Vous avez reçu un message "Your GitLab account has been locked ..." ? Pas d'inquiétude : lisez cet article https://docs.gricad-pages.univ-grenoble-alpes.fr/help/unlock/

Commit b26617f1 authored by barraud's avatar barraud
Browse files

FEATURE 317 Add the .ts files.

git-svn-id: svn+ssh://scm.forge.imag.fr/var/lib/gforge/chroot/scmrepos/svn/camitk/trunk/camitk@1799 ec899d31-69d1-42ba-9299-647d76f65fb3
parent 60355ae8
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE TS>
<TS version="2.0" language="en_US">
<context>
<name>AnisotropicDiffusion</name>
<message>
<location filename="../../AnisotropicDiffusion.cpp" line="67"/>
<source>Keep original image voxel type</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../AnisotropicDiffusion.cpp" line="68"/>
<source>Keep the original image voxel type ?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../AnisotropicDiffusion.cpp" line="69"/>
<source>Number of iterations</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../AnisotropicDiffusion.cpp" line="70"/>
<source>The more iterations, the more smoothing.
Each iteration takes the same amount of time.
If it takes 10 seconds for one iteration, then it will take 100 seconds for 10 iterations.
Note that the conductance controls how much each iteration smooths across edges. </source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../AnisotropicDiffusion.cpp" line="76"/>
<source>Conductance</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../AnisotropicDiffusion.cpp" line="77"/>
<source>Conductance controls the sensitivity of the conductance term.
As a general rule, the lower the value, the more strongly the filter preserves edges.
A high value will cause diffusion (smoothing) across edges.
Note that the number of iterations controls how much smoothing is done within regions bounded by edges.</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>CannyEdgeDetection</name>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="62"/>
<source>Keep original voxel type?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="62"/>
<source>Does the output image have the same voxel type as the input one?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="65"/>
<source>Variance</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="65"/>
<source>The variance is used in the gaussian preprocessing step.
The higher the variance is, the less the edges detection will be noise sensitive.</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="71"/>
<source>Upper threshold</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="71"/>
<source>The upper threshold is used at step 3 to determine whether a voxel belongs an edge or not.
Above, the voxel is detected as an edge.
Below and upper the low threshold, the voxel is accepted if it is connected to an edge voxel neighbor.</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="75"/>
<source>Lower threshold</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="75"/>
<source>The lower threshold is used at step 3 to determine whether a voxel belongs an edge or not.
Above, and under the upper threshold the voxel is detected as an edge if it is connected to an edge voxel neighbor.
Below, the voxel is rejected.</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>Derivative</name>
<message>
<location filename="../../Derivative.cpp" line="76"/>
<source>Keep original voxel type?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../Derivative.cpp" line="76"/>
<source>Does the output image have the same voxel type as the input one?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../Derivative.cpp" line="79"/>
<source>Derivative order</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../Derivative.cpp" line="79"/>
<source>The derivative order of the partial derivative along the selected direction (x, y, z).</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../Derivative.cpp" line="86"/>
<source>Direction</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../Derivative.cpp" line="86"/>
<source>The direction of the partial derivative.</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>GaussianFilter</name>
<message>
<location filename="../../GaussianFilter.cpp" line="64"/>
<source>Variance</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../GaussianFilter.cpp" line="64"/>
<source>The variance is an input parameter of the gaussian kernel.
The higher the variance is, the blurer the resulting image will be.</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../GaussianFilter.cpp" line="70"/>
<source>Gaussian Type</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../GaussianFilter.cpp" line="70"/>
<source>Choose the type of kernel for the gaussian filtering</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../GaussianFilter.cpp" line="73"/>
<source>Standard</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../GaussianFilter.cpp" line="73"/>
<source>Recursive IIR</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>GradientMagnitudeRecursiveGaussian</name>
<message>
<location filename="../../GradientMagnitudeRecursiveGaussian.cpp" line="68"/>
<source>Standard deviation</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../GradientMagnitudeRecursiveGaussian.cpp" line="68"/>
<source>The standard deviation &lt;i&gt;(sigma)&lt;/i&gt; is used as a parameter of the Gaussian convolution kernel.
The higher the deviation is, the blurer the resulting image will be.</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>Laplacian</name>
<message>
<location filename="../../Laplacian.cpp" line="65"/>
<source>Keep original voxel type?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../Laplacian.cpp" line="65"/>
<source>Does the output image have the same voxel type as the input one?</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>LaplacianRecursiveGaussian</name>
<message>
<location filename="../../LaplacianRecursiveGaussian.cpp" line="61"/>
<source>Keep original voxel type?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../LaplacianRecursiveGaussian.cpp" line="61"/>
<source>Does the output image have the same voxel type as the input one?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../LaplacianRecursiveGaussian.cpp" line="64"/>
<source>Standard deviation</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../LaplacianRecursiveGaussian.cpp" line="64"/>
<source>The standard deviation &lt;i&gt;(sigma)&lt;/i&gt; is used as a parameter of the Gaussian convolution kernel.
The higher the deviation is, the blurer the resulting image will be.</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>MeanFilter</name>
<message>
<location filename="../../MeanFilter.cpp" line="71"/>
<source>Half neighborhood size along X</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MeanFilter.cpp" line="71"/>
<source>Half the size of the X direction of the neighborhood taken into account for the mean computation.
For instance, a value of 2 will create a windows of size 4 along the X direction.</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MeanFilter.cpp" line="77"/>
<source>Half neighborhood size along Y</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MeanFilter.cpp" line="77"/>
<source>Half the size of the Y direction of the neighborhood taken into account for the mean computation.
For instance, a value of 2 will create a windows of size 4 along the Y direction.</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MeanFilter.cpp" line="83"/>
<source>Half neighborhood size along Z</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MeanFilter.cpp" line="83"/>
<source>Half the size of the Z direction of the neighborhood taken into account for the mean computation.
For instance, a value of 2 will create a windows of size 4 along the Z direction.</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>MedianFilter</name>
<message>
<location filename="../../MedianFilter.cpp" line="71"/>
<source>Half neighborhood size along X</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MedianFilter.cpp" line="71"/>
<source>Half the size of the X direction of the neighborhood taken into account for the mean computation.
For instance, a value of 2 will create a windows of size 4 along the X direction.</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MedianFilter.cpp" line="77"/>
<source>Half neighborhood size along Y</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MedianFilter.cpp" line="77"/>
<source>Half the size of the Y direction of the neighborhood taken into account for the mean computation.
For instance, a value of 2 will create a windows of size 4 along the Y direction.</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MedianFilter.cpp" line="83"/>
<source>Half neighborhood size along Z</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MedianFilter.cpp" line="83"/>
<source>Half the size of the Z direction of the neighborhood taken into account for the mean computation.
For instance, a value of 2 will create a windows of size 4 along the Z direction.</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>MorphologicalOperators</name>
<message>
<location filename="../../MorphologicalOperators.cpp" line="64"/>
<source>Structuring element size</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MorphologicalOperators.cpp" line="64"/>
<source>The structuring element size &apos;n&apos;&apos; represents the dimension of the n x n x n voxels square used by the operator.
For instance a 3 voxels size will indicate a 3x3x3 square.</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MorphologicalOperators.cpp" line="70"/>
<source>Image scalar type</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MorphologicalOperators.cpp" line="70"/>
<source>The image scalar type.</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MorphologicalOperators.cpp" line="77"/>
<source>Type of operation</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MorphologicalOperators.cpp" line="77"/>
<source>Select the desired morphological operation.</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>SobelEdgeDetection</name>
<message>
<location filename="../../SobelEdgeDetection.cpp" line="61"/>
<source>Keep original voxel type?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../SobelEdgeDetection.cpp" line="61"/>
<source>Does the output image have the same voxel type as the input one?</source>
<translation type="unfinished"></translation>
</message>
</context>
</TS>
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE TS>
<TS version="2.0" language="fr_FR">
<context>
<name>AnisotropicDiffusion</name>
<message>
<location filename="../../AnisotropicDiffusion.cpp" line="67"/>
<source>Keep original image voxel type</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../AnisotropicDiffusion.cpp" line="68"/>
<source>Keep the original image voxel type ?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../AnisotropicDiffusion.cpp" line="69"/>
<source>Number of iterations</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../AnisotropicDiffusion.cpp" line="70"/>
<source>The more iterations, the more smoothing.
Each iteration takes the same amount of time.
If it takes 10 seconds for one iteration, then it will take 100 seconds for 10 iterations.
Note that the conductance controls how much each iteration smooths across edges. </source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../AnisotropicDiffusion.cpp" line="76"/>
<source>Conductance</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../AnisotropicDiffusion.cpp" line="77"/>
<source>Conductance controls the sensitivity of the conductance term.
As a general rule, the lower the value, the more strongly the filter preserves edges.
A high value will cause diffusion (smoothing) across edges.
Note that the number of iterations controls how much smoothing is done within regions bounded by edges.</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>CannyEdgeDetection</name>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="62"/>
<source>Keep original voxel type?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="62"/>
<source>Does the output image have the same voxel type as the input one?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="65"/>
<source>Variance</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="65"/>
<source>The variance is used in the gaussian preprocessing step.
The higher the variance is, the less the edges detection will be noise sensitive.</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="71"/>
<source>Upper threshold</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="71"/>
<source>The upper threshold is used at step 3 to determine whether a voxel belongs an edge or not.
Above, the voxel is detected as an edge.
Below and upper the low threshold, the voxel is accepted if it is connected to an edge voxel neighbor.</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="75"/>
<source>Lower threshold</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../CannyEdgeDetection.cpp" line="75"/>
<source>The lower threshold is used at step 3 to determine whether a voxel belongs an edge or not.
Above, and under the upper threshold the voxel is detected as an edge if it is connected to an edge voxel neighbor.
Below, the voxel is rejected.</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>Derivative</name>
<message>
<location filename="../../Derivative.cpp" line="76"/>
<source>Keep original voxel type?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../Derivative.cpp" line="76"/>
<source>Does the output image have the same voxel type as the input one?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../Derivative.cpp" line="79"/>
<source>Derivative order</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../Derivative.cpp" line="79"/>
<source>The derivative order of the partial derivative along the selected direction (x, y, z).</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../Derivative.cpp" line="86"/>
<source>Direction</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../Derivative.cpp" line="86"/>
<source>The direction of the partial derivative.</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>GaussianFilter</name>
<message>
<location filename="../../GaussianFilter.cpp" line="64"/>
<source>Variance</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../GaussianFilter.cpp" line="64"/>
<source>The variance is an input parameter of the gaussian kernel.
The higher the variance is, the blurer the resulting image will be.</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../GaussianFilter.cpp" line="70"/>
<source>Gaussian Type</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../GaussianFilter.cpp" line="70"/>
<source>Choose the type of kernel for the gaussian filtering</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../GaussianFilter.cpp" line="73"/>
<source>Standard</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../GaussianFilter.cpp" line="73"/>
<source>Recursive IIR</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>GradientMagnitudeRecursiveGaussian</name>
<message>
<location filename="../../GradientMagnitudeRecursiveGaussian.cpp" line="68"/>
<source>Standard deviation</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../GradientMagnitudeRecursiveGaussian.cpp" line="68"/>
<source>The standard deviation &lt;i&gt;(sigma)&lt;/i&gt; is used as a parameter of the Gaussian convolution kernel.
The higher the deviation is, the blurer the resulting image will be.</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>Laplacian</name>
<message>
<location filename="../../Laplacian.cpp" line="65"/>
<source>Keep original voxel type?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../Laplacian.cpp" line="65"/>
<source>Does the output image have the same voxel type as the input one?</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>LaplacianRecursiveGaussian</name>
<message>
<location filename="../../LaplacianRecursiveGaussian.cpp" line="61"/>
<source>Keep original voxel type?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../LaplacianRecursiveGaussian.cpp" line="61"/>
<source>Does the output image have the same voxel type as the input one?</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../LaplacianRecursiveGaussian.cpp" line="64"/>
<source>Standard deviation</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../LaplacianRecursiveGaussian.cpp" line="64"/>
<source>The standard deviation &lt;i&gt;(sigma)&lt;/i&gt; is used as a parameter of the Gaussian convolution kernel.
The higher the deviation is, the blurer the resulting image will be.</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
<name>MeanFilter</name>
<message>
<location filename="../../MeanFilter.cpp" line="71"/>
<source>Half neighborhood size along X</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="../../MeanFilter.cpp" line="71"/>