8unsigned (e: expr) :=
   | cast8unsigned_default e1 => Eop Ocast8unsigned (e1 ::: Enil)
   end.
 
-Inductive cast16signed_cases: forall (e1: expr), Set :=
+Inductive cast16signed_cases: forall (e1: expr), Type :=
   | cast16signed_case1:
       forall (e2: expr),
       cast16signed_cases (Eop Ocast16signed (e2 ::: Enil))
@@ -882,7 +882,7 @@ Definition cast16signed (e: expr) :=
   | cast16signed_default e1 => Eop Ocast16signed (e1 ::: Enil)
   end.
 
-Inductive cast16unsigned_cases: forall (e1: expr), Set :=
+Inductive cast16unsigned_cases: forall (e1: expr), Type :=
   | cast16unsigned_case1:
       forall (e2: expr),
       cast16unsigned_cases (Eop Ocast16unsigned (e2 ::: Enil))
@@ -910,7 +910,7 @@ Definition cast16unsigned (e: expr) :=
   | cast16unsigned_default e1 => Eop Ocast16unsigned (e1 ::: Enil)
   end.
 
-Inductive singleoffloat_cases: forall (e1: expr), Set :=
+Inductive singleoffloat_cases: forall (e1: expr), Type :=
   | singleoffloat_case1:
       forall (e2: expr),
       singleoffloat_cases (Eop Osingleoffloat (e2 ::: Enil))
@@ -940,7 +940,7 @@ Definition singleoffloat (e: expr) :=
 
 (** ** Comparisons *)
 
-Inductive comp_cases: forall (e1: expr) (e2: expr), Set :=
+Inductive comp_cases: forall (e1: expr) (e2: expr), Type :=
   | comp_case1:
       forall n1 t2,
       comp_cases (Eop (Ointconst n1) Enil) (t2)
@@ -1043,7 +1043,7 @@ Definition addressing (e: expr) :=
   end.
 *)
 
-Inductive addressing_cases: forall (e: expr), Set :=
+Inductive addressing_cases: forall (e: expr), Type :=
   | addressing_case1:
       forall (s: ident) (n: int),
       addressing_cases (Eop (Oaddrsymbol s n) Enil)
diff --git a/powerpc/Selectionproof.v b/powerpc/Selectionproof.v
index 6ffffc18a..8a02c9975 100644
--- a/powerpc/Selectionproof.v
+++ b/powerpc/Selectionproof.v
@@ -1357,10 +1357,12 @@ Proof.
   econstructor. destruct k; simpl in H; simpl; auto. 
   rewrite <- H0; reflexivity.
   constructor; auto.
+(*
   (* assign *)
   exists (State (sel_function f) Sskip (sel_cont k) sp (PTree.set id v e) m); split.
   constructor. auto with evalexpr.
   constructor; auto.
+*)
   (* store *)
   econstructor; split.
   eapply eval_store; eauto with evalexpr.
diff --git a/powerpc/eabi/Stacklayout.v b/powerpc/eabi/Stacklayout.v
index 48e26a760..0de1ccd64 100644
--- a/powerpc/eabi/Stacklayout.v
+++ b/powerpc/eabi/Stacklayout.v
@@ -45,7 +45,7 @@ the boundaries between areas in the frame part.
 
 Definition fe_ofs_arg := 8.
 
-Record frame_env : Set := mk_frame_env {
+Record frame_env : Type := mk_frame_env {
   fe_size: Z;
   fe_ofs_link: Z;
   fe_ofs_retaddr: Z;
diff --git a/powerpc/macosx/Stacklayout.v b/powerpc/macosx/Stacklayout.v
index 0e9be2240..c57f3f920 100644
--- a/powerpc/macosx/Stacklayout.v
+++ b/powerpc/macosx/Stacklayout.v
@@ -42,7 +42,7 @@ the boundaries between areas in the frame part.
 
 Definition fe_ofs_arg := 24.
 
-Record frame_env : Set := mk_frame_env {
+Record frame_env : Type := mk_frame_env {
   fe_size: Z;
   fe_ofs_link: Z;
   fe_ofs_retaddr: Z;
-- 
GitLab