diff --git a/webgeodyn/inout/pygeodyn_hdf5.py b/webgeodyn/inout/pygeodyn_hdf5.py
index 6f2e71b28dd02ef52bfc464456f73ea0928df8a7..b59145227b6bfcc3c920dbcf79050280687286b8 100644
--- a/webgeodyn/inout/pygeodyn_hdf5.py
+++ b/webgeodyn/inout/pygeodyn_hdf5.py
@@ -1,66 +1,65 @@
-#-*- coding: utf-8 -*-
-import glob
-import h5py
-import os
-import numpy as np
-from .default import giveMeasureTypeUnits
-
-
-def load(dataDirectory, dataModel, keepRealisations, state_type='analysed'):
-    """ Loading function for pygeodyn files of hdf5 format. Also adds the data to the dataModel.
-
-    :param dataDirectory: Location of the pygeodyn files
-    :type dataDirectory: os.path
-    :param dataModel: Model in which to add the loaded measures
-    :type dataModel: Model
-    :param keepRealisations: If True, all realisations are kept in the data. Else, the data is averaged over the realisations
-    :type keepRealisations: bool
-    :return: 0 if everything went well, -1 otherwise
-    :rtype: int
-    :param state_type: Either forecast, computed or analysed depending on the type of states needed
-    """
-    firstpoint = 3
-    assert state_type in ('computed', 'analysed', 'forecast')
-
-    measures_to_load = ['MF', 'SV', 'ER', 'U']
-
-    hdf5_files = glob.glob(os.path.join(dataDirectory, '*.hdf5'))
-    if len(hdf5_files) == 0:
-        raise IOError('No hdf5 file was found in {} !'.format(dataDirectory))
-    # Assuming that the file to read is the first one
-    hdf_filename = hdf5_files[0]
-    print('Reading:', hdf_filename, ' state_type:', state_type)
-
-    with h5py.File(hdf_filename) as hdf_file:
-        computed_data = hdf_file[state_type]
-
-        times = np.array(computed_data['times'])[firstpoint:]
-
-        for measureName, measureData in computed_data.items():
-            if measureName not in measures_to_load:
-                continue
-            else:
-                measureType, units = giveMeasureTypeUnits(measureName)
-
-                # Move realisation axis to last place to have data of form [ntimes, ncoef, nreal] (originally [nreal, ntimes, ncoef])
-                # Remove firstpoints
-                formattedData = np.moveaxis(measureData, 0, -1)[firstpoint:]
-
-                if measureName == 'MF':
-                    lmax = hdf_file.attrs['Lb']
-                elif measureName == 'U':
-                    lmax = hdf_file.attrs['Lu']
-                else:
-                    lmax = hdf_file.attrs['Lsv']
-
-                if keepRealisations:
-                    dataModel.addMeasure(measureName, measureType, lmax, units,
-                                         formattedData, times=times)
-                else:
-                    meanData = formattedData.mean(axis=2)
-                    rmsData = formattedData.std(axis=2)
-                    dataModel.addMeasure(measureName, measureType, lmax, units,
-                                         meanData, rmsData, times)
-
-    # Returns 0 if everything went well
-    return 0
+#-*- coding: utf-8 -*-
+import glob
+import h5py
+import os
+import numpy as np
+from .default import giveMeasureTypeUnits
+
+
+def load(dataDirectory, dataModel, keepRealisations, state_type='analysed'):
+    """ Loading function for pygeodyn files of hdf5 format. Also adds the data to the dataModel.
+
+    :param dataDirectory: Location of the pygeodyn files
+    :type dataDirectory: os.path
+    :param dataModel: Model in which to add the loaded measures
+    :type dataModel: Model
+    :param keepRealisations: If True, all realisations are kept in the data. Else, the data is averaged over the realisations
+    :type keepRealisations: bool
+    :return: 0 if everything went well, -1 otherwise
+    :rtype: int
+    :param state_type: Either forecast, computed or analysed depending on the type of states needed
+    """
+    firstpoint = 3
+    assert state_type in ('computed', 'analysed', 'analysis', 'forecast')
+    measures_to_load = ['MF', 'SV', 'ER', 'U']
+
+    hdf5_files = glob.glob(os.path.join(dataDirectory, '*.hdf5'))
+    if len(hdf5_files) == 0:
+        raise IOError('No hdf5 file was found in {} !'.format(dataDirectory))
+    # Assuming that the file to read is the first one
+    hdf_filename = hdf5_files[0]
+    print('Reading:', hdf_filename, ' state_type:', state_type)
+
+    with h5py.File(hdf_filename) as hdf_file:
+        computed_data = hdf_file[state_type]
+
+        times = np.array(computed_data['times'])[firstpoint:]
+
+        for measureName, measureData in computed_data.items():
+            if measureName not in measures_to_load:
+                continue
+            else:
+                measureType, units = giveMeasureTypeUnits(measureName)
+
+                # Move realisation axis to last place to have data of form [ntimes, ncoef, nreal] (originally [nreal, ntimes, ncoef])
+                # Remove firstpoints
+                formattedData = np.moveaxis(measureData, 0, -1)[firstpoint:]
+
+                if measureName == 'MF':
+                    lmax = hdf_file.attrs['Lb']
+                elif measureName == 'U':
+                    lmax = hdf_file.attrs['Lu']
+                else:
+                    lmax = hdf_file.attrs['Lsv']
+
+                if keepRealisations:
+                    dataModel.addMeasure(measureName, measureType, lmax, units,
+                                         formattedData, times=times)
+                else:
+                    meanData = formattedData.mean(axis=2)
+                    rmsData = formattedData.std(axis=2)
+                    dataModel.addMeasure(measureName, measureType, lmax, units,
+                                         meanData, rmsData, times)
+
+    # Returns 0 if everything went well
+    return 0