Commit 3ab0706f authored by Olivier Michel's avatar Olivier Michel 💬
Browse files

Upload New File

parent 62bca22e
# Trees and boosting, random forests
The objective of this lab is to introduce Trees, Tree pruning and then boosting by use of random forests. Both classification and estimation problems are studied.
1. First steps with classification trees : the importance of depth, impurity function and visualization of trees ['N1_Classif_tree.ipynb'](https://gricad-gitlab.univ-grenoble-alpes.fr/ai-courses/autonomous_systems_ml/-/blob/master/notebooks/9_Trees_Boosting/N1_Classif_tree.ipynb)
2. Some fundamentals on regression trees ['N2_a_Regression_tree.ipynb'](https://gricad-gitlab.univ-grenoble-alpes.fr/ai-courses/autonomous_systems_ml/-/blob/master/notebooks/9_Trees_Boosting/N2_a_Regression_tree.ipynb)
3. Adapting the complexity to the data : Cost complexity pruning on a regression example. ['N2_b_Cost_Complexity_Pruning_Regressor.ipynb'](https://gricad-gitlab.univ-grenoble-alpes.fr/ai-courses/autonomous_systems_ml/-/blob/master/notebooks/9_Trees_Boosting/N2_b_Cost_Complexity_Pruning_Regressor.ipynb)
4. Boosting : random forest regression case study ['N3_a_Random_Forest_Regression.ipynb'](https://gricad-gitlab.univ-grenoble-alpes.fr/ai-courses/autonomous_systems_ml/-/blob/master/notebooks/9_Trees_Boosting/N3_a_Random_Forest_Regression.ipynb)
5. Boosting : random forest classification case study ['N3_b_Random_Forest_Classif.ipynb'](https://gricad-gitlab.univ-grenoble-alpes.fr/ai-courses/autonomous_systems_ml/-/blob/master/notebooks/9_Trees_Boosting/N3_a_Random_Forest_Classif.ipynb)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment